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We study an asymmetric dark matter model with self-interacting dark matter consisting of a Dirac
fermion χ coupled to a scalar or vector mediator, such that the reaction χ þ χ → χ þ χ is well described by
perturbation theory. We compute the scattering cross section σ, the transfer cross section σT , and the
viscosity cross section σV for this reaction. As one part of our study, we give analytic and numerical
comparisons of results obtained with the inclusion of both t-channel and u-channel exchanges and results
obtained in an approximation that has often been used in the literature that includes only the t-channel
contribution. The velocity dependences of these cross sections are studied in detail and shown to be in
accord with observational data.
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I. INTRODUCTION

There is compelling evidence for dark matter (DM),
comprising about 85% of the matter in the Universe. Cold
dark matter (CDM) has been shown to account for the
observed properties of large-scale structure on distance
scales larger than ∼10 Mpc [1–7]1,2 (reviews include
[8–13].) Some possible problems with fitting observational
data on length scales of ∼1–10 kpc were noticed with early
CDM simulations that lacked baryon feedback [14–16].
These included the prediction of greater density in the
central region of galaxies than was observed (the core-cusp
problem), a greater number of dwarf satellite galaxies than
were seen (the missing satellite problem), and the so-called
“too big to fail” problem pertaining to star formation in
dwarf satellite galaxies. This led to the consideration of
models in which dark matter particles have significant self-
interactions. The extension of cold dark matter N-body
simulations to include baryon feedback can ameliorate

these problems with pure CDM simulations [17–28].
Nevertheless, cosmological models with self-interacting
dark matter (SIDM) are of considerable interest in their
own right and have been the subject of intensive study [14],
[29–77]. Other candidates for dark matter, such as primor-
dial black holes [78], mirror dark matter [31,79,80], warm
dark matter [81–84], ultralight (pseudo)scalar dark matter
[85,86], and dark matter in the context of extra-dimensional
models [87,88] have also been studied but will not be
discussed here.
A general estimate shows what size the cross section for

scattering of dark matter particles, denoted generically as σ,
should be in order to alleviate problems with CDM
simulations lacking baryon feedback. It is necessary that
there should be one or more DM-DM scatterings over the
age of the Universe. The rate of DM-DM scatterings is
given by

Γ ¼
�

σ

mDM

�
vrelρDM; ð1:1Þ

where mDM denotes the mass of the DM particle.
Numerically, this is

Γ ¼ 0.1 Gyr−1
�
σ=mDM

1 cm2=g

��
vrel

50 km=s

��
ρDM

0.1 M⊙=pc3

�
:

ð1:2Þ

An important property of cross sections of self-interacting
dark matter particles, inferred from fits to observational
data, is that they should decrease as a function of the
relative velocities vrel of these DM particles. Quantitatively,
fits to galactic data on the scale of ∼1–10 kpc, with
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1See, e.g., Particle Data Group, Review of Particle Properties
online at http://pdg.lbl.gov and L. Baudis and S. Profumo, Dark
Matter Minireview at this website.

2Specifically, defining Ωi ≡ ρi=ρc, where ρc ¼ 3H2
0=ð8πGÞ,

with H0 the current Hubble constant, G the Newton gravitational
constant, and ρi the mass density of a constituent i, current
cosmological observations yield the results Ωm ¼ 0.315ð7Þ for
the matter density, ΩDM ¼ 0.265ð7Þ for the dark matter density,
and Ωb ¼ 0.0493ð6Þ for the baryon matter density (see Particle
Data Group online).
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velocities vrel∼50–200km=s, yield values σ=mDM ∼
1cm2=g, while fits to observations of galaxy clusters on
distance scales of several Mpc and vrel ∼Oð103Þ km=s
generally yield smaller values of σ=mDM ∼ 0.1 cm2=g
(note the conversion relation 1 cm2=g ¼ 1.8 barn=GeV).
In this paper we consider SIDM models in which the

dark matter is comprised of a spin-1=2 Dirac fermion χ,
interacting with a mediator, generically denoted ξ. Both the
DM fermion and the mediator are taken to be singlets under
the Standard Model (SM). We study two versions of this
model, namely one in which the mediator field is a real
scalar, ϕ, and another in which the mediator is a vector
field, ξ ¼ V. In both versions, we work in the context of an
asymmetric dark matter (ADM) theory (for a review, see,
e.g., [42]). Thus, by the time at which large-scale structure
formation begins, a net asymmetry has built up in the
number density of χ and χ̄ particles. By convention, we take
this asymmetry to be such that the number density of χ
particles is dominant over that of χ̄ particles. We assume
parameter values such that the lowest-order perturbative
calculation of the cross section gives a reliable description
of the physics, so we do not need to deal with non-
perturbative effects and bound states of dark matter
particles. We compute the scattering cross section σ, the
transfer cross section σT , and the viscosity cross section σV
for this reaction. As one part of our study, we give analytic
and numerical comparisons of results obtained with the
inclusion of both t-channel and u-channel exchanges and
results obtained in an approximation that has often been
used in the literature that includes only the t-channel
contribution. Our new results provide improved accuracy
for fitting models with self-interacting dark matter to
observational data.
In the version of our SIDM model with a real scalar

mediator ξ ¼ ϕ, we take the interaction between χ and ϕ to
be of Yukawa form, as described by the interaction
Lagrangian

Ly ¼ yχ ½χ̄χ�ϕ: ð1:3Þ

In the second version, the DM fermion χ is assumed to be
charged under a Uð1ÞV gauge symmetry with gauge field V
and gauge coupling g. Since only the product of the Uð1ÞV
charge of χ times g occurs in the covariant derivative in this
theory, we may, without loss of generality, take this charge
to be unity and denote the product as gχ . The corresponding
interaction Lagrangian is

Lχ̄χV ¼ gχ ½χ̄γμχ�Vμ: ð1:4Þ

A Higgs-type mechanism is assumed to break the Uð1ÞV
symmetry and give a mass mV to the gauge field V. For
compact notation, we use the same symbol, αχ , to denote
y2χ=ð4πÞ for the case of a scalar mediator and g2χ=ð4πÞ for
the case of a vector mediator. For our study, it will be

convenient to have one reference set of parameters, and for
this purpose we will use the values

mχ ¼ 5GeV; mξ ¼ 5MeV; αχ ¼ 3×10−4; ð1:5Þ

where, as above, ξ denotes ϕ or V in the two respective
versions of the model. Thus, this model makes use of a light
mediator. Motivations for this choice are discussed below.
Wewill also calculate cross sections for a range of values of
the coupling, αχ , and the mediator mass,mξ, and show how
the results compare with those obtained with the reference
set of values in Eq. (1.5). Note that the χ mass term is of
Dirac form, Lmχ

¼ mχ χ̄χ; we do not consider Majorana
mass terms for χ here.
Self-interacting dark matter models of this type

have been shown to ameliorate problems with excessive
density on the scale of ∼1 kpc in the cores of galaxies
and to improve fits to morphological properties of
galaxies and, on larger length scales extending to several
Mpc, also improve fits observational data on clusters of
galaxies [14], [29–77]. Self-interacting dark matter mod-
els with scalar and/or vector mediators are motivated by
the fact that these yield DM-DM scattering cross sections
that decrease as a function of the relative velocities vvel
of colliding DM particles, as is desirable to fit observa-
tional data. The reason for our restriction to a vectorial
gauge interaction in Eq. (1.4) is that the generalization of
this to a chiral gauge theory, with an interaction L ¼
qLg½χ̄LγμχL�Vμ þ qRg½χ̄RγμχR�Vμ in which the charges
qL ≠ qR would lead to triangle gauge anomalies unless
one added further DM fermions to cancel these. To
maintain maximal simplicity, we have thus restricted this
version of the model to the vectorial interaction (1.4).
The relative velocities of DM particles on all of the scales

relevant for galactic and cluster properties are nonrelativ-
istic. Consequently, an approach that has often been used is
to model the scattering in terms of a quantum-mechanical
problem with a potential of the type that would result in the
nonrelativistic limit starting from the t-channel exchange of
the mediator. In [64], an analysis was given of the full
quantum field theoretic scattering of DM particles in the
case of reaction with incident χ þ χ̄. However, Ref. [64] did
not consider in depth the reaction

χ þ χ → χ þ χ ð1:6Þ

that is relevant to an ADM model. In passing, we note that
our analysis is equally applicable for symmetric dark matter
models; however, in this case, the reaction (1.6) only
contributes in part to the DM-DM scattering, the other
process being χ̄ þ χ → χ̄ þ χ, which was considered exten-
sively in Ref. [64]. Here we focus on the reaction (1.6).
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II. BACKGROUND

In this section we explain the reasons for our choice of
parameter values (1.5) in our model. First, in asymmetric
dark matter models, with the asymmetries in the dark
matter and the baryons being of similar magnitude, it is
plausible that

mDM

mp
≃
ρDM
ρb

≃ 5; ð2:1Þ

where ρb is the average cosmological baryon density, and
mp is the proton mass [42]. This leads to the choice
mχ ≃ 5 GeV. (It should be noted that the simple relation-
ship can be avoided in specific models, depending on the
mechanisms that are assumed for the generation of the
χ − χ̄ number asymmetry [42], but it will suffice for our
present purposes.) Second, as discussed above, SIDM fits
to small-scale structure yield σ=mDM ∼ 1 cm2=g. Now, we
will show that in our model, σ=mχ ≃ 2πα2χmχ=m4

ξ . Setting
this equal to 1 cm2=g determines the mediator mass mξ

to be

mξ ¼
�

αχ
1.2 × 10−5

�
1=2

�
mχ

5 GeV

�
1=4

MeV: ð2:2Þ

Third, in order to effectively annihilate away the symmetric
component of the dark matter in the early Universe in the
ADM model, one requires a sizable cross section for
χ̄χ → ξξ. Note that, from Eq. (2.2), it follows that mξ is
naturally smaller than mχ , so that this process is kinemat-
ically allowed. The depletion of the symmetric component
of the DM in the early Universe is satisfied when [39,40,42]

hσvreliχ̄χ→VV ≃
2πα2χ
m2

χ
≳ 0.6 × 10−25 cm3=s; ð2:3Þ

where we have anticipated thatmV ≪ mχ ; this then yields a
lower bound on the SIDM coupling strength. Combining
this with a similar analysis for χ̄χ → ϕϕ, one obtains the
lower bound

αχ ≳ 2 × 10−4
�

mχ

5 GeV

�
: ð2:4Þ

As stated before, for simplicity, we assume parameter
values such that lowest-order perturbative calculations
are sufficient to describe the scattering. From Eq. (A3)
in Appendix A, this perturbativity condition requires that
αχmχ=mϕ ≪ 1. Using the constraints in Eqs. (2.1), (2.2),
(2.4), and (A3), we then choose the values of the parameters
in Eq. (1.5). Because the DM particle χ and the mediator
are SM-singlets, these choices for their masses are in
accord with bounds on DM particles and mediators from
current data (for summaries of bounds, see, e.g., [89–91]).

Although we use the particular set of values of the
parameters in Eq. (1.5) for much of our analysis, we also
perform cross section calculations for a substantial range of
allowed values of αχ and mχ in Sec. VI. These calculations
show how our results would change with different
(allowed) values of parameters. Importantly, our choices
for mχ and mξ, which are motivated from the above
considerations, also lead to the desired velocity depend-
ences for the SIDM cross sections in the model that are of
the right order to fit observational data.

III. KINEMATICS

In this section we review some basic kinematics relevant
for our cross section calculations. Since the number density
of χ̄ fermions is much smaller than that of χ fermions after
the χ̄ fermions have annihilated away in the ADM
framework, the dominant self-interactions of the χ DM
particles arise from the reaction (1.6). We take αχ to be
sufficiently small that the χ-ξ interaction can be well
described by lowest-order perturbation theory. This entails
the condition that there be no significant Sommerfeld
enhancement of the scattering. In the case of a vector
mediator, the reaction (1.6) involves a repulsive interaction
of the χ particles, so there is obviously no Sommerfeld
enhancement. Our choice of parameters (1.5) also guaran-
tees the reliability of the lowest-order perturbative calcu-
lation in the scalar case, as is discussed further in
Appendix A.
At tree level, there are two graphs contributing to the

χ þ χ → χ þ χ reaction, involving exchange of the media-
tor in the t-channel and u-channel, with a relative minus
sign between the two terms in the amplitude, resulting from
the fact that these two graphs are related by the interchange
of identical fermions in the final state. These graphs and
the associated momentum labeling are shown in Fig. 1.
For the reaction χðp1Þ þ χðp2Þ → χðp3Þ þ χðp4Þ, we
define the usual invariants

s ¼ ðp1 þ p2Þ2 ¼ ðp3 þ p4Þ2;
t ¼ ðp1 − p3Þ2 ¼ ðp4 − p2Þ2;
u ¼ ðp1 − p4Þ2 ¼ ðp3 − p2Þ2: ð3:1Þ

We review some basic kinematics relevant for the analysis
of this reaction. In the center-of-mass (CM) frame, the
energies of each of the particles in the initial and final states
are the same and are equal to

Eχ ¼
ffiffiffi
s

p
2

: ð3:2Þ

Similarly, the magnitudes of the 3-momenta of each of the
particles in the initial and final states are the same and are
equal to
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jp⃗χ j ¼ βχ

ffiffiffi
s

p
2

; ð3:3Þ

where the magnitudes of the CM velocities are

βχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

s

s
: ð3:4Þ

In the nonrelativistic limit, the relative velocity with
which the two χ particles approach each other is

βrel ¼ 2βχ ; ð3:5Þ

so in this limit, jp⃗χ j ¼ mχβrel=2. The angle between p⃗1 and
p⃗3 in the center-of-mass frame is the CM scattering angle,
θ. The invariants s, t, and u can be written in terms of jp⃗χ j
and θ as

s ¼ 4ðm2
χ þ jp⃗χ j2Þ;

t ¼ −4jp⃗χ j2 sin2ðθ=2Þ;
u ¼ −4jp⃗χ j2 cos2ðθ=2Þ: ð3:6Þ

The transformation θ → π − θ interchanges the t and u
channels, as is evident in (3.6), since sin½ð1=2Þðπ − θÞ� ¼
cosðθ=2Þ.

IV. χ χ → χ χ SCATTERING CROSS SECTIONS
WITH SCALAR MEDIATOR

A. Differential and total cross sections

The lowest-order (tree-level) amplitude for the χ þ χ →
χ þ χ reaction resulting from the interaction (1.3) has the
form

M ¼ MðtÞ −MðuÞ; ð4:1Þ

where MðtÞ and MðuÞ are the t-channel and u-channel
contributions, and the relative minus sign accounts for
exchanging identical fermions in the final state. The
Lorentz-invariant differential cross section is

dσ
dt

¼ 1

16πλðs;m2
χ ; m2

χÞ
X

jMj2; ð4:2Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ, andP
denotes an average over initial spins and a sum
over final spins. Here, λðs;m2

χ ; m2
χÞ ¼ ðsβχÞ2. For our

discussion, it will be useful to distinguish the terms
in dσ=dt arising from

PjMðtÞj2, PjMðuÞj2, andP½MðtÞ�MðuÞ þMðuÞ�MðtÞ� ¼ 2
P

Re½MðtÞ�MðuÞ�. We
denote these as dσðtÞ=dt, dσðuÞ=dt, and dσðtuÞ=dt, respec-
tively. We find

dσ
dt

¼ πα2χ
ðβχsÞ2

�ðt−4m2
χÞ2

ðt−m2
ϕÞ2

þðu−4m2
χÞ2

ðu−m2
ϕÞ2

−
1

ðt−m2
ϕÞðu−m2

ϕÞ
�
1

2
ðt2þu2− s2Þþ8m2

χs−8m4
χ

��
: ð4:3Þ

The first and second terms on the right-hand side (RHS) of
Eq. (4.3) are dσðtÞ=dt and dσðuÞ=dt, while the third term
with curly brackets is dσðtuÞ=dt. Since the amplitude (4.1) is
antisymmetric under interchange of identical particles in
the final state, and equivalently under interchange of the
t-channel and u-channel terms, it follows that the square
of the amplitude is symmetric under this interchange.
This symmetry under the interchange t ↔ u is evident
in the RHS of Eq. (4.3). The center-of-mass cross section,
ðdσ=dΩÞCM, is related to dσ=dt as

�
dσ
dΩ

�
CM

¼ λðs;m2
χ ; m2

χÞ
4πs

dσ
dt

¼
�
β2χs

4π

�
dσ
dt

: ð4:4Þ

In terms of the center-of-mass scattering angle θ, the
symmetry of the RHS of Eq. (4.3) under the interchange
t ↔ u is expressed as the symmetry

�
dσ
dΩ

�
CM

ðθÞ ¼
�
dσ
dΩ

�
CM

ðπ − θÞ: ð4:5Þ

FIG. 1. Feynman diagrams for the reaction χχ → χχ via the exchange of the mediator particle, ξ. We show the case where ξ ¼ V. In
standard notation, replacing the wavy line by a dashed line represents the case where ξ ¼ ϕ.
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Because of the identical particles in the final state, a
scattering event in which a scattered χ particle emerges
at angle θ is indistinguishable from one in which a scattered
χ emerges at angle π − θ. The total cross section for the
reaction (1.6) thus involves a symmetry factor of 1=2 to
compensate for the double-counting involved in the inte-
gration over the range θ ∈ ½0; π�:

σ ¼ 1

2

Z
dΩ

�
dσ
dΩ

�
CM

: ð4:6Þ

Owing to the symmetry (4.5), this is equivalent to a polar
angle integration from 0 to π=2:

1

2

Z
1

−1
d cos θ

�
dσ
dΩ

�
CM

¼
Z

1

0

d cos θ

�
dσ
dΩ

�
CM

: ð4:7Þ

[Recall that if the final state consisted of n identical
particles, the factor 1=2 in Eq. (4.6) would be replaced
by 1=n!.]
In addition to the differential cross section ðdσ=dΩÞCM,

other related (center-of-mass) differential cross sections
have been used in the study of the effects of self-interacting
dark matter, motivated by earlier analyses of transport
properties in gases and plasmas (e.g., [92] and references
therein). A major reason for this was the desire to define a
differential cross section that yields a useful description of
the thermalization effect of DM-DM scattering, particularly
in the case where the mass of the mediator particle is much
smaller than the mass of the DM particle. In this case, to
the extent that the scattering angle θ is close to 0 for
distinguishable particles or close to 0 or π for indistin-
guishable particles, the DM particle trajectories are not
significantly changed by the scattering. To give greater
weighting to large-angle scattering that thermalizes par-
ticles in a gas or plasma, researchers [92] have used the
transfer (T) differential cross section,

dσT
dΩ

¼ ð1 − cos θÞ
�
dσ
dΩ

�
CM

ð4:8Þ

and the viscosity (V) differential cross section,

dσV
dΩ

¼ ð1 − cos2θÞ
�
dσ
dΩ

�
CM

; ð4:9Þ

(Although the same symbol, V, is used for the vector
mediator and viscosity, the context will always make clear
which meaning is intended.) For the same reason, namely
that these describe thermalization effects better than the
ordinary cross section, the transfer and viscosity cross
sections have been used in studies of DM-DM scattering
(e.g., [31,41] and subsequent work).
Given the invariance of ðdσ=dΩÞCM under the trans-

formation θ → π − θ and the fact that cos θ is odd under
this transformation, it follows that the integral of the
product of cos θ times ðdσ=dΩÞCM vanishes. Hence, the
total cross section is equal to the total transfer cross section:

σ ¼ 1

2

Z
dΩ

�
dσ
dΩ

�
CM

¼ 2π

2

Z
1

−1
d cos θ

�
dσ
dΩ

�
CM

¼ 2π

2

Z
1

−1
d cos θð1 − cos θÞ

�
dσ
dΩ

�
CM

¼ σT: ð4:10Þ

As was noted in [92], the transfer differential cross section
does not correctly describe the scattering in the case of
identical particles, since it does not maintain the θ ↔ π − θ
symmetry in the reaction. However, given Eq. (4.10),
the resultant integral over angles is equal to the integral
of the ordinary (unweighted) cross section, i.e., σT ¼ σ.
The viscosity differential cross section, with its angle-
weighting factor of ð1 − cos2 θÞ ¼ sin2 θ does maintain the
θ ↔ π − θ symmetry in the scattering of identical particles.
In passing, we note that another type of differential cross
section has also been considered that weights large-angle
scattering [45], namely ð1 − j cos θjÞðdσ=dΩÞCM; this also
maintains the θ → π − θ symmetry of reaction (1.6).)
In the nonrelativistic (NR) limit βχ ≪ 1, the kinematic

invariants have the property that s ≫ fjtj; jujg; m2
χ ≫

fjtj; jujg; and s → ð2mχÞ2. Hence, in this limit, the CM
differential cross section reduces to

�
dσ
dΩ

�
CM;NR

¼ α2χm2
χ

�
1

ðt −m2
ϕÞ2

þ 1

ðu −m2
ϕÞ2

−
1

ðt −m2
ϕÞðu −m2

ϕÞ
�

¼ σ0

�
1

ð1þ rsin2ðθ=2ÞÞ2 þ
1

ð1þ rcos2ðθ=2ÞÞ2 −
1

ð1þ rsin2ðθ=2ÞÞð1þ rcos2ðθ=2ÞÞ
�
; ð4:11Þ

where

σ0 ¼
α2χm2

χ

m4
ϕ

ð4:12Þ

and r is the ratio

r ¼
�
βrelmχ

mϕ

�
2

: ð4:13Þ
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The property that the transformation θ → π − θ [under
which sinðθ=2Þ → cosðθ=2Þ] interchanges the t and u
channels is evident in Eq. (4.11), since it interchanges
the first and second terms arising, respectively, from
jMðtÞj2 and from jMðuÞj2, and leaves the third term arising
from −2ReðMðtÞ�MðuÞÞ invariant. Since all of the χ-χ
relative velocities vrel in the relevant observational data are
nonrelativistic, we will henceforth specialize to this case,
taking the subscript NR to be implicit in the notation.
Since self-interacting dark matter has been studied

extensively before, it is appropriate to discuss how our
current results compare with and complement previous
work. In [Eq. (25) of] the review [54] on SIDM, the
differential cross section in the center of mass for elastic
DM self-scattering was given (in the same perturbative
Born regime αχmχ=mϕ ≪ 1 as we use here) as

dσ
dΩ

¼ α2χm2
χ

½m2
χv2relð1 − cos θÞ=2þm2

ϕ�2
≡ σ0

½r sin2ðθ=2Þ þ 1�2 ;

ð4:14Þ

where we transcribe the result from [54] in our notation in
the second term of Eq. (4.14). As is evident, this corre-
sponds to the t-channel contribution in our full result
(4.11). However, the true differential cross section for
the DM self-scattering χ þ χ → χ þ χ must include not
just the t-channel contribution but also the u-channel
contribution, as we have done here. A subsequent study
in [70] gave results from a semiclassical solution of the
Schrödinger equation for the quantum mechanical problem
of a DM particle scattering from a Yukawa potential and
noted identical-particle effects. Our work is complementary
to [70], since we perform a full quantum field theory
calculation with analysis of both t-channel and u-channel
contributions, rather than just solving a quantum-mechani-
cal potential scattering problem. See also [77].
Regarding the range of values of the ratio r in Eq. (4.13),

it is important to note that even in the nonrelativistic regime
βrel ≪ 1, it is not necessarily the case that the ratio r is
small. With the illustrative mass values in Eq. (1.5), and
taking into account that for vrel ∼ 3 × 103 km=s (i.e.,
βrel ∼ 10−2) for DM particles in galaxy clusters, it follows
that r ∼ 102 in this case. In contrast, for the analysis of
DM self-interactions on length scales of order a few kpc
within a galaxy, if vrel ∼ 30 km= sec (i.e., βrel ∼ 10−4),
then r ∼Oð10−2Þ.
It is interesting to elucidate how the various contributions

to the cross section from jMðtÞj2, jMðuÞj2, and
2ReðMðtÞ�MðuÞÞ behave as a function of r. We find that
in the r ≪ 1 regime relevant for the analysis of galactic data
on the 1–10 kpc scale, the terms contributing to
ðdσ=dΩÞCM have the property that the t-channel term
jMðtÞj2 and the u-channel term jMðuÞj2 give equal con-
tributions, while the t-u interference term 2ReðMðtÞ�MðuÞÞ

gives a contribution equal in magnitude and opposite in
sign to that from jMðuÞj2. As we denoted the three terms
contributing to dσ=dt, we similarly label the three terms
contributing to ðdσ=dΩÞCM and the resultant total cross
section with superscripts (t), (u), and ðtuÞ, so that the
respective contributions to the total cross section are

σðiÞ ≡ 1

2

Z �
dσðiÞ

dΩ

�
CM

dΩ; i ¼ t; u; tu; ð4:15Þ

and

σ ¼ σðtÞ þ σðuÞ þ σðtuÞ: ð4:16Þ

We calculate

σðtÞ ¼ σðuÞ ¼ 2πσ0
1þ r

ð4:17Þ

and

σðtuÞ ¼ −4πσ0
lnð1þ rÞ
rð2þ rÞ ; ð4:18Þ

so that

σ ¼ 4πσ0

�
1

1þ r
−
lnð1þ rÞ
rð2þ rÞ

�
: ð4:19Þ

For fixed σ0, the total cross section σ is a monotonically
decreasing function of the ratio r. Concerning the individ-
ual contributions to σ, we observe that

σðtÞ ¼ σðuÞ ¼ −σðtuÞ ¼ 2πσ0 at r ¼ 0; ð4:20Þ

so that for small r, there is a cancellation between the
interference term σðtuÞ and the u-channel term σðuÞ (or
equivalently, the t-channel term, since σðtÞ ¼ σðuÞ). In
contrast, for large r, σðtÞ ¼ σðuÞ decrease as 2πσ0=r, while
σðtuÞ decreases more rapidly, as σðtuÞ ∼ −4πσ0 ln r=r2. The
total cross section has the small-r Taylor series expansion

σ ¼ 2πσ0

�
1 − rþ 7

6
r2 þOðr3Þ

�
for r ≪ 1: ð4:21Þ

For r ≫ 1, σ has the series expansion

σ ¼ 4πσ0
r

�
1 −

ð1þ ln rÞ
r

þO

�
ln r
r2

��
for NR regime and r ≫ 1: ð4:22Þ

The prefactor in Eq. (4.22) is

4πσ0
r

¼ 4πα2χ
m2

ϕβ
2
rel

: ð4:23Þ
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To compare the full cross section with the result obtained
by including only the contribution from the t-channel, we
consider the ratio

σ

σðtÞ
¼ 2

�
1 −

ð1þ rÞ lnð1þ rÞ
rð2þ rÞ

�
: ð4:24Þ

This ratio has the small-r expansion

σ

σðtÞ
¼ 1þ r2

6
−
r3

6
þOðr4Þ for r ≪ 1; ð4:25Þ

so in the small-r regime, σ is approximately equal to σðtÞ.
For the (nonrelativistic) large-r regime, the ratio (4.24) has
the expansion

σ

σðtÞ
¼ 2

�
1 −

ln r
r

þ ln r − 1

r2
þO

�
ln r
r3

��
for NR regime and r ≫ 1: ð4:26Þ

Thus, in this large-r regime relevant for fits to observational
data on galaxy clusters, the full χ-χ scattering cross section
is larger by approximately a factor of 2 then the result
obtained by keeping only the contribution from the
t-channel.
In order to compare the full calculation including

contributions from both the t-channel and u-channel with
a calculation that only includes the t-channel, we plot σ
versus σðtÞ in Fig. 2 as a function of vrel. For this purpose,
we use the illustrative values of masses and couplings in
Eq. (1.5). In accordance with our result (5.2) below, we
subsume the cases of a scalar and a vector mediator
together and denote mξ as the mass of ϕ or V. We note
again that with these values, there is no significant
Sommerfeld enhancement of the cross section, justifying
our use of the lowest-order (tree-level) perturbatively
computed amplitude in the scalar case. Separately, there
is no Sommerfeld enhancement in the vector case since the
scattering is repulsive. The dependence of the differential
cross sections on the angle θ is shown in the comparative
Fig. 2(d). As is evident from Fig. 2, for the range of relative
velocities vrel ≲ 102 km=s relevant for dark matter scatter-
ing in the interior of galaxies and dwarf spheroidal
satellites, σ is close to σðtÞ, but as vrel increases beyond
about 102 km=s, although both σ and σðtÞ decrease, the full
cross section is larger than the result obtained by keeping
only the t-channel contribution. This trend continues to
values vrel ∼Oð103Þ km=s relevant to dark matter effects in
galaxy clusters. One should note that even for a fixed vrel,
there is considerable diversity in the values of σ=mDM
inferred from fits to galactic and cluster data (e.g.,
[50,53,73,93] and references therein). The curves marked
QMdist in Fig. 2 are the results that one would obtain in a
quantum mechanical approach with a potential for the

different situation with distinguishable particles (see
Appendices). We show results for a specific set of vrel
values in Table I.

B. Transfer cross sections

Our result in Eq. (4.11) together with the definition (4.8)
yields the differential transfer cross section in the relevant
nonrelativistic limit. For the individual contributions from
jMðtÞj2, jMðuÞj2, and −2ReðMðtÞ�MðuÞÞ, we calculate (in
the nonrelativistic regime, as before)

σðtÞT ¼ 4πσ0
r

�
−

1

1þ r
þ lnð1þ rÞ

r

�
; ð4:27Þ

σðuÞT ¼ 4πσ0
r

�
1 −

lnð1þ rÞ
r

�
; ð4:28Þ

and

σðtuÞT ¼ −
4πσ0
r

�
lnð1þ rÞ
2þ r

�
: ð4:29Þ

The prefactor in Eqs. (4.27)–(4.29) is given by Eq. (4.23).
Note that, in contrast to the equality σðtÞ ¼ σðuÞ in

Eq. (4.17), the individual contributions σðtÞT and σðuÞT to

σT are not equal; i.e., σðtÞT ≠ σðuÞT . This is a consequence of
the fact that the definition of dσT=dΩ fails to preserve the
θ → π − θ symmetry of the actual differential cross section
for the reaction (1.6).
Summing these contributions, we find, in accordance

with our general equality (4.10), the result

σT ¼ σ ¼ 4πσ0

�
1

1þ r
−
lnð1þ rÞ
rð2þ rÞ

�
: ð4:30Þ

Since σT ¼ σ, the transfer cross section has the same small-
r and large-r expansions as were displayed for σ in
Eqs. (4.21) and (4.22).
We may compare our result (4.30) for σT with the result

given, in the same Born regime, as Eq. (A1) in Ref. [40]
(denoted TYZ), which is the same as Eq. (5) in Ref. [34]
(denoted FKY) and reads (with their R≡ ffiffiffi

r
p

and v ¼ βrel
in our notation)

σT;FKY;TYZ ¼ 8πα2χ
m2

χβ
4
rel

�
lnð1þ rÞ − r

ð1þ rÞ
�

¼ 8πα2χr

m2
χβ

4
rel

�
lnð1þ rÞ

r
−

1

1þ r

�

¼ 8πα2χ
m2

ϕβ
2
rel

�
lnð1þ rÞ

r
−

1

1þ r

�
: ð4:31Þ
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FIG. 2. Panel (a) shows σ=mχ for the reaction χ þ χ → χ þ χ, as a function of the relative velocity vrel of the colliding χ particles. The
full result with proper inclusion of both t-channel and u-channel contributions is shown as the dashed blue curve, while the result of
including only the t-channel is indicated by the solid red curve. The curves marked QMdist refer to the result that one would get in a
quantum mechanical approach to the different situation with distinguishable particles (see Appendix B). The illustrative values
mχ ¼ 5 GeV, mξ ¼ 5 MeV, and αχ ¼ 3 × 10−4 given in Eq. (1.5) are used for the calculation. Panel (b) and (c) present the
corresponding plots of the transfer and viscosity cross sections respectively. Panel (d) shows the dependence of the differential CM
scattering cross section on the scattering angle. The color coding in (d) is the same as in the other figures.

TABLE I. Comparison of different cross sections divided by dark matter particle mass,mχ , in units of cm2=g, as functions of vrel. The
calculations use the parameter values in Eq. (1.5). See text for further details.

vrel (km=s) σðtÞ=mχ (cm2=g) σ=mχ σðtÞT =mχ σT=mχ σðtÞV =mχ σV=mχ

10 0.99 0.99 0.99 0.99 0.66 0.66
102 0.90 0.90 0.86 0.89 0.59 0.59
103 0.082 0.13 0.025 0.13 0.030 0.042
104 0.89 × 10−3 1.8 × 10−3 0.96 × 10−5 1.8 × 10−3 1.6 × 10−5 2.9 × 10−5
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As is evident from a comparison of Eq. (4.31) with our
Eq. (4.27) [using the definition of our notation given in
Eq. (4.23)], the result for the transfer cross section in
Eq. (A1) of Ref. [40] [or equivalently, Eq. (5) of Ref. [34]]
is what one would get for the DM self-scattering if one did
the calculation for nonidentical particles and hence only
included the t-channel contribution and did not include
the 1=2 factor for identical particles in the final state in
performing the integral over dΩ. That is,

σT;TYZ;FKY ¼ 2σðtÞT : ð4:32Þ

To compare the full transfer cross section with the result
obtained by just including the t-channel contribution, we
examine the ratio

σT

σðtÞT
¼

r½ 1
1þr −

lnð1þrÞ
rð2þrÞ �

½− 1
1þr þ lnð1þrÞ

r �
: ð4:33Þ

For small r, this ratio has the expansion

σT

σðtÞT
¼ 1þ r

3
þ r2

9
þOðr3Þ for r ≪ 1: ð4:34Þ

For large r, we find

σT

σðtÞT
∼

r
ln r − 1

for r ≫ 1: ð4:35Þ

Thus, although both our σT and the result σT;FKY;TYZ
decrease with vrel (and thus with r, for fixed mχ and
mξ), our result decreases substantially less rapidly for
large r. With our parameters, this large-r regime includes
values of vrel ∼Oð103Þ km=s typical of galaxy clusters. For
example, at vrel ¼ 3 × 103 km=s [corresponding to r ¼ 102

with our choices formχ andmξ in Eq. (1.5)], the ratio (4.33)
has the value 26, or equivalently, σT=σT;FKY;TYZ ¼ 13, a
substantial difference from unity. Therefore, in performing
fits to observational data, if one uses the transfer cross
section, we would advocate the use of Eq. (4.30) rather than
the result in Eq. (A1) of Ref. [40] for the large-r regime,
since they differ substantially.
In Fig. 2(b) we plot σT in comparison with σðtÞT over the

same range of vvel and thus also βrel as for the regular CM
cross section. The fact that the true σT decreases consi-
derably less rapidly than the t-channel contribution used in
[34,40] is evident in this figure. This is also apparent in
Table I.

C. Viscosity cross section

For the viscosity cross section we calculate the following
contributions from the t-channel, u-channel, and t-u
interference:

σðtÞV ¼ σðuÞV

¼ 8πσ0
r2

�
−2þ ð2þ rÞ lnð1þ rÞ

r

�
ð4:36Þ

and

σðtuÞV ¼ 8πσ0
r2

�
−1þ 2ð1þ rÞ lnð1þ rÞ

ð2þ rÞr
�
; ð4:37Þ

so that the total nonrelativistic viscosity cross section is

σV ¼ σðtÞV þ σðuÞV þ σðtuÞV

¼ 8πσ0
r2

�
−5þ 2ð5þ 5rþ r2Þ lnð1þ rÞ

ð2þ rÞr
�
: ð4:38Þ

As was the case with σ and σT, for fixed mχ and mϕ, the
viscosity cross section σV is a monotonically decreasing
function of r.
We remark on properties of the individual contributions

σðtÞV , σðuÞV , and σðtuÞV . The fact that σðtÞV ¼ σðuÞV is guaranteed
by the property that ðdσ=dΩÞV maintains the θ → π − θ
symmetry of ðdσ=dΩÞCM, which interchanges the t- and u-
channels. These contributions have the small-r expansions

σðtÞV ¼ σðuÞV ¼ 4πσ0
3

�
1 − rþ 9

10
r2 þOðr3Þ

�
for r ≪ 1 ð4:39Þ

and

σðtuÞV ¼ 4πσ0
3

�
−1þ r −

4

5
r2 þOðr3Þ

�
for r ≪ 1: ð4:40Þ

Hence,

lim
r→0

σðtÞV ¼ lim
r→0

σðuÞV ¼ −lim
r→0

σðtuÞV

¼ 4πσ0
3

: ð4:41Þ

This is analogous to the relation that we found for the
individual contributions to σ in Eq. (4.20). Thus, the full
viscosity cross section has the small-r series expansion

σV ¼ 4πσ0
3

½1 − rþ r2 þOðr3Þ� for r ≪ 1: ð4:42Þ

At large r, σV has the series expansion
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σV ¼ 8πσ0
r2

�
2 ln r − 5þ 2ð3 ln rþ 1Þ

r
þO

�
ln r
r2

��
for r ≫ 1: ð4:43Þ

The prefactor in Eq. (4.43) is 8πσ0=r2 ¼ 8πα2χ=ðβ4relm2
χÞ.

For small r, the ratio σV=σ
ðtÞ
V behaves as

σV

σðtÞV
¼ 1þ r2

10
þOðr3Þ; ð4:44Þ

while for r ≫ 1,

σV

σðtÞV
¼ 2 −

1

ln r
þO

�
1

ðln rÞ2
�
: ð4:45Þ

In Fig. 2(c) we plot σV in comparison with σðtÞV over the
same range of βrel as for the regular CM cross section.
A notable feature of these numerical calculations, which
is in agreement with our analytic results, is that for values
of vrel ∼Oð103Þ km= sec typical of galaxy clusters, σV is
considerably smaller than σT. This is also evident in
Table I.

V. χ χ → χ χ SCATTERING CROSS SECTIONSWITH
VECTOR MEDIATOR

In this section we consider the case of a vector mediator
with the SIDM interaction (1.4). The differential cross
section in this case is just the analog of the Möller cross
section with the photon replaced by the massive vector
boson V:

�
dσ
dΩ

�
CM

¼ α2χ
2s

�
s2 þ u2 − 4m2

χðsþ u − tÞ þ 8m4
χ

ðt −m2
VÞ2

þ s2 þ t2 − 4m2
χðsþ t − uÞ þ 8m4

χ

ðu −m2
VÞ2

þ 2fs2 − 8m2
χsþ 12m4

χg
ðt −m2

VÞðu −m2
VÞ

�
: ð5:1Þ

In the nonrelativistic limit that is relevant for
fitting observational data, this differential cross section
becomes the same as the result for an SIDM model with a
scalar mediator, Eq. (4.11), with the replacement
mϕ → mV :

�
dσ
dΩ

�
CM;vec

¼
�
dσ
dΩ

�
CM;ϕ

with mϕ ↔mV for βrel≪ 1;

ð5:2Þ

where we append subscripts to indicate vector (vec)
versus scalar mediators. Quantitatively, the difference
between ðdσ=dΩÞCM;vec and ðdσ=dΩÞCM;ϕ is a term of
Oðβ2relÞ. Even at the length scale of a few Mpc in galaxy
clusters, βrel ∼ 10−2, and therefore this difference is
negligibly small. Consequently, our analysis in the
previous section also applies to this model. Similar
comments apply for the transfer and viscosity cross
sections.

VI. STUDY OF PARAMETER VARIATION

In this section we study the dependence of the cross
sections divided by DM mass for reaction (1.6) (calcu-
lated with both the t-channel and u-channel contribu-
tions) on the values of the coupling, αχ , and mediator
mass, mξ. In Fig. 3 we show plots of σ=mχ ¼ σT=mχ , and

σV=mχ as functions of αχ and mξ. For this study, it will
suffice to keep mχ fixed at the value of 5 GeV as in
Eq. (1.5). The figures in the upper and lower panel are for
σ=mχ ¼ σT=mχ, and σV=mχ , respectively. In each hori-
zontal panel, the figures on the left and right are for the
value vrel ¼ 30 km=s typical of dwarf satellite galaxies
and the value 4 × 103 km=s typical of galaxy clusters,
respectively. In each figure we show curves of the
respective cross section divided by mχ for the values
10 cm2=g, (dot-dashed blue), 1 cm2=g, (dashed purple),
and 0.1 cm2=g, (solid orange). The coupling αχ should lie
above the gray region in order to satisfy the bound
hσviχ̄χ→ξξ ≳ 0.6 × 10−25 cm3=s from the depletion of
the symmetric component constraint on this ADM model,
as discussed in Sec. II. The region shaded red is outside
the Born regime and corresponds to αχmχ=mξ > 1. The
region shaded blue is excluded by observational data on
the Bullet Cluster (Galaxy Cluster 1E 0657-56) [32,54].
Our parameter values in Eq. (1.5) are indicated by the
magenta-colored asterisk. These plots show how mχ and
mξ can be varied while retaining cross section values that
avoid excluded regions. For a given choice of parameter
values, our calculations (with inclusion of both t-channel
and u-channel contributions) yield σV ≪ σT at vrel values
characteristic of galaxy clusters. In both cases, our
resulting cross sections are in accord with upper limits
on σ=mDM inferred from fits to properties of galaxy
clusters.
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VII. CONCLUSIONS

In summary, in this paper we have studied a model with
self-interacting dark matter consisting of a Dirac fermion χ
coupled to a scalar or vector mediator such that the reaction
χ þ χ → χ þ χ is well described by perturbation theory. An
asymmetric dark matter framework is assumed for this
study. We have computed the scattering cross section for
this reaction including both t-channel and u-channel con-
tributions and have analyzed how the results with inclusion

of contributions from both of these channels compare with
a calculation that has often been used in the literature
that only includes the t-channel contribution. Our results
elucidate the interplay between the terms jMðtÞj2, jMðuÞj2,
and the interference term −2ReðMðtÞ�MðuÞÞ in both the
differential and total cross sections. We find a particularly
strong deviation at large r from results in the literature for
the transfer cross section σT that include only t-channel
contributions. With the illustrative values of the dark matter

FIG. 3. Plots showing contours of fixed transfer cross section σT ¼ σ and viscosity cross section σV , divided by DM mass mχ , in the
space of parameters ðmξ; αχÞ. Our results are calculated with the inclusion of both t-channel and u-channel contributions. The left two
panels in each horizontal row apply for the typical DM-DM relative velocity vrel ¼ 30 km=s in dwarfs, while the right two panels apply
for the typical velocity vrel ¼ 4 × 103 km=s in galaxy clusters. The coupling αχ should lie above the gray shaded region to satisfy the
condition hσviχ̄χ→ξξ ≳ 0.6 × 10−25 cm3=s in order to effectively deplete away the symmetric component of the DM in the early
Universe. The red shaded region is outside the Born regime, namely where αχmχ=mξ > 1, and the blue shaded region corresponds to the
exclusion limit from the Bullet cluster (Galaxy Cluster 1E 0657–56). The dot-dashed blue contour corresponds to σT=mχ ¼ 10 cm2=g,
whereas the dashed purple and solid orange contours correspond to σT=mχ ¼ 1 cm2=g and 0.1 cm2=g, respectively, and similarly with
σV=mχ . In each plot, our parameter choice in Eq. (1.5) is indicated by the magenta asterisk.
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fermion mass mχ , the mediator mass mξ, and the coupling
αχ used here, the region of large r corresponds to DM
velocities vrel ∼ 103 km=s, which occur in galaxy clusters.
Further, we have studied how our cross section calcula-
tions vary for a range of mediator mass mξ and
DM-mediator coupling αχ . Our analytic and numerical
calculations should be useful in fits to observational data. A
self-interacting dark matter model of the type considered
here remains an appealing approach to accounting for this
data on scales ranging from 1–10 kpc in galaxies to several
Mpc in galaxy clusters.
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APPENDIX A: CONDITION FOR THE VALIDITY
OF THE BORN APPROXIMATION

In this appendix we discuss further some aspects of the
χ þ χ → χ þ χ reaction. We comment first on the relation
between our full quantum field theoretic calculation and the
nonrelativistic quantum mechanical analysis in the non-
relativistic limit, where one considers scattering of the χ
particle in a potential. This relation is relevant since the
velocities that occur, both on length scales of galaxies
(vrel ∼ 30–200 km=s), and on length scales relevant for
galaxy clusters [vrel ∼Oð103Þ km=s], are all nonrelativis-
tic. A standard reduction of a two-body problem of the
scattering of two different particles a and b expresses this in
terms of an effective one-body problem in which a particle
with the reduced mass μ ¼ mamb=ðma þmbÞ undergoes a
scattering due to an isotropic potential V. For the equal-
mass situation under consideration here, the particle has
μ ¼ mχ=2 and velocity vrel ¼ 2vχ, and hence momentum
p ¼ μvrel ¼ ðmχ=2Þð2vχÞ ¼ mχvχ ¼ jp⃗χ j, where jp⃗χ j was
given in Eq. (3.3). The corresponding magnitude of the
wave vector is k ¼ p=ℏ≡ p in our units with ℏ ¼ 1.
A common approach is to use the Born approximation to

describe a sufficiently weak scattering process. The con-
dition for the Born approximation to be valid in the
quantum mechanical analysis of potential scattering takes
two different forms depending on jp⃗j. In both cases, it is
essentially the condition that the scattered wave is a small
perturbation on the incident plane wave. We use the fact
that in this quantum mechanical approach, the interaction
mediated by ξ exchange is represented by a potential,

Vðx⃗Þ ¼ Vðjx⃗jÞ ¼ V0

e−mξjx⃗j

mξjx⃗j
ðA1Þ

with

V0

mξ
¼ αχ : ðA2Þ

We define the distance jx⃗j≡ d. The range of this potential
is ∼a ¼ 1=mξ. The condition for the validity of the Born
approximation takes the following two forms [94], depend-
ing on the value of ka ¼ p=mξ ¼ βχmχ=mξ ¼

ffiffiffi
r

p
=2,

where r is the ratio (4.13). For r ≪ 1, the condition is
that the kinetic energy 1=ð2μa2Þ should be much larger
than the potential energy ∼V0, i.e., 2μa2V0 ≪ 1.
Substituting a ¼ 1=mξ and the expression for V0 in
Eq. (A2), this is the inequality

2μV0

m2
ξ

¼ αχmχ

mξ
≪ 1: ðA3Þ

For r ≫ 1, the condition is ðV0a=βrelÞ lnð2kaÞ ≪ 1, which
can be rewritten as

αχ
βrel

lnð ffiffiffi
r

p Þ ≪ 1: ðA4Þ

To show that our parameter choices in Eq. (1.5) satisfy
these conditions, we first consider values of vrel ∼ 30 km=s
relevant for SIDM dynamics within galaxies. Then βrel ¼
10−4 so r ¼ ðβrelmχ=mξÞ2 ¼ 10−2. Since this is ≪ 1,
condition (A3) is applicable. We have αχmχ=mξ ¼ 0.3
for our choices of parameters in Eq. (1.5). For a value
of vrel ∼ 3 × 103 km=s relevant for galaxy clusters,
βrel ¼ 10−2, so r ¼ 102, and hence condition (A4) applies.
For this value of vrel, the left-hand side of the inequality
(A4) is 0.069, which is≪ 1. Thus, as stated in the text, with
our choices of αχ , mχ , and mξ and for the values of vrel of
relevance to SIDM effects on scales ranging from 1–10 kpc
in the core of a galaxy to several Mpc for clusters of
galaxies, our restriction to the Born regime is justified.

APPENDIX B: QUANTUM MECHANICAL
TREATMENT OF THE YUKAWA POTENTIAL

Here we review the quantum mechanical treatment of the
Yukawa potential and derive Eq. (4.27) for the transfer
cross section from the partial wave analysis. These are well-
known results (e.g., [94,95]), but we briefly discuss them
here for the convenience of the reader in comparing the
quantum mechanical treatment with the quantum field
theory results. In a quantum mechanical analysis, one
writes the full wave function as consisting of an incident
term (choosing the initial direction of propagation to be
along the z axis, with no loss of generality) plus the
spherical wave due to the scattering by the potential. For
large distance d from the origin, this has the form

ψðx⃗Þ ¼ eikz þ fðθÞ e
ikd

d
; ðB1Þ
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where k ¼ jk⃗j is the magnitude of the wave vector of the
incident particle and we have assumed azimuthal sym-
metry. The scattering amplitude fðθÞ can be expanded in
terms of partial waves as

fðθÞ ¼ 1

k

X∞
l¼0

ð2lþ 1ÞAlPlðcos θÞ; ðB2Þ

where Plðcos θÞ is the Legendre polynomial and

Al ¼ eiδl sin δl ðB3Þ

is the quantum mechanical scattering amplitude in the l’th
partial wave, with phase shift δl. The differential scattering
cross section is then

dσ
dΩ

¼ jfðθÞj2

¼ 1

k2
X∞
l;l0¼0

ð2lþ1Þð2l0 þ1ÞAlA�
l0PlðcosθÞPl0 ðcosθÞ:

ðB4Þ

Given a potential Vðx⃗0Þ, the Born approximation to f is

f ¼ −
μ

2π

Z
d3x⃗0e−ik⃗

0·x⃗0Vðx⃗0Þeik⃗·x⃗0 ðB5Þ

where k⃗ and k⃗0 are the wave vectors of the incident and
scattered waves. This is evidently the Fourier transform of
Vðx⃗0Þ with respect to the momentum transfer q⃗ ¼ k⃗ − k⃗0,
with magnitude

q≡ jq⃗j ¼ 2k sinðθ=2Þ: ðB6Þ

Consider the Yukawa potential (with d ¼ jx⃗j):

VðdÞ ¼ �αχ
e−mξd

d
: ðB7Þ

A standard calculation yields the scattering amplitude

fYukðθÞ ¼∓ 2μαχ
m2

ξ þ q2
: ðB8Þ

For our application to χ-χ scattering, the reduced mass is
μ ¼ mχ=2 and k ¼ ðmχ=2Þvrel, i.e., q ¼ mχvrel sinðθ=2Þ.
Therefore, from Eq. (B4), in the Born approximation,

�
dσ
dΩ

�
Yuk

¼ α2χm2
χ

ðm2
ξ þm2

χv2relsin
2ðθ=2ÞÞ2

¼ σ0
ð1þ rsin2ðθ=2ÞÞ2 ; ðB9Þ

where we have used the definitions of σ0 and r in
Eqs. (4.12) and (4.13). Comparing Eq. (B9) with
Eq. (4.11), one sees that if one were to approach the
calculation without proper use of the antisymmetrization of
the quantum mechanical wave function, then the Yukawa
potential would correspond to inclusion of only the
t-channel contribution to the full quantum field theoretic
amplitude. Finally, applying the definitions of transfer and
viscosity cross sections, given in Eqs. (4.8) and (4.9) yields
the corresponding cross sections for this Yukawa potential:

σCM;Yuk ¼
4πσ0
1þ r

; ðB10Þ

σT;Yuk ¼
8πσ0
r

�
−

1

1þ r
þ lnð1þ rÞ

r

�
; ðB11Þ

σV;Yuk ¼
16πσ0
r2

�
−2þ ð2þ rÞ lnð1þ rÞ

r

�
: ðB12Þ

Thus, these are the cross sections that one would get in a
quantum mechanical treatment if one did not take account
of the necessity of antisymmetrizing the wave function
under exchange of identical fermions.
The calculation in nonrelativistic quantum mechanics for

identical fermion scattering must, of course, respect the
Pauli exclusion principle. In other words, the wave function
for the χ-χ system should be completely antisymmetric, i.e.,
should have the form of a Slater determinant, namely

Ψðx1; x2Þ ¼
1ffiffiffi
2

p
				 χ1ðx1Þ χ2ðx1Þ
χ1ðx2Þ χ2ðx2Þ

				: ðB13Þ

From here, it is evident that the normalization factor 1=
ffiffiffi
2

p
in

the Slater determinant wave function is equivalent to the
factor1=2 in the formula for the scattering cross section (4.6).
The antisymmetrization in the Slater determinant is the
quantum mechanical equivalent of the inclusion of both
the t-channel and the u-channel diagrams in the quantum
field theoretic calculation. Thus, a quantum mechanical
treatment with proper antisymmetrization for scattering of
identical fermions gives the same result as the (nonrelativistic
limit of the) quantum field theoretic calculation. We have
presented the results for these cross sections for the Born
regime in the text, as Eqs. (4.19), (4.30), and (4.38).
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