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Our current understanding of the core-collapse supernova explosion mechanism is incomplete, with
multiple viable models for how the initial shock wave might be energized enough to lead to a successful
explosion. Detection of a gravitational-wave signal emitted in the initial few seconds after stellar core-
collapse would provide unique and crucial insight into this process. With the Advanced LIGO and
Advanced Virgo detectors expected to approach their design sensitivities soon, we could potentially detect
this signal from a supernova within our galaxy. In anticipation of such a scenario, we study how well the
BayesWave algorithm can recover the gravitational-wave signal from core-collapse supernova models in
simulated advanced detector noise, and optimize its ability to accurately reconstruct the signal waveforms.
We find that BayesWave can confidently reconstruct the signal from a range of supernova explosion models
in Advanced LIGO-Virgo for network signal-to-noise ratios ≳30, reaching maximum reconstruction
accuracies of ∼90% at SNR ∼ 100. For low SNR signals that are not confidently recovered, our
optimization efforts result in gains in reconstruction accuracy of up to 20%–40%, with typical gains
of ∼10%.
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I. INTRODUCTION

Despite many detailed multiwavelength electromagnetic
observations of core-collapse supernovae (CCSNe), the
exact mechanism powering these explosions is not yet fully
understood (see, e.g., Burrows and Vartanyan [1] and
references therein). This is in part because the electromag-
netic signal only escapes from the very outer layers of the
star after shock break-out (SBO), on timescales of hours to
days after the core collapses [2]. However, most of the
critical explosion physics occurs in the very central core of
the star within the first few seconds [3]. The thermody-
namic state of the explosion in this crucial period is
imprinted on to the escaping neutrino flux, which carries
away almost all of the total explosion energy, ∼1053 ergs
[4]. Nonspherical, accelerated mass motions in the dense
supernova core at this time also produce gravitational
waves (GWs), lasting ≲1 s after core bounce, which then
probe the internal dynamics of the explosion mechanism
(see, e.g., Abdikamalov et al. [5] for a recent review). We
can thus use multimessenger astronomy to study these

highly energetic events and help solve the mystery of what
powers CCSNe.
While Supernova SN1987A marked the first (and so far

only) supernova for which the neutrino signal was also
observed [6–8], GWs from CCSNe have not yet been
detected [9,10]. This is especially challenging since
CCSNe are rare events, expected to only occur approx-
imately once or twice per century in large galaxies such as
the Milky Way [11].
The Advanced LIGO [12] and Advanced Virgo [13]

ground-based interferometric GW detectors are expected to
achieve their design sensitivities for their fourth observing
run [14]. At these sensitivities (along with the addition of
new detectors such as KAGRA [15,16] and LIGO-India
[17] in the future), we could potentially observe a Galactic
CCSN with GWs [18,19]. In anticipation of such an event,
in this study we follow up on the CCSN sensitivity
analyzed in the all-sky short duration burst search of the
most recent LIGO-Virgo observing run [10], and character-
ize how well the BayesWave algorithm [20] can reconstruct
CCSN models embedded in Advanced LIGO and
Advanced Virgo design sensitivity detector noise. We also
aim to tune BayesWave for CCSN signals, and produce a
set of recommendations to be used for analysis on a
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candidate detection that will optimize the reconstruction
accuracy.

A. Core-collapse supernovae

CCSNe are the end stage of the life of massive stars with
M ≳ 8 M⊙. When the mass of the central iron core exceeds
the effective Chandrasekhar mass, runaway collapse of
the core begins, marking the onset of the explosion. This
value can vary betweenMCh ∼ 1.34–1.8 M⊙, depending on
a range of different properties of the progenitor star (see
e.g., Woosley et al. [21] for a classic review). A shock
forms between the supersonically infalling inner core of
∼0.6–0.8 M⊙ and the subsonically infalling outer core of
∼0.6 M⊙. As the temperature and density increases, the
collapse is accelerated by photodissociation and electron
capture, which also produces a burst of neutrinos that
are initially trapped in the ultradense inner core. As the
central density reaches nuclear density, the inner core
cannot collapse any further and rebounds, transferring
in-falling energy-momentum by launching a shock wave
outwards.
This shock wave loses significant energy as it propagates

through the still in-falling outer core and heats it, disso-
ciating iron nuclei into free protons and neutrons.
Furthermore, as the density behind the shock gets low
enough, ∼1011 g · cm−3, the neutrinos start to escape,
contributing to further energy loss. Eventually, the shock
stalls, around 100–200 km from the center (a few tens of
milliseconds after bounce), near the outer iron layer. From
this point, to get a successful explosion the shock must be
revived within a few hundred milliseconds before the
continued accretion onto the central proto neutron star
(PNS) triggers further collapse into a black hole.
The exact mechanism behind the reenergization of the

shock wave and the subsequent successful explosion is not
fully understood [1]. The delayed neutrino heating mecha-
nism has emerged as a promising candidate to explain the
shock revival for most slowly rotating progenitors. In this
scenario the intense neutrino flux from the hot PNS
deposits a small fraction of its energy (∼1%) into the gain
region behind the stalled shock (see, e.g., Janka [22] for a
review of neutrino-driven explosions). For rapidly rotating
stars with strong magnetic fields (expected to account for
∼1% of CCSN progenitors [23]), magnetohydrodynamic
effects can allow the transfer of energy from the highly
magnetized PNS into the outer stellar layers for a violent
explosion, in the magnetorotationally driven mechanism
(e.g., [24]). While it is expected that neutrino heating plays
a key role in most explosion models, the exact role of the
different potential drivers of the explosion, which include
the neutrino flux, differential rotation of the progenitor star,
and strong magnetic fields, remains to be fully understood.
We direct the reader to the review by Janka [3] for a detailed
discussion of the different possible CCSN mechanisms,
and to the recent review by Burrows and Vartanyan [1]

and the references therein for current limitations in our
understanding.

B. Gravitational waves from CCSNe

The GW signal can provide unique insight into the state
of the PNS in this crucial time period, and inform about the
explosion mechanism [5]. Some expected features in a GW
signal are common to most CCSN models. A quadrupole
moment from the deformation of the PNS is expected to
occur after the core bounce. Waves from the outer con-
vective region are likely to travel inwards and strike the
outer core, and waves from convection in the PNS are likely
to internally excite core and surface oscillations. For slowly
rotating stars, the GW signal is then expected to be
dominated by the fundamental oscillation modes of the
PNS (f, g, p modes), which increase in frequency with time
as the PNS contracts (e.g., [25–28]). The exact shape and
amplitude of the signal can then also place constraints on
the source properties such as the PNS mass, size, core
compactness, and explosion energy (e.g., [29–31]).
Bulk fluid motion from the advective acoustic cycle,

particularly in the gain region, may also cause global
asymmetric perturbations leading to emission in the low-
frequency regime. Linear or spiral oscillation modes (l, m)
of the shock front may arise from the standing accretion
shock instability (SASI) [32].
In the case that the explosion is powered by strong

magnetic fields or amplified by a high rotation rate, prompt
broadband emission can be expected within ∼20 ms after
core bounce (e.g., [33,34]). A rapidly rotating stellar core is
deformed due to its angular momentum and leads to the
derivatives of the quadrupolemoment to change significantly
as the core collapses, and the core bounce prompt convection
signal can become a dominant feature (e.g., [35,36]).

C. Detecting the GW signal
with Advanced LIGO-Virgo

The stochastic nature of the CCSN explosion makes
predicting exactly which features will occur currently
impossible. However, the dominant emission features that
are expected from the GW signals of different CCSN
models, between ∼20 Hz–2 kHz, lie in the most sensitive
frequency regime of the Advanced LIGO and Advanced
Virgo detectors [14]. This sensitivity overlap makes CCSN
within our Galaxy a potentially promising target for current
detectors. While the expected event rate of 1–2 per century
[11] for such events is low, a detection of the associated
GW signal, should a Galactic CCSN happen within the next
observing run, would be invaluable and could allow us to
distinguish between different explosion models and mech-
anisms (e.g., [37,38]), as well as extract astrophysical
parameters of the source progenitor and remnant.
GW detection and analysis algorithms have been devel-

oped over the years targeted toward characterizing generic
short duration GW signals in the LIGO and Virgo detectors,
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and some of these have been used to study GWs from
CCSN. In particular, previous work by Gossan et al. [18]
used the X-Pipeline algorithm [39] and GW waveform
models from multidimensional simulations to study in
detail the detectability of these models for the advanced
era detectors. The recent study by Szczepańczyk et al. [19]
used the coherent WaveBurst algorithm [40] to analyze its
ability to detect and reconstruct CCSN GW signals, with an
expanded and updated set of waveform models, for the
anticipated fourth and fifth observing runs.
There have also been detection and inference techniques

developed for analyzing the CCSN GW signal in particular,
and we highlight a few studies here to show the wide range
they can span. This includes the early work by Röver et al.
[41] for the initial LIGO detectors, in which the authors
used principal component analysis and Bayesian inference
to reconstruct the collapse and core bounce signal, and infer
properties of the PNS from the amplitudes of the principal
components. Bizouard et al. [30] used 1D simulations to
build a model for universal relations between physical
properties of the compact remnant and the frequency
evolution of the GW signal from PNS oscillations, and
used this to estimate source properties in 2D simulations of
the GW signal as would be detected by advanced era (and
third generation) detectors. Similarly a CCSN detection
technique developed in Astone et al. [42] also focused on
the GWs emitted by the PNS oscillations, in this case using
machine learning methods to identify the monotonically
increasing signal in time-frequency spectrograms of the
advanced detector network. For further examples of GW
analysis techniques that have been applied to study CCSN,
see Refs. [43–45].
Another candidate analysis algorithm is BayesWave,

which is designed to reconstruct the signal from generic
GW burst sources (short duration transient signals) using a
wavelet basis, while making minimal assumptions about
the specific waveform morphology [20]. This unmodeled
approach, as opposed to matched filtering using known
waveforms for compact binary coalescence candidates
(e.g., [46–48]), makes BayesWave a suitable waveform
reconstruction pipeline for CCSN studies.
To prepare for a candidate detection, we aim to study and

quantify BayesWave’s potential ability to reconstruct differ-
ent types of CCSN signals. Furthermore we aim to identify
which algorithm settings aremost sensitive to CCSN signals,
and produce a set of recommendations to be used for analysis
on a real signal. In order to achieve these goals of character-
izing BayesWave’s performance, we study five different
recent CCSN explosion models from three-dimensional
simulations. These models encompass the same set used
in Abbott et al. [10] and span a range of explosion models,
including failed explosions, neutrino driven explosions, and
magnetorotationally driven explosions.
The rest of the paper is organized as follows. In Sec. II

we describe the BayesWave algorithm, the supernova

waveform models we study, the general procedure for
our reconstruction studies, and our optimization efforts. In
Sec. III we present our results, highlighting BayesWave’s
reconstruction accuracy for CCSNe, gains from our opti-
mization, and the recovery of a realistic distribution of
sources in the Milky Way. Section IV follows with a
discussion of BayesWave’s performance between the dif-
ferent models, the distances to which it can reconstruct
CCSN signals, and the limitations of BayesWave in this
work. We summarize and conclude with final remarks and
future work in Sec. V.

II. METHODS

The aim of our study is to analyze and optimize the
reconstruction of CCSN GW signals with BayesWave. In
the next few subsections we detail the methods that we
employ, including a summary of the BayesWave algorithm
and its features, a description of the CCSN waveform
models selected, the steps taken to perform the reconstruc-
tions in simulated Advanced LIGO-Virgo detectors, and
the optimization efforts employed in the procedure to yield
more reliable and accurate reconstructions.

A. BayesWave

BayesWave is a GW signal reconstruction algorithm for
short bursts that makes minimal assumptions about the
signal morphology [20]. For each detector BayesWave
models the analyzed data (d) as a linear combination of the
GW signal in the detector frame (s), the detector’s sta-
tionary Gaussian noise (n), and transient instrumental noise
(glitches, g): d ¼ sþ nþ g. The ratio of the Bayesian
evidences for each model determines which has the most
support.
In practice BayesWave uses a transdimensional revers-

ible jump Markov chain Monte Carlo (RJMCMC) to place
a variable number of Morlet-Gabor (sine-Gaussian) wave-
lets, the linear combination of which forms a reconstructed
signal. For a multiple detector configuration, the wavelets
placed for the signal model must be coherent across
detectors, requiring the same set of extrinsic parameters
(sky location, ellipticity, polarization angle) to properly
project the signal onto the detectors. For the glitch model,
however, the wavelets are uncorrelated.
Since the supernova analysis pipeline must make min-

imal assumptions about the waveform, BayesWave is then
one of the more suitable choices to use in our study.
Because it is agnostic to the type or source of the signal,
BayesWave has been extensively used for unmodeled
reconstructions of GW signals from compact binary coa-
lescences (e.g., [49–52]) and white-noise bursts [53], as
well as a glitch subtraction tool to “clean” a portion of
the detector data that has an instrumental noise event
overlapping with a real signal (e.g., [54,55]). It could
also potentially be used as a follow-up tool to cWB to
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help better discriminate CCSNe events from instrumental
noise events [56].
If the analysis involves recovering a known signal that

has been injected (added) into detector noise (as is the case
for our study), then BayesWave also calculates the overlap
(also called match) between the waveform of the injected
signal hi and the BayesWave wavelet reconstruction hr.
The overlap is defined as

O ¼ ðhijhrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhijhiÞðhrjhrÞ

p ; ð1Þ

where the notation ðxjyÞ denotes a noise-weighted inner
product using the detector’s one-sided noise power spectral
density ShðfÞ:

ðxjyÞ ¼ 2

Z

∞

0

xðfÞy�ðfÞ þ x�ðfÞyðfÞ
ShðfÞ

df: ð2Þ

Thus the overlap characterizes the accuracy of the
waveform reconstruction, measuring the similarity of the
injected and recovered waveforms. This value ranges from
−1 to 1, with O ¼ 1 meaning a perfect match between the
two waveforms, O ¼ 0 meaning no match, and O ¼ −1
indicating a perfect anticorrelation. In our work we quote
the combined weighted network overlap for all N ¼ 3
detectors, which is computed as

Onet ¼
P

N
j¼1ðhðjÞi jhðjÞr Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
j¼1ðhðjÞi jhðjÞi ÞPN

j¼1ðhðjÞr jhðjÞr Þ
q ; ð3Þ

where j denotes the jth detector.
In the context of our study, this means that if the

BayesWave reconstructed CCSN waveform has an overlap
of O ¼ 0.5, for example, then that reconstructed waveform
accurately matches 50% of the total time-frequency and
phase signature of the true waveform. In the rest of this
paper, we then often say that the reconstruction accuracy is
X% to reflect the fact that the overlap value between the
reconstructed and injected signals is X=100. Furthermore,
as outlined in Sec. II C, in our studies BayesWave produces
20000 reconstructed waveforms for each injected signal,
and calculates the overlap for each of these. The result is a
distribution of overlap values, from which we select the
median value as the characteristic overlap, and compute
the standard deviation of the distribution as an estimate of
the overlap uncertainty.

B. Supernova waveform models

Here we briefly describe the supernova waveform
models from 3D simulations that are used in our study
and the GW features they exhibit (as shown in the first row
in Fig. 1). We refer the interested reader to their source

papers for more detailed information about the details of
their simulation procedure and modeling techniques.

(i) The O’Connor and Couch [26] mesa20-3D-pert
model (hereafter referred to as m20-3Dp) has a
20 M⊙ solar metallicity nonrotating progenitor star,
and fails to explode within ∼500 ms after core
bounce, the extent of the simulation. However, the
model does emit a GW signal that is dominated by
the g-mode oscillation of the PNS surface, which
begins at ∼300 Hz and grows with time, peaking
at ∼600–700 Hz at ∼200 ms after core bounce.
A subdominant signal due to the spiral SASI modes
is also present at ∼50–200 Hz.

(ii) The Radice et al. [27] s9 model has a 9 M⊙ solar
metallicity nonrotating progenitor, and represents a
lower mass neutrino-driven explosion. A broadband
prompt convection signal develops ∼50 ms after
bounce in conjunction with the neutrino shock
breakout. After a short quiescent period, the PNS
g-mode oscillation begins, rising to frequencies of
∼700 Hz. The shock is successfully revived at
∼200 ms after core bounce, and no significant
GW emission occurs after ∼300 ms.

(iii) The Powell and Müller [28] s18 model has an
18 M⊙ solar metallicity nonrotating progenitor,
and represents a typical neutrino driven explo-
sion. GWemission from g-mode surface oscillations
of the PNS begins ∼100 ms after core bounce, and
peaks at ∼800–1000 Hz just after shock revival and
onset of the explosion ∼300 ms after bounce.
Significant GW emission continues up to ∼600 ms.

(iv) The Powell and Müller [57]m39model has a rapidly
rotating Wolf-Rayet star as its progenitor with a
39 M⊙ helium star mass, 2% solar metallicity, and
an initial surface rotation velocity of 600 km · s−1. It
is a strong neutrino driven explosion, with GW
features amplified by the rapid rotation. Strong GW
emission from prompt convection at low frequencies
occurs shortly after bounce time, mainly visible in
observer angles toward the equator. There is also a
strong core bounce signal at frequencies >500 Hz.
This is followed by emission associated with f-mode
oscillations of the PNS, which peaks at a frequency
of ∼750 Hz about 400 ms after core bounce. The
shock revival occurs at ∼200 ms, and GW emission
continues up to ∼600 ms.

(v) The Obergaulinger and Aloy [24] 35OC-RO model
has a 35 M⊙ rapidly rotating progenitor with strong
magnetic fields, with a subsolar metallicity and an
equatorial surface rotation velocity of 380 km · s−1.
It represents a strong magnetorotationally driven
explosion. A bounce signal is quickly followed by
an evolving PNS oscillation track. After the shock is
revived ∼200–300 ms after bounce, the strong ex-
plosion rapidly inhibits further accretion onto the
PNS, beyond which the GW signal is somewhat
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broadband and lasts until ∼800 ms. Most of the
emission occurs near frequencies of ∼300–500 Hz.

C. General procedure

For each waveform model we first take the GW signal as
generated by the corresponding simulation in the source
frame, and project it onto the detector frame based on a
given set of extrinsic parameters. This set of parameters
includes the sky position of the supernova, i.e., its right
ascension and declination, the distance to the source, the
orientation of the source relative to the line of sight, the
polarization angle of the signal, and the time of observa-
tion, which influences the detector antenna response pattern
in relation to the sky position.
We generate two population sets for these parameters for

each model: in the first set the sky positions follow a
random uniform distribution across the whole sphere, the
source orientations and polarization angles are uniform
randomly distributed across all physically possible values,

the time of observation is set to be 10 s apart (for a uniform-
in-sky population the observation time makes no practical
difference, and we choose this time for convenience), and
the distances are then determined such that the resulting
signal in the detector frame is log-uniform randomly
distributed in SNR from 10 to 100. We produce 100
distinct signals to analyze in this way. In the second
population set we change the sky positions and distances
to model after a realistic spatial distribution of stars in the
Milky Way galaxy, as done in Abbott et al. [10]. The
Galaxy is modeled as a combination of the bulge, thin disk,
and thick disk with parameters from the best-fitting
contracted NFW halo model in Cautun et al. [58]. The
time interval between signals is increased to 10 minutes,
and a total of 150 detector signals are thus generated
spanning approximately 24 hours. This is done since the
detector sky antenna sensitivity pattern changes on the
timescale of a day due to the rotation of the Earth, and we
must account for the fact that the sources are not uniformly

FIG. 1. The combined three detector Q-transform spectrograms for the injected signal waveform (top row), the data that BayesWave
analyzes (injected signal in simulated gaussian detector noise, middle row), and the BayesWave recovered waveform (bottom row). Out
of the 100 injections for each waveform model, one representative case with a relatively high network SNR ∼ 60 is shown. We can see
that for such loud signals, in each case BayesWave manages to recover all dominant features visible in the spectrogram, with overlap
accuracies of ∼80% for all waveforms. This includes the high-frequency evolving g or f mode track from the PNS oscillation, which is
most easily identifiable in the s18 and m39 models, as well as the bounce and prompt convection signal which is visible in the s9 and
m39 models. The 35OC-RO waveform is the most distinct with a relatively broadband track since the explosion is magnetorotationally
driven instead of due to neutrino heating. Note that the timescale for the m20-3Dp and s9 waveforms is shorter than the rest (∼0.5 s
compared to ∼0.8 s).
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distributed on the sky, but mostly lie within a narrow band
that traces the Galactic disk.
These selected signals are then injected (added) into

simulated Gaussian noise that is generated based on the
expected design spectral noise sensitivity of the Advanced
LIGO [12] and Advanced Virgo [13] detectors, taking into
account the relative positions and orientations of the
individual Hanford, Livingston, and Virgo detectors. The
end result is a GW data file for each injected signal that has
three separate channels for the strain data in each detector,
mirroring what we would expect to analyze for a real signal
during an observing run.
Finally, we analyze each of these signal-plus-noise data

files using the BayesWave algorithm, performing waveform
reconstruction of the supernova GW signal within the
simulated detector noise (the injection-reconstruction proc-
ess is illustrated in Fig. 1). Since BayesWave is based on a
Bayesian approach to model the signal waveform and it
samples the posterior distribution of the waveform param-
eters, for each run the output is a distribution of recovered
waveforms, where each waveform represents one step in the
sampler. For the runs in our study BayesWave performs a
total of 4 million RJMCMC sampler iterations. To keep
computational costs reasonable we then subselect and save
every hundredth sample in the latter half of the run (i.e., once
the distribution is steady). The BayesWave output products
are then calculated based on these 20000waveforms, and the
median recovered waveform (as described in Cornish et al.
[59]) is used as the representative final waveform. Similarly,
for thenetwork overlapwequote themedian network overlap
value of the 20000 waveforms, and show the 1σ standard
deviation of that distribution as a measure of uncertainty on
the final value wherever possible.

D. Optimizations

We aim to optimize the BayesWave run settings to
maximize waveform recovery from supernovae for the
different waveform models considered and across the range
of possible extrinsic signal parameters. We characterize
differences in performance between different run settings
using the network overlap parameter [Eq. (3)], where an
increase in the overlap indicates a positive gain.We consider
this to be a more robust measure of whether the changes we
introduce have a positive or negative impact, as compared to
measuring the SNR of the recovered waveform. This is
because the recovered SNR increases as BayesWave places
more wavelets, regardless of whether those wavelets are
capturing features appropriately. The overlap, however,
appropriately penalizes any frivolously placed wavelets,
focusing not simply on the excess power in the recovered
signal, but on how accurately that excess power matches the
shape of the true injected signal.
Since in the case of a real detection we will not know

a priori what kind of explosion model is the underlying
cause of the signal, any optimization efforts we make must

be robust across all five different waveforms considered,
and for the entire SNR range studied. From the potential
optimizations we consider, we find two significant
improvements based on: (i) knowing accurate sky locali-
zation information from electromagnetic and neutrino
counterparts (e.g., [60,61]), and (ii) increasing the allowed
wavelet quality factor Q, which is the number of cycles of
the wavelet over one e-folding of the Gaussian envelope
(i.e., describes how spread out in time it is). Thus our
optimized runs correspond to setting a fixed sky location
and Qmax ¼ 100, compared to the initial unoptimized runs
with default settings in which the sky location is not fixed
(uniform prior over the whole sky) and Qmax ¼ 40.
We also explored using frequency-evolving “chirplets”

[62] instead of the fixed-frequency wavelets. However, this
approach did not yield consistently positive results, and we
discuss this in more detail in Sec. IV. We also note that a
recent update to the BayesWave algorithm enables relaxing
polarization constraints from elliptical polarization to
generic polarization [59]. We were unable to fully explore
this new feature for our present work, and leave a more
robust analysis of its potential for CCSN signals to future
studies.
Along with this we find that in order for the comparison

to be appropriate and for the BayesWave runs to converge
in all cases, we have to be careful of a few other run
parameters. The analyzed segment length should not be less
than 4 s, as below that BayesLine [63] cannot determine the
spectral density of the noise accurately. The analysis
window where BayesWave is allowed to place signal
wavelets should be kept to approximately 1 second to
make sure no part of the potential signal is being missed,
and be centered on the duration of the signal (in a real
scenario the “trigger” time of the event can be estimated
either from low-latency GW search algorithms like coher-
ent WaveBurst [40] or from electromagnetic or neutrino
counterpart detections of CCSNe). The maximum number
of allowed wavelets should scale with the SNR of the
signal, where we had to set this limit to 150 wavelets for the
highest SNR signals in this study. The prior on the number
of wavelets should also be specified to be uniform across
the allowed window of f1; 150g. The number of iterations
in the RJMCMC must also not be less than 4 million, as the
sampler can sometimes take at least this many steps to
converge to a steady distribution, especially for higher SNR
CCSN signals. Finally, we also recommend keeping the
allowed frequency range wide, between ∼16–32 Hz at the
lower end to ∼2 kHz (i.e., a maximum sampling rate of
4 kHz) at the higher end, to account for most of the features
we can expect to observe from CCSN GW waveform
models with current detectors.

III. RESULTS

In all subsequent sections we present our main results
and figures based on the optimized BayesWave run settings
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(fixed sky location, Qmax ¼ 100). We first show how
accurate the BayesWave reconstructions are for the different
types of CCSN waveform models and how this varies based
on the source parameters. We then quantify and describe the
increase in overlap accuracy we are able to achieve when
using the optimized runs compared to the initial unoptimized
runs (uniform sky prior, Qmax ¼ 100). This is followed by
the BayesWave CCSN signal reconstruction prospects pre-
sented in the context of a population of sourcesmodeled after
the Milky Way stellar distribution.

A. Accuracy of BayesWave reconstructions

To show the potential capability of BayesWave in
recovering a CCSN waveform and all its features if the
signal is loud, one instance of the injection-reconstruction
process and the median recovered waveform for each
model is shown in Fig. 1. For each model we consider
all the injections in the SNR range 55-65, and then select
the one which has the median overlap value within that
sample as a representative example. The features are
most clearly distinguished in time-frequency spectrograms,
which are plotted in Fig. 1 using a constant-Q trans-
form [64] (Q ¼ 16). Since our reconstructions are based
on the three detector HLV network and BayesWave
simultaneously computes the recovered waveform in all
three detectors, we sum the power in the individual

spectrograms after accounting for the appropriate time
delay shift, and show the HLV combined spectrograms
(noting that this coherent sum emphasizes the signal more
over the background noise when compared to single
detector signalþ noise spectrograms). At such high
SNRs, we can see that BayesWave is recovering all
previously identified GW emission features, including
the rising g or f mode PNS oscillation track visible in
all models, the early broadband prompt convection in, e.g.,
m39, and the low-frequency SASI in m20-3Dp.
Figure 2 shows the overlap accuracy of the BayesWave

reconstructed waveform for all the supernova GW signal
injections analyzed in our study. The median network
overlap (match) for each reconstruction in the optimized
runs is plotted against the injected signal SNR for the 3
detector HLV network (root-sum-square of the individual
detector SNRs). As observed in previous studies (e.g.,
[19]), the accuracy of the reconstruction generally increases
as the signal SNR increases. Table I lists the network SNR
required for each model for the network overlap to exceed
0.5 and the majority of the waveform to be recovered by
BayesWave. Overall, when the SNR≳ 30, all explosion
models are confidently recovered.
However, similar to what prior work by Gossan et al.

[18] and Szczepańczyk et al. [19] found for other
analysis pipelines, there is a difference in BayesWave’s

FIG. 2. A scatter plot of the BayesWave reconstructions for all the injections in the study, showing the median accuracy of the
recovered waveform as measured by the network overlap (match) parameter plotted against the network SNR of the injected signal.
Uncertainty error bars are omitted here for readability (see Fig. 3). The dashed black line indicates the 50% accuracy threshold. The
reconstruction accuracy between models varies greatly at low SNRs, with a network SNR of ≳30 required to exceed the 50% threshold
for all models. The accuracy converges to ∼90% for the highest SNR signals in this study. The differences between models can be
explained by the differences in the waveform features and how compact they are in time-frequency. The scatter in the overlap accuracy
for a given model near a specific SNR is a result of the small changes in the waveform morphology given varying extrinsic parameters
(such as inclination angle).
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reconstruction performance between the different explosion
models, especially at lower SNRs. We can see that the
s18 and 35OC-RO models have the lowest accuracy, the
m20-3Dp and s9 models somewhat higher, and the m39
model has the highest reconstruction accuracy (these trends
are also true for the unoptimized run results, which are
not shown). At higher SNRs these differences become less
pronounced, with reconstruction accuracies reaching ∼90%
at SNRs ∼ 100. The differences can be explained by the
different waveform morphologies. How the power is dis-
tributed in time-frequency governs howwell the features can
be captured by BayesWave’s Morlet-Gabor wavelet basis,

with well-localized signals in time-frequency expected to be
better reconstructed.
For each explosion model we also see that the points near

a given SNR for that model have a small scatter due to
different extrinsic parameters. Waveform features that
BayesWave can more accurately reconstruct are a little
bit more pronounced for some combination of extrinsic
parameters than others that still give a similar SNR. For
example, for the m39 model we know that the prompt
convection signal right after core bounce is most readily
observed when the line of sight is aligned with the star’s
equatorial plane (inclination angle¼ 90°) as opposed to the
pole [57]. And since this feature is more compact in time-
frequency as compared to the f-mode PNS oscillation track,
BayesWave can recover the equatorial signals in the m39
model better than the polar ones.
Following the approach in Abbott et al. [10], to find out

how far away a supernova source can be for BayesWave to
be able to detect and reconstruct the signal in Advanced
LIGO-Virgo, we show the reconstructed overlap accuracy
for the injections analyzed plotted against the source
distance in Fig. 3. Since each waveform model is based
on very different progenitor stars and uses different
modeling techniques, the total amount of energy released
in the explosion—and thus in GWs—varies over a few
orders of magnitude. The source distance required to have a
high amplitude GW signal reach the LIGO-Virgo detectors

TABLE I. The approximate GW signal network SNR value or
source distance required for the BayesWave reconstruction net-
work overlap value to be Onet ≈ 0.5 for each model. For signals
with higher SNRs or lower source distances than those listed the
reconstruction will have Onet > 0.5, i.e., the majority of the
waveform will be accurately recovered by BayesWave.

Waveform model SNRnet Distance (kpc)

m20-3Dp 25 1.2
s9 25 0.6
s18 30 5
m39 20 40
35OC-RO 30 45

FIG. 3. The accuracy of the BayesWave recovered waveform as a function of the source distance (and explosion model) with 1σ
uncertainty error bars. The dashed black line indicates the 50% accuracy threshold. Also shown for reference are three benchmark
distances: Betelgeuse, the Milky Way center, and the center of the Large Magellanic Cloud. The distances at which the waveform is
accurately recovered by BayesWave and passes the 50% threshold varies by almost two orders of magnitude between the different
waveform models. For the low mass and relatively low explosion energy models of m20-3Dp and s9 this occurs at ∼1 kpc, for the
typical neutrino-driven explosion model of s18 this is closer to the Milky Way center, and for the high explosion energy models with
rapidly rotating progenitors the recoverable distances are up to the LMC at ∼50 kpc.
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is then significantly dependent on the waveform model
considered (as was previously found [10,18,19]). Table I
also summarizes the source distances at which the
BayesWave reconstructed signal has an overlap accuracy
of ∼0.5 for each waveform model, showing an almost
two orders of magnitude difference between the low mass
neutrino-driven explosion of the s9 model and the
magnetorotationally driven explosion of the 35OC-
RO model.

B. Optimization gains

In order to quantify the effects of our BayesWave
optimization efforts, and to see in which cases they make
the biggest impact, in Fig. 4 we plot the gain in
reconstruction accuracy of the waveform between the initial
and optimized BayesWave runs against the network SNR of
the injected signal. The gains are most pronounced in the
low SNR regime of∼15–20, where they are typically on the
order of ∼10%. However, the maximum gains observed
across our study can be very high, from ∼20% for the
35OC-RO model to ∼40% for the m20-3Dp and m39
models. This SNR regime corresponds to the transition
between cases where the signal is too low in amplitude for
BayesWave to distinguish much of it from the detector
noise, and cases where the signal is loud enough that
BayesWave is starting to confidently recover most of the
waveform. Thus, the optimizations are most impactful for
the marginal cases, and have no significant impact for
signals with SNR≳ 30.

A more qualitative picture of how these optimizations
manifest is shown in a comparison of the time series
reconstructions of the waveforms in Fig. 5. For signals with
SNR ∼ 15–20 we choose the case which has the median
gain in overlap within that SNR range as a representative
example for each model, and show the injected and
BayesWave reconstructed signals in one of the LIGO
detectors (Hanford and Livingston have the same expected
design sensitivity [12], so they are qualitatively inter-
changeable in our study). We can see that the gains in
reconstruction for these examples can be attributed to a
combination of BayesWave being able to: (i) find the
highest amplitude part of the signal when it wasn’t able to
recover anything before (35OC-RO), (ii) recover the same
part of the signal it was before—but more accurately (m39
and s9), and (iii) recover additional high-amplitude parts of
the signal compared to only the highest amplitude portion
before (s18 and m20-3Dp).

C. Prospects for a Milky Way source distribution

In Fig. 6 we show the prospects for accurate recovery of
each model waveform using a realistic distribution of
CCSN sources within the Milky Way galaxy, modeled
according to its stellar distribution. The figure shows the
histogram distribution of the network overlap in the
optimized BayesWave runs for Milky Way distributed
signals.
We see that for the low explosion energy models of m20-

3Dp and s9, we cannot expect to reconstruct the GW signal

FIG. 4. The gain in the network overlap of the recovered waveform when using the optimized BayesWave run settings as compared to
the initial unoptimized runs, plotted against the injected signal SNR. The scatter plot on the left shows the gains for each individual
injection-reconstruction, along with the 1σ uncertainty error bars on the gain. The gains are either positive or consistent with zero. The
plot on the right summarizes this information showing the median overlap gain (solid lines) and the maximum gains observed (dashed
lines) near a given SNR. The median gains are on the order of ∼10% in the low SNR regime of ∼15–20, and consistent with zero for
SNR≳ 30. The maximum observed gains can be quite large and significant, reaching an increase in overlap accuracy of about 40% for
the m20-3Dp and m39 models, and more than 20% for the other three models.
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in almost all cases (the overlap is nonzero for < 5% of
sources), consistent with what Abbott et al. [10] find. This
is primarily because the stellar distribution in the Galaxy is
most concentrated toward the central bulge near 8 kpc,
while we see in Fig. 3 that these models are not confidently
recovered beyond ∼1–2 kpc.
For the s18 model we have a somewhat broader

distribution, with a nonzero overlap in ∼65% of cases,
and a confident reconstruction with overlap>0.5 for ∼15%
of the sources. The most likely (nonzero) overlap value,
coincident with sources at the Galactic center, is ∼0.3. Due
to the fact that our optimizations were largely effective at
lower SNRs, and this SNR regime is coincident with
sources near the Galactic center for the s18 model, it is
also the only model for which we see a measurable increase
in the percentage of cases that are recovered between the
unoptimized and optimized runs: a 5% increase from 11%
to 16% for confident reconstructions, and a 15% increase
from 52% to 67% for nonzero overlap.
For the two high explosion energy models, we see that

>95% of cases have overlap>0.5. The most likely overlap,

coincident with sources at the center of the Milky Way, is
∼0.85 for m39 and ∼0.95 for 35OC-RO. In Fig. 7 in the
appendix we also show the spectrograms for the most likely
reconstruction for sources at the Galactic center for each
waveform model.

IV. DISCUSSION

A. Reconstruction accuracy model dependence

The duration of the GW emission plays a central role in
influencing the quality of the BayesWave reconstruction.
Since the SNR is an integrated measure of the signal power
across the analyzed segment, when comparing different
model injections at a fixed SNR, their total power is the
same. However, the injected signals in Fig. 1 show that
significant GW emissions last for about 0.5 s for s18 and
about 0.7 s for the 35OC-RO model, making them more
spread out in time compared to the ∼0.3 s emissions from
m20-3Dp and s9. On average, this effectively distributes
the signal power so that analyzing a similar 0.3 second
segment in the longer models would have about half the

FIG. 5. The supernova waveform signals and their reconstructions in the time domain, showing the comparison between the initial
BayesWave reconstructions and the optimized versions. Plotted in darkest purple is the median reconstructed waveform, while the lighter
shaded bands are the 50% and 90% credible intervals. These are overlaid on top of the true injected signal, plotted in teal. To get a sense of
how this signal would look like in one of the LIGO detectors, the combined signal plus detector noise is shown in gray in the background.
Out of the 100 injections analyzed for each waveform model, one representative case in the low network SNR regime (∼15–20) is shown.
This is the SNR rangewhere the optimizations lead to the highest gains in reconstruction accuracy, as seen in Fig. 4.We can see that thegains
in reconstruction can generally be attributed toBayesWave’s ability tomore confidently and accurately capture the high-amplitude features.
Note that the timescale for the m20-3Dp and s9 waveforms is shorter than the rest (∼0.5 s compared to ∼0.8 s).
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power as compared to the shorter ones. Since BayesWave
places wavelets in time-frequency trying to capture this
localized power wherever it confidently can [20], the
wavelet basis better captures signals that have their excess
power concentrated in a shorter time (following the same
reasoning as to why high mass compact binary coalescen-
ces are better reconstructed compared to low mass ones in
Ghonge et al. [51]). For the m39 model, even though it is
one of the longer duration models with significant GW
emissions lasting about 0.6 s, depending on the source
orientation it often produces much of that excess power in
the short duration early rotational bounce signal (seen in
Fig. 1), which BayesWave easily recovers.
Compactness in frequency of the GW emission further

explains differences in reconstruction accuracy. For exam-
ple, in the m39 model the f-mode PNS oscillation track is
very narrow in time-frequency. Compare this to the s18
model where no high amplitude prompt convection mecha-
nism contributes and the signal energy is distributed
throughout a relatively broader PNS g-mode oscillation

track (as well as what seems to be a low-frequency
persistent background component), making it harder for
BayesWave to recover. The other three models are similarly
more spread out in frequency than m39, negatively affect-
ing the ability of the compact Morlet-Gabor wavelets to
capture this more broadband power.
At lower SNRs these differences in the reconstruction

accuracy are more pronounced because BayesWave needs
the localized SNR in each segment of the signal to be above
a certain threshold to justify placing a wavelet there (since it
takes a Bayesian approach, the increase in signal likelihood
must exceed the Occam factor penalty for increasing the
signal model complexity [20,65,66]). Capturing localized
excess is then only possible close to where the signal
amplitude peaks for lower SNR signals (as seen in Fig. 5),
which varies significantly from model to model. On the
other hand, for high SNR signals the signal amplitude is
high enough to be distinguished from the noise across the
whole waveform, and so BayesWave can place wavelets
across the signal relatively unaffected by the specific
distribution of the power.
In future work we plan to do a deeper investigation

on the possibility of distinguishing between the different
model features, and potentially extracting physical para-
meters of the progenitor, using machine learning tech-
niques on the waveform reconstructions that BayesWave
outputs.

B. Reconstruction distances in context

In Fig. 3, along with presenting the distance dependence
of the BayesWave reconstructions for the optimized runs,
we also include distances to some common benchmarks
for comparison, similar to Fig. 7 in Abbott et al. [10].
Betelgeuse is the nearest red supergiant to Earth, expected
to end its life in a CCSN [67]. The Milky Way center is the
region with the highest density of massive stars in the
Galaxy, and so it is the most likely source for the next
Galactic supernova. The Large Magellanic Cloud is the
host galaxy to supernova 1987A, one of the most recent and
closest CCSN observed, and the only one also detected
with neutrinos [6–8]. We see that for the low explosion
energy models of s9 and m20-3Dp, the GW waveform is
very well recovered by BayesWave at distances close to
Betelgeuse, but the accuracy falls below the 50% threshold
very quickly beyond ∼1–2 kpc. The typical neutrino driven
explosion of model s18 is recovered well at galactic
distances, up to the center of the Milky Way, but cannot
be recovered for sources beyond our galaxy. For the very
highest explosion energy models of m39 and 35OC-RO
however, the BayesWave reconstruction has accuracies of
∼90% close to the Milky Way center, and is well recovered
even up to the LMC. If Betelgeuse goes supernova during
the advanced detector era then we can see that BayesWave
will accurately recover and reconstruct almost all of the

FIG. 6. The histogram distribution of the optimized BayesWave
reconstructed network overlap for each supernova model, for a
population of injections with extrinsic parameters modeled
according to a realistic distribution of stars in the Milky Way.
We see that for such a distribution, we do not expect to be able to
recover the GW waveform with BayesWave from low energy
m20-3Dp- or s9-like supernova models. For more typical
neutrino-driven explosion models like s18, BayesWave can
recover a nonzero overlap in many cases, but high accuracy
reconstructions with overlap >0.5 occur only in ∼15% of cases.
For stronger explosions in the Galaxy from rapidly rotating
progenitors (m39, 35OC-RO), almost all of them can be expected
to be confidently and accurately recovered.
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GW signal, regardless of waveform model (even if the
explosion is not successful, as in the m20-3Dp model).
These distances are also significantly larger than the

detection distances found for the same set of waveform
models studied with BayesWave in Abbott et al. [10], as
shown in Fig. 7 of their paper. This is expected, as the LVK
study is based on the actual detector noise curves recorded
for the LIGO and Virgo detectors during the third observing
run, which is roughly a factor of 1.5 less sensitive than the
design Advanced LIGO-Virgo configuration that we use in
this study, in anticipation of the fourth observing run [14].
Note that there is also a difference in the distance measure
analyzed: the LVK study quotes the distance at which 50%
(and 10%) of the total injections are detected, whereas in
our study we look at the distance at which the recovered
waveform accuracy is on average 50%. We also find that
the BayesWave reconstruction overlap accuracies at given
distances (and SNRs) for the Advanced LIGO-Virgo
detectors are broadly consistent with those reported by
Szczepańczyk et al. [19] using the coherent WaveBurst
algorithm.
As was done for the third observing run sensitivity in

Abbott et al. [10], for a realistic distribution of CCSN
progenitors within the Milky Way we have also quantified
the prospects for BayesWave to confidently reconstruct the
emitted GW signal for the expected sensitivities in the
fourth observing run (Fig. 6). This also demonstrates how
the distribution of sources within the Galaxy modulates the
detectability of each supernova model, as most stars are
concentrated near the center of the Galaxy ∼ 8 kpc away
from the Sun. Should the next Galactic CCSN be a low
energy or failed explosion, we do not anticipate being able
to detect it in Advanced LIGO-Virgo with BayesWave
(unless we are very lucky and the source is ≲1 kpc away).
If it is a typical neutrino driven explosion like the s18 model
however, we expect that there is a ∼65% chance
BayesWave will recover a part of the GW signal, and a
∼15% chance it will be confidently reconstructed. Finally,
if the explosion follows from a rapidly rotating progenitor,
then BayesWave will almost certainly recover the GW
features confidently (>95% probability). However, such
rapid rotation is only expected to occur in ∼1% of all
CCSN progenitors [23].

C. Limits to BayesWave reconstructions

The work by Pannarale et al. [68] characterizes
BayesWave’s performance in general from a theoretical
approach, and suggests a formulation for the maximum
possible overlap (match) in Eq. (8) of their paper. We test
this prediction against our CCSN reconstructions for all
five of the waveform models studied, and plot the differ-
ence between the two for our optimized runs in Fig. 8
(included in the appendix). What we see is similar to what
Pannarale et al. [68] find, which is that more complicated
and longer waveforms (such as the 35OC-RO model in

our study) show a larger disparity with the predictions and
have a harder time reaching that theoretical maximum as
compared to waveforms that are more compact in time-
frequency (such as the m39 model). This also explains
why BayesWave has a harder time recovering the signal
accurately from all of the supernova models in our study,
when compared to its performance in recovering the
signal from coalescing binary black holes as studied in
Pannarale et al. [68].
The disparity between the predicted overlaps and the

CCSN overlaps in our study also shows an SNR depend-
ence, where the predictions overestimate much more at
lower SNRs than at higher. This happens because Pannarale
et al. [68] state that Equation 8 is valid in the limit that the
squared SNR recovered per pixel (wavelet) is much greater
than unity, which is a requirement that holds true for
reconstruction of high SNR signals in our study, but
becomes more tenuous for lower SNR signal reconstruc-
tions. Theoretically we are expecting that there should be
some useful information, but practically at such SNRs the
signal is buried in Gaussian noise and BayesWave has a
very hard time extracting any part of it, giving very little or
no information.
We also consider the limits of BayesWave to understand

why our run optimization efforts work well at relatively
lower SNRs. When the signals are not very loud,
BayesWave’s certainty in determining the time delay of
certain signal features between the three different detectors
decreases, and so the reconstructed sky localization is not
accurate, with the 90% confidence sky area not constrained
to better than ∼50 deg2 for SNR≲ 30. This increase in the
posterior distribution for the source sky position parameter
is associated with a decrease in the calculated likelihood
when placing a wavelet to capture that signal feature, and so
in the RJMCMC BayesWave places a wavelet to capture
that power less often, resulting in a lower median overlap.
When the true sky position is known and fixed however,
the parameter space is significantly reduced, and so
BayesWave places wavelets at the corresponding signal
feature locations much more confidently, and thus much
more often, increasing the median overlap.
The increase in overlap due to a higher wavelet quality

factor is a direct result of the fact that supernova waveforms
generally have high amplitude features that are spread out
in time, and so longer duration wavelets are required to
capture the power not just at the precise time where
the amplitude is large, but also in its immediate vicinity
(as illustrated in Fig. 5). At higher SNRs this makes little
difference, as instead of having to capture the excess power
using only one wavelet, the signal is loud enough that
BayesWave can confidently place many wavelets to capture
the same power.
In our optimization efforts during our study we had

also considered using frequency-evolving “chirplets” [62]
instead of the fixed-frequency wavelets, i.e., increasing the
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allowed waveform complexity in a bid to capture the
nuances in the signal morphologies more accurately.
However, this was not included in the final optimized
BayesWave runs as it did not yield positive gains for all the
different waveform models. While using chirplets increased
the overlap accuracy by ∼5% for low SNR signals for the
more broadband 35OC-RO model, it also resulted in a
slight net negative overlap at low SNRs for the m20-3Dp
and m39 models (while having no measurable impact on
the other two models). Combined with the fact that the
computing time is almost twice as long for the chirplet
model as compared to the wavelet, we recommend that the
wavelet model be used for supernova analysis unless the
signal is known to be broadband from other analyses.

V. CONCLUSION

Core-collapse supernova explosion models predict the
production of gravitational waves within the first second
after core-collapse, exhibiting dominant emission features
with frequencies that lie in the most sensitive regime of
current interferometric ground based detectors. Galactic
CCSNe represent a rare but promising astrophysical
source that could be detected by the Advanced LIGO
and Advanced Virgo detectors in one of their upcoming
observing runs.
In order to prepare for such a detection, in this paper we

study how well the BayesWave algorithm can reconstruct
the GW signal emitted by a range of different explosion
models with different waveform morphologies, if such a
signal is detected by a design sensitivity LIGO-Virgo
network configuration. We also optimize the BayesWave
run settings for CCSNe, focusing on maximizing the
reconstruction overlap accuracy, and provide a set of
recommendations for the run settings for analysis on a
real candidate signal.
We find that BayesWave’s reconstruction performance

varies depending on the complexity of the waveform, with
models that exhibit features that are more compact in time-
frequency being better recovered than models that have
their power distributed over a longer time and have
broadband emission, consistent with previous work [19].
With that said, BayesWave can confidently recover the GW
signal from a range of supernova explosion models in
Advanced LIGO-Virgo for network SNR≳ 30, with maxi-
mum accuracies of ∼90% for SNR ∼ 100, as shown
in Fig. 2.
The corresponding distances, as seen in Fig. 3, are from

as low as ∼1 kpc for low mass neutrino driven explosions,
to up to ∼50 kpc for high mass magnetorotationally driven
explosions. We put this into context of what percentage of
CCSN within our Galaxy we could confidently recover
with BayesWave by also studying the reconstructions
for a realistic distribution of stellar sources in the Miky
Way (Fig. 6). We find that should the next Galactic CCSN
be a low mass or failed explosion, BayesWave is likely to

not detect it. However, there is a ∼15% chance that the
source is close enough that for typical neutrino driven
explosions like the s18 model, BayesWave will be able to
confidently reconstruct the GW emission. Should a high
energy CCSN from a rapidly rotating progenitor be the
source, BayesWave will confidently recover the GW signal
in >95% of cases.
A key result of our work is that optimizing the

BayesWave run settings increases the reconstructed accu-
racy significantly for low SNR signals, with gains of up to
∼20–40% for lower SNR signals, and typically ∼10% in
the SNR ∼ 15–20 regime, as shown in Fig. 4. These gains
are based on: (i) exploiting the multimessenger nature of
CCSNe so that the sky location is known from the
electromagnetic and neutrino counterpart observations,
allowing BayesWave to more confidently recover wave-
form features, and (ii) increasing the allowed wavelet
quality factor (to Qmax ¼ 100) so that high amplitude
features that are more spread out in time for supernova
signals are more accurately reconstructed. For typical
neutrino-driven explosions like the s18 model, this also
translates into being able to recover the signal from ∼15%
more sources in our Galaxy.
Our results show that if there is a CCSN signal detection

in Advanced LIGO-Virgo, for loud enough signals the
BayesWave algorithm will be able to accurately reconstruct
the dominant GW emission features, regardless of the
specific model. This will help us distinguish between
different supernova explosion models and mechanisms,
and allow crucial insight into the dynamics of the very first
second of the explosion.
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APPENDIX: SUPPLEMENTARY FIGURES

To supplement the discussion in the main text, in Fig. 7
we show spectrograms for the most likely BayesWave
reconstruction for sources near the Galactic center for each
waveform model. For each model we consider all the
injections from the Milky Way distributed population, in
the distance range 7–9 kpc, and then select the one which
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FIG. 7. The combined three detector Q-transform spectrograms for the injected signal waveform (top row), the data that BayesWave
analyzes (injected signal in simulated Gaussian detector noise, middle row), and the BayesWave recovered waveform (bottom row). Out
of the 150 Milky Way distributed injections for each waveform model, one representative case at the Galactic center at a distance of
∼8 kpc is shown. The m20-3Dp and s9 waveforms are not reconstructed at all, the s18 model has an overlap reconstruction accuracy of
∼30%, the m39 model has an accuracy of ∼85%, and the 35OC-RO model has an accuracy of ∼95%. The large differences in accuracy
of reconstructions are due to the differences in GW amplitude and energy between models.

FIG. 8. Comparison of the theoretical predictions of the BayesWave overlap according to Eq. (8) in Pannarale et al. [68], and the
measured overlap in our study. Our measurements are worse than the predicted values (as expected), and quantify how the prediction
breaks down for longer duration signals like CCSNe. The mismatch is larger for lower SNR signals, and generally larger for models that
have more complex features in time-frequency such as the 35OC-RO model.
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has the median overlap value within that sample as a
representative example.
We also test the predictions made in the work by

Pannarale et al. [68] characterizing BayesWave’s

performance from a theoretical approach, against our
CCSN reconstructions for all five of the waveform models
studied, and the difference between the two for our
optimized runs is shown in Fig. 8.
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