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We investigate nuclear pasta structures at high temperatures in the framework of a relativistic mean field
model with Thomas-Fermi approximation. Typical pasta structures (droplet, rod, slab, tube, and bubble) are
obtained, which form various crystalline configurations. The properties of those nuclear pastas are
examined in a three-dimensional geometry with reflection symmetry, where the optimum lattice constants
are fixed by reproducing the droplet/bubble density that minimizes the free energy adopting spherical or
cylindrical approximations for Wigner-Seitz cells. It is found that different crystalline structures can evolve
into each other via volume conserving deformations. For fixed densities and temperatures, the differences
of the free energies per baryon of nuclear pasta in various shapes and lattice structures are typically on the
order of tens of keV, suggesting the possible coexistence of those structures. As temperature increases,
the thermodynamic fluctuations are expected to disrupt the long-range ordering in nuclear pasta structures.
We then estimate the critical conditions for nuclear pasta to become disordered and behave like liquid,
which are found to be sensitive to the densities, temperatures, proton fractions, and nuclear shapes. If we
further increase temperature, eventually the nonuniform structures of nuclear pasta become unstable and
are converted into uniform nuclear matter. The phase diagrams of nuclear matter are then estimated, which
should be useful for understanding the evolutions of neutron stars, supernova dynamics, and binary neutron
star mergers.
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I. INTRODUCTION

Because of the extreme pressure residing in neutron stars
and supernovae at the stage of gravitational collapse, the
stellar matter is compressed so extensively that nuclei come
into close contact. At such large densities, neutrons may
drip out of nuclei and form neutron gas, then the dense
stellar matter is essentially a liquid-gas mixed phase of
nuclear matter, which typically forms a lattice of spherical
nuclei emersed in a gas of electrons and neutrons. If
we further increase the density, the Coulomb repulsion
between nuclei becomes so intense that it is energetically
favorable for nuclei to be deformed, which form various
exotic shapes that resemble pasta, i.e., nuclear pasta [1–5].
It was shown that the nuclear pasta should exist up to the
densities nb ≲ 0.1 fm−3 and temperatures T ≲ 15 MeV,
beyond which the uniform phases are more stable [6–9].

The microscopic structures of the pasta phase play
important roles in the transport and elastic properties of
dense stellar matter, which may be identified in various
astrophysical scenarios [10,11]. For example, the neutrino-
pasta scattering affects the neutrino opacity [12,13], which
may lead to late-time enhancement of the neutrino lumi-
nosity in core-collapse supernovae [14] and alter the
cooling processes in neutron stars [15,16]. The complex
shapes of nuclear pasta act like impurities for electron
scattering [17], which effectively dissipates the electric
currents that support the magnetic fields in neutron stars
[18,19]. According to the Wiedemann-Franz law, the
thermal conductivity is linearly related to the electrical
conductivity, so that nuclear pasta acts as a thermally
resistive layer inside a neutron star, leading to longer
cooling time in quiescent low mass x-ray binaries [20].
The interplay of nuclear pasta with the superfluid vortexes
was essential to explain pulsar glitches in the framework
of vortex creep model, which affects the glitch sizes as well
as the post-glitch recovery behaviors [12,15,16,21–28].
A crust failure could trigger the sudden release of magnetic
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and elastic energy observed in magnetar bursts [29–31], the
short gamma-ray burst precursors of neutron star mergers
[32], as well as pulsar glitches [33–38]. The quasiperiodic
oscillations observed after giant flares of soft gamma
repeaters are usually interpreted as global oscillations of
magnetars [39,40]. It was shown that the oscillation
spectrum is affected by the elastic and superfluid properties
of nuclear pasta [41–51]. Because of the elastic stresses of
astromaterials, there could be mountains on neutron stars,
which are responsible for the asymmetric matter distribu-
tions with nonzero ellipticities ϵ. The sizes of mountains are
limited by the breaking strain of the neutron star crust,
which can reach as large as 0.1 for nuclear pasta [51–56]. In
such cases, it is possible that the maximum ellipticity of
neutron stars reaches ϵ ≈ 10−5 [57], which are expected to
emit gravitational waves for fast rotating neutron stars. In
fact, recent observations have put strong constraints on the
maximum amplitude of such gravitational waves, where
the ellipticities for the recycled pulsars PSR J0437-4715
and PSR J0711-6830 are constrained with ϵ < 10−8 [58],
indicating the absence of large mountains.
Adopting spherical or cylindrical approximations of

the Wigner-Seitz (WS) cell [8,9,59–68], it was found that
nuclear pasta exhibits at least five types of geometrical
structures, i.e., droplets, rods, slabs, tubes, and bubbles.
Considering the interactions among cells, those exotic
nuclei arrange themselves into various types of lattice
structures, where the body-centered cubic (bcc) lattices
for droplets/bubbles and the honeycomb lattices for rods/
tubes were found to be more stable [69]. Carrying out more
detailed investigations on nuclear pasta structures in a
three-dimensional geometry, it was shown that the face-
centered cubic (fcc) lattices could become energetically
favorable for droplets/bubbles, which were obtained in a
unified manner in the framework of Thomas-Fermi
approximation [70–72]. Additionally, the intermediate
structures of droplets and rods, slabs and tubes were
identified during the transition between those phases
[70,73]. Much more complicated structures were observed
as well [74–76], e.g., the gyroid and double-diamond
morphologies [77,78], P-surface configurations [79,80],
nuclear waffles [81,82], Parking-garage structures [83],
and deformations in droplets [84].
In this work we further investigate the effects of finite

temperature on nuclear pasta structures, where the Thomas-
Fermi approximation is adopted. The local properties of
nuclear matter are fixed within the framework of the
relativistic mean field (RMF) model [85], where the covar-
iant density functional MTVTC is adopted [61]. This func-
tional predicts the symmetry energy S ¼ 32.46 MeV and its
slope L ¼ 89.39 MeV of nuclear matter at saturation density
n0 ¼ 0.153 fm−3, while the corresponding critical temper-
atures and densities of the liquid-gas phase transition are
indicated in Table I. Note that the charge number of nuclei,
the core-crust transition density, and the onset density of

nonspherical nuclei decrease with L [86–88], so that the
results obtained in this work may be altered if we decrease L
explicitly by introducing an ω − ρ cross coupling term [72].
According to our previous investigations [72], the effect of
finite cell size [75,89] needs to be considered by searching
for the optimum size of a unit cell, where the corresponding
volume occupied by each droplet/bubble was found to take
the same value in disregard of the exact lattice structures. In
such cases, we first search for the optimum WS cell size
adopting spherical or cylindrical approximations, then fix the
optimum size of the unit cell according to the lattice
structure, which significantly reduces the numerical cost.
The paper is organized as follows. In Sec. II, we present our
theoretical framework. The obtained results on the structure
and properties of nuclear pasta are presented in Sec. III. Our
conclusion is given in Sec. IV.

II. THEORETICAL FRAMEWORK

We adopt the following Lagrangian density of RMF
model for the investigation of hot nuclear matter, i.e.,

L ¼
X
i¼n;p

ψ̄ i½iγμ∂μ − γ0ðgωωþ gρρτi þ AqiÞ −M��ψ i

þ ψ̄e½iγμ∂μ −me − qeγ0A�ψe −
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2
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4
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2
m2
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where τn ¼ −τp ¼ 1 is the third component of isospin,
qp ¼ −qe ¼ e and qn ¼ 0 the charge, and M� ≡M þ gσσ
the effective nucleon mass. In this work we adopt the
covariant density functional MTVTC, where the coeffi-
cients in Eq. (1) can be found in Ref. [61]. The boson fields
σ, ω, ρ, and A take mean values with only the time
components due to time-reversal symmetry. Then the field
tensors ωμν, ρμν, and Aμν vanish except for

ωi0¼−ω0i¼∂iω; ρi0¼−ρ0i¼∂iρ; Ai0¼−A0i¼∂iA:

Based on the Euler-Lagrange equation, the Klein-Gordon
equations for bosons in the framework of mean field
approximation are

TABLE I. Temperatures and densities at the critical end points
for the liquid-gas transition of nuclear matter at various proton
fractions Yp, which are predicted by the covariant density
functional MTVTC [61].

Yp 0.1 0.3 0.5

nb (fm−3) 0.027 0.042 0.047
T (MeV) 6.45 13.5 16.1
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ð−∇2 þm2
σÞσ ¼ −gσðnsb þ bMgσσ2 þ cg2σσ3Þ; ð2Þ

ð−∇2 þm2
ωÞω ¼ gωnb; ð3Þ

ð−∇2 þm2
ρÞρ ¼ gρðnn − npÞ; ð4Þ

−∇2A ¼ enp − ene: ð5Þ

Here nsb ¼ nsp þ nsn and nb ¼ np þ nn are the local scalar
and vector densities of nucleons in the Thomas-Fermi
approximation, which are fixed by

nsi ¼
m�

i

π2

Z
∞
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Here we have adopted the Fermi-Dirac distribution for
nucleons and electrons with

f�i ðpÞ ¼
h
1þ eð

ffiffiffiffiffiffiffiffiffiffiffiffi
p2þm�

i
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p ∓μ�i Þ=T
i
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where μ�i represents the effective chemical potential and T
the temperature. The real chemical potential can then be
obtained by including the vector potentials, i.e.,

μiðr⃗Þ ¼ μ�i ðr⃗Þ þ gωωþ gρτiρþ qiA: ð9Þ

Note that if the interactions among particles are absent,
we have a free system and the effective chemical potential
is equivalent to the real one, i.e., μi ¼ μ�i . The total particle
number, entropy, and free energy of the system are
determined by
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where m�
e ¼ me ¼ 0.511 MeV and m�

n ¼ m�
p ¼ M�. The

energy and pressure can then be obtained with

E ¼ F þ TS; ð14Þ

P ¼
�X

i

μiNi − F

�
=V: ð15Þ

For any density profiles, the Klein-Gordon
equations (2)–(5) can be solved via fast cosine trans-
formations, which fulfill the reflective boundary condi-
tions. By minimizing the total free energy F at given total
particle numbers Ni, temperature T, and cell size, it is
found that the density distributions of fermions niðr⃗Þ follow
the constancy of chemical potentials with

μiðr⃗Þ ¼ constant: ð16Þ

Note that the density profiles for protons and electrons
do not follow the local charge neutrality condition npðr⃗Þ ¼
neðr⃗Þ for Eq. (5). Instead, the quasineutrality condition is
always fulfilled with

P
i qiNi ¼ 0, leading to Np ¼ Ne for

the unit cells and WS cells considered here. In order to
fulfill Eq. (16), we readjust the density profiles via the
imaginary time step method [90] and solve Eqs. (2)–(5),
(9), and (16) iteratively. The iteration stops until the
deviation of local chemical potentials from Eq. (16)
becomes insignificant. In practice, we first fix the optimum
WS cell size RW adopting spherical or cylindrical approx-
imations for WS cells [66,67], which minimizes the free
energy per nucleon at fixed average baryon number density
nb, temperature T, and proton fraction Yp. Then we
consider the simple cubic (SC), bcc, and fcc lattices for
droplets or bubbles, simple and honeycomb configurations
for rods or tubes, and slabs in a three-dimensional geom-
etry, where the optimum unit cell sizes are fixed by

3D∶ 3a3 ¼

8>><
>>:

4πR3
W; SC

8πR3
W; bcc

16πR3
W; fcc

; ð17Þ

2D∶ a2 ¼
(
πR2

W; simple

2πR2
W=

ffiffiffi
3

p
; honeycomb

; ð18Þ

1D∶ a ¼ 2RW; slab: ð19Þ
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Here a represents the lattice constant of cubic unit cells
while for honeycomb configurations a cuboid unit cell is
adopted with b ¼ ffiffiffi

3
p

a. Note that a slight deviation of the
optimum lattice constant a from that in Eqs. (17)–(19)
may persist, which is nonetheless insignificant due to the
rather small energy differences among various types of
lattice structures [69,72]. More detailed discussions on the
numerical recipe in obtaining various nuclear pasta struc-
tures can be found in our previous studies [66,67,72].

III. RESULTS AND DISCUSSION

A. Shapes of nuclei

We first investigate the properties of nuclear pasta
adopting spherical or cylindrical approximations for WS
cells, where symmetric nuclear matter with proton fraction
Yp ¼ 0.5 and asymmetric nuclear matter with Yp ¼ 0.3
and 0.1 are considered. The effects of finite temperature are
examined by taking T ¼ 0.1, 1, 5, 10, and 15 MeV, which
destabilize the nonuniform structures as T increases.
To show this explicitly, as an example, in Fig. 1 we present
the density profiles of nuclear droplet phases at

nb ¼ 0.02 fm−3, Yp ¼ 0.5, and various T, where the WS
cells are assumed to be spherical. The center of the
spherical droplets is locate at r ¼ 0, while the cell boundary
at r ¼ RW is indicated by a vertical line. The effects of
charge screening are considered with nonuniform electron
density distributions inside WS cells, which affects the
properties of nuclear pasta [61]. Note that at large densities
and proton fractions, the chemical potential of electrons
will surpass the mass of muons, which inevitably leads
to the creation of muons and contributes to the charge
screening effects. The contributions of muons will be
considered in our future study, while for now only electrons
are considered. As temperature increases, the density of
nucleons at r ¼ 0 decreases. At T ≳ 1 MeV, a gas com-
prised of protons and neutrons is formed outside of the
droplet with its density increases with T. Consequently, the
density profiles in the surface regions of nuclei become
smooth, e.g., at T ¼ 10 MeV, which is expected to reduce
the surface tension between the liquid and gas phases of
nuclear matter [91]. If we further increase the temperature
to T ¼ 15 MeV, the droplet phase becomes unstable and
is converted into the uniform phase of nuclear matter.
Meanwhile, we note that the optimum WS cell size RW
remains almost constant for different T, which would
increase drastically if T approaches to the uniform-non-
uniform phase boundaries as illustrated in Fig. 4.
Once the optimum configuration of nuclear pasta at

given nb, Yp, and T is fixed, the free energy, entropy,
energy, and pressure can be determined by Eqs. (9)–(13). In
Fig. 2, we present the obtained free energy per baryon,
entropy per baryon, and pressure for nuclear matter in
optimum configurations, where the free energy per baryon
is minimized with respect to the pasta structures and WS
cell sizes RW. In general, the free energy per baryon and
pressure increases with baryon number density nb, while
the entropy per baryon decreases. If nonuniform phases
emerge for nuclear matter, the droplet, rod, slab, tube, and
bubble phases appear sequentially as density increases. The
density range of those nonuniform phases increases with
proton fraction Yp, while the free energy per baryon,
entropy per baryon, and pressure increases as well. As
temperature T increases, the energy per baryon, entropy per
baryon, and pressure of nuclear matter increases, while the
free energy per baryon decreases. As illustrated in Fig. 1,
increasing T will destabilize the nonuniform structures of
nuclear matter. Consequently, the density range of non-
uniform nuclear matter decreases with T and vanishes
at T ≳ 15 MeV.
For realistic astromaterials in supernova, protoneutron

stars, and binary neutron star mergers, neutrinos are trapped
in a short period of time and play important roles. As
neutrinos do not participate with the strong and electro-
magnetic interactions, they are distributed uniformly inside
WS cells. The presence of trapped neutrinos delays the
conversion of protons into neutrons and keeps a relatively
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FIG. 1. Density profiles of nucleons and electrons in WS cells
of droplet phases at T ¼ 0.1, 1, 5, 10, 15 MeV (from bottom to
top), respectively. The boundary of the WS cell at r ¼ RW is
indicated by a vertical line in each panel.
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large proton fraction for nuclear matter, e.g., Yp ≈ 0.3,
which favors the formation of various inhomogeneous
structures as indicated in Fig. 2. Because of the neutrino
contributions to the pressure and energy density [92], the

equation of state is altered and deviates from those
presented in Fig. 2. In Fig. 3 we present the equilibrium
electron-neutrino chemical potentials as functions of den-
sity, which are fixed with μν ¼ μe þ μp − μn. For equili-
brated systems with trapped neutrinos, the contributions of
neutrinos increase with μν, which are increasing with
density nb and proton fraction Yp. The impact of temper-
ature is less significant, where the equilibrium electron-
neutrino chemical potential generally decreases with T.
Note that if we fix the lepton fraction Yl ¼ Yp þ Nν=A, the
obtained proton fraction Yp and electron-neutrino chemical
potential μν will deviate slightly from the values indicated
in Fig. 3. More detailed discussions can be found in earlier
publications, e.g., those in Ref. [92].
Based on the density profiles of nuclear pasta illustrated

in Fig. 1, the droplet size Rd and volume of WS cells V can
be obtained with

Rd ¼

8>><
>>:

RW

	hnpi2
hn2pi



1=D

; dropletlike

RW

	
1 − hnpi2

hn2pi


1=D

; bubblelike;
ð20Þ

V ¼

8>><
>>:

4
3
πR3

W; D ¼ 3

πlR2
W; D ¼ 2

l2RW; D ¼ 1.

ð21Þ

where hn2pi ¼
R
n2pðr⃗Þd3r=V and hnpi ¼

R
npðr⃗Þd3r=V.

The parameter D stands for the dimension, where D ¼ 3
corresponds to droplets/bubbles, D ¼ 2 to rods/tubes, and
D ¼ 1 to slabs. Note that for the cases with D ¼ 1 and 2,
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FIG. 2. Free energy per baryon, entropy per baryon, and pressure for nuclear matter obtained with fixed proton fractions Yp ¼ 0.1, 0.3,
and 0.5. The types of nuclear matter structures are indicated with colors, while temperature is marked with different symbol shapes.
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we have introduced an additional cell size l so that the
volume V is finite, which is essentially a random number
and we take l ¼ 10

ffiffiffi
3

p
fm and 20 fm for D ¼ 1 and 2. The

proton number of the system is then fixed by

Z ¼ nbYpV: ð22Þ

In Fig. 4 we present the proton number Z, droplet/bubble
size Rd, and WS cell size RW for optimum nuclear pasta
structures, which are obtained with Eqs. (20)–(22) adopting
spherical or cylindrical approximations for WS cells. As
illustrated in Fig. 1, the microscopic structures of nuclear
droplets are altered as we increase T, while that of the WS
cell size RW remains almost constant. Similar situations are
observed in Fig. 4, where as we increase T the droplet size
becomes larger and bubble size smaller. This is mainly
because the density distribution inside WS cells approaches
to the limit of a uniform one as T increases. Meanwhile, it is
found that the WS cell size RW and proton number Z
decrease slightly with T, which would nonetheless increase
drastically approaching to the uniform-nonuniform phase
boundaries. The reason for the evolutions of RW and Z with
respect to T is twofold. On the one hand, the reduction
of RW is mainly attributed to the reduction of surface
tension between the liquid and gas phases of nuclear matter,
where the corresponding densities become similar as T
increases [91]. On the other hand, as one approaches to the
uniform-nonuniform phase boundaries, the proton fractions
in each phases start to take similar values with the
enhancement of the congruence [93,94], where RW grows
drastically as nuclear pasta resembles the liquid-gas mixed
phase obtained with Maxwell construction. Comparing the

cases adopting different proton fractions Yp, the optimum
WS cell size generally decreases with Yp in order to reduce
the Coulomb energy, which is expected to be proportional
to the surface energy according to the compressible-liquid-
drop model [3]. The droplet/bubble sizes vary slightly with
Yp, so that the surface areas are almost the same, indicating
similar surface energies. Meanwhile, we find that the
proton number Z normally increases with Yp. As we
increase nb, it is found that RW decreases for the dropletlike
phases (droplet, rod, slab), while this trend reverses for the
tube and bubble phases. The droplet size Rd and proton
number Z are normally increasing with nb aside from the
cases close to the uniform-nonuniform phase boundaries,
while the bubble size Rd decreases with nb.

B. Lattice structures

The nonuniform structures of nuclear matter presented in
Sec. III A are obtained assuming geometrical symmetries
for the WS cells, where the interactions among different
cells were neglected. For more realistic cases, the droplets,
rods, slabs, tubes, and bubbles are expected to form various
crystalline structures. For example, the droplets/bubbles
could form SC, bcc, and fcc lattices, where at small enough
densities the bcc lattice is the most stable configuration
[69]. Nevertheless, as density increases, the fcc lattice may
become more favorable [70–72]. In particular, the covariant
density functional MTVTC adopted here predicts a stable
fcc lattice for nuclear droplets in neutron stars at nb ¼
0.06 fm−3 [72]. It is interesting to compare our results with
that of Coulomb crystals considering the collective (pho-
non) degrees of freedom, where the fcc lattice may become
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more stable than the bcc lattice for certain ion charge
numbers and densities [95]. Since the contribution of
phonons is neglected in our study, fcc lattice becomes more
tightly bound than bcc lattice due to other contributions such
as the dripped neutrons and nonzero sizes of droplets, while
more detailed investigations with phonons shall be carried
out in our future study. The rods/tubes could form simple and
honeycomb configurations, where the honeycomb ones were
found to be more stable [70–72]. A very complicated
structure may be formed by slabs, e.g., the primitive, gyroid,
diamond morphologies [13], nuclear waffles [81,82], and
Parking-garage structures [83]. In such cases, based on the
nuclear pasta structures obtained assuming geometrically
symmetric WS cells, we further investigate the correspond-
ing crystalline structures in a three-dimensional geometry
with reflection symmetry [72], which is equivalent to
considering only one octant of the unit cell.

1. Coexistence of various configurations

In principle, as temperature increases, not only the
internal structures of droplets are modified as indicated
in Fig. 1, the droplet will gain kinetic energy as well and
constantly relocate itself, causing transitions among differ-
ent lattice structures. For example, the bcc lattice can
evolve into a fcc lattice by introducing a displacement on
the z axis with σ ¼ σF ¼ 2 − 25=6 ≈ 0.2182, i.e., the Bain
path [96], where a droplet at position (x, y, z) is moved to a
new position (x0; y0; z0) with

z0 ¼ z

�
1−

σ

2

�
−2
; x0 ¼x

�
1−

σ

2

�
; y0 ¼y

�
1−

σ

2

�
: ð23Þ

In Fig. 5 we present the variation of Gibbs free energy per
baryon ΔG=A with respect to the droplet phase in the bcc

lattice, where the Gibbs free energy is fixed by G ¼ F −P
i μiNi with Np ¼ Ne ≈ 22 and Nn ≈ 1442 for each unit

cell. It is evident that droplets in the fcc lattice become more
favorable than the bcc lattice as we increase the pressure,
i.e., ΔGðσFÞ < 0 [72]. Nevertheless, their difference in the
Gibbs free energy per baryon is rather small. In such cases,
for nuclear matter with finite temperatures, various crys-
talline structures and nuclear shapes may coexist and form
polycrystalline configurations. The barrier height that
separates the bcc and fcc configurations should be fixed
by multiplying the number of nucleons that move simulta-
neously as the transition from one phase to another takes
place, which is expected to be large. In such cases, at
temperatures below the barrier height, the transition
between different phases could only occur via quantum
tunneling or seismic activities that involve large deforma-
tions, which are expected to take place on a much larger
timescale. Because of the shell effects of nuclei, in addition
to the lattice structures, there may exist extensive local
minima in the potential energy surfaces of nuclear shapes,
which may still be populated if the temperature drops
quickly, leading to the formation of an amorphous solid in
neutron star crusts [97].
In this work we consider six types of lattice structures for

nuclear pasta with the droplets/bubbles forming SC, bcc,
and fcc lattices, the rods/tubes forming simple and honey-
comb configurations, and slabs. In principle, we should
examine all possible lattice structures and nuclear shapes.
However, more exotic shapes are expected to have much
larger free energies in the absence of shell effects [70–72],
which makes them less important and we thus leave this
topic for our future study. In Fig. 6 we present the free
energy excess per baryon and Coulomb energy excess per
baryon for various nuclear pasta configurations obtained in
a three-dimensional geometry, which are fixed by sub-
tracting the free energies and Coulomb energies of the most
stable configurations obtained with spherical and cylindri-
cal approximations for WS cells as indicated in Fig. 2. The
free energy excesses are thus mainly from the interactions
among different cells and vary with lattice structures, i.e.,
the lattice energies, which decrease with temperature T and
increase with proton fraction Yp. This is mainly because
nucleons inside unit cells become more uniformly distrib-
uted as we increase T or decrease Yp.
Comparing ΔF=AwithΔEC=A, it is evident that at small

temperatures and densities the free energy excesses are
mainly from the Coulomb interaction among cells, i.e.,
ΔF=A ≈ ΔEC=A. However, this relation quickly fails as we
increase nb and T, where the interaction among nucleons
starts to play an important role. In particular, at large
densities with the emergence of bubblelike structures,
ΔF=A deviates significantly from ΔEC=A. This is mainly
caused by the additional contributions of nuclear inter-
actions, where nucleons relocate themselves outside of the
bubble. As an example, in Fig. 7 we present the proton
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FIG. 5. Variation of Gibbs free energy per baryon ΔG=A as a
function of σ, where the droplets in bcc lattice (σ ¼ 0) evolve into
fcc lattice (σ ¼ σF) at fixed pressures around nb ≈ 0.06 fm−3. The
β-stability condition is always fulfilled.
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density profile for the tube phase in a simple configuration
obtained at nb ¼ 0.06 fm−3, Yp ¼ 0.1, and T ¼ 5 MeV. It
is evident that np at the boundaries of the unit cell does not

follow the cylindrical symmetry, where the protons form
clusters on the four corners. In such cases, Coulomb energy
ΔEC=A alone does not account for the lattice energyΔF=A,
while the relocation of nucleons and strong interactions
among them have to be considered. The difference between
ΔEC=A and ΔF=A decreases as the density approaches to
the uniform-nonuniform phase boundaries with ΔF=A → 0
and ΔEC=A → 0.
Similar to our previous findings, for the droplet/bubble

phases, the free energy per baryon of bcc and fcc lattices is
almost indistinguishable with the bcc lattice being slightly
more stable at small densities [69], while the SC lattices
are typically unstable in comparison with bcc/fcc lattices
except for a few cases in the bubble phases. For the rod/tube
phases, the honeycomb configuration is always more stable
than the simple one. Note that the numerical uncertainty
in Fig. 6 is on the order of ∼keV, which is sufficient
considering the high temperatures adopted here. The
probability of various combinations of nuclear shapes
and lattice structures is expected to follow the statistical
distribution [98]:

Probability ∝ exp ð−ΔGAd=ATÞ: ð24Þ
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Here Ad represents the number of nucleons that move
collectively in nuclear pasta, which is just the baryon
number of each droplet at small enough densities and
temperatures. For rod/tube and slab phases, as they extend
infinitely in space, the value for Ad is not so straightforward
and approaches to infinity. However, as will be illustrated in
Sec. III B 2, the one-dimensional ordering for infinite rods,
tubes, and slabs is expected to be destroyed by thermody-
namic fluctuations, effectively making the collective
nucleon number Ad finite. The value for Ad is expected
to decrease with temperature and finally reaches 1 once
nuclear matter becomes uniform, where the degrees of
freedom for all nucleons are effectively released.

2. Thermodynamic fluctuations

If we increase temperature, the thermodynamic fluctua-
tions of droplets become significant, which eventually lead
to melting and form a liquid of droplets. Considering only
Coulomb interaction among droplets with charge screening
of electrons, the melting temperature of one-component
plasma can be estimated with the Coulomb parameter,

Γ ¼ Z2e2

RWT
; ð25Þ

which characterizes the ratio of a typical Coulomb energy
to the thermal energy. According to the Monte Carlo
simulations, the plasma freezes at Γ≳ 175 [99,100].

Note that the exact criterion may be altered by electron
screening [100]. Meanwhile, as indicated in Fig. 1, the
proton density outside the droplet is not always negligible.
In such cases, in order to use the criterion Γ≳ 175 obtained
assuming pointlike charges for nuclei, we need to subtract
the contribution from the background proton density by
replacing Z with Zdroplet ¼ Z − npðRWÞV, which roughly
accounts for the net charges of nuclei. In the left panels of
Fig. 8 we present the Coulomb parameter of the nuclear
droplets indicated in Fig. 4. Evidently, the melting temper-
atures of the crystalline structures do not align with the
uniform-nonuniform transition temperatures derived from
Fig. 4. At regions beneath the dashed lines, instead of
forming crystalline structures, a liquid of droplets takes
place. Those droplets will be destabilized further if we
increase T, where the density profiles become uniform as
illustrated in Fig. 1. Note that the exact melting temperature
may be altered if additional interactions among nucleons
are considered, e.g., the additional lattice energy contribu-
tion at large T and nb as indicated in Fig. 6, which cannot be
accounted for with Coulomb interaction alone.
The effects of temperature are clearly illustrated in Fig. 8,

where the Coulomb parameter Γ decreases rapidly with T.
For the droplet phases obtained at T ¼ 0.1 MeV, the
Coulomb parameter Γ≳ 1000 and increases quickly with
density, where the droplets form crystalline structures. As
temperature increases, the crystalline structures start to melt,
especially for those with small nb. We note Γ increases
with proton fraction Yp, which is similar to the cases of
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FIG. 8. Coulomb parameter of nuclear droplets (left) and bubbles (right) obtained with Eq. (25), which corresponds to those indicated
in Fig. 4. The horizontal lines mark the melting value for Γ, above which those nuclear droplets/bubbles freeze and form stable
crystalline structures [99,100].
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uniform-nonuniform phase transitions. Meanwhile, it is
found that Γ increases with average baryon number density
nb, which is mainly due to the increment of the proton
number Z in droplets. The Coulomb parameter of bubble
phases can be estimated by replacing the proton number
Z in Eq. (25) with the effective charge number Zbubble ¼
npðRWÞV − Z [101], where the corresponding values are
presented in the right panels of Fig. 8. Similar trends with
respect to T and Yp are observed for the bubble phases.
However, in contrast to the droplet phases, we note Γ
decreases with nb, which is mainly attributed to the
shrinkage of bubble sizes as indicated in Fig. 4.
For the rod, slab, and tube phases, as their WS cells

extend infinitely in space, the corresponding proton number
Z would become infinitely large. In such cases, it is not
likely that those deformed nuclei would vibrate as a whole.
Nevertheless, the temperature effects are expected to cause
local thermodynamic fluctuations on the shapes of those
objects, leading to the destruction of the one-dimensional
ordering in an infinite three-dimensional system in the
context of Landau-Peierls instabilities [102]. It was shown
that the temperature effects cause defects and nonparallel
configurations in slab phases, while weak sinusoidal or
hyperbolic splay with a length scale of order the box width
was observed as well [103]. To roughly estimate disruption
caused by thermal fluctuations, we adopt the formalism
derived from the liquid-drop model [102], where the mean-
square displacements for the slab and rod/tube phases are
determined by

hjνj2i ≈
ffiffiffi
5

p
T

8πεCRW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u − 2u2

p ln

�
L
a

�
; ð26Þ

hjνj2i ≈ T

ðBþ 2CÞ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πa

ffiffiffiffiffiffiffiffi
2K3

pp ; ð27Þ

with the coefficients

B¼3

2
εC; C≈102.1ðu−0.3ÞεC; K3≈0.0655εCR2

W: ð28Þ

Here u ¼ ðRd=RWÞD is the volume fraction, L the length
scale of slabs, and εC ¼ EC=V the equilibrium Coulomb
energy density with EC ¼ R ð∇AÞ2d3r=2, where the inter-
action among other unit cells is considered. The lattice
constant a is obtained with Eqs. (18) and (19).
In Fig. 9 we present the root-mean-square displacement of

slabs and rods/tubes divided by the distance from the surface
of a nucleus to the cell boundary

ffiffiffiffiffiffiffiffiffiffiffi
hjνj2i

p
=ða=2 − RdÞ,

which is estimated with Eqs. (26) and (27) by taking
L ¼ 1 μm, respectively. If the displacement becomes com-
parable to the cell size, i.e.,

ffiffiffiffiffiffiffiffiffiffiffi
hjνj2i

p
=ða=2 − RdÞ ≳ 1, we

deem the matter is completely disordered, which is indicated
in the region above the horizontal lines. For the rod/tube

phases, both the simple and honeycomb configurations are
examined in a three-dimensional geometry with the lattice
constants fixed by Eq. (18), where the honeycomb
configuration is found to be more stable. In such cases,
the displacements indicated with the red-dotted curves
correspond to the honeycomb configurations, where the
Coulomb energy density εC from rods/tubes and inter-
action among cells are derived. Similar to the findings in
Ref. [102], the displacement of slabs is usually larger than
those of rods/tubes, so that slabs are easily disrupted and
form complicated structures [103]. The relative displace-
ments generally increase with density nb and decrease
with proton fraction Yp. It is found that the rods/tubes for
nuclear matter at T ¼ 0.1, 1, 5 MeVand Yp ¼ 0.3, 0.5 are
generally stable with small displacement, while the slab
phases at T ¼ 0.1, 1 MeV and Yp ¼ 0.3, 0.5 are stable.
If the proton fraction Yp ¼ 0.1 is adopted, as density
increases, both rods and slabs are disrupted for nuclear
matter at T ≥ 1 MeV.

C. Phase diagram

Based on the results presented in Secs. III A and III B,
the phase diagrams of nuclear matter can then be estimated.
In Fig. 10 we present the phase diagrams of nuclear matter
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at various average densities nb, temperatures T, and proton
fractions Yp. The black-solid curves mark the uniform-
nonuniform phase boundaries according to the results
presented in Fig. 2 adopting the spherical or cylindrical
approximations for WS cells, where the nonuniform phases
are indicated by the shaded regions. The colored-solid
curves indicate the critical temperatures for the disruption
of crystalline structures, which are fixed at Γ ¼ 175 for
droplets/bubbles and

ffiffiffiffiffiffiffiffiffiffiffi
hjνj2i

p
¼ ða=2 − RdÞ for nonspheri-

cal nuclei. The colored regions above those curves mark the
temperatures and densities of disordered pasta phases. As
we decrease the temperature of uniform nuclear matter and
cross the uniform-nonuniform boundary, the density pro-
files of nuclear matter become nonuniform and form nuclei
in various shapes. Nevertheless, those nuclei do not form
stable lattice structures or any long-range ordering if the
temperatures are above the order-disorder boundaries,
which are disordered due to thermodynamic fluctuations
and act like liquid. Nuclei in various shapes start to stabilize
and freeze into crystalline structures only if the temper-
atures are below the order-disorder boundaries. The dotted
lines indicate the phase boundaries between nuclear shapes,
which are fixed by comparing their free energies as
indicated in Fig. 6. However, the phase boundaries are
not strict since various nuclear shapes and crystalline

structures could in principle coexist, which follow the
statistical probability distribution in Eq. (24).
Generally speaking, nuclear pasta structures are desta-

bilized as we decrease the proton fraction, where the critical
temperatures for the uniform-nonuniform and order-
disorder transitions decrease. The density ranges for
nonuniform nuclear matter as well as the nonspherical
nuclei decrease as well for smaller Yp. Since the typical
proton fraction for nuclear pasta in neutron star crusts is
Yp ≈ 0.02, the critical temperatures for the phase bounda-
ries become even smaller and reach Tc ¼ 0.1–0.3 MeV at
Γ ¼ 175. In such cases, the crystalline structures of nuclear
pasta in neutron star crusts are easily disrupted according
to the typical protoneutron star temperatures. The existence
of various lattice structures and nuclei shapes could in
principle lead to the formation of an amorphous solid if the
neutron star cools down rapidly [97]. The phase transition
boundaries indicated in Fig. 10 are expected to affect the
properties and evolutions of neutron stars, where the
electrical conductivity [17], thermal conductivity [20],
neutrino opacity [12,13], as well as the elastic properties
[57,58,104] of neutron star matter are altered.

IV. CONCLUSION

In this work we have investigated the nuclear pasta
structures at high temperatures, where the RMF model with
Thomas-Fermi approximation was adopted. The properties
and microscopic structures of nuclear pasta were examined
adopting spherical or cylindrical approximations for WS
cells, where the optimum configurations such as shapes and
cell sizes were fixed by minimizing the free energy at fixed
temperature T and density nb. As T increases, the nonuni-
form structures of nuclear pasta are destabilized, where
the density profiles eventually become uniform at large
enough T. Similar trends are observed as well with respect
to the proton fraction Yp, where the nonuniform structures
and nonspherical nuclei become less stable at smaller Yp.
Consequently, the density range for nonuniform structures
of nuclear matter decreases as we increase T or decrease
Yp. For equilibrated systems with trapped neutrinos, the
contributions of neutrinos increase with density nb and
proton fraction Yp, while the impact of temperature is less
significant. In comparison with the cases of small T, the
WS cell sizes RW and proton numbers Z decrease slightly
with T as the surface tension becomes smaller. A rapid
growth in RW and Z was observed right before the
transition to uniform nuclear matter takes place, which is
attributed to the enhancement of the congruence with
similar proton fractions in the liquid and gas phases of
nuclear matter [93,94].
The properties of the nuclear pasta forming various

lattice structures were examined in a three-dimensional
geometry. Since the equilibrium volume occupied by each
nucleus is dominated by its surface and Coulomb energies

0

5

10

0

5

10

0.02 0.04 0.06 0.08 0.10 0.12
0

5

10

nonuniform uniform

Yp = 0.1 droplet-rod
rod-slab
slab-tube
tube-bubble

disordered slabs

Yp = 0.3

disordered rods/tubes

T
(M

eV
) uubbbeeeeesssddddiisssooorrddeee

sssooorrrdddeeerreeeddd sslllllaaaaaaaa

eeerrreeddd rroooddddddsss///ttt/// uuuu

Yp = 0.5

disordered
bubbles

di
so

rd
er

ed
dr

op
le

ts

nb (fm-3)

ppl
eett

ss

dddiissoorrddeerreedd
bbuubbbblleeessss

dddi
ssoo

rrdd
eeer

eeddd
ddrr

ooppp
leppl
eett

FIG. 10. Rough estimate on the phase diagrams of nuclear
matter, where the black-solid curves indicate the uniform-
nonuniform phase boundaries.

NUCLEAR PASTA STRUCTURES AT HIGH TEMPERATURES PHYS. REV. D 106, 063020 (2022)

063020-11



while the lattice energy is relatively small, varying the lattice
structures has little impact on the optimum volume of each
nucleus [72]. In such cases, we investigate nuclear pasta in
various lattice structures keeping the volume of each droplet/
bubble constant, which is fixed by adopting the volume of a
WS cell in its optimum size with the lattice constant a
determined by Eqs. (17)–(19). At small density and temper-
atures, the lattice energy is dominated by Coulomb inter-
action, while the strong interaction among nucleons becomes
important at larger nb and/or T. In particular, at large
densities with the emergence of bubblelike structures,
nucleons relocate themselves outside of the bubble and
form clusters, which deviate from those obtained in cylin-
drical or spherical symmetric WS cells and alter the
interaction among different cells. The differences for the
free energies per baryon of nuclear pasta in various shapes
and lattice structures are typically on the order of tens of keV.
In such cases, different nuclear pasta structures are expected
to coexist for nonzero temperatures.
The thermodynamic fluctuations are expected to disrupt

the long-range ordering in nuclear pasta structures. We
have estimated the Coulomb parameters Γ for the droplet/
bubble phases, where the crystalline structures are expected
to be destroyed and melt at Γ≲ 175. Similar to the uniform-
nonuniform transitions, the crystalline structures are desta-
bilized as we increase T or decrease Yp. As density
increases, it was found that Γ generally increases for the

droplet phase and decreases for the bubble phase. The
mean-square displacements in the rods, slabs, and tubes
from thermodynamic fluctuations were estimated adopting
the formalism derived from the liquid-drop model [102],
which generally increase with density. We found that the
displacements are increasing with T and decreasing with
Yp. Once the root-mean-square displacements become
larger than the distance from the surface of a nucleus to
the cell boundary, the rods, slabs, and tubes become
disordered and behave like liquid. It was found that the
rods and tubes are generally more resilient against thermo-
dynamic fluctuations than slabs, which is consistent with
previous estimations [102].
The phase diagrams of nuclear matter with respect to

density nb, temperature T, and proton fraction Yp were
obtained, which should be useful for various investigations
on the properties and evolutions of neutron stars
[12,13,17,20,57,58,104], supernova dynamics [105–109],
and binary neutron star mergers [110–114].
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