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We present new bounds on the cosmic abundance of magnetic monopoles based on the survival of
primordial magnetic fields during the reheating and radiation-dominated epochs. The new bounds can be
stronger than the conventional Parker bound from Galactic magnetic fields, as well as bounds from direct
searches. We also apply our bounds to monopoles produced by the primordial magnetic fields themselves
through the Schwinger effect, and derive additional conditions for the survival of the primordial fields.
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I. INTRODUCTION

Magnetic monopoles, albeit without any experimental
evidence, are an inevitable prediction of theories of grand
unification. They are pointlike topological defects [1,2]
which can be produced during phase transitions in the early
Universe [3,4]. The existence of magnetic monopoles is
also related to the quantization of the electric charge via the
Dirac quantization condition [5]. Their abundance in the
Universe today is subject to bounds from direct searches
and from the requirement that they do not exceed the
critical density of the Universe [3,6,7]. Moreover, by noting
that a population of monopoles would short out the
magnetic fields inside galaxies, Parker obtained upper
bounds on the flux of monopoles [8,9].
Magnetic fields have been observed in the Universe on

different length scales, while their origin still remains
unknown. Magnetic fields of B ∼ 10−5 G [10] have been
observed within spiral galaxies. Recent gamma ray obser-
vations suggested the presence of magnetic fields even in
intergalactic voids with strengths B≳ 10−15 G coherent on
Mpc scales or larger [11–13]. The existence of such
intergalactic magnetic fields gives strong indication that
the fields have their origin in primordial magnetic fields
produced in the early Universe.

Magnetic fields accelerate the monopoles and the proc-
ess of monopole acceleration extracts energy from the
fields. The energy that the monopoles extract from the
primordial magnetic field is consequently transferred to
the primordial plasma through scattering processes with
relativistic charged particles of the plasma [14]. With a
monopole number density large enough, this can cause the
disappearance of the field. Thus, from the survival of
primordial magnetic fields until today, bounds similar to the
Parker bound for Galactic magnetic fields can be derived.
Such bounds from the primordial magnetic fields during the
radiation-dominated epoch were analyzed by [15].
Regarding the origin of the primordial magnetic

fields, a class of scenarios that have been extensively
studied invokes an explicit breaking of the Weyl invariance
of the gauge field action, to excite magnetic fields
during cosmic inflation [16,17] or in the subsequent epoch
dominated by an oscillating inflaton [18].1 A generic
feature of these scenarios is that the magnetic fields are
generated while the Universe is cold, because after reheat-
ing completes the Universe turns into a good conductor and
the magnetic flux freezes in. Hence the interplay between
primordial magnetic fields and monopoles may well have
been important from times prior to radiation domination.
Although the magnetic fields in the Universe today are

rather weak, if they have a primordial origin, in the early
Universe they could have been extremely strong. Such
strong magnetic fields can themselves produce monopole-
antimonopole pairs through the magnetic dual of the
Schwinger effect [21–23]. Even superheavy monopoles
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1Cosmological phase transitions can also give rise to primor-
dial magnetic fields [19,20].

PHYSICAL REVIEW D 106, 063016 (2022)

2470-0010=2022=106(6)=063016(17) 063016-1 Published by the American Physical Society

https://orcid.org/0000-0003-1722-3596
https://orcid.org/0000-0001-5115-6687
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.063016&domain=pdf&date_stamp=2022-09-20
https://doi.org/10.1103/PhysRevD.106.063016
https://doi.org/10.1103/PhysRevD.106.063016
https://doi.org/10.1103/PhysRevD.106.063016
https://doi.org/10.1103/PhysRevD.106.063016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


can thus be produced in primordial magnetic fields [24].
The pair production in turn depletes energy from the
magnetic fields, which, along with the subsequent accel-
eration of the produced monopoles, induce a self-screening
of the fields. The implications of monopole pair production
in primordial magnetic fields were recently investigated in
[24], however, that work used a simplified treatment of the
magnetic field dissipation by monopole acceleration. In
particular, it focused on the acceleration right after the
monopoles are pair produced, but did not take into account
the integrated effect from monopole acceleration over the
entire cosmological history.
In this work we present a comprehensive study of the

Parker limit from primordial magnetic fields. We generalize
the analysis of [15] and evaluate the effects of monopole
acceleration in primordial magnetic fields throughout the
postinflation Universe, starting from the reheating epoch
when the Universe is dominated by an oscillating inflaton.
We show that, depending on the early cosmological history,
the survival of primordial magnetic fields during reheating
imposes bounds on the monopole abundance that are more
stringent than the Parker limit from Galactic magnetic
fields and the bound presented in [15].
Even in the absence of any initial monopole population,

strong magnetic fields in the early Universe can Schwinger-
produce monopole pairs. Hence we also apply our generic
bounds to such pair-produced monopoles, in order to obtain
the most conservative condition for the survival of primor-
dial magnetic fields. The bound we derive is comparable to
those obtained in [24] from considerations of the magnetic
field screening by the Schwinger process, and the over-
production of monopoles.
This paper is organized as follows. In Sec. II we show the

effects of the primordialmagnetic fields and of the drag force
of the plasmaon the evolution of themonopolevelocity from
the timewhen themagnetic field is generated to the epoch of
eþe− annihilation. In Sec. III we review the bound on the
monopole flux from the persistence of the primordial
magnetic fields during radiation domination, then we
compute the corresponding bound for the reheating epoch.
In Sec. IV, we apply our generic bounds to monopoles that
are pair produced by the primordialmagnetic fields.We then
conclude in Sec. V. In the Appendixwe review the evolution
of the Universe after inflation.
Our analysis can be applied to both elementary and

solitonic monopoles. The monopole magnetic charge is
usually related to the electric charge as g ¼ 2πn=e, where
n ∈ N, and therefore g is typically large (e.g. g ≃ 21n for
e ≃ 0.30). However, the possibility of millicharged monop-
oles or monopoles with fractional charge has been analyzed
recently [25–27]. In most of our discussions, we keep g
general without specifying its value to facilitate general-
izations to various kinds of monopoles.
Within this paper we adopt Heaviside-Lorentz units,

with c ¼ ℏ ¼ kB ¼ 1 and MPl corresponds to the reduced

Planck mass ð8πGÞ−1=2. We use greek letters for spacetime
indices and latin letters when we mean only the three
spatial components. We choose the metric tensor signa-
ture ðþ − −−Þ.

II. MONOPOLE DYNAMICS IN PRIMORDIAL
MAGNETIC FIELDS

Although the cosmological expansion history from big
bang nucleosynthesis onward is constrained by various
observations [7,28], we have very few information on what
happened before. For this work, we assume that at the time
of the end of inflation, tend, the Universe is initially
dominated by an oscillating inflaton field, which decays
perturbatively into radiation. At time tdom the radiation
component starts to dominate the Universe, until matter
domination begins at matter-radiation equality, at time teq.
During reheating, the cosmological plasma sourced by the
inflaton decay is not necessary in thermal equilibrium, and
then it is not possible to define a cosmic temperature. In any
case, we assume the plasma to be in thermal equilibrium
during both the reheating and radiation-dominated epochs.
Imposing this assumption leads to a conservative bound, as
we will explain later. In the Appendix we review the
evolution of the Hubble rate and of the cosmic temperature
during the reheating epoch and the subsequent radiation-
dominated epoch.
Gamma ray observations suggest the existence of an

intergalactic magnetic field B0 ≳ 10−15 G coherent on
Mpc scales or larger [11–13] (the subscript “0” denotes
quantities in the present Universe). Throughout this paper
we assume that this large-scale intergalactic magnetic
field was produced in the early Universe. We expect that
large-scale magnetic fields redshift as B ∝ a−2 in the
absence of significant backreaction from the monopoles or
of any external source for the fields [29], where aðtÞ is the
scale factor. Magnetic fields coherent on scales of Mpc
have always been outside the Hubble horizon during the
period that we are going to analyze. Thus, the distance
crossed by the monopoles during the period of interest is
smaller than the correlation length of the magnetic fields.
This allows us to consider the magnetic field to be
effectively homogeneous.
We now describe the motion of monopoles in a homo-

geneous magnetic field with a friction force due to the
primordial relativistic plasma. Under these conditions, the
general covariant form for the equation of motion of
the monopoles is

mvν∇νvμ ¼ m

�
dvμ

dτ
þ Γμ

αβv
αvβ

�
¼ F μ

mag þ F μ
p; ð2:1Þ

where ∇ν is the covariant derivative, F
μ
mag is the magnetic

force responsible for the acceleration of the monopoles, F μ
p

is the drag force from the interaction with the primordial
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plasma, Γμ
αβ are the Christoffel symbols of the metric, m is

the monopole mass, vμ is the four-velocity of the monop-
ole, with vμvμ ¼ 1, and τ its proper time. The magnetic
force can be expressed through the four-vector [30]:

F μ
mag ¼ gF̃μνvν; ð2:2Þ

where F̃μν ¼ 1
2
ϵμναβFαβ is the dual electromagnetic tensor

and ϵμναβ is a totally antisymmetric pseudotensor normal-
ized as jϵμναβj ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgρσÞ

p
, if μ, ν, α, and β are all

distinct. Without loss of generality, we take the magnetic
charge of the monopole g to be positive.
We limit our analysis to times before eþe− annihilation,

i.e. T ≳ 1 MeV, when the cosmological plasma consists of
relativistic charged particles. Monopoles interact with the
plasma through elastic scattering M þ x� → M þ x�,
where x� is a generic charged particle of the Standard
Model and beyond.2 The result is an effective drag force
acting on the monopoles. We adopt the covariant form of
the drag force shown in [14]

F μ
p ¼ fphðvrelÞðu · vÞ−1½uμ − ðu · vÞvμ�; ð2:3Þ

where uμ is the mean four-velocity of the particles in the
plasma and vrel ¼ ð1 − ðu · vÞ−2Þ1=2 is the velocity of the
monopole in the rest frame of the plasma. Here hðwÞ is a
slowly varying function with hð0Þ ¼ 1 and hð1Þ ¼ 3=2:

hðwÞ ¼ 3

2w2

�
1þ 1 − w2

2w
ln

�
1 − w
1þ w

��
: ð2:4Þ

For simplicity we fix hðvrelÞ to unity in the following
analyses. For relativistic scatterers that are in thermal
equilibrium, fp can be expressed as3

fp ∼
e2g2N c

16π2
T2; ð2:5Þ

with N c as the number of relativistic and electrically
charged degrees of freedom in thermal equilibrium includ-
ing also the contributions of the spin and the charge of the
scatterers. In this paper, we always assume for the electric
charge a value e ¼ 0.30.4 Due to the drag force, the energy

in the magnetic fields that is used to accelerate the
monopoles eventually gets dissipated into the thermal
plasma.5

We now consider a Friedmann-Robertson-Walker (FRW)
background spacetime ds2 ¼ dt2 − a2dxidxi, assuming
sum over repeated spatial indices irrespective of their
positions, and suppose the plasma to be at rest in the
coordinate system ðt; xiÞ, i.e. uμ ¼ ð1; 0; 0; 0Þ. In this refer-
ence frame, the velocity of the monopoles can be expressed
as vμ¼ðγ;γvi=aÞ, with γ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p , vi¼aðdxi=dtÞ, and v ¼

ðviviÞ1=2 the modulus of the three-velocity.
In the absence of magnetic fields, the motion of the

monopoles can be described as a Brownian motion within
the plasma [14]. Consequently, the monopoles present
thermal velocities vT ∼ ðT=mÞ1=2, with zero mean velocity
after taking an average over the three directions. In the early
Universe, the thermal velocity can be larger than the mean
velocity induced by a primordial magnetic field. However
in this work we ignore the thermal velocity, assuming that it
does not leave any coherent effects on large scales. The
mechanisms of monopole production that we assume for
our analysis are not able to give the monopoles a significant
mean velocity upon production. In addition, any initial
mean velocity of the monopoles decays away due to the
drag forces. This allows us to assume for the monopoles a
zero mean velocity when the magnetic fields are generated,
simplifying the analysis.
The magnetic field vector is Bμ ¼ F̃μ0, with BμBμ ¼

−B2 and B the amplitude of the magnetic field. Choosing
the x3 axis along the direction of the magnetic field
(namely, B3 ¼ B=a and B1 ¼ B2 ¼ 0), we can ignore
the monopole velocity along the other directions, i.e. v3 ¼
v and v1 ¼ v2 ¼ 0. Under these assumptions, the motion of
the monopoles can be described by the equation for the
average velocity:

m
d
dt

ðγvÞ ¼ gB − ðfp þmHγÞv; ð2:6Þ

where HðtÞ ¼ _a=a is the Hubble rate, and an overdot
denotes a time derivative. The contribution of the Universe
expansion can be seen as an additional frictional term
proportional to the Hubble rate.
We do not specify the detailed mechanism for the

generation of the primordial magnetic fields. According
to the models proposed in the literature, the magnetic fields
can be generated during inflation [16,17], after inflation
when the Universe is dominated by an oscillating inflaton
[18], or at cosmological phase transitions [19,20].
We define ti as the moment when the generation of the

magnetic fields has concluded and the fields start to redshift

2The details of the calculation and phenomenological aspects
of the effective operator of the interaction can be found in [31,32].

3The expression of fp is different by a factor 16π2 from
that in [15], which used CGS units instead of Heaviside-Lorentz
units.

4Before the electroweak phase transition, the monopoles and
primordial magnetic fields are those of the hypercharge U(1), and
thus quantities such as the charge are modified by a number of
order unity that depends on the Weinberg angle. We ignore this
effect, as well as the running of the parameters; this treatment
should be good enough for the order-of-magnitude calculations in
this paper.

5Depending on the amount of the magnetic field energy that is
dissipated, the plasma experiences an additional reheating that
can have non-negligible effects on the evolution of the Universe.
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freely with the expansion of the Universe (the subscript “i”
denotes quantities at the end of magnetic field generation).
In this work we assume the primordial magnetic field to be
suddenly switched on at time ti. This corresponds to
considering only times after the end of the process of
the magnetic field generation. Although it is possible to
obtain further constraints taking into account also the time
interval during the production of the magnetic fields, we
leave this for future analysis. For this work we assume that
ti is at the end of inflation or in the subsequent epochs. In
other words, we consider the Hubble rate during inflation to
be no smaller than that at the magnetic field generation,
i.e. Hinf ≥ Hi.
At time ti, monopoles have mean velocity equal to zero.

(Here we are tacitly assuming that the monopoles are
present when the magnetic fields are switched on. For
monopoles produced afterwards the “initial time” should be
taken as the time when the monopoles are produced.)
Considering time intervals t − ti shorter than the timescales
of the frictional forces (which will be specified below), the
effects of the Universe expansion and of the plasma can be
ignored and the product of the velocity and gamma factor
can be expressed as

γv ≃
gBi

m
ðt − tiÞ: ð2:7Þ

Thus, monopoles can be freely accelerated to relativistic or
nonrelativistic velocities depending on the intensity of the
fields and on their mass. At later times, the frictional terms
become important, and the velocity of the monopoles starts
to decrease. Depending on the temperature, one of the
frictional terms eventually dominates over the other, giving
rise to different behaviors of the velocity. We analyze the
velocity evolution for two different regimes: during radi-
ation domination (t > tdom), and during the reheating
epoch (t < tdom).

A. During radiation domination

During radiation domination, the Hubble rate and the
cosmic temperature redshift asH ∝ a−2 and T ∝ a−1, up to
the time variation of the number of relativistic degrees of
freedom, g�ðsÞ. For t > tdom, let us for the moment assume
that the Hubble friction on the monopoles is negligible. We
also assume that the monopoles move at nonrelativistic
velocities because of the interaction with the plasma. Under
these assumptions, the equation of motion of the monop-
oles can be rewritten as

m _v ¼ gB − fpv: ð2:8Þ

Neglecting the time variation of B, fp, and H, the general
solution of the equation is v ¼ C exp ð−ðfp=mÞtÞ þ vp,
where C is a constant that depends on the initial conditions
and vp is the terminal velocity:

vp ¼
gB
fp

∼
16π2B

e2gN cT2
: ð2:9Þ

The characteristic time necessary for the monopoles to feel
the effects of the interaction with the particles of the plasma
can then be defined as Δtp∼m=fp≃ ð16π2mÞ=ðe2g2N cT2Þ
[15]. After a timeΔtp, the monopoles approach the terminal
velocity vp.
As long as we consider magnetic fields of order 10−15 G

today, they cannot have dominated the energy density of the
Universe during radiation domination, i.e. B ≪ T2. Thus,
for g ∼ 2π=e the expression in Eq. (2.9) gives vp ≪ 1. This
justifies our use of nonrelativistic equations.
Comparing the timescale Δtp with the Hubble time

ΔtH ∼ 1=H ∼MPl=ðg1=2� T2Þ, we observe that for a mag-
netic charge of g ¼ 2π=e the effect of the expansion of the
Universe can be neglected for masses:

m <
MPlN c

g1=2�
: ð2:10Þ

Limiting our analysis to sub-Planckian values for the
masses of the monopoles, this condition is always satisfied.
Therefore, this justifies our assumption of neglecting the
Hubble friction during radiation domination.
Using T0∼10−4 eV and B0 ∼ 10−15 G ≃ 2 × 10−17 eV2,

the terminal velocity at T ∼ 1 MeV (at which time N c∼
g�s ≃ 10.75) is estimated as vp ∼ 10−8 for g ∼ 2π=e.

B. Before radiation domination

Within this work, for simplicity we assume the total
number of relativistic degrees of freedom g�ðsÞ, as well as
the number of charged relativistic degrees of freedom N c,
to stay constant for t < tdom. During the reheating epoch,
assuming that the plasma is in thermal equilibrium, then
H ∝ a−3=2 and T ∝ a−3=8 (see the Appendix for the
computation). Consequently, the Hubble friction can play
an important role in the monopole dynamics, and moreover
the monopoles can move with relativistic velocities.
Thus, let us compare fp and mHγ in the equation of

motion in Eq. (2.6), to see which of the friction terms
dominates during the reheating epoch. We introduce the
ratio rðtÞ ¼ ρradðtÞ=ρtotðtÞ, where ρtot is the total energy
density of the Universe and ρrad the energy density in
radiation, with r ≤ 1=2. The value of r decreases going
back in time. The Hubble rate then can be expressed as

H ∼
g1=2� T2

r1=2MPl
≳ g1=2� T2

MPl
: ð2:11Þ

If the monopoles move at nonrelativistic velocities and
assuming g ∼ 2π=e, in order formHγ to be smaller than fp,
the radiation fraction needs to satisfy
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r≳
�

g1=2� m
N cMPl

�2

: ð2:12Þ

For example, with a mass m ≃ 1016 GeV and with
g� ∼N c ≃ 100, the condition in Eq. (2.12) can be
read as r≳ 10−7. If the magnetic fields are generated
sufficiently in the past, then going back in time eventually
the condition in Eq. (2.12) breaks down. This signals
fp < mHγ, namely, the Hubble friction dominates, and the
equation of motion of the monopoles can be approximately
written as

m
d
dt

ðγvÞ ¼ gB −mHγv: ð2:13Þ

The terminal velocity can be estimated by equating the
terms in the right-hand side as6

ðγvÞH ∼
gB
mH

: ð2:14Þ

This can also take relativistic values, unlike the terminal
velocity in Eq. (2.9) due to the plasma friction.
In Fig. 1(a) we show the time evolution for γv, by

numerically solving the equation of motion Eq. (2.6). The
results are shown for HðtÞ < Hi, and for different values of
the monopole mass. For HðtÞ > Hdom, each value of the
mass is associated to a differently colored solid curve (from
bottom to top, brown:m ¼ 1019 GeV; red:m ¼ 1017 GeV;
orange: m ¼ 1015 GeV; green: m ¼ 1014 GeV; blue:
m ¼ 1013 GeV; purple: m ¼ 1011 GeV). The dashed line
in the regime HðtÞ > Hdom shows vp given in Eq. (2.9),
which corresponds to the terminal velocity set by the
plasma when vp ≪ 1. For HðtÞ < Hdom the velocity is
constant and independent of the mass of the monopoles,
hence it is represented by a single solid horizontal gray line.
For the computation we assume g ¼ 2π=e, B0 ¼ 10−15 G
and g� ¼ N c ¼ 100 throughout. We use the results pre-
sented in the Appendix for setting the time dependence of
a, T, and B. We start the computation at Hi ¼ 1011 GeV,
with an initial condition vðtiÞ ¼ 0. Moreover, we choose
the cosmic temperature when radiation domination takes
over as Tdom ¼ 106 GeV, which corresponds to the Hubble
rate Hdom ≃ 10−6 GeV (the subscript “dom” denotes quan-
tities computed at time tdom).
Independently from the initial condition, the monopole

velocity rapidly falls into one of the attractor solutions, vp
in Eq. (2.9) and vH in Eq. (2.14). The evolution of the
velocity forHðtÞ < Hi is hence independent of the value of

Hi. However, the choice of Hi determines how far back in
time can one go with the attractor solutions. With a
sufficiently largeHi, the Hubble friction initially dominates
over the friction from the plasma, yielding ðγvÞH which
redshifts as H1=3. During reheating the fraction of energy
density in the radiation component increases with time and
at some point Eq. (2.12) starts to be satisfied. This is the
signal that the velocity begins to be controlled by the
friction from the plasma, cf. Eq. (2.9), and then the velocity
decreases as H5=6. For masses satisfying the condition in
Eq. (2.10), monopoles achieve vp before radiation domi-
nation and the value of the velocity at T ¼ Tdom is
independent of the mass.
Of crucial relevance is the time t� of the transition

between the domination of the Hubble friction term and
that of the friction term by the primordial plasma:

fp;� ¼ mH�γ�; ð2:15Þ

where the subscript “*” stands for quantities computed at
time t�. For t < t� the monopoles move at the terminal
velocity set by the expansion of the Universe shown in
Eq. (2.14). For t > t� the frictional term due to the
interaction with the plasma dominates the evolution and
the velocity of the monopoles can be expressed through
Eq. (2.9). Rewriting Eq. (2.15) as an expression for the
velocity of the monopoles v�, we get

v2� ¼ 1 −
�
mH�
fp;�

�
2

: ð2:16Þ

When v > v� the motion of the monopole is set by the
Hubble friction term, while for v < v� it is dominated by
the friction force of the plasma. We can obtain the Hubble
rate at the transition by using Eq. (2.14) and setting v� ≃
vH;� as

m2H2�
f2p;�

þ g2B2�
f2p;�

≃ 1: ð2:17Þ

Considering that fp ∝ H1=2 and B ∝ H4=3 during reheating,
we can rewrite Eq. (2.17) in terms of quantities at tdom as

α

�
H�
Hdom

�
5=3

þ βðmÞ
�

H�
Hdom

�
≃ 1; ð2:18Þ

where we define

α ¼
�
gBdom

fp;dom

�
2

; ð2:19aÞ

βðmÞ ¼
�
mHdom

fp;dom

�
2

: ð2:19bÞ

6The timescales for v to achieve vH, and for the redshifting of
B and H, are all of order the Hubble time. Hence dðγvÞ=dt
actually does not vanish and the terminal velocity is ðγvÞH ¼
2gB=mH [see Eq. (A7) in [24] for the derivation]. However we
will omit the factor 2 since we are interested in order-of-
magnitude estimates.
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Depending on the value of the monopole mass, one of the
two terms on the left-hand side of Eq. (2.18) is larger than
the other. The two terms are always positive and they are of
the same order only if both of them are of order unity, i.e.
αðH�=HdomÞ5=3 ∼ βðm̄ÞðH�=HdomÞ ∼ 1, where we define
m̄ as the mass for which the two terms are comparable.
From these considerations we obtain the relation for m̄:

αβðm̄Þ−5=3 ∼ 1: ð2:20Þ

Substituting the definition for α and β, we get the explicit
expression for m̄:

m̄ ∼
ðg3B3

domf
2
p;domÞ1=5

Hdom
: ð2:21Þ

Using Eq. (A5) in the Appendix to rewrite the expressions
for fp;dom, Bdom, and Hdom in terms of their values at the
present time, we obtain

m̄≃1014 GeV

�
B0

10−15 G

�
3=5

�
g
10

�
7=5

�
N c;dom

100

�
2=5

:

ð2:22Þ
Assuming B0 ∼ 10−15 G, N c ∼ 100, and g ∼ 2π=e ∼ 10,
we get m̄ ≃ 1014 GeV. Thus, in Fig. 1(a) the green curve
corresponds to the evolution of the velocity of monopoles
with a mass m ¼ m̄.
For m ≪ m̄ the left-hand side of Eq. (2.18) is dominated

by the first term and the expression forH� is independent of
the monopole mass:

H�
Hdom

≃
1

α3=5
¼

�
fp;dom
gBdom

�
6=5

; ð2:23Þ

while for m ≫ m̄ the second term dominates and

H�
Hdom

≃
1

βðmÞ ¼
�
fp;dom
mHdom

�
2

: ð2:24Þ

Using Eq. (A5), the expressions for H� can be further
rewritten as

H� ≃

8>>><
>>>:

104 GeV

�
g
10

�
6=5

�
N c;dom

100

�
6=5

�
Tdom

106 GeV

�
2
�
10−15 G

B0

�
6=5

; m ≪ m̄;

104 GeV

�
g
10

�
4
�
N c;dom

100

�
2
�

Tdom

106 GeV

�
2
�
1014 GeV

m

�
2

; m ≫ m̄:

ð2:25Þ

In Fig. 1(a) we plot in vertical line the value of H� in the
limit m ≪ m̄, i.e. the first line of Eq. (2.25).
For m ≪ m̄, the monopole velocity is always relativistic

while it is on the Hubble-friction branch, v ¼ vH; this is

seen for the purple and blue curves in the plot. On the other
hand, for m ≫ m̄, the monopoles become nonrelativistic
before switching to the plasma-friction branch, v ¼ vp, as it
is seen for the brown, red, and orange curves.

(a)

(b)

FIG. 1. Evolution of the monopole velocity in primordial
magnetic fields (top) and of the normalized damping rate of
the magnetic fields (bottom) for different values of the monopole
mass (from bottom to top, brown: m ¼ 1019 GeV; red:
m ¼ 1017 GeV; orange: m¼ 1015 GeV; green: m¼ 1014 GeV;
blue: m¼ 1013 GeV; purple: m ¼ 1011 GeV). The expression in
Eq. (2.9) for the terminal velocity set by the friction with the
thermal plasma is also shown in dashed line in the top plot. Here
Hdom ¼ 10−6 GeV, B0 ¼ 10−15 G, g ¼ 2π=e, g� ¼ N c ¼ 100,
and we use Hi ¼ 1011 GeV as the starting point of the evolution.
The value ofH� ∼ 105 GeV for monopole masses smaller than m̄
is also shown in the plots (see the text for details).
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Let us estimate the time it takes for monopoles with
m ≪ m̄ to jump from a relativistic vH branch to a non-
relativistic vp branch. For times t≲ t� we can consider
v ≃ 1 and the equation of motion for the monopoles can be
rewritten in terms of the relativistic factor γ:

_γ ¼ gB − fp
m

−Hγ: ð2:26Þ

Using B ∝ a−2, fp ∝ a−3=4, and H ∝ a−3=2, one can check
that this equation has a solution,

γ¼2
gB
mH

−
4

7

fp
mH

¼ γ�

�
11

7

�
a
a�

�
−1=2

−
4

7

�
a
a�

�
3=4

�
; ð2:27Þ

which asymptotes to γ ≃ 2gB=mH in the past. Upon moving
to the far right-hand side, we used Eq. (2.15). For γ� ≫ 1, the
γ factor approaches unity ata ¼ ð11=4Þ4=5a� ≃ 2.2a�,which
is obtained by equating the terms in the square brackets in
Eq. (2.27). Thus, the jump from an ultrarelativistic vH to a
nonrelativisitc vp happens with a timescale of 1=H�, as
shown in the figure for the purple and blue curves.
Before closing this section, we should also remark that,

as one goes back in time in the reheating epoch, the energy
density in primordial magnetic fields grows relative to the
total density as ρB=ρtot ∝ a−1. Hence for primordial mag-
netic fields generated at the end of inflation or during
reheating, i.e. tend ≤ ti < tdom, requiring that they have
never dominated the Universe constrains the time when
magnetic field generation happened. The constraint is
written using (A5) and (A6) as

Hi ≲ 1022 GeV

�
Tdom

106 GeV

�
2
�
10−15 G

B0

�
3

: ð2:28Þ

With a reasonable choice of parameters (such as g ∼ 10,
B0 ∼ 10−15 G, and N c;dom ∼ 100), one sees that H� in
Eq. (2.25) is well below this limit on Hi, independently of
Tdom and m.

III. BOUNDS FROM THE SURVIVAL OF
PRIMORDIAL MAGNETIC FIELDS

In the previous section we treated the primordial mag-
netic field as a background, however the magnetic fields
themselves lose energy as they accelerate the monopoles.
Here we study the energy depletion of the magnetic field,
and derive conditions for the primordial magnetic field to
survive until today. The kind of bounds analyzed in this
section are analogous to the Parker bound [9] but with
respect to large-scale magnetic fields in the early Universe,
instead of Galactic magnetic fields in the recent Universe.7

The bound during radiation domination has already been
analyzed by [15]. In this section we review the bound for
times t > tdom and we extend the analysis for t < tdom.
The magnetic fluid is described by the barotropic

equation of state PB=ρB ¼ 1=3, where PB is the pressure
of the magnetic fluid and ρB ¼ B2=2 is the physical energy
density. This corresponds to assuming that there are no
external sources for the magnetic field for t > ti. Under the
hypothesis of a spatially homogeneous magnetic field, the
evolution of the energy density ρB within a FRW back-
ground, taking into account the effects of the monopole
acceleration, is described by

d½ρBðtÞaðtÞ3� ¼−PBðtÞd½aðtÞ3�

−2gBðtÞdt
Z

t

−∞
dt0aðt0Þ3Γðt0Þvðt0; tÞ; ð3:1Þ

where ΓðtÞ is the production rate for either monopoles or
antimonopoles at time t. The second term on the right-hand
side of the equation denotes the loss of energy due to
accelerating the population of monopoles and antimono-
poles produced from the infinite past to time t. All the
possible production mechanisms that we take into account,
i.e. monopole pairs produced by the magnetic fields,
thermal production and production during phase transi-
tions, cannot produce an asymmetry on the number of
monopoles with respect to that of antimonopoles.
Therefore, we always consider the monopole and anti-
monopole number densities to be equal and there is a factor
of 2 in the second term of Eq. (3.1). Here aðt0Þ3Γðt0Þdt0
represents the comoving number density of monopoles
produced between t0 and t0 þ dt0, vðt0; tÞ corresponds to the
velocity in the direction of the magnetic field at time t of
monopoles produced at t0 (with t ≥ t0). For the antimono-
poles, we choose a charge of −g and a velocity −vðt0; tÞ.8
The monopoles can be produced at a phase transition

[3,34], through a thermal process [35,36], or by the
magnetic field itself via the Schwinger effect. In this
section we keep the discussion general and do not specify
the production mechanism. The particular case of the
Schwinger pair production will be the topic of Sec. IV.
It has been shown that the monopole-antimonopole

annihilation is relevant only if the monopole abundance
is large enough to overdominate the Universe [3,4]. Thus,
we assume monopole-antimonopole annihilation to be
negligible.

7See also [33] for an extension of the Parker bound using the
Andromeda Galaxy.

8Primordial magnetic fields can lose their energy also by pair-
producing monopoles through the Schwinger effect. This effect
can be taken into account by adding a term −2mΓswðtÞaðtÞ3dt on
the right-hand side of Eq. (3.1), where Γsw is the rate of monopole
pair production through the Schwinger effect. Backreaction of
pair production on the magnetic field energy density has been
studied in [24].
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Equation (3.1) can be then rewritten as

_ρB
ρB

¼ −Πred − Πacc; ð3:2Þ

where Πred and Πacc are the dissipation rates of the
magnetic field energy due to redshifting and monopole
acceleration:

ΠredðtÞ ¼ 4HðtÞ; ð3:3aÞ

ΠaccðtÞ ¼
4g

aðtÞ3BðtÞ
Z

t

−∞
dt0aðt0Þ3Γðt0Þvðt0; tÞ: ð3:3bÞ

Once the expression for the monopole velocity and for the
total production rate is given, the evolution of the magnetic
field energy density can be derived by solving Eq. (3.2).
In the previous section we have shown that the memory

of the monopole velocity at the time when the magnetic
field is switched on is quickly lost. Hence, we assume that
the monopoles have a uniform velocity independent of
when they were produced, i.e. vðt0; tÞ ¼ vðtÞ. Under this
assumption, it is possible to rewrite the expression for Πacc
in the following way:

ΠaccðtÞ ¼
4g
BðtÞ vðtÞnðtÞ; ð3:4Þ

where nðtÞ is the physical number density of the monopole
pairs,

nðtÞ ¼ 1

aðtÞ3
Z

t

−∞
dt0aðt0Þ3Γðt0Þ: ð3:5Þ

Hereafter we assume n ∝ a−3 at times t > ti, namely, that
there is no further monopole production after the magnetic
fields have switched on. This is a good approximation also
for monopoles produced by the magnetic field, since in
such a case the monopole population is dominated by those
produced at t ∼ ti, as we will discuss in the next section.
Using for Πred the definition in Eq. (3.3), we can express

the ratio Πacc=Πred as

ΠaccðtÞ
ΠredðtÞ

¼ g
BðtÞHðtÞ vðtÞnðtÞ: ð3:6Þ

In the case Πacc=Πred ≪ 1 the solution of Eq. (3.2) gives
simply ρB ∝ a−4, i.e. the energy density of themagnetic field
redshifts as radiation. In the opposite case Πacc=Πred ≫ 1,
the backreaction on the magnetic fields due to the monopole
acceleration is non-negligible and the energy of the fields is
transferred to the monopoles at a timescale shorter than the
Hubble time.
While the monopoles interact with the plasma, the

energy given to the monopoles by the magnetic fields is

further passed on to the plasma. If the interactions are
efficient and in the absence of mechanisms for the
regeneration, the magnetic fields would quickly decay
away. In this case, the condition Πacc=Πred ≫ 1, corre-
sponds to a rapid dispersion of the energy of the magnetic
fields into the plasma and the disappearing of the fields. On
the other hand, as discussed in [9,15], if the interaction with
the plasma is negligible, the kinetic energy of the monop-
oles are eventually transferred back to the magnetic fields,
giving rise to oscillatory behaviors. Such oscillations can
happen at late times, i.e. T < 1 MeV, after the cosmologi-
cal eþe− annihilation drastically reduces the number
density of the scatterers, and possibly at early times when
v ≃ vH and the interaction rate is negligible compared to the
Hubble rate.
Without the necessity of specifying the production

mechanism for the monopoles, it is then possible to give
bounds on their number density from the persistence of
the primordial magnetic fields still today. This can be done
requiring that the condition Πacc=Πred ≪ 1 holds when the
interaction with the particles of the plasma is non-
negligible.9

We show in Fig. 1(b) the evolution of the ratio Πacc=Πred
from time ti for different values of the mass. The monopole
velocity necessary for computing Πacc=Πred is taken from
Fig. 1(a), which was obtained by solving the equation of
motion Eq. (2.6). We ignore the backreaction on the B field
and we apply the relations in Eqs. (A4) and (A5) to rewrite
all the quantities that present a time dependence in terms of
HðtÞ. Since Πacc=Πred ∝ n, we have normalized the value
of Πacc=Πred in the plot by n0 so that its value is
independent of the monopole number density today. The
parameter choice and the mass for each colored curve are
the same as for Fig. 1(a). Notice that the blue and purple
curves overlap with each other almost everywhere in
the plot.
For t > tdom the monopoles move at the terminal velocity

set by the interactions with the plasma shown in Eq. (2.9).
In this case the expression for the ratio is

Πacc

Πred
≃

g2

fpH
n: ð3:7Þ

During radiation domination, the ratio constantly grows as
Πacc=Πred ∝ a ∝ H−1=2. Such behavior is shown in the
right part of Fig. 1(b) as the gray line and it is independent
of the monopole mass.
For t < tdom, the time evolution can be more complicated

and exhibits mainly three kinds of behaviors. The first case
is realized for monopoles light enough to be initially

9If the initial magnetic field is extremely strong, then the
leftover after the damping by the monopoles may serve as the
present-day cosmological magnetic fields. However we do not
investigate such a possibility in this paper.
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accelerated to relativistic velocities, i.e. v ≃ 1. In this case
the Hubble friction dominates over the friction from the
plasma. As long as the monopoles maintain a relativistic
velocity, the expression for the ratio is

Πacc

Πred
≃

g
BH

n: ð3:8Þ

This ratio scales asΠacc=Πred ∝ a1=2 ∝ H−1=3 and increases
with time. Equation (3.8) corresponds to the growing
segments of the purple, blue, green, and orange
curves in the left part of Fig. 1(b). For the parameter
choice in the plot, the velocity is relativistic soon after ti
for m≲ 1016 GeV.
The second case is when the Hubble friction is dominant

over the plasma friction and the monopoles present non-
relativistic velocities. In this case, the velocity is given by
v ∼ gB=ðmHÞ and the ratio is constant in time

Πacc

Πred
≃

g2

mH2
n: ð3:9Þ

This case corresponds to the horizontal segments of the
brown, red, and orange curves of Fig. 1(b).
The last case is realized when the monopoles achieve the

terminal velocity set by the interaction with the plasma. The
expression for the ratio in this case is the same as that in
Eq. (3.7), but during reheating this scales as Πacc=Πred ∝
a−3=4 ∝ H1=2, decreasing in time. This case is shown in
Fig. 1(b) as the decreasing segments of the colored curves.
During the reheating epoch, the Πacc=Πred ratio given by

monopoles with masses m < m̄ is maximized at the time
when the monopoles turn nonrelativistic. On the other
hand, for m > m̄, the ratio Πacc=Πred exhibits a plateaulike
behavior while the monopole velocity follows vH and is
nonrelativistic.
In correspondence to the jump from a relativistic velocity

to a nonrelativistic velocity shown in Fig. 1(a) form < m̄, a
jump in the value of the ratio is seen in Fig. 1(b) for the
purple and blue curves. Such a jump corresponds to a
sudden transition during reheating from the value of the
ratio shown in Eq. (3.8) to that of Eq. (3.7).
Below we obtain bounds on the cosmic abundance of

monopoles by requiring that Πacc=Πred stays smaller than
unity during radiation domination and reheating.

A. During radiation domination

The analysis that we present for the bound during
radiation domination follows the work in [15]. For times
t > tdom, we express the value of Πacc=Πred through the
result shown in Eq. (3.7). Using the expression for fp given
in Eq. (2.5), we can rewrite the ratio Πacc=Πred as

Πacc

Πred
≃

16π2

e2N cT2H
n: ð3:10Þ

Using H ≃ ðπ= ffiffiffiffiffi
90

p Þg1=2� T2=MPl, n ∝ a−3 and the relation
between the scale factor and the temperature in Eq. (A2),
the expression for Πacc=Πred becomes

Πacc

Πred
≃
48

ffiffiffiffiffi
10

p
πg�sMPl

e2N cg
1=2
� g�s;0

n0
T3
0

1

T
; ð3:11Þ

where g�s;0 ≃ 3.9. As shown in Fig. 1(b), the ratio increases
with time during radiation domination. The expression in
Eq. (2.5) for the friction assumes relativistic plasma
particles, and hence our analysis is valid up to the time
of eþe− annihilation, namely, when T ∼ 1 MeV. After the
annihilation, the number of charged particles in the plasma
decreases by a factor 10−10 [37] and thus the monopoles
cannot give away their energy effectively to the plasma. For
this value of the temperature we have N c ∼ g� ≃ g�s≃
10.75. Therefore, the maximum value of the ratio during
radiation domination is

Πacc

Πred
ðT ¼ 1 MeVÞ ≃ n0

10−21 cm−3 : ð3:12Þ

The survival of the primordial magnetic field then requires
Πacc=ΠredðT ¼ 1 MeVÞ≲ 1. This yields the primordial
Parker bound of [15]

n0 ≲ 10−21 cm−3: ð3:13Þ

The bound does not depend on B0, g, orm. It should also be
noted that this is a bound on the average monopole number
density in the Universe.
Introducing the flux of monopoles at time t as

FðtÞ ¼ nðtÞvðtÞ=4π, we can express the above bound in
terms of the present-day monopole flux F0:

F0 ≲ 10−15 cm−2 sr−1 s−1
�

v0
10−3

�
: ð3:14Þ

Here, we use the virial velocity in the Galaxy 10−3 as a
reference value [6], although as we mentioned above this
result applies to the average monopole flux in the Universe.
Let us also notice that we define the flux as that of only
monopoles (or antimonopoles) and thus our results
differ by a factor of 2 from those for the flux of both
monopoles and antimonopoles. However, such a difference
is negligible for the order-of-magnitude bounds we derive
in this work.
Strictly speaking, the above analysis is valid only for

monopoles with sub-Planckian masses, cf. Eq. (2.10). For
monopoles that present masses m > MPlN c=g

1=2
� , the

Hubble friction term of the equation of motion is dominant
over the drag force of the plasma even during radiation
domination. Such monopoles never achieve the terminal
velocity set by the plasma, and hence the bound in
Eq. (3.14) must be modified.
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B. Before radiation domination

Bounds on the monopole number density can also be
derived based on the survival of primordial magnetic
fields during the reheating epoch. Here we assume the
cosmological plasma during reheating to be in thermal
equilibrium; however let us remark that this assumption
leads to a conservative bound on the monopole abun-
dance. Without the assumption of thermal equilibrium, the
number density of the particles of the plasma is not related
to the mean energy of the particles. Inflaton decay results
in an initially dilute plasma that contains a small number
of very energetic particles that are not in thermal equi-
librium [38]. Under these conditions the monopoles are
more easily accelerated by the magnetic fields than in the
case of thermal equilibrium.10 Thus, the drag force is
smaller and the monopole velocity larger. Hence, the
damping rate of the magnetic field, Πacc ∝ v, turns out to
be larger than in the case of thermal equilibrium, and the
resulting bound on the monopole abundance can become
stronger. We leave the case of a nonthermal plasma for
future analysis.
As discussed below Eq. (3.6), the survival of the

primordial magnetic fields requires the condition
Πacc=Πred ≪ 1 to be satisfied while the monopoles fre-
quently interact with the plasma particles. Hence we can
restrict ourselves to times when the monopole velocity is
controlled by the plasma friction, instead of the Hubble
friction.11 And since we are interested in times after the
magnetic fields have been generated, we focus on the
regime max ft�; tig ≤ t ≤ tdom, where t� is defined in
Eq. (2.15). The expression for Πacc=Πred during this regime
is given in Eq. (3.7), which decreases with the Hubble scale
as ∝ H1=2. Therefore, in order to derive the strongest bound
from the reheating epoch, we should evaluate Πacc=Πred

at t ¼ max ft�; tig.12
Considering that n ∝ a−3, the expression for the value of

the ratio at t ¼ max ft�; tig is

Πacc

Πred
ðt¼maxft�; tigÞ

≃
16π2

e2N c;domH
3=2
domT

2
dom

�
a0
adom

�
3

ðminfH�;HigÞ1=2n0:

ð3:15Þ

Now we derive the bounds on the monopole abundance in
both the casesHi < H� andHi > H�. Once the value ofH�
is fixed, the bound in the case Hi < H� is always weaker
than the bound for Hi > H�.

1. Case with Hi < H�
For Hi < H�, we rewrite the condition Πacc=Πred ≲ 1 on

Eq. (3.15) as a bound on the average monopole number
density in the present Universe using the relations in
Eq. (A5):

n0 ≲ 10−16 cm−3
�
N c;dom

100

��
Tdom

106 GeV

�
2
�
104 GeV

Hi

�
1=2

:

ð3:16Þ

As a reference value for Hi, here we chose 104 GeV
which is the reference value for H� in Eq. (2.25). We
express the result also in terms of the monopole flux
today:

F0 ≲ 10−10 cm−2 sr−1 s−1
�

v0
10−3

��
N c;dom

100

�

×

�
Tdom

106 GeV

�
2
�
104 GeV

Hi

�
1=2

: ð3:17Þ

2. Case with Hi > H�
We get a bound for the average monopole number

density in the present Universe applying the condition
Πacc=Πred ≲ 1 on Eq. (3.15) to the case Hi > H� and using
the expression for H� shown in Eq. (2.25):

n0≲

8>>><
>>>:
10−16 cm−3

�
B0

10−15G

�
3=5

�
Tdom

106GeV

��
10
g

�
3=5

; m≪m̄

10−16 cm−3
�

m
1014GeV

��
Tdom

106GeV

��
10
g

�
2

; m≫m̄

:

ð3:18Þ

Here we drop the dependence on N c;dom, because the final
results depend weakly on its value. The bound for the
monopole flux today is

12Form < m̄, the ratio Πacc=Πred actually continues to increase
after t ¼ t� for about a Hubble time. However, we use simply
Eq. (3.7) to derive our bound because the value of the ratio does
not change substantially within a Hubble time. This leads to a
conservative bound on the monopole abundance.

11If Πacc=Πred > 1 during t < t�, then the energy rapidly
oscillates between the magnetic field and monopoles, whose
effect is to modify the redshifting of the magnetic energy density
from the usual ρB ∝ a−4 [15].

10The rough estimate of the drag force is fp ∼ nσΔp, where
σ ∼ e2g2E−2 is the cross section of the interaction with the
particles of the plasma with mean energy E and Δp ∼ E is the
exchanged momentum. Since the number density n is smaller and
σΔp ∝ E−1, the drag force is also smaller in the absence of
thermal equilibrium.
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F0 ≲

8>><
>>:

10−10 cm−2 sr−1 s−1
�

v0
10−3

��
B0

10−15 G

�
3=5

�
Tdom

106 GeV

��
10

g

�
3=5

; m ≪ m̄

10−10 cm−2 sr−1 s−1
�

v0
10−3

��
m

1014 GeV

��
Tdom

106 GeV

��
10

g

�
2

; m ≫ m̄

: ð3:19Þ

Recall that m̄ divides monopoles that are relativistic
(m ≪ m̄) or nonrelativistic (m ≫ m̄) when the interactions
with the plasma become important. For m ≪ m̄ the bound
depends on the value of the magnetic field today, while it is
independent of the monopole mass. On the contrary, for
m ≫ m̄ the result is independent of B0, while it is propor-
tional to the mass of the monopoles.
In Fig. 2 we compare various upper bounds on the

monopole flux today as functions of the monopole mass.
The blue curves show thebounds thatwederived inEq. (3.19)
from the survival of the primordial magnetic fields during
reheating for three different values of Tdom ¼ 100 MeV
(solid curve), 100 GeV (dashed curve), 105 GeV (dotted
curve). The red line shows the bound in Eq. (3.14) from the
survival of primordial magnetic fields during radiation
domination, which was first obtained in [15]. The orange
line corresponds to the original Parker bound from the
survival of the Galactic magnetic field [9]. The pink line
corresponds to the “extended Parker bound” that has been
derived from the survival of the Galactic seed field by [39].13

The black line shows the limit obtained by the MACRO
experiment [40], which corresponds to the strongest bound
from the direct search of nonrelativistic monopoles. The
dashed gray line shows the cosmological abundance bound
from the requirement that the monopole energy density is
smaller than the total energy density of the Universe [3,6]. In
the plot we assume g ¼ 2π=e, B0 ¼ 10−15 G and the
reference value of the monopole velocity today v0 ¼ 10−3.
In the plot we have displayed the various bounds for

comparison purpose, however we should remark that their
targets are different: the bounds based on primordial
magnetic fields and the relic abundance constrain the
average monopole number density in the Universe, while
the bounds from Galactic fields (the original and extended
Parker bounds) and direct searches constrain the monopole
density inside the Galaxy. If the monopoles are clustered
with the Galaxy, their local density in the Galaxy can be
significantly larger than the average density in the
Universe; in such a case the bounds on the local density
translate into much stronger bounds on the average density.

As shown in the plot, for a sufficiently small Tdom, our
bound in Eq. (3.19) from the analysis during reheating
becomes stronger than the original Parker bound and the
limits from direct searches. For a GUT scale monopole, our
bound is comparable to the original Parker bound for
Tdom ∼ 1 GeV. The bound during reheating can also be
stronger than that during radiation domination, Eq. (3.14),
for Tdom ≲ 10 GeV and in the low-mass range.

IV. MONOPOLES PRODUCED BY PRIMORDIAL
MAGNETIC FIELDS

In the previous section, we derived bounds on the
abundance of monopoles without specifying their origin.
Here we focus on monopoles that are Schwinger produced
by the primordial magnetic field itself, and study whether
the magnetic field is dissipated by the monopole accel-
eration. Here we note that, even in the absence of any initial
monopole population, the strong magnetic fields in the
early Universe can trigger the monopole pair production.
By studying this process, we derive further constraints on
monopoles, which also serve as the most conservative
condition for the survival of primordial magnetic fields.

FIG. 2. Upper bounds on the magnetic monopole flux today.
Here g ¼ 2π=e, B0 ¼ 10−15 G, and v0 ¼ 10−3. Blue: bounds
from primordial magnetic fields during the reheating epoch
shown in Eq. (3.19), for reheating temperatures Tdom ¼
100 MeV (solid curve), 100 GeV (dashed curve), 105 GeV
(dotted curve). Red: the bound from primordial magnetic fields
during radiation domination shown in Eq. (3.14). Orange: the
original Parker bound. Pink: the extended Parker bound. Black:
direct search limit from the MACRO experiment. Dashed gray:
the cosmological abundance bound.

13The original and extended Parker bounds in the large m
region (where the bounds grow with m) are independent of the
magnetic field strength, and thus should be equivalent if the other
parameters are the same. The lines in the plot do not coincide
because they exhibit the results presented in [9] and [39], which
use slightly different values for the parameters, as well as
different rounding methods.
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The Schwinger effect describes the production of par-
ticle-antiparticle pairs in an external field. The analysis by
Schwinger [21] assumed weak couplings, however this is
not the case for magnetic monopoles which, due to the
Dirac quantization condition, have strong magnetic cou-
plings. The rate of monopole-antimonopole pair production
at arbitrary coupling in a static magnetic field has been
derived in [22,23] through an instanton method:

Γ ¼ ðgBÞ2
ð2πÞ3 exp

�
−
πm2

gB
þ g2

4

�
: ð4:1Þ

This result is valid under the following weak field
conditions:

B≲m2

g
; ð4:2aÞ

B≲ 4πm2

g3
: ð4:2bÞ

The second condition is stricter than the first one if g ≫ 1,
and suggests that the instanton computation is valid when
the exponent of the expression in Eq. (4.1) is negative.
After the process of magnetogenesis, the primordial

magnetic fields redshift as B ∝ a−2. Thus, it suffices to
assume that the weak field condition Eq. (4.2b) is verified at
time ti. Defining

I ¼ 4πm2

g3Bi
; ð4:3Þ

we rewrite the weak field condition Eq. (4.2b) as

I ≳ 1: ð4:4Þ

Using Eqs. (A5) and (A6), the initial amplitude of the
primordial magnetic field can be written in terms of the
field strength today as

Bi ¼ B0

�
a0
ai

�
2

≃ 1043 G

�
B0

10−15 G

��
Hi

1014 GeV

�

× max

��
Hi

Hdom

�
1=3

; 1

�
: ð4:5Þ

Here, the first expression within the curly brackets corre-
sponds to the casewith ti < tdom and the second to ti > tdom.
Substituting the expression for Bi into the definition of I ,
we get

I ≃
�
10

g

�
3
�
10−15 G

B0

��
1014 GeV

Hi

��
m

1012 GeV

�
2

× min

��
Hdom

Hi

�
1=3

; 1

�
; ð4:6Þ

andwe can express theweak field condition inEq. (4.2b) as a
lower limit on the mass of the monopoles in terms of the
Hubble rate at magnetogenesis:

m≳ 1012 GeV

�
g
10

�
3=2

�
B0

10−15 G

�
1=2

�
Hi

1014 GeV

�
1=2

× max

��
Hi

Hdom

�
1=6

; 1

�
: ð4:7Þ

The number density of monopoles pair produced by the
magnetic fields can be obtained using the expression in
Eq. (3.5) and substituting the production rate shown
in Eq. (4.1). Because the production rate presents an
exponential dependence on the magnetic fields, the monop-
oles are produced predominantly within an interval ΔtΓi

∼
jΓi= _Γij ≃ ðgBiÞ=ð2πm2HiÞ after ti [24]. Therefore, we can
approximately express the number density at times around
ti as

ni ≃
gΓiBi

2πm2Hi
: ð4:8Þ

Using n ∝ a−3, the monopole number density today is thus
written as

n0 ≃
�
ai
a0

�
3 gΓiBi

2πm2Hi
: ð4:9Þ

It was pointed out in [24] that Eq. (4.2b) also gives an
absolute upper bound on the initial amplitude of primordial
magnetic fields: saturating this bound leads to either an
overproduction of monopoles in the Universe, or a self-
screening of the magnetic field. Below we revisit the
magnetic field bound in light of the constraints derived
in the previous section. We show that for the monopoles
produced by the primordial magnetic fields, the bounds on
the monopole flux approximately reduce to the weak field
condition in Eq. (4.2b).

A. During radiation domination

We now substitute the expression for the number density
of monopoles produced by the Schwinger effect in Eq. (4.9)
into the expression for the maximum of Πacc=Πred during
radiation domination shown in Eq. (3.12). Making use of
the relations in Eqs. (4.5), (A5), (A6), we can rewrite the
expression for the ratio as

Πacc

Πred
ðT ¼ 1 MeVÞ ≃ x̃D exp

�
−
g2

4
ðI − 1Þ

�
; ð4:10Þ

where we define

x̃D ¼
�
g
10

�
3
�

B0

10−15 G

�
3
�
1016 GeV

m

�
2
�

Hi

1014 GeV

�
1=2

× max

��
Hi

Hdom

�
1=2

; 1

�
: ð4:11Þ

TAKESHI KOBAYASHI and DANIELE PERRI PHYS. REV. D 106, 063016 (2022)

063016-12



Under the requirement of negligible backreaction on the
primordial magnetic fields,Πacc=ΠredðT ¼ 1 MeVÞ ≲ 1, we
get

x̃D exp
�
−
g2

4
ðI − 1Þ

�
≲ 1: ð4:12Þ

In Fig. 3 we show in solid curves the bound in Eq. (4.12).
We also plot the weak field condition in Eq. (4.7) in dashed
curves. The region below the curves is not compatible
with the survival of the primordial magnetic fields, namely,
the curves give lower bounds on the monopole mass.
For the computation we assume g¼2π=e and B0¼10−15G.
The bound is shown for different values of Tdom (from
bottom to top, red: 1015 GeV, which corresponds to
Hdom ¼ 1012 GeV; orange: 109 GeV, which corresponds
to Hdom ¼ 1 GeV; pink: 103 GeV, which corresponds to
Hdom ¼ 10−12 GeV). In cases where the magnetic fields are
produced after reheating, i.e. ti > tdom, the bound is
independent of Tdom; this is seen in the plot as the red
and orange curves overlapping on the low-Hi end.
Due to the exponential dependence on I in Eq. (4.12),

this condition reduces approximately to the weak field
condition Eq. (4.7), as seen in the plot. This can be easily
shown by computing the natural logarithm of the expres-
sion and rewriting it as

I ≳ 1þ 4

g2
ln x̃D: ð4:13Þ

The expression now takes a form similar to that for the
weak field condition in Eq. (4.4) with an additional loga-
rithmic factor. For values ofHi that saturates the upper bound
on the inflation scale H ≲ 1014 GeV [28] and assuming for
B0 the reference value of 10−15 G, the logarithmic term can
become comparable to 1 only for very lowmonopole masses
and very small values ofTdom. In any case, the corrections are
generically less than order unity and negligible for an
estimate at the level of the order of magnitude. In summary,
the bounds on themonopole abundance obtained for t > tdom
approximately reduce to theweak field condition inEq. (4.7).

B. Before radiation domination

We now study the backreaction of pair-produced monop-
oles on the primordial magnetic field during the reheating
epoch. Hence in this subsection we only focus on cases
where the magnetic field generation takes place prior to
radiation domination.
As explained in Sec. III B, the monopole bound is

obtained by evaluating the ratio Πacc=Πred at the time ti
or t�, whichever is later [see Eq. (2.25) for the definition of
H�]. We compute the ratio by substituting Eq. (4.9) into
Eq. (3.15). Taking into account the relations in Eqs. (4.5),
(A5), (A6), we obtain

Πacc

Πred
ðt ¼ max fti; t�gÞ ≃ x̃B exp

�
−
g2

4
ðI − 1Þ

�
; ð4:14Þ

where we define

x̃B¼
�
g
10

�
3
�

100

N c;dom

��
B0

10−15 G

�
3

×

�
1011 GeV
Tdom

�
3
�
1013 GeV

m

�
2

·

�
Hi

1014 GeV

�
3=2

min

��
H�
Hi

�
1=2

;1

�
: ð4:15Þ

We remind the reader that the form of H� in Eq. (2.25)
depends on whether the mass of the monopoles is smaller
or larger than m̄.
Negligible backreaction on the magnetic fields implies

Πacc=Πredðt ¼ max fti; t�gÞ≲ 1. From this condition, we
get a bound in the ðHi;mÞ plane similar to that obtained
during radiation domination:

x̃B exp

�
−
g2

4
ðI − 1Þ

�
≲ 1: ð4:16Þ

In Fig. 4 we show in solid curves the condition in
Eq. (4.16) and in dashed curves the weak field condition
given in Eq. (4.7) for different values ofTdom (frombottom to
top, red: 1015 GeV, which corresponds toHdom¼1012GeV;
orange: 109 GeV, which corresponds to Hdom ¼ 1 GeV;
pink: 103 GeV, which corresponds to Hdom ¼ 10−12 GeV).

FIG. 3. Lower bounds for the monopole mass as a function
of the Hubble scale at magnetic field generation Hi. The plot
shows the comparison between the weak field condition in (4.7)
(dashed curves) and the bound from requiring negligible back-
reaction on the primordial magnetic fields during radiation
domination, shown in (4.12) (solid curves). Here g ¼ 2π=e
and B0 ¼ 10−15 G. The results are shown for three different
values of the reheating temperature Tdom; from bottom to top, red:
1015 GeV, orange: 109 GeV, pink: 103 GeV. ForHi < Hdom, the
results are independent from Tdom.
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For the computation we assume g ¼ 2π=e, N c;dom ¼ 100,
and B0 ¼ 10−15 G. Since now we are focusing on the case
where the magnetic fields are generated before radiation
domination, the bound of Eq. (4.16) applies only for
Hi ≥ Hdom. In the plot, the end points of the red and orange
curves correspond to where Hi ¼ Hdom.
Also in this case, the exponential factor mainly sets the

left-hand side of Eq. (4.16). Consequently, the bound
reduces to the weak field condition up to an order-unity
factor, as seen in the plot. This is also seen by rewriting
Eq. (4.16) as

I ≳ 1þ 4

g2
ln x̃B: ð4:17Þ

The logarithmic factor can be generically neglected for an
order-of-magnitude estimate of the bounds.

C. Symmetry breaking scale and
weak field condition

For solitonic monopoles in spontaneously broken
gauge theories, the symmetry breaking scale is typically
of the order of M ¼ m=g. If the cosmic temperature or the
Hubble rate upon magnetic field generation exceeds this
scale, the symmetry is unbroken; then the monopole
solution does not exist and the monopole mass limit of
Eq. (4.7) can be evaded. The magnetic field itself can also
restore the symmetry if it exceeds the weak field limit of
Eq. (4.2b) [41–43].

In parts of the region displayed in Figs. 3 and 4, the
temperatures Ti and/or Tdom are larger than M. However in
such regions, the symmetry breaking after inflation can
induce a monopole problem, which leads to further con-
straints on the monopole mass. We refer the reader to [24]
for a detailed discussion on this point.
In Fig. 1, with the choice of parameters there, the weak

field condition impliesm≳ 1014 GeV, and the condition of
broken symmetry (Ti; Hi < M) gives m≳ 1012 GeV.
These conditions are violated in the plot by some of the
curves with low masses. Such curves, hence, should be
taken only as a qualitative indication of how light monop-
oles respond to primordial magnetic fields.
In Fig. 2 we showed monopole bounds based on

primordial magnetic fields during reheating, which were
derived by evaluating the ratio Πacc=Πred at the time t�.
(Recall that we do not need to specify the value of Hi for
these bounds, as long as Hi > H� is satisfied.) The
magnetic field strength at t�, i.e. B�, satisfies the weak
field condition in the entire range of m and Tdom displayed
in the plot. The condition T�; H� < M is also satisfied in
the entire range, and thus the symmetry is broken at t�.
We also remark that the constraint on the Hubble rate in

Eq. (2.28) from the requirement that the magnetic field
energy does not dominate the early Universe is satisfied by
the values of Hi shown in Figs. 1, 3, 4, and also by H�
shown in Fig. 2.

V. CONCLUSION

We carried out a comprehensive study of the monopole
dynamics in the early Universe and its backreaction to the
primordial magnetic fields from the time when the pri-
mordial magnetic fields have been generated to the epoch
of eþe− annihilation. We then derived new bounds on the
average abundance of magnetic monopoles in the Universe
by extending the Parker bound to the survival of the
primordial magnetic fields. From the analysis during
radiation domination we rederived the bound on the
monopole number density given in [15]

n0 ≲ 10−21 cm−3: ð5:1Þ

Assuming the primordial magnetic fields to be generated
prior to radiation domination, we obtained additional
bounds by analyzing the magnetic field dissipation during
the reheating period. For primordial magnetic fields pro-
duced at sufficiently early times (see Sec. III B for details),
we derived

n0≲
8<
:
10−16 cm−3

	
B0

10−15 G



3=5

	
Tdom

106 GeV


	
10
g



3=5

; m≪ m̄

10−16 cm−3
	

m
1014 GeV


	
Tdom

106 GeV


	
10
g



2
; m≫ m̄

;

ð5:2Þ

FIG. 4. Lower bounds for the monopole mass as a function of
the Hubble scale at magnetic field generation Hi. The plot
shows the comparison between the weak field condition in (4.7)
(dashed curves) and the bound from requiring negligible back-
reaction on the primordial magnetic fields during reheating,
shown in (4.16) (solid curves). Here g ¼ 2π=e, N c;dom ¼ 100,
and B0 ¼ 10−15 G. The results are shown for three different
values of the reheating temperature Tdom; from bottom to top, red:
1015 GeV, orange: 109 GeV, pink: 103 GeV. The bound of
Eq. (4.16) applies only for Hi ≥ Hdom. The end points of the
solid curves correspond to where Hi ¼ Hdom.
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where m̄ is given by

m̄≃1014 GeV

�
B0

10−15 G

�
3=5

�
g
10

�
7=5

�
N c;dom

100

�
2=5

: ð5:3Þ

Here Tdom is the reheating temperature, m is the monopole
mass, g is the magnetic charge of the monopoles, B0 is the
amplitude of the intergalactic magnetic field today, andN c
is the number of charged relativistic degrees of freedom.
In Fig. 2 we have shown the previous bounds on the

monopole flux together with our results. For a sufficiently
low reheating temperature, our bound is stronger than the
original Parker bound and the limits from direct searches,
even for GUT-scale monopoles. At low masses, our
bound is stronger than that during radiation domination,
Eq. (3.14), for Tdom ≲ 10 GeV. In our analyses we assumed
the plasma particles during the reheating epoch to always be
in thermal equilibrium, however removing this assumption
may further strengthen the bound on monopoles.
We also applied our bounds to monopoles that are

Schwinger produced in primordial magnetic fields, in order
to obtain the most conservative condition for the survival of
primordial magnetic fields. We found that the bounds on
the monopole density reduce to a weak field condition on
the initial strength of the primordial magnetic fields,

Bi ≲ 4πm2

g3
: ð5:4Þ

This translates into a lower bound on the monopole mass
shown in Eq. (4.7). The work [24] obtained a similar bound
by only considering the acceleration of monopoles soon
after they are pair produced. This indicates that the bound
on the initial magnetic field strength does not improve
significantly even when taking into account the integrated
effect of the monopole acceleration over the entire cos-
mological history. This insensitivity to the detailed dynam-
ics of the monopoles is due to the exponential dependence
of the monopole production rate on the magnetic field
strength. We thus conclude that as long as the initial
amplitude of the primordial magnetic field is sufficiently
below the bound of Eq. (5.4), the backreaction from
Schwinger-produced monopoles can be safely ignored.
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APPENDIX: THE UNIVERSE FROM THE END
OF INFLATION TO THE MATTER-RADIATION

EQUALITY

In this appendix, we derive the relations between the
Hubble rate, the cosmic temperature and the scale factor

both during reheating and in the following radiation-
dominated epoch. We define tend as the time of the end
of inflation, when the Universe begins to be dominated by
an oscillating inflaton field. The inflaton eventually decays
into radiaton, and at time tdom the radiation component
starts to dominate the Universe. Then at time teq, the time of
matter-radiation equality, matter domination begins. Setting
tend ¼ tdom corresponds to the case of an instantaneous
reheating.
During radiation domination, for times tdom ≪ t ≪ teq,

the Friedmann equation gives 3M2
PlH

2 ≃ ρrad, with ρrad ¼
ðπ2=30Þg�T4 the radiation energy density and T the
radiation temperature. Considering the expression for the
entropy density s ¼ ð2π2=45Þg�sT3, we get (the subscript
“0” denotes quantities in the present Universe):

H≃
�

45

128π2

�
1=6 g1=2�

g2=3�s

s2=30

MPl

�
a0
a

�
2

; T≃
�
45

2π2
s0
g�s

�
1=3a0

a
:

ðA1Þ

Here we have assumed the conservation of entropy until
today, i.e. s ∝ a−3. The relation between the scale factor
and the temperature during radiation domination is as
follows:

�
a0
a

�
3

¼ g�sT3

g�s;0T3
0

: ðA2Þ

During reheating, for times tend ≪ t ≪ tdom, the oscil-
lating inflaton field decays perturbatively into relativistic
particles. During this period the Universe is effectively
matter dominated, with H ∝ a−3=2. Let us assume that the
relativistic particles are in thermal equilibrium also during
this period, so that ρrad ¼ ðπ2=30Þg�T4 holds. For sim-
plicity, we ignore the time dependence of g�ðsÞ before
radiation domination. This amounts to assuming
that no additional relativistic degrees of freedom appear
as one goes back in time from t ¼ tdom. Then the radiation
density, which is sourced by the inflaton decay, evolves as
ρrad ∝ a−3=2. The scaling behavior of ρrad can be verified
by solving the continuity equation _ρrad þ 4Hρrad ¼ Γϕρϕ,
where Γϕ is the inflaton decay rate and ρϕ ¼
ρϕendðaend=aÞ3e−Γϕðt−tendÞ is the energy density of the
inflaton field [6]. The radiation temperature thus redshifts
as T ∝ a−3=8. We can also write the relation between the
scale factor and the temperature before radiation domi-
nation as

a0
a

¼ adom
a

a0
adom

¼
�

T
Tdom

�
8=3

�
g�s;dom
g�s;0

�
1=3

�
Tdom

T0

�
: ðA3Þ
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We summarize the dependence on the scale factor of the
Hubble rate and of the temperature in the following
expressions:

H≃Hdommin

��
adom
a

�
3=2

;

�
g�

g�;dom

�
1=2

×

�
g�s;dom
g�s

�
2=3

�
adom
a

�
2
�
;

T≃Tdommin

��
adom
a

�
3=8

;

�
g�s;dom
g�s

�
1=3

�
adom
a

��
: ðA4Þ

The first expression in the curly brackets holds for tend <
t < tdom and the second for tdom < t < teq.
By extrapolating Eq. (A1) to the time when radiation

domination begins, we can obtain the relations between
Hdom, Tdom, and adom. After substituting numerical values
for the reduced Planck mass MPl and for the cosmological
parameters we get

a0
adom

≃ 1029
�

Hdom

1014 GeV

�
1=2

;

Tdom ≃ 1016 GeV

�
Hdom

1014 GeV

�
1=2

: ðA5Þ

We also underline that these expressions present only
a weak dependence on g�ðsÞ and then the order-of-
magnitude estimates are not affected by its precise value.
Reversing the first line in Eq. (A4) and ignoring the
contributions of g�ðsÞ, we express the scale factor as a
function of the Hubble rate:

adom
a

≃
�

H
Hdom

�
1=2

max

��
H

Hdom

�
1=6

; 1

�
: ðA6Þ

The first term inside the curly brackets holds for tend <
t < tdom and the second for tdom < t < teq.
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