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We developed a new general-relativistic quantum-kinetics neutrino transport code, GRQKNT, for
numerical studies of quantum kinetics of nonequilibrium neutrinos in six-dimensional phase space. This
code is intended for use in both local and global simulations of neutrino transport in a core-collapse
supernova and binary neutron star merger. It has been widely recognized that global simulations of
collective neutrino oscillations, in particular, fast neutrino-flavor conversions, require unfeasible computa-
tional resources due to large disparity of scales between flavor conversion and astrophysical phenomena.
We propose a novel approach to tackle the issue. This paper is devoted to describe the philosophy, design,
and numerical implementation of GRQKNT with a number of tests ensuring correct implementation of
each module. The code is based on a discrete-ordinate Sn method, finite-difference realization of mean-
field quantum kinetic equation. The transport equation is solved based on a conservative formalism, and we
use a fifth-order weighted essentially nonoscillatory scheme with fourth-order total variation diminishing
Runge-Kutta time integration. The transport module is designed to work with arbitrary spacetimes, and
currently three different stationary spacetimes (the flat spacetime, Schwarzschild black hole, and Kerr black
hole) are implemented. The collision term including neutrino emission, absorption, and momentum-
exchanged scatterings are also implemented into our code. The oscillation Hamiltonian consists of vacuum,
matter, and self-interactions. Both two- and three neutrino-flavor scenarios can be applied. Fluid-velocity
dependencies in transport, collision, and oscillation modules are also treated self-consistently by using the
two-energy-grid technique, which has been already established in another code with full Boltzmann
neutrino transport.
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I. INTRODUCTION

In a hot and dense medium arising in a core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting energy,
momentum, and lepton number. Once neutrinos are pro-
duced by weak interactions, they travel in medium. A
fraction of these neutrinos experience scatterings with or
reabsorption onto matter, which converts neutrino energy
and momentum into those of matter and then affects the
fluid dynamics. The neutrino emission and absorption can
also change the electron fraction of matter. This has a direct
influence on the chemical composition, thus accounting for
nucleosynthesis in the ejecta. These things highlight the
importance of developing accurate modeling of neutrino
radiation field.
Decades of progress on numerical simulations of CCSN

and BNSM with Boltzmann neutrino transport or its
approximate methods have improved our understanding
of rolls of neutrinos in fluid dynamics, nucleosynthesis,
and observational consequences such as neutrino signal.

The classical treatment of neutrino kinetics, i.e., Boltzmann
neutrino transport, is justified as long as neutrinos are
stuck in flavor eigenstates, which was naturally expected
due to large matter potential in CCSN and BNSM environ-
ments (see, e.g., [1]). On the other hand, in dense neutrino
environments, neutrino-neutrino self-interactions give rise
to refractive effects [2], indicating that the neutrino
dispersion relation is modified. This potentially triggers
large neutrino-flavor conversion [3].
It has been suggested that various types of flavor con-

versions emerge by neutrino self-interactions. For instance,
slow neutrino-flavor conversion that is driven by interplay
between vacuum and self-interactions leads to synchron-
ized, bipolar, and spectral split phenomena (see [3] and
references therein).Matter neutrino resonancesmayoccur in
a BNSM or collapsar environment [4–6], in which the
dominance of electron-type antineutrinos (ν̄e) over electro-
type neutrinos (νe) cancels the matter potential, which
induces the similar resonant phenomena as Mikheyev-
Smirnov-Wolfenstein (MSW) effect. Collisional instabi-
lity is a new type of instability of flavor conversion, in
which the disparity of matter interactions between neutri-
nos and antineutrinos induces the flavor conversion [7].*hiroki.nagakura@nao.ac.jp
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Fast neutrino-flavor conversion (FFC) has received
increased attention from the community, since it would
ubiquitously occur in both CCSN [8–17] and BNSM [18–
22]. Since the growth rate of FFC is proportional to the
neutrino number density, it would offer the fastest growing
mode of flavor conversion in CCSN and BNSM (see also
recent reviews, e.g., [23,24]).
Theoretical indication of occurrences of FFC in CCSN

and BNSM implies that its feedback onto radiation-
hydrodynamics and nucleosyntheisis needs to be incorpo-
rated in one way or another. Very recently, there have been
some attempts to tackle this issue in simulations of BNSM
remnants (see, e.g., [21,22]), which certainly marked an
important stepping stone toward BNSM models with
quantum kinetics neutrinos. However, there are many
simplifications and approximations in these models, which
would discard important features of neutrino-flavor con-
version. It is, hence, necessary to consider how we bridge
the current gap between CCSN and BNSM simulations and
nonlinear dynamics of neutrino quantum kinetics. The
numerical code that we present in this paper is designed
to mediate their binding to each other.
In the last decades, considerable progress has also been

achieved in the neutrino-oscillation community. Analytic
approaches with simplifying assumptions and toy models
have facilitated our understanding of neutrino-flavor con-
version (see, e.g., [25–31]). Numerical simulations are also
powerful tools to explore their nonlinear behaviors with
relaxing assumptions. However, they are not yet at a stage
to provide reliable astrophysical consequences of the flavor
conversion. This is mainly due to the fact that there are
large disparities in spatial and temporal scales between
neutrino-flavor conversion and astrophysical phenomena,
exhibiting the need for a currently unfeasible computati-
onal power. Notwithstanding, there are many numerical
simulations to study the nonlinear properties of neu-
trino quantum kinetics. The simplest model would be
the neutrino bulb model1 [32–41]. Although this model
has many simplifying assumptions, some intriguing fea-
tures of neutrino-flavor conversion in the global scale have
been revealed. Two-beam- [42,43] and line-beamed models
[44–46], both of which reduce the computational cost by
limiting neutrino flight directions (see also [47]), are also
powerful approaches to study the nonlinear phase of flavor
conversion without much computational burden. More
direct simulations of flavor conversion have also been
made under homogeneous [30,31,48–52] and inhomo-
geneous [53–66] neutrino medium with resolving neutrino
angular distributions in momentum space. It is also worthy
to note that a code comparison across different numerical

solvers was made very recently [67], which is a rewarding
effort to convince them and others that their quantum
kinetics codes work well and to understand strengths and
weaknesses of each code.
On the other hand, time-dependent features of neutrino-

flavor conversions in the global scale remain an enduring
mystery. It should be mentioned that collective neutrino
oscillations naturally break their own temporal stationarity
[42,68], exhibiting the importance of time-dependent
simulations. General relativistic (GR) effects also need to
be incorporated in global simulations, since the gravity is
usually strong in regions where neutrino number density is
high (e.g., in the vicinity of neutron star). They may play
negligible roles in flavor conversion, since gravitational
redshift and light-bending effects have an influence on
neutrino distributions in momentum space, which has an
impact on self-interaction potentials (see, e.g. [38]).
However, currently available numerical codes (see, e.g.,
[69,70]) that have a capability of solving time-dependent
quantum kinetic equations were designed for local simu-
lations. More precisely speaking, their numerical approach
is not suited for curvilinear coordinate system, and the
formulation is not applicable to neutrino transport in curved
spacetimes. As is well established in numerical treatments
of GR Boltzmann equation, the transport operator can be, in
general, written in a conservative form (see, e.g., [71–73]),
which is very useful for numerical simulations. The
operator contains not only spatial components but also
momentum-space ones (see Sec. II for more details), which
accounts for the geometrical effects of neutrino transport.
As such, the formalism is suited for neutrino transport in
global scale. Our CCSN neutrino-radiation-hydrodynamic
code with full Boltzmann neutrino transport was developed
with the formalism [72,74–76], and it has worked well in
multidimensional (multi-D) CCSN simulations [77–80].
In this paper, we present a new numerical code general-

relativistic quantum-kinetics neutrino transport (GRQKNT)
that is designed for time-dependent local and global simu-
lations of neutrino-flavor conversion in CCSN and BNSM
environments. At the moment, we are particularly interested
in the dynamics of FFC, which seems to be themost relevant
and the largest uncertainty in the theory of CCSN and
BNSM.Onemaywonder if those simulations are intractable
by the current numerical resources. However, we can relax
the computational burden by reducing the neutrino number
density or neutrino Hamiltonian potentials. Since the physi-
cal scale of FFC is determined only by the self-interaction
potential, the reduction of neutrino number density makes
the global simulations computationally feasible. We note
that results obtained from this approach should be carefully
checked; for instance, the resolution study is indispensable
not only for real space but also for the momentum one.
In fact, mode couplings in FFC generate small-scale
angular structures from large angular scales (similar as
turbulent cascades, see, e.g., [48]), and slow neutrino-flavor

1We note that there are different levels of approximations in the
light bulb model; for instance, steady state or time dependent,
single or multiangle, with or without including halo effects. See
references for more details.
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conversions may induce sharp spectral swapping in energy
direction. These facts suggest that high numerical resolu-
tions in the energy direction may be still necessary even
reduction of the Hamiltonian potential. The resolution study
would help us to exclude spurious evolution of flavor
conversion.
It is worthy to note that the similar approach can be seen

in other fields; for instance, ion-to-electron mass ratio is
frequently reduced in particle-in-cell simulations of plasma
physics to save computational time.2 Realistic FFC features
(i.e., without reduction of neutrino number density) can be
obtained by increasing the neutrino number density, and the
resolutions in neutrino phase space and the size of
computational domain are controlled in accordance with
computational power. Following the above approach, we
carried out a time-dependent global simulations of FFC; the
results are reported in a separate paper [82]. We confine the
scope of this paper to describing philosophy, design, and
numerical aspects of GRQKNT.
This paper is organized as follows. We describe the basic

equation and the numerical formalism in Sec. II. We
encapsulate the detail of each numerical module into each
section: transport module (in Sec. III), collision term (in
Sec. IV), and oscillation module (in Sec. V). Finally, we
summarize and conclude in Sec. VI. We use the unit with
c ¼ G ¼ ℏ ¼ 1, where c, G, and ℏ are the light speed, the
gravitational constant, and the reduced Planck constant,
respectively. We use the metric signature of −þþþ.

II. BASIC EQUATIONS

In GRQKNT code, we solve general relativistic mean-
field quantum kinetic equation (QKE), which is written as
(see also [83])

pμ ∂ f
ð−Þ

∂xμ
þ dpi

dτ
∂ f
ð−Þ

∂pi ¼ −pμuμ S
ð−Þ

þ ipμnμ½H
ð−Þ

; f
ð−Þ

�: ð1Þ

In the expression, we use the same convention as [84].3 f
and f̄ denote the density matrix of neutrinos and antineu-
trinos, respectively; xμ and pμ are spacetime coordinates
and the four-momentum of neutrinos (and antineutrinos);
uμ and nμ represent the four-velocity of fluid and the unit
vector normal to the spatial hypersurface of constant time,
respectively; S (S̄) represents the collision terms measured

at the fluid rest frame; H (H̄) denotes the Hamiltonian
operator associated with neutrino-flavor conversion. The
Hamiltonian is composed of three compositions,

H
ð−Þ

¼ H
ð−Þ

vac þ H
ð−Þ

mat þ H
ð−Þ

νν; ð2Þ

where

H̄vac ¼ H�
vac;

H̄mat ¼ −H�
mat;

H̄νν ¼ −H�
νν: ð3Þ

Hvac denotes the vacuum Hamiltonian with the
expression in the neutrino-flavor eigenstate, which can
be written as

Hvac ¼
1

2ν
U

2
664
m2

1 0 0

0 m2
2 0

0 0 m2
3

3
775U†; ð4Þ

where ν ¼ −pμnμ ¼ p0α; α denotes the lapse function
associated with spacetime foliation (3þ 1 formalism of
curved spacetime); mi denotes the mass of neutrinos; U
denotes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. The matter potential Hmat can be written as

Hmat ¼ D

2
664
Ve 0 0

0 Vμ 0

0 0 Vτ þ Vμτ

3
775; ð5Þ

whereD ¼ ð−pμuμÞ=ν denotes the effective Doppler factor
between the laboratory frame and the fluid-rest frame, i.e.,
representing the Lorentz boost between n and u under local
flatness (see [72,74] for more details). The leading order of
Vl can be written as

Vl ¼
ffiffiffi
2

p
GFðnl− − nlþÞ; ð6Þ

where GF and nl represent the Fermi constant and the
number density of charged leptons ðl ¼ e; μ; τÞ, respec-
tively. As a default set, we assume that on-shell heavy
leptons (μ and τ) do not appear; i.e., Vμ and Vτ are set to be
zero. It should be mentioned, however, that Vμ may not
always be zero, since on-shell muons would appear in the
vicinity of (or inside) neutrino star [see, e.g., [85,86] ]. Vμτ

represents, on the other hand, the radiative correction of
neutral current [1,87], which is a leading order to distin-
guish νμ and ντ in cases with Vμ ¼ Vτ ¼ 0. Following [1],
Vμτ can be computed as

2It is worthy to note that nowadays the increased computa-
tional resources allow PIC simulations with real mass ratio
(see, e.g., [81]).

3This is also the same convention that used in [83], although
there is a typo in the right-hand side of Eq. (9) in the paper
(computing self-interaction potentials). f̄0 needs to be replaced to
f̄�0, which is confirmed with one of the authors (Sherwood
Richers, private communication). We also note that our con-
vention for f̄ corresponds to ρ̄� in [25] [see, e.g., Eq. (A2) in in
[25]], which has been frequently used in the literature.
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Vμτ ¼ Ve
3GFm2

τ

2
ffiffiffi
2

p
π2Ye

�
ln
m2

W

m2
τ
− 1þ Yn

3

�
; ð7Þ

where mτ and mW denote the mass of tau and W boson,
respectively. Ye and Yn represent the electron fraction and
neutron fraction, respectively.
Hνν represents the neutrino self-interaction potential,

which can be written as

Hνν ¼
ffiffiffi
2

p
GF

Z
d3q0

ð2πÞ3
�
1 −

X3
i¼1

l0
ðiÞlðiÞ

�
ðfðq0Þ − f̄�ðq0ÞÞ;

ð8Þ

where d3q denotes the momentum space volume of
neutrinos, which are measured at the laboratory frame;
liði ¼ 1; 2; 3Þ denote directional cosines for the direction
of neutrino propagation. The two angles of neutrino flight
directions are measured with respect to a spatial tetrad basis
eð1Þ. There are multiple options to choose eð1Þ, and we
usually set it as a unit vector in the same direction of the
radial coordinate basis (see, e.g., [74,88]). By using the
polar (θν) and azimuthal angles (ϕν) in neutrino momentum
space, liði ¼ 1; 2; 3Þ can be written as

lð1Þ ¼ cos θν;

lð2Þ ¼ sin θν cosϕν;

lð3Þ ¼ sin θν sinϕν: ð9Þ

There are four remarks regarding the QKE. First, we take
the relativistic limit of neutrinos in the expression; the
energy of neutrinos is much larger than the rest-mass
energy, which is a reasonable approximation for CCSN and
BNSM.4 Hence, we treat the neutrinos as massless particles
in the transport equation [the left-hand side of Eq. (1)] and
the collision term [the first term in the right-hand side of
Eq. (1)]. On the other hand, we leave the leading term of
ν × ðm=νÞ2 in the Hamiltonian operator [see Eq. (4)].
Second, we define the Hamiltonian operator in the labo-
ratory frame, although the choice of the frame is arbitrary
(see, e.g., [83]). Third, GRQKNT code is also compatible
with two-flavor approximations. In simulations under the
two-flavor approximation, we can change the size of
density matrix and Hamiltonian operators from 3 × 3 to
2 × 2 in GRQKNT. In the two-flavor case, the vacuum
oscillation parameters are also changed, which is deter-
mined according to the problem. Fourth, Eq. (1) corre-
sponds to the mean-field approximation or one-body
density matrix description with the first truncation of
BBGKY hierarchy (see [90] for more details). Under the

assumption, the neutrino self-interaction is treated as an
interaction between each neutrino and their mean-field
neutrino medium in its vicinity. However, there may be
astrophysical regimes where mean-field approximation is
inappropriate (see, e.g., [91,92]) and may lead to different
astrophysical consequence [93]. Thus, GRQKNT is not
capable of capturing all features of neutrino-flavor con-
version. We leave the task incorporating these many-body
corrections into GRQKNT to future work.
Following [88], we cast the QKE in a conservative form.

This is a useful formalism for numerical simulations, since
the neutrino-number conservation can be ensured up to
machine precision. This can be written as

1ffiffiffiffiffiffi−gp ∂

∂xα

����
qi

��
nα þ

X3
i¼1

lieαðiÞ

� ffiffiffiffiffiffi
−g

p
f
ð−Þ�

−
1

ν2
∂

∂ν
ðν3 f

ð−Þ
ωð0ÞÞ þ

1

sin θν

∂

∂θν
ðsin θν f

ð−Þ
ωðθνÞÞ

þ 1

sin2θν

∂

∂ϕν
ð f
ð−Þ

ωðϕνÞÞ ¼ D S
ð−Þ

− i½H
ð−Þ

; f
ð−Þ

�; ð10Þ

where g; xα are the determinant of the four-dimensional
metric, coordinates of spacetime, respectively. eαðiÞði ¼
1; 2; 3Þ denote a set of the (spatial) tetrad bases normal
to n. The factors of ωð0Þ;ωðθνÞ;ωðϕνÞ are given as

ωð0Þ ≡ ν−2pαpβ∇αnβ;

ωðθνÞ ≡
X3
i¼1

ωi
∂lðiÞ
∂θν

;

ωðϕνÞ ≡
X3
i¼2

ωi
∂lðiÞ
∂ϕν

;

ωi ≡ ν−2pαpβ∇αe
β
ðiÞ; ð11Þ

which can also be expressed with the Ricci rotation
coefficients [88]. Spherical polar coordinate is often
employed in solving Boltzmann equation, and we chose
a set of tetrad basis, eðiÞ, having the following coordinate
components,

eαð1Þ ¼ ð0; γ−1=2rr ; 0; 0Þ

eαð2Þ ¼
�
0;−

γ−1=2rθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γrrðγrrγθθ − γ2rθÞ

q ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γrr
γrrγθθ − γ2rθ

r
; 0

�

eαð3Þ ¼
�
0;

γrϕffiffiffiffiffiffiffi
γϕϕ

p ;
γθϕffiffiffiffiffiffiffi
γϕϕ

p ;
ffiffiffiffiffiffiffi
γϕϕ

q �
; ð12Þ

where γ denotes the induced metric on each spatial
hypersurface.

4The typical energy of neutrinos in CCSN and BNSM is an
order of 10 MeV; meanwhile, the current upper bound of neutrino
mass is ≲0.1 eV [89].
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Here, we explicitly write down the QKE in flat spacetime
with spherical polar coordinate, which is also useful to see
geometrical effects. Equation (10) can be rewritten in flat
spacetime as

∂ f
ð−Þ

∂t
þ 1

r2
∂

∂r
ðr2 cosθν f

ð−Þ
Þþ 1

rsinθ
∂

∂θ
ðsinθ sinθν cosϕν f

ð−Þ
Þ

þ 1

rsinθ
∂

∂ϕ
ðsinθν sinϕν f

ð−Þ
Þ− 1

rsinθν

∂

∂θν
ðsin2θν f

ð−Þ
Þ

−
cotθ
r

∂

∂ϕν
ðsinθν sinϕν f

ð−Þ
Þ ¼D S

ð−Þ
− i½H

ð−Þ
; f
ð−Þ

�: ð13Þ

In order to see differences from QKE with Cartesian
coordinate, there are two points to which attention
should be paid. First, the Jacobian determinant of three-
dimensional real space (r2 sin θ) appears in the spatial
transport terms [the second to fourth terms in the left hand
side of Eq. (13)], which is directly related to

ffiffiffiffiffiffi−gp
in

Eq. (10). Second, Eq. (13) has transport terms in momen-
tum space (the fifth and sixth terms in the left-hand side of
the equation). This is attributed to the fact that eðiÞ is not
spatially uniform but rather rotates with θ. As a result, ωi
becomes nonzero values even in the flat spacetime [see in
Eq. (11)]. The neutrino advection in angular directions of
momentum space can also be interpreted more intuitively
as follows. Neutrinos traveling straight in space experience
different directional cosine with respect to eð1Þ except for
those bf propagating in the same direction with eð1Þ. The
outgoing neutrinos with a finite angle with eð1Þ become
more forward peaked with increasing radius. This is
essentially the same as geometrical effects that have also
been discussed in light bulb model. In fact, the light bulb
model can be restored by solving Eq. (13) in spherical

symmetry with injected outgoing neutrinos from a certain
radius.
It is worthy to note that Eq. (13) does not compro-

mise the applicability of GRQKNT to local simulations.
As mentioned above, transport terms in angular directions
of momentum space are associated with variations of
coordinate basis, indicating that they are negligible if we
make the simulation box enough small so that the coor-
dinate curvature can be safely neglected. In this case, the
Jacobian determinant appearing in spatial transport
terms can also be dropped, exhibiting that QKE with
Cartesian coordinate is restored. Here, we provide an
example of the numerical setup. Let us consider a
three-dimensional box in space with a region of
R ≤ r ≤ Rþ ΔR, Θ − Δθ=2 ≤ θ ≤ Θþ Δθ=2, and Φ −
Δϕ=2 ≤ ϕ ≤ Φþ Δϕ=2 in radial, zenith, and azimuthal
direction, respectively. The simulation box becomes a
cubic shape when we choose a set of parameters as
ΔR=R ¼ Δθ ¼ Δϕ ≪ 1, Θ ¼ π=2, and Φ ¼ 0. In
Sec. V C, we demonstrate 1D local simulations by follow-
ing this numerical setup.
In the current version of GRQKNT code, we can run

simulations of neutrino-flavor conversion in three repre-
sentative spacetimes: the flat spacetime, Schwarzschild
black hole, and Kerr black hole. In Schwarzschild space-
time, we employ the Schwarzschild coordinate. The line
element can be written as

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2dθ2 þ r2sin2θdϕ2; ð14Þ

where M denotes the black hole mass. By using a set of
tetrad basis described in Eq. (12), the resultant QKE can be
written as

∂

∂t

��
1 −

2M
r

�
−1=2

f
ð−Þ�

þ 1

r2
∂

∂r

�
r2 cos θν

�
1 −

2M
r

�
1=2

f
ð−Þ�

þ 1

r sin θ
∂

∂θ
ðsin θ sin θν cosϕν f

ð−Þ
Þ

þ 1

r sin θ
∂

∂ϕ
ðsin θν sinϕν f

ð−Þ
Þ − 1

ν2
∂

∂ν

�
M
r2

�
1 −

2M
r

�
−1=2

ν3 cos θν f
ð−Þ�

−
1

sin θν

∂

∂θν

�
sin2θν

r − 3M
r2

�
1 −

2M
r

�
−1=2

f
ð−Þ�

−
cot θ
r

∂

∂ϕν
ðsin θν sinϕν f

ð−Þ
Þ ¼ D S

ð−Þ
− i½H

ð−Þ
; f
ð−Þ

�: ð15Þ

We note that Eq. (15) becomes identical to that in flat spacetimes [Eq. (13)] by taking the limit of M → 0.
In Kerr spacetimes, we employ Kerr-Schild coordinates; the line element can be written as

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ 4Mr

Σ
dtdrþ

�
1þ 2Mr

Σ

�
dr2 þ Σdθ2 þ sin2θ

Σ
½ðr2 þ a2Þ2 − Δa2sin2θ�dϕ2

− 2asin2θ

�
1þ 2Mr

Σ

�
dϕdr −

4Mar
Σ

sin2θdϕdt; ð16Þ

where
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Δ≡ r2 − 2Mrþ a2;

Σ≡ r2 þ a2cos2θ; ð17Þ

and a denotes the Kerr parameter (angular momentum of
black hole per unit mass). The explicit description of
conservative form of QKE is quite lengthy; hence, we
refrain from explicitly writing it down here. However, it can
be straightforwardly derived from Eqs. (10)–(12) by
following the procedure outlined in this section.

III. TRANSPORT MODULE

A. Design

Consistent treatments of transport and collision terms in
multi-D Boltzmann neutrino transport was a technical
challenge for discrete-ordinate Sn method. As described
in Secs. II and III of [72], the main source of difficulty is
solving neutrino transport while interacting with moving
matter through isoenergetic scatterings. The problem was,
however, resolved by a mixed-frame approach with a two-
energy-grid technique: Lagrangian-remapping grid (LRG)
and laboratory-fixed grid (LFG).
The LRG is constructed so that it does not depend on

neutrino angles measured in the fluid rest frame. Thanks to
the isotropy, distribution functions defined on the LRG can
be used to evaluate collision terms, in particular, for iso-
energetic scatterings, without any problems. On the other
hand, advection terms of Boltzmann equation are handled
in the laboratory frame, implying that we need Lorentz
transformations from the fluid rest frame to the laboratory
one. Consequently, LRG becomes angular dependent in the
laboratory frame. It should also be mentioned that the LRG
depends on space in general (since the fluid velocity is not
uniform), which is inconvenient to evaluate transport
operators. We, hence, define LFG, which is constructed
so that it does not depend on both neutrino angles, space,
and time in laboratory frame. After interpolating distribu-
tion functions from LRG to LFG, we evaluate the neutrino
flux at (spatial) cell boundaries on LFG. We then calculate
the numerical flux on each LRG by taking into account the
overlapped region with respect to LFGs. As a result, we can
consistently handle both advection and collision terms.
This technique has already been extended in cases with
curved spacetimes [74,76]; hence, we adopt the same
technique in GRQKNT code.
As described in Sec. II, we choose n as a tetrad basis in

transport terms of QKE, exhibiting that the neutrino
transport is solved in the laboratory frame. We use LFG
to evaluate the neutrino advection in both space and
momentum space except for energy direction.5 It should
be mentioned that we employ an explicit time-integration
scheme in GRQKNT, whereas a semi-implicit method is

implemented in our Boltzmann code [72]. This suggests that
the implementation of neutrino advection in GRQKNT code
is much simpler than the Boltzmann solver. More precisely
speaking, computations of matrix inversion are not involved
in GRQKNT. We also note that the two-energy-grid tech-
nique is not necessary in cases with neglecting fluid
velocities or gray neutrino transport (i.e., energy-integrated
QKE). In these cases, the LFG is set to be the same as LRG.
We refer readers to [72] for the details of numerical
implementation of the two-energy-grid technique.
Except for the two-energy-grid technique, solving

Eq. (10) is quite straightforward. We apply a well-estab-
lished hyperbolic solver, fifth-order weighted essentially
nonoscillatory or WENO scheme [94] with some exten-
sions. The WENO scheme is easy to implement and run
multi-D simulations; in fact, another neutrino-flavor con-
version solver recently developed in [70] also employs
seventh-order WENO. Below, we describe the WENO
scheme implemented in our GRQKNT code.
The numerical implementation of WENO is essentially

the same way used in [95]. The advantage of this method is
a simple and computationally cheap implementation of
WENO on nonuniform grids. It should be mentioned that
nonuniform grids are frequently used in global simulations
of CCSN and BNSM, since they are useful to reduce
computational costs without compromising accuracy. On
the other hand, WENO schemes on nonuniform grids
require, in general, computations of complicated weight
functions (see, e.g., [96]), causing the increase of CPU
time. In [95], they proposed a new method to save the CPU
time with sustaining the accuracy; we hence adopt the
method in our GRQKNT code.6

For the basic part of the WENO scheme, we refer readers
to [95], and we only describe two extensions from the
original one. First, we implement a five-stage fourth-order
strong stability-preserving total variation diminishing
Runge-Kutta by following [97,98]. It should be mentioned
that a fourth order is a requirement to follow the time
evolution of collective neutrino oscillations (see [69,84]).
Second, we change to compute weight function Ωk that is
used to reconstruct a physical quantity at each cell inter-
face.7 The Ωk is defined as

Ωk ¼
αk

α0 þ α1 þ α2
; ð18Þ

where k runs from 0 to 1. In the original WENO scheme, αk
is computed as

5We handle the neutrino advection in energy direction by LRG,
since no technical issues arise in LRG.

6There is a caveat, however. Highly nonuniform grids would
reduce the accuracy of solver to second order, which is a weak
point in the method of [95]. However, such highly nonuniform
grids are not necessary in simulations in CCSN and BNSM
environments; hence, this limitation does not compromise the
usability of GRQKNT code.

7In our GRQKNT code, the primitive variable corresponds to

each matrix element of f
ð−Þ

.
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αk ¼
Ck

ðϵþ ISkÞp
; ð19Þ

where ϵ ¼ 10−6 and p ¼ 2. Ck are C0 ¼ 0.1, C1 ¼ 0.6,
and C2 ¼ 0.3. ISk denotes a smoothness measure. The
explicit description of ISk can be seen in Eqs. (10), (12),
and (15) in of [95]. In our test computations, however, we
find that the weight function is not sufficient to sustain
the stability. This is mainly due to the fact that density
matrix of neutrinos has, in general, order-of-magnitude
variations, which has been frequently observed CCSN
simulations with full Boltzmann neutrino transport.
In such a large variation, ϵ does not work well as a
limiter to determine αk; consequently, it leads to numerical
instabilities. We resolve the issue by introducing a
normalization factor Q and another limiter ϵ2 to evaluate
αk, which are

αk ¼
Ck

Z
; ð20Þ

where

Z ¼ maxðϵ2; ðϵQþ ISkÞpÞ;

Q ¼ ðjq0j þ jq1j þ jq3jÞ2
9

: ð21Þ

qk denotes the interfacial states of physical quantity (i.e.,
each element of density matrix of neutrinos); the exact
expression can be seen in Sec. II B of [95]. Q corresponds
to a normalization factor to make a limiter ϵ work
properly. It should be noted that both Q and ISk become
null when the density matrix is zero everywhere, leading
to division by zero in computations of αk. We thus
introduce another limiter ϵ2, which is set as ¼ 10−50.

B. Code test

We present results of some basic tests to assess
capabilities of the transport module in GRQKNT. In this
test, we set collision and oscillation terms as zero. As a
result, the transport equation becomes identical among all
species of neutrinos; thus, we only focus on νe in this
section. We compare the results to those obtained by
solving geodesic equation, which provides the neutrino
trajectory in phase space. It should be mentioned that we
check more complicated situations in this paper, in which
neutrino transport and fast neutrino-flavor conversion are
coupling each other. We shall discuss the detail of the test
in Sec. V.
We carried out a suite of transport tests in flat spacetimes,

the Schwarzschild black hole, and the Kerr black hole.
Here, we present only the essentials with focusing on two
novelties compared to other schemes: two-energy-grid
technique and neutrino transport in Kerr spacetime. The
tests are essentially the same as those carried out in our

previous studies [72,76]; hence, we refer readers them for
more details.
To check the numerical implementation of two-energy

grid, we inject neutrinos in the outgoing direction
(cos θν ¼ 1) at a certain radius where the fluid is at rest.
The energy spectrum of injected neutrinos is assumed to be
Fermi-Dirac distribution with zero chemical potential and
temperature of 5 MeV. At the outer region, the fluid has a
radial velocity of −0.2c, where c denotes the speed of light.
We set a discontinuity of fluid velocity in the middle of the
computational domain. It should be noted that, since LRG
is defined so the energy mesh becomes isotropic in the
fluid-rest frame, the energy spectrum should be shifted on
LRG.We carry out a spherically symmetric simulation with
20 energy grids, where it is discretized from 1 MeV to
100 MeV logarithmically. We employ 12 radial grid points
in this simulation; i.e., the discontinuity of fluid velocity is
located at the cell edge of sixth radial grid point. In the left
panel of Fig. 1, we show the energy spectrum on the LRG at
the inner and outer region. As expected, the energy shift of
the spectrum is confirmed.8 In the right panel, on the other
hand, we show the energy spectrum measured at laboratory
frame. This panel exhibits that the energy spectrum is good
agreement with the injected energy, illustrating that the
two-energy-grid technique works well.
We now turn our attention to neutrino transport in Kerr

spacetime. We set M ¼ 5Msun and a ¼ 0.5M, where Msun
denotes the mass of the sun. Neutrinos are injected from a
certain radius on an equatorial plane with a specifying a
flight direction so as to be bounded in equatorial plane. This
computational setup makes the simulation 1 (time) þ1
(radial direction in space) þ2 (θν and ν in momentum
space) problem (see also [76]). We chose ϕν ¼ 3π=2 to
maximize the frame-dragging effect of the Kerr black
hole. The radius, θν-direction, and energy for injected
neutrinos are assumed to be r ¼ 30 km, cos θν ¼ 0.655,
and ν ¼ 25 MeV, respectively.9

In these tests, we solve the neutrino transport in a spatial
region of 30 km ≤ r ≤ 100 km, where r denotes the radius
measured with a coordinate basis.10 We deploy uniformly
Nr grid points in the radial direction. Neutrino angular

8Fluid-rest-frame to laboratory-frame transformation of energy
spectrum is straightforward. The neutrino energies at laboratory
and fluid-rest frames can be transformed by one into another by
Doppler factor. We also note that fee is Lorentz scalar. See [72]
for more details.

9It should be mentioned that the injected neutrino energy is not
exactly monochromatic, and similarly there is also a finite
width in the angular distribution of neutrinos. It is due to the
finite-volume method in GRQKNT. Although this is one of
the source of errors in the comparison to results obtained by
solving geodesic equation, the deviation should be reduced with
increasing resolutions in momentum space.

10In general, it is necessary to determine a yardstick to measure
the spatial scale in curved spacetimes. In this paper, we measure it
based on a coordinate basis used in each simulation.
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direction θν (lateral angular direction in momentum space)
is discretized uniformly by Nθν grid points with respect to
the cosine of the angle from 0° ≤ θν ≤ 180°. The energy
grid is also discretized uniformly by Nν grid points from
the range of 0 MeV ≤ ν ≤ 50 MeV. The simulations are
performed at three different resolutions: low 288ðNrÞ×
128ðNθνÞ × 20ðNνÞ, medium 576 × 256 × 40, and high
1152 × 512 × 80.
In Fig. 2, we show the number density of neutrinos,

measured in the laboratory frame, as a function of radius at
t ¼ 0.6 ms. To compare the results on equal footing among
three models, we normalize the density by that at
r ¼ 30 km.11 Two important conclusions can be derived
from Fig. 2. First, our transport module does not suffer
from any numerical oscillations. It is emphasized that
the stable simulation is not trivial, since the problem
involves strong discontinuities both in real space and
momentum space. Neutrinos are injected at a certain grid
point in phase space, indicating that there are strong
discontinuities of fee distributions in its vicinity.
Numerical viscosity plays a role for the stabilization;
in fact, we find some numerical diffusions around the
neutrino front position (see r ∼ 90 km in Fig. 2). Our
result suggests that a limiter of our WENO scheme works
properly. In Fig. 2, we also compare the result to the

geodesic equation. The forefront radius of neutrinos at
t ¼ 0.6 ms, which is r ¼ 88.5 km, is displayed as a
vertical dashed line in Fig. 2. We confirm that this is
consistent with our results and that the deviation
decreases with increasing resolutions.
To see the resolution dependence of neutrino distri-

butions in momentum space, we display two different

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 10 100

f e
e

Energy [MeV]

Inner region (v=0)
Outer region (v=-0.2c)

10-8

10-7

10-6

10-5

-4

10-3

10-2

10-1

Raw (LRG) Energy-corrected

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0

1 10 100

f e
e

Energy [MeV]

Inner region (v=0)
Outer region (v=-0.2c)

-1

10

1 10 100

Raw (LRG) Energy-corrected

FIG. 1. Transport test to check the capability of two-energy-grid technique. Left: comparison of energy spectrum of outgoing
neutrinos (cos θν ¼ 1) between inner (black line) and outer region (red). The neutrinos are emitted from the matter at rest in the inner
region. In the outer region, we assume that the fluid has a velocity of −0.2c, where c denotes the speed of light. Since the LRG is defined
on the fluid rest frame, the energy spectrum is blue shifted. Right: Same as the left panel but we correct the neutrino energy by Doppler
factor, i.e., measuring spectra in laboratory frame. The two spectra are well matched to each other, exhibiting that the fluid-velocity
dependence is properly handled. See text for more details.
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FIG. 2. Transport test in Kerr spacetime. The plots show
number density of neutrinos as a function of radius at
t ¼ 0.6 ms. The vertical axis is normalized by that at the inner
boundary (R ¼ 30 km). Color distinguishes different resolutions:
low (red), medium (blue), and high (green). The vertical black
dashed line denotes the radius where the initially injected
neutrinos reach, which is obtained by solving a geodesic
equation; see text for details.

11In this test, we constantly inject neutrinos in time by setting
fee ¼ 0.1 on the corresponding grid point in momentum space at
the inner boundary. Since both angular and energy grids in
neutrino momentum space are not identical among different
resolution models, the number density is also varied. We, hence,
normalize the density by that at r ¼ 30 km.
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color maps of fee in Fig. 3. In the top, we show the energy-
integrated fee as functions of the radius and neutrino angle
(θν). In the bottom panels, we display the angular-
integrated fee as functions of radius and neutrino energy
(ν). For visualization purposes, we normalize fee by its

maximum over all angles (top panels) or energy (bottom
panels) at the same radius. We find that the neutrino
trajectory obtained by GRQKNT simulations is in good
agreement with that obtained by solving geodesic equation
(black lines in each panel). We confirm that numerical
diffusions occur in both angular and energy directions,
which are reduced with increasing resolutions. These
results exhibit correct implementation of neutrino transport
in our code.
Before closing this section, we put some remarks on

effects of curved spacetimes. Aside from gravitational
redshift (as shown in bottom panels of Fig. 3), there are
remarkable effects of curved spacetimes on the neutrino
angular advection that can be seen in Fig. 4. By comparing
to the case with flat spacetime (red line), the neutrino’s
angular distributions are less forward peaked in black hole
spacetimes. We also note that the forefront radius of
neutrinos at t ¼ 0.6 ms strongly depends on the choice
of spacetimes. Since we inject the neutrino in the retrograde
direction with respect to angular momentum of the Kerr
black hole, the frame-dragging effect adds an attractive
force (gravity becomes effectively strong); consequently,
the forefront radius of neutrinos becomes smaller than the
case with the same mass of Schwarzschild black hole. As
shown in Fig. 2, the neutrino forefront radii obtained by our
simulations are in good agreement with that obtained by
geodesic equation, supporting that frame-dragging effects
are also correctly captured in our transport module.
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FIG. 3. Transport test in Kerr-spacetime. Top: radius versus neutrino angles (in momentum space). Bottom: radius versus neutrino
energy. Color denotes the energy-integrated fee normalized by their maximum at each radius. The black solid line denotes the neutrino
trajectory obtained by solving geodesic equation. From left to right: low, medium, and high resolutions.
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IV. COLLISION TERM

Neutrino-matter interactions contributing to the colli-
sional term [S in Eq. (1)] naturally change neutrino
distributions in momentum space. It has been demonstrated
that the interplay between neutrino transport and collision
term leads to energy-, angle-, and flavor-dependent neu-
trino dynamics in CCSN and BNSM. There remain,
however, large uncertainties in rolls of collision term in
neutrino-flavor conversion. This issue attracted a great deal
of attention, and some important progress has been made in
the last decade. The collisional instability proposed by [7]
represents a case that collision term directly drives flavor
conversions. The so-called neutrino halo effect, which is
associated with momentum-exchanged scatterings, poten-
tially plays a dominant role to induce slow neutrino-
flavor conversion [99–102]. FFC can also be triggered
by various mechanisms with the interplay between neutrino
transport and matter interactions in CCSN (see, e.g.,
[10,16,43,63,103]).
In the last few years, it has been demonstrated that the

neutrino-matter interactions, in particular, momentum-
exchanged scatterings, affect flavor conversion in the
nonlinear phase [51,52,59,64,84,104]. In these numerical
models, we have witnessed that the effect (enhancement or
suppression of flavor conversion) depends on not only
weak processes but also initial condition (e.g., angular
distributions of neutrinos), and numerical setup (homo-
geneous or inhomogeneous). This exhibits the importance
of self-consistent treatment of neutrino transport, collision
term, and flavor conversion, i.e., the need of global
simulations. This motivates us to incorporate collision term
into GRQKNT code.
The collision term is implemented into GRQKNT by

following the same approach of [83] (see also [105–109]
for more general discussions in treatments of collision
term). In the current version, four major weak processes
relevant to CCSN and BNSM are implemented; we
describe the essence below. Incorporating more reactions
and including high-order corrections on each weak process
are postponed to future work.

A. Emission and absorption

The two emission processes, electron capture by free
protons and positron capture by free neutrons, and their
inverse reactions, i.e., neutrino absorptions, are the dom-
inant charged-current reactions in CCSN and BNSM. The

neutrino production (R
ð−Þ

emis) and extinction rates (R
ð−Þ

abs) in
classical Boltzmann equation can be given as

R
ð−Þ

emis ¼ j
ð−Þ

eð1 − f
ð−Þ

eeÞ;

R
ð−Þ

abs ¼ κ
ð−Þ

e f
ð−Þ

ee; ð22Þ

where j
ð−Þ

e and κ
ð−Þ

e denote the emissivity and absorption
opacity, respectively. Given neutrino energy and the
chemical composition of electron (positron), proton, and

neutron,12 κ
ð−Þ

e can be computed from j
ð−Þ

e with a detailed
balance relation. The emissivity and absorption opacity are
computed based on [112], which ignores high-order cor-
rections (such as recoil effects) but captures the essential
properties of these reactions.
As shown in [83], those emission and absorption

processes of charged-current reactions can be extended
in quantum kinetic treatments. It can be written as

S
ð−Þ

ab ¼ j
ð−Þ

aδab − ðh j
ð−Þ

iab þ h κð−ÞiabÞ f
ð−Þ

ab; ð23Þ

where the bracket is defined as

hAiab ≡ Aa þ Ab

2
: ð24Þ

In the above expression, the indices (a and b) specify a
neutrino flavor. Since we ignore charged-current processes

for heavy leptonic neutrinos, we can set j
ð−Þ

μ ¼ j
ð−Þ

τ ¼
κ
ð−Þ

μ ¼ κ
ð−Þ

τ ¼ 0.
The computations of these charged-current reactions are

straightforward and computationally cheap due to no
integral operations in momentum space. To check the
correct numerical implementation, we perform a compari-
son study to our Boltzmann code. In this test, transport and
oscillation operators are switched off. To determine reac-
tion rates, we assume a matter state as ρ ¼ 2 × 1012 g=cm3,
Ye ¼ 0.3, and T ¼ 10 MeV, where ρ, Ye, and T denote
baryon mass density, electron fraction, and temperature,
respectively. As an initial condition of neutrino distribu-

tions, we set f
ð−Þ

as

f
ð−Þ

¼ 1þ 0.5 cos θν
10

: ð25Þ

It should be mentioned that there are no energy depend-

encies in this initial condition of f
ð−Þ

. Here, we perform the
test simulations for three different neutrino energy: 1 MeV,
3.8 MeV, and 14.3 MeV.
The results are displayed in Fig. 5. Except for ν̄e with the

energy of 1 MeV in positron capture reaction (see right
panel of Fig. 5), all neutrinos approach the equilibrium

12To obtain these thermodynamical quantities, we need to
specify an equation of state (EOS). In the current version of
GRQKNT, we employ a nuclear EOS of [110], which has been
used in our CCSN simulations with full Boltzmann neutrino
transport (see, e.g., [78,111]).
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state, known as Fermi-Dirac distribution. We also note that
the energy-dependent feature of each charged-current
reaction is properly captured; for instance, the higher
energy of neutrinos settles into the equilibrium state earlier.
It should be noted that the emissivity of the positron capture
process for 1 MeV ν̄e is zero due to the energy threshold of
the reaction. Consequently, the f̄ee is constant in time. We
confirm that both Boltzmann and GRQKNT codes give
identical results (black solid lines and red dashed ones
overlap each other), ensuring that the emission and
absorption terms in GRQKNT are correctly implemented.

B. Scattering

We implement two processes of momentum-exchanged
scatterings into GRQKNT: nucleon scattering and coherent

scatterings with heavy nuclei. We assume that the scatter-
ings are elastic, which are reasonable assumptions in CCSN
and BNSM. The resultant collision term has a similar form
as that of classical Boltzmann equation, which can be
written as

S
ð−Þ

abðνF;ΩFÞ ¼ −
ðνFÞ2
ð2πÞ3

Z
dΩ0FRðνF;ΩF;Ω0FÞ

× ðfFabðνF;ΩFÞ − fFabðνF;Ω0FÞÞ; ð26Þ

where the superscript (F) is put on the variables measured
in the fluid-rest frame. For nucleon scattering processes,
energy dependence in the reaction kernel R can be dropped
in our assumptions (no recoils and weak magnetism). We
compute these reaction rates by following [112].
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We perform a similar test simulation as that used in
emission and absorption processes. We employ the same
matter background (to determine the reaction rate) and
initial neutrino distributions as those used in Sec. IVA. In
this test, we focus only on νe, since the two scattering
processes do not depend on neutrino species in our
assumptions.
The results are summarized in Fig. 6. As expected,

fee evolves toward isotropic distributions. It should
be noted that the initial angular distribution does not
depend on neutrino energy; hence, the isotropic distri-
bution becomes the same among different energy of
neutrinos, which is why all lines in the figure converges
to the same value. On the other hand, the time evolution
of fee is energy dependent, in which the higher energy of
neutrinos achieve isotropic distributions earlier. We con-
firm that the result of GRQKNT is in good agreement
with Boltzmann simulation, illustrating the correct
implementation.
As another test related to collision term, we perform a

homogeneous simulation of FFC with scatterings. This
corresponds to a representative example to assess the
capability of GRQKNT for problems coupling neutrino
oscillations with scatterings; we shall present the result in
the next section.

V. OSCILLATION MODULE

Implementing the neutrino oscillation module is the most
important upgraded element from our classical Boltzmann
solver. Aside from a requirement of high-order accuracy of
time integration scheme, the numerical treatment of neu-
trino oscillation is straightforward. All we need to do is the

matrix calculation of ½H
ð−Þ

; f
ð−Þ

�, indicating that no numerical

instabilities occur.13 In this section, we only highlight some
representative tests. Most of them are the same as those
performed in our previous paper [84]. We measure the
capability of our GRQKNT by comparing to analytic
solutions or reproducing the results obtained by previous
studies. We also perform inhomogeneous simulations of
FFC, in which both neutrino transport and flavor con-
version are taken into account. This test shows the
applicability of GRQKNT to local simulations, which
was discussed in Sec. II. We note that the purpose of this
paper is to present the capability of GRQKNT code, and
therefore, we do not enter into details of physical aspects of
each flavor conversion. We refer readers to other references
for physics-based discussions of each test.

A. Vacuum oscillation

We start with a check of vacuum oscillation. In this test,
we assume normal ordering of neutrino masses. The
oscillation parameters are set as Δm2¼2.45×10−15MeV2

and sin2 θ0 ¼ 2.24 × 10−2, where Δm2 and θ0 denote the
neutrino squared-mass difference and mixing angle under
two-flavor approximation, respectively. The neutrino
energy is assumed to be 20 MeV. Our parameter choice is
the same as that used in [84] (see Sec. V of the paper).
Figure 7 portrays the time evolution of each component of
densitymatrix of neutrinos. As a reference, we also show the
analytic solution in each panel {see Eqs. (14)–(17) in [84]}.
As shown in the figure, our results are good agreement
with them.
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FIG. 7. Time evolution of each flavor component of density matrix for vacuum oscillation. Black solid lines denote the analytic
solution, while the red dashed ones are the result obtained from GRQKNT simulation. The time is normalized by a vacuum frequency ω,
which is defined as (ω≡ Δm2=2ν).

13We note, however, that coarse resolutions in momentum
space may generate spurious modes (see, e.g., [113]). This issue
should be kept in mind for any numerical simulations of
collective neutrino oscillations.
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B. MSW resonance

To check implementation of matter Hamiltonian, we
carry out a simulation of MSW effect. Assuming homo-
geneous electron distributions, the solution can be derived
analytically (see Sec. VI in [84]). Under the two flavor
approximation with normal mass hierarchy, the resonant
electron-number density can be written as

ne0 ¼
Δm2 cos 2θ0
2

ffiffiffi
2

p
GFν

: ð27Þ

With varying electron-number density, 0.1 ne0, 0.5 ne0, 0.8
ne0, and ne0, we solved QKE by GRQKNT with the same
oscillation parameters as that used in test of vacuum
oscillation. As shown in Fig. 8, the results are in good
agreement with analytic solutions, exhibiting the correct
implementation of matter Hamiltonian.

C. Fast neutrino-flavor conversion (FFC)

We assess the capability of GRQKNT to problems that
self-interaction potential plays a dominant role in flavor
conversion. As a representative example, we adopt fast
neutrino-flavor conversion in this test. We perform homo-
geneous multiangle simulations of FFC with and without
iso-energetic scatterings. Since there are no analytic solu-
tions for FFC problems, which neutrinos in all different
angles of momentum space are coupling, we compare our
results to those obtained in previous studies [84,104]. We
also carry out simulations of FFC with transport terms,
which exhibits the applicability of GRQKNT to any local
inhomogeneous simulations.
The initial condition for homogeneous simulations is set

as follows. The angular distributions of fee and f̄ee are set
as (see also [84,104])

fee ¼ 0.5C

f̄ee ¼ ½0.47þ 0.05 expð−ðcos θν − 1Þ2Þ�C; ð28Þ

where C denotes the normalization factor, which is deter-
mined so as to be μ ¼ 105 km−1 (μ≡ ffiffiffi

2
p

GFnν where nν
denotes the number density of νe). We assume that other
components of density matrix are zero. We trigger FFC by
adding a vacuum potential, whose parameters are set as
θ0 ¼ 10−6, Δm2 ¼ 2.5 × 10−6 eV2. The neutrino energy is
assumed to be 50 MeV. In this simulation, we deploy 128
angular grid points uniformly with respect to cos θν. Under
the same set of these oscillation parameters and initial
conditions, we perform another homogeneous simulation
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with incorporating iso-energetic scattering. The inverse
mean free path of scattering is set as 1 km−1 isotropically.
Figure 9 summarizes the results of the two homogeneous

FFC simulations. To measure the degree of flavor con-
version, we use Pex, that is defined as

Pex ¼ 1 −
nνe
nνe0

; ð29Þ

where nνe and nνe0 denote the number density of νe
and its initial value, respectively. These results are good
agreement with previous studies ([84,104] and private
communication), ensuring reliability of our module com-
puting neutrino self-interaction potential.
Next, we turn our attention to inhomogeneous simula-

tions. As described in Sec. II, GRQKNT is applicable to
local simulations by setting a small spatial box that is
located away from the origin of spherical polar coordinate.
In this test, we set R0 ¼ 50 km (the distance from the
coordinate origin) and ΔR ¼ 100 cm (computational
domain) to meet the requirement. We also assume spheri-
cally symmetric, flat spacetime, and gray neutrino trans-
port. The number of radial and neutrino angular grid points
are Nr ¼ 3072 and Nθν ¼ 256, respectively. It should be
mentioned that we obtain essentially the same results in low
resolution simulations (Nr ¼ 1536 and Nθν ¼ 128), sug-
gesting that the adopted resolutions are high enough to
capture the essential features. In this test, we solve QKE
with the two-flavor approximation, and we set νx ¼ ν̄x ¼ 0
in the initial condition. We run the simulation up to
t ¼ 10−8 s, which is ∼3 times longer than the light crossing
time of simulation box for out-going neutrinos. We observe
that the system achieves a quasisteady state by the end of
our simulation.
We set the initial angular distributions of νe and ν̄e

through a newly proposed analytic function, which is a
simple but has a capability to capture essential character-
istics of neutrino angular distributions in CCSN and
BNSM. In this model, we focus only on outgoing neutrinos
and put negligible atmospheres of neutrinos for incoming
neutrinos. We consider a situation that outgoing neutrinos
dominate over incoming ones and that electron neutrinos
lepton number (ELN) crossing appears in outgoing direc-
tions, which would occur in CCSN (e.g., Type-II ELN
crossings found in [16]) and BNSM (see, e.g., [18]). The
analytic function is written as

fi ¼
� hfiið1þ βiðcos θν − 0.5ÞÞ cos θν ≥ 0;

hfii × η cos θν < 0;
ð30Þ

where the subscript i denotes the neutrino flavor. We set
η ¼ 10−6 for negligible contribution of incoming neutrinos
to self-interaction potentials. There are two parameters to
characterize the angular distribution: hfii and βi. The
former is directly associated with the number density of

neutrinos, and the latter characterizes the anisotropy of
neutrino distributions. Since we need to determine νe and ν̄e
angular distributions, we have four parameters in total.
Below, we describe how we determine them.
In CCSN environment, it has been suggested that ELN

crossing tends to occur at the region where the ratio of
number density of ν̄e to νe becomes unity [8,9,16]. Hence,
we set hfeei ¼ hf̄eei in this test. We also note that ν̄e tends
to be more forward-peaked angular distributions than νe,
i.e., 0 < βνe < βν̄e , which is mainly due to the disparity of
neutrino-matter interactions between νe and ν̄e. As a simple
case, we set βνe ¼ 0 and βν̄e ¼ 1 in this test. We note that
the ELN crossing is located at cos θν ¼ 0.5 when we set
hfeei ¼ hf̄eei regardless of the choice of β for both species.
We determine hfeei so that the number density of νe
becomes 6 × 1032 cm−3. This number density corresponds
to the case that νe has a luminosity of ∼4 × 1052 erg=cm3

with an average energy of ∼12 MeV at R ¼ 50 km. These
are typical values for each variable at a few hundred
milliseconds after bounce in CCSN. The systematic study
for the parameter dependence is very interesting, which is,
however, postponed to our future work.
We carry out two simulations with different boundary

conditions. One of them is to use a fixed boundary
condition at R ¼ R0, in which the neutrino distributions
are frozen. More precisely speaking, the initial value of the
density matrix of neutrinos with cos θν > 0 in the first
radial grid point is restored at each time step. On the other
hand, we employ a copy boundary for incoming neutrinos
(cos θν < 0). As an outer boundary condition, we set a copy
boundary for cos θν > 0, while we inject dilute neutrino
[η × hfii, see Eq. (30)] in the incoming directions. We start
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ized by the flavor-integrated one (nνe þ nνx ) for inhomogene-
ous FFC simulations. Color distinguishes models: red (fixed
boundary) and blue (periodic boundary). We display the result at
t ¼ 10−8 s.
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our simulations with setting anisotropic neutrinos [follow-
ing Eq. (30)] homogeneously in space.
We find that strong flavor conversion occurs in both cases.

Figure 10 displays the radial profile of nνx=ðnνe þ nνxÞ
at the end of our simulation.14 It should be mentio-
ned that the weak flavor conversion in the region of
0 cm ≤ R − R0 ≲ 20 cm appeared in the fixed boundary
simulation (red line in the figure) is an expected result, since
the neutrino conversion is artificially suppressed at R ¼ R0.
Except for the region, the flavor states nearly reaches the
equipartition (nνx=ðnνe þ nνxÞ ¼ 0.5) in both models.
On the other hand, there is a distinct feature in angular

distributions of neutrinos between the two models, which
can be seen in Fig 11. We measure the degree of flavor
conversion by using a variable of fνx=ðfνe þ fνxÞ in this
figure. In the case of fixed-boundary simulation, the flavor
conversion is not outstanding for cos θν ≳ 0.8 neutrinos
(see left panel), whereas strong flavor conversion emerges
regardless of neutrino flight directions in the case with
periodic boundary condition (right panel). This result
suggests that the boundary condition affects nonlinear
evolution of FFC. We postpone the detailed analysis of
how the boundary condition gives an impact on angular
distributions of FFC to future work, since this study
requires a systematic study with varying neutrino angular
distributions and changing the computational domain,
which is clearly out of the scope of this code paper.

VI. SUMMARY

In this paper, we describe the design and implementation
of our new neutrino transport code GRQKNT with mini-
mum but essential tests. This corresponds to an upgraded
solver of full Boltzmann neutrino transport; indeed, we
transplanted several modules of our Boltzmann solver to
GRQKNT (e.g., two-energy-grid technique). Below, we
briefly summarize the capability.
(1) GRQKNT code is capable of solving the time-

dependent QKE in the full phase space (six dimen-
sions). The transport operator is written in a
conservative form of general relativistic QKE (see
Sec. II). In the current version, neutrino transport in
three different spacetimes (the flat spacetime,
Schwarzschild black hole, and Kerr black hole)
are implemented. The two-energy-grid technique
is equipped to treat fluid-velocity dependence self-
consistently (see Sec. III).

(2) Major weak processes (neutrino emission, absorp-
tion, and scatterings) contributing in collision term
are implemented in GRQKNT: electron-capture by
free proton (and its inverse reaction, νe absorp-
tion), positron-capture by free neutrons (and its
inverse reaction, ν̄e absorption), nucleon scatter-
ing, and coherent scattering with heavy nuclei.
Collision term for the flavor off-diagonal compo-
nents are also taken into account by following [83]
(see Sec. IV).

(3) Vacuum, matter, and self-interaction Hamiltonian
are implemented. The tests demonstrated in Sec. V
lends confidence to our numerical treatment of these
oscillation modules.
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14This ratio is an appropriate quantity to measure the degree of
flavor conversion in our models. Since there are νx that are not
injected in the simulations, nνx becomes zero if no flavor
conversions occur.
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The versatile design of GRQKNT allows us to study
many features of neutrino kinetics, and therefore, it will
contribute to fill the gap between astrophysics community
and neutrino oscillation one. As the first demonstration, we
preform time-dependent global simulations of FFC by
using GRQKNT, which is reported in another paper
[82]. This is an important step to understand astrophysical
consequences of FFC in CCSN and BNSM, and we will
extend the work to more realistic situation in future.
It should be mentioned, however, that there still remains

work needed in developments of GRQKNT. Improving
input physics such as neutrino-matter interactions is neces-
sary to study more detailed features of neutrino quantum
kinetics. Another shortcoming in GRQKNT code is that it is
only applicable to problems with frozen matter background,
and the feedback on matter dynamics is completely
neglected. This indicates that the radiation-hydrodynamic
features with quantum kinetic neutrino transport cannot be
investigated by the current version of GRQKNT. Although
the numerical technique to link to the hydrodynamic solver
has been already established as demonstrated in our full
Boltzmann neutrino transport code, the huge disparity of
length and timescales between neutrino flavor conversion
and other input physics is a major obstacle. We intend to
overcome the issue by involving subgrid models or

developing better methods and approximations in future,
although technical and algorithmic innovations are indis-
pensable to achieve this goal.Nevertheless, the present study
does mark an important advance toward the first-principle
numerical modeling of CCSN and BNSM. We will tackle
many unresolved issues surrounding the neutrino quantum
kinetics with this code.

ACKNOWLEDGMENTS

H. N. is grateful to Chinami Kato, Lucas Johns,
Sherwood Richers, George Fuller, Taiki Morinaga,
Masamichi Zaizen, and Shoichi Yamada for useful com-
ments and discussions. This research used the high-
performance computing resources of “Flow” at Nagoya
University ICTS through the HPCI System Research
Project (Project ID: 210050, 210051, 210164, 220173,
220047), and XC50 of CfCA at the National Astronomical
Observatory of Japan (NAOJ). For providing high perfor-
mance computing resources, Computing Research Center,
KEK, and Japan Lattice Data Grid (JLDG) on SINET of
NII are acknowledged. This work is supported by the
Particle, Nuclear and Astro Physics Simulation Program
(No. 2022-003) of Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK).

[1] Amol S. Dighe and Alexei Yu. Smirnov, Identifying the
neutrino mass spectrum from a supernova neutrino burst,
Phys. Rev. D 62, 033007 (2000).

[2] James Pantaleone, Neutrino oscillations at high densities,
Phys. Lett. B 287, 128 (1992).

[3] Huaiyu Duan, George M. Fuller, and Yong-Zhong Qian,
Collective neutrino oscillations, Annu. Rev. Nucl. Part.
Sci. 60, 569 (2010).

[4] A. Malkus, J. P. Kneller, G. C. McLaughlin, and R.
Surman, Neutrino oscillations above black hole accretion
disks: Disks with electron-flavor emission, Phys. Rev. D
86, 085015 (2012).

[5] A. Malkus, G. C. McLaughlin, and R. Surman, Symmetric
and standard matter neutrino resonances above merging
compact objects, Phys. Rev. D 93, 045021 (2016).

[6] Y. L. Zhu, A. Perego, and G. C. McLaughlin, Matter-
neutrino resonance transitions above a neutron star merger
remnant, Phys. Rev. D 94, 105006 (2016).

[7] Lucas Johns, Collisional flavor instabilities of supernova
neutrinos, arXiv:2104.11369.

[8] Sajad Abbar, Huaiyu Duan, Kohsuke Sumiyoshi, Tomoya
Takiwaki, and Maria Cristina Volpe, On the occurrence of
fast neutrino flavor conversions in multidimensional super-
nova models, Phys. Rev. D 100, 043004 (2019).

[9] Hiroki Nagakura, Taiki Morinaga, Chinami Kato, and
Shoichi Yamada, Fast-pairwise collective neutrino

oscillations associated with asymmetric neutrino emissions
in core-collapse supernovae, Astrophys. J. 886, 139
(2019).

[10] Taiki Morinaga, Hiroki Nagakura, Chinami Kato, and
Shoichi Yamada, Fast neutrino-flavor conversion in the
preshock region of core-collapse supernovae, Phys. Rev.
Res. 2, 012046 (2020).

[11] Sajad Abbar, Huaiyu Duan, Kohsuke Sumiyoshi, Tomoya
Takiwaki, and Maria Cristina Volpe, Fast neutrino flavor
conversion modes in multidimensional core-collapse
supernova models: The role of the asymmetric neutrino
distributions, Phys. Rev. D 101, 043016 (2020).

[12] Milad Delfan Azari, Shoichi Yamada, Taiki Morinaga,
Hiroki Nagakura, Shun Furusawa, Akira Harada, Hirotada
Okawa, Wakana Iwakami, and Kohsuke Sumiyoshi, Fast
collective neutrino oscillations inside the neutrino sphere
in core-collapse supernovae, Phys. Rev. D 101, 023018
(2020).

[13] Sajad Abbar, Francesco Capozzi, Robert Glas, H. Thomas
Janka, and Irene Tamborra, On the characteristics of fast
neutrino flavor instabilities in three-dimensional core-
collapse supernova models, Phys. Rev. D 103, 063033
(2021).

[14] Robert Glas, H. Thomas Janka, Francesco Capozzi,
Manibrata Sen, Basudeb Dasgupta, Alessandro Mirizzi,
and Günter Sigl, Fast neutrino flavor instability in the

HIROKI NAGAKURA PHYS. REV. D 106, 063011 (2022)

063011-16

https://doi.org/10.1103/PhysRevD.62.033007
https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1103/PhysRevD.86.085015
https://doi.org/10.1103/PhysRevD.86.085015
https://doi.org/10.1103/PhysRevD.93.045021
https://doi.org/10.1103/PhysRevD.94.105006
https://arXiv.org/abs/2104.11369
https://doi.org/10.1103/PhysRevD.100.043004
https://doi.org/10.3847/1538-4357/ab4cf2
https://doi.org/10.3847/1538-4357/ab4cf2
https://doi.org/10.1103/PhysRevResearch.2.012046
https://doi.org/10.1103/PhysRevResearch.2.012046
https://doi.org/10.1103/PhysRevD.101.043016
https://doi.org/10.1103/PhysRevD.101.023018
https://doi.org/10.1103/PhysRevD.101.023018
https://doi.org/10.1103/PhysRevD.103.063033
https://doi.org/10.1103/PhysRevD.103.063033


neutron-star convection layer of three-dimensional super-
nova models, Phys. Rev. D 101, 063001 (2020).

[15] Francesco Capozzi, Sajad Abbar, Robert Bollig, and
H. Thomas Janka, Fast neutrino flavor conversions in
one-dimensional core-collapse supernova models with
and without muon creation, Phys. Rev. D 103, 063013
(2021).

[16] Hiroki Nagakura, Adam Burrows, Lucas Johns, and
George M. Fuller, Where, when, and why: Occurrence
of fast-pairwise collective neutrino oscillation in three-
dimensional core-collapse supernova models, Phys. Rev. D
104, 083025 (2021).

[17] Akira Harada and Hiroki Nagakura, Prospects of fast flavor
neutrino conversion in rotating core-collapse supernovae,
Astrophys. J. 924, 109 (2022).

[18] Meng-Ru Wu and Irene Tamborra, Fast neutrino conver-
sions: Ubiquitous in compact binary merger remnants,
Phys. Rev. D 95, 103007 (2017).

[19] Meng-Ru Wu, Irene Tamborra, Oliver Just, and Hans-
Thomas Janka, Imprints of neutrino-pair flavor conversions
on nucleosynthesis in ejecta from neutron-star merger
remnants, Phys. Rev. D 96, 123015 (2017).

[20] Manu George, Meng-Ru Wu, Irene Tamborra, Ricard
Ardevol-Pulpillo, and Hans-Thomas Janka, Fast neutrino
flavor conversion, ejecta properties, and nucleosynthesis in
newly-formed hypermassive remnants of neutron-star
mergers, Phys. Rev. D 102, 103015 (2020).

[21] Xinyu Li and Daniel M. Siegel, Neutrino Fast Flavor
Conversions in Neutron-Star Postmerger Accretion Disks,
Phys. Rev. Lett. 126, 251101 (2021).

[22] Oliver Just, Sajad Abbar, Meng-Ru Wu, Irene Tamborra,
Hans-Thomas Janka, and Francesco Capozzi, Fast neutrino
conversion in hydrodynamic simulations of neutrino-
cooled accretion disks, Phys. Rev. D 105, 083024
(2022).

[23] Sovan Chakraborty, Rasmus Hansen, Ignacio Izaguirre,
and Georg Raffelt, Collective neutrino flavor conversion:
Recent developments, Nucl. Phys. B908, 366 (2016).

[24] Irene Tamborra and Shashank Shalgar, New developments
in flavor evolution of a dense neutrino gas, Annu. Rev.
Nucl. Part. Sci. 71, 165 (2021).

[25] Steen Hannestad, Georg G. Raffelt, Günter Sigl, and
Yvonne Y. Y. Wong, Self-induced conversion in dense
neutrino gases: Pendulum in flavor space, Phys. Rev. D 74,
105010 (2006).

[26] Georg G. Raffelt and Alexei Yu. Smirnov, Adiabaticity and
spectral splits in collective neutrino transformations, Phys.
Rev. D 76, 125008 (2007).

[27] Huaiyu Duan, George M. Fuller, J. Carlson, and Yong-
Zhong Qian, Analysis of collective neutrino flavor
transformation in supernovae, Phys. Rev. D 75, 125005
(2007).

[28] GeorgG. Raffelt andGünter Sigl, Self-induced decoherence
in dense neutrino gases, Phys. Rev. D 75, 083002
(2007).

[29] Huaiyu Duan, Collective neutrino oscillations and sponta-
neous symmetry breaking, Int. J. Mod. Phys. E 24,
1541008 (2015).

[30] Lucas Johns, Hiroki Nagakura, George M. Fuller, and
Adam Burrows, Neutrino oscillations in supernovae:

Angular moments and fast instabilities, Phys. Rev. D
101, 043009 (2020).

[31] Ian Padilla-Gay, Irene Tamborra, and Georg G. Raffelt,
Neutrino Flavor Pendulum Reloaded: The Case of Fast
Pairwise Conversion, Phys. Rev. Lett. 128, 121102 (2022).

[32] Huaiyu Duan, George M. Fuller, and Yong-Zhong Qian,
Collective neutrino flavor transformation in supernovae,
Phys. Rev. D 74, 123004 (2006).

[33] Huaiyu Duan, George M. Fuller, J. Carlson, and Yong-
Zhong Qian, Simulation of coherent nonlinear neutrino
flavor transformation in the supernova environment:
Correlated neutrino trajectories, Phys. Rev. D 74,
105014 (2006).

[34] Huaiyu Duan, George M. Fuller, and Yong-Zhong Qian,
Simple picture for neutrino flavor transformation in super-
novae, Phys. Rev. D 76, 085013 (2007).

[35] Gianluigi Fogli, Eligio Lisi, Antonio Marrone, and
Alessandro Mirizzi, Collective neutrino flavor transitions
in supernovae and the role of trajectory averaging, J.Cosmol.
Astropart. Phys. 12 (2007) 010.

[36] Huaiyu Duan and Alexander Friedland, Self-Induced
Suppression of Collective Neutrino Oscillations in a
Supernova, Phys. Rev. Lett. 106, 091101 (2011).

[37] Basudeb Dasgupta, Evan P. O’Connor, and Christian D.
Ott, Role of collective neutrino flavor oscillations in core-
collapse supernova shock revival, Phys. Rev. D 85, 065008
(2012).

[38] Yue Yang and James P. Kneller, GR effects in supernova
neutrino flavor transformations, Phys. Rev. D 96, 023009
(2017).

[39] Alexey Vlasenko and G. C. McLaughlin, Matter-neutrino
resonance in a multiangle neutrino bulb model, Phys. Rev.
D 97, 083011 (2018).

[40] Masamichi Zaizen, Takashi Yoshida, Kohsuke Sumiyoshi,
and Hideyuki Umeda, Collective neutrino oscillations and
detectabilities in failed supernovae, Phys. Rev. D 98,
103020 (2018).

[41] Masamichi Zaizen, Shunsaku Horiuchi, Tomoya Takiwaki,
Kei Kotake, Takashi Yoshida, Hideyuki Umeda, and John
F. Cherry, Three-flavor collective neutrino conversions
with multi-azimuthal-angle instability in an electron-
capture supernova model, Phys. Rev. D 103, 063008 (2021).

[42] Basudeb Dasgupta and Alessandro Mirizzi, Temporal
instability enables neutrino flavor conversions deep inside
supernovae, Phys. Rev. D 92, 125030 (2015).

[43] Francesco Capozzi, Basudeb Dasgupta, Alessandro
Mirizzi, Manibrata Sen, and Günter Sigl, Collisional
Triggering of Fast Flavor Conversions of Supernova
Neutrinos, Phys. Rev. Lett. 122, 091101 (2019).

[44] Sajad Abbar, Huaiyu Duan, and Shashank Shalgar, Flavor
instabilities in the multiangle neutrino line model, Phys.
Rev. D 92, 065019 (2015).

[45] Sajad Abbar and Huaiyu Duan, Fast neutrino flavor
conversion: Roles of dense matter and spectrum crossing,
Phys. Rev. D 98, 043014 (2018).

[46] Sajad Abbar and Maria Cristina Volpe, On fast neutrino
flavor conversion modes in the nonlinear regime, Phys.
Lett. B 790, 545 (2019).

[47] Alessandro Mirizzi, Gianpiero Mangano, and Ninetta
Saviano, Self-induced flavor instabilities of a dense

GENERAL-RELATIVISTIC QUANTUM-KINETICS NEUTRINO … PHYS. REV. D 106, 063011 (2022)

063011-17

https://doi.org/10.1103/PhysRevD.101.063001
https://doi.org/10.1103/PhysRevD.103.063013
https://doi.org/10.1103/PhysRevD.103.063013
https://doi.org/10.1103/PhysRevD.104.083025
https://doi.org/10.1103/PhysRevD.104.083025
https://doi.org/10.3847/1538-4357/ac38a0
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.96.123015
https://doi.org/10.1103/PhysRevD.102.103015
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevD.105.083024
https://doi.org/10.1103/PhysRevD.105.083024
https://doi.org/10.1016/j.nuclphysb.2016.02.012
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.1103/PhysRevD.74.105010
https://doi.org/10.1103/PhysRevD.74.105010
https://doi.org/10.1103/PhysRevD.76.125008
https://doi.org/10.1103/PhysRevD.76.125008
https://doi.org/10.1103/PhysRevD.75.125005
https://doi.org/10.1103/PhysRevD.75.125005
https://doi.org/10.1103/PhysRevD.75.083002
https://doi.org/10.1103/PhysRevD.75.083002
https://doi.org/10.1142/S0218301315410086
https://doi.org/10.1142/S0218301315410086
https://doi.org/10.1103/PhysRevD.101.043009
https://doi.org/10.1103/PhysRevD.101.043009
https://doi.org/10.1103/PhysRevLett.128.121102
https://doi.org/10.1103/PhysRevD.74.123004
https://doi.org/10.1103/PhysRevD.74.105014
https://doi.org/10.1103/PhysRevD.74.105014
https://doi.org/10.1103/PhysRevD.76.085013
https://doi.org/10.1088/1475-7516/2007/12/010
https://doi.org/10.1088/1475-7516/2007/12/010
https://doi.org/10.1103/PhysRevLett.106.091101
https://doi.org/10.1103/PhysRevD.85.065008
https://doi.org/10.1103/PhysRevD.85.065008
https://doi.org/10.1103/PhysRevD.96.023009
https://doi.org/10.1103/PhysRevD.96.023009
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.98.103020
https://doi.org/10.1103/PhysRevD.98.103020
https://doi.org/10.1103/PhysRevD.103.063008
https://doi.org/10.1103/PhysRevD.92.125030
https://doi.org/10.1103/PhysRevLett.122.091101
https://doi.org/10.1103/PhysRevD.92.065019
https://doi.org/10.1103/PhysRevD.92.065019
https://doi.org/10.1103/PhysRevD.98.043014
https://doi.org/10.1016/j.physletb.2019.02.002
https://doi.org/10.1016/j.physletb.2019.02.002


neutrino stream in a two-dimensional model, Phys. Rev. D
92, 021702 (2015).

[48] Lucas Johns, Hiroki Nagakura, George M. Fuller, and
Adam Burrows, Fast oscillations, collisionless relaxation,
and spurious evolution of supernova neutrino flavor, Phys.
Rev. D 102, 103017 (2020).

[49] Zewei Xiong and Yong-Zhong Qian, Stationary solutions
for fast flavor oscillations of a homogeneous dense
neutrino gas, Phys. Lett. B 820, 136550 (2021).

[50] Shashank Shalgar and Irene Tamborra, Three flavor
revolution in fast pairwise neutrino conversion, Phys.
Rev. D 104, 023011 (2021).

[51] Hirokazu Sasaki and Tomoya Takiwaki, Dynamics of fast
neutrino flavor conversionswith scattering effects:A detailed
analysis, Prog. Theor. Exp. Phys. 2022, 073E01 (2022).

[52] Rasmus S. L. Hansen, Shashank Shalgar, and Irene
Tamborra, Collisional dilemma: Enhancement or damping
of fast flavor conversion of neutrinos, Phys. Rev. D 105,
123003 (2022).

[53] Basudeb Dasgupta, Alessandro Mirizzi, and Manibrata
Sen, Fast neutrino flavor conversions near the supernova
core with realistic flavor-dependent angular distributions,
J. Cosmol. Astropart. Phys. 02 (2017) 019.

[54] Joshua D. Martin, Sajad Abbar, and Huaiyu Duan, Non-
linear flavor development of a two-dimensional neutrino
gas, Phys. Rev. D 100, 023016 (2019).

[55] Joshua D. Martin, Changhao Yi, and Huaiyu Duan,
Dynamic fast flavor oscillation waves in dense neutrino
gases, Phys. Lett. B 800, 135088 (2020).

[56] Soumya Bhattacharyya and Basudeb Dasgupta, Late-time
behavior of fast neutrino oscillations, Phys. Rev. D 102,
063018 (2020).

[57] Soumya Bhattacharyya and Basudeb Dasgupta, Fast
Flavor Depolarization of Supernova Neutrinos, Phys.
Rev. Lett. 126, 061302 (2021).

[58] Meng-Ru Wu, Manu George, Chun-Yu Lin, and Zewei
Xiong, Collective fast neutrino flavor conversions in a 1D
box: Initial conditions and long-term evolution, Phys. Rev.
D 104, 103003 (2021).

[59] Joshua D. Martin, J. Carlson, Vincenzo Cirigliano, and
Huaiyu Duan, Fast flavor oscillations in dense neutrino
media with collisions, Phys. Rev. D 103, 063001 (2021).

[60] Sherwood Richers, Donald Willcox, and Nicole Ford,
Neutrino fast flavor instability in three dimensions, Phys.
Rev. D 104, 103023 (2021).

[61] Masamichi Zaizen and Taiki Morinaga, Nonlinear evolu-
tion of fast neutrino flavor conversion in the preshock
region of core-collapse supernovae, Phys. Rev. D 104,
083035 (2021).

[62] Huaiyu Duan, Joshua D. Martin, and Sivaprasad
Omanakuttan, Flavor isospin waves in one-dimensional
axisymmetric neutrino gases, Phys. Rev. D 104, 123026
(2021).

[63] Sajad Abbar and Francesco Capozzi, Suppression of fast
neutrino flavor conversions occurring at large distances in
core-collapse supernovae, J. Cosmol. Astropart. Phys. 03
(2022) 051.

[64] Günter Sigl, Simulations of fast neutrino flavor conver-
sions with interactions in inhomogeneous media, Phys.
Rev. D 105, 043005 (2022).

[65] Soumya Bhattacharyya and Basudeb Dasgupta, Elaborat-
ing the ultimate fate of fast collective neutrino flavor
oscillations, arXiv:2205.05129.

[66] Shashank Shalgar and Irene Tamborra, Supernova neutrino
decoupling is altered by flavor conversion, arXiv:2206
.00676.

[67] Sherwood Richers, Huaiyu Duan, Meng-Ru Wu, Soumya
Bhattacharyya, Masamichi Zaizen, Manu George, Chun-
Yu Lin, and Zewei Xiong, Code comparison for fast
flavor instability simulation, Phys. Rev. D 106, 043011
(2022).

[68] Sajad Abbar and Huaiyu Duan, Neutrino flavor instabil-
ities in a time-dependent supernova model, Phys. Lett. B
751, 43 (2015).

[69] Sherwood Richers, Don E. Willcox, Nicole M. Ford, and
Andrew Myers, Particle-in-cell simulation of the neutrino
fast flavor instability, Phys. Rev. D 103, 083013 (2021).

[70] Manu George, Chun-Yu Lin, Meng-Ru Wu, Tony G. Liu,
and Zewei Xiong, COSEν: A collective oscillation simu-
lation engine for neutrinos, arXiv:2203.12866.

[71] C. Y. Cardall, E. Endeve, and A. Mezzacappa,
Conservative 3þ 1 general relativistic Boltzmann equa-
tion, Phys. Rev. D 88, 023011 (2013).

[72] H. Nagakura, K. Sumiyoshi, and S. Yamada, Three-
dimensional Boltzmann Hydro code for core collapse in
massive stars. I. Special relativistic treatments, Astrophys.
J. Suppl. Ser. 214, 16 (2014).

[73] Shane W. Davis and Charles F. Gammie, Covariant
radiative transfer for black hole spacetimes, Astrophys.
J. 888, 94 (2020).

[74] H. Nagakura, W. Iwakami, S. Furusawa, K. Sumiyoshi, S.
Yamada, H. Matsufuru, and A. Imakura, Three-dimen-
sional Boltzmann-Hydro code for core-collapse in massive
stars. II. The implementation of moving-mesh for neutron
star kicks, Astrophys. J. Suppl. Ser. 229, 42 (2017).

[75] Hiroki Nagakura, Kohsuke Sumiyoshi, and Shoichi
Yamada, Three-dimensional Boltzmann-Hydro code for
core-collapse in massive stars. III. A new method for
momentum feedback from neutrino to matter, Astrophys. J.
878, 160 (2019).

[76] Ryuichiro Akaho, Akira Harada, Hiroki Nagakura,
Kohsuke Sumiyoshi, Wakana Iwakami, Hirotada Okawa,
Shun Furusawa, Hideo Matsufuru, and Shoichi Yamada,
Multidimensional Boltzmann neutrino transport code in
full general relativity for core-collapse simulations,
Astrophys. J. 909, 210 (2021).

[77] H. Nagakura, W. Iwakami, S. Furusawa, H. Okawa, A.
Harada, K. Sumiyoshi, S. Yamada, H. Matsufuru, and A.
Imakura, Simulations of core-collapse supernovae in
spatial axisymmetry with full Boltzmann neutrino trans-
port, Astrophys. J. 854, 136 (2018).

[78] Hiroki Nagakura, Kohsuke Sumiyoshi, and Shoichi
Yamada, Possible early linear acceleration of proto-
neutron stars via asymmetric neutrino emission in
core-collapse supernovae, Astrophys. J. Lett. 880, L28
(2019).

[79] Akira Harada, Hiroki Nagakura, Wakana Iwakami,
Hirotada Okawa, Shun Furusawa, Hideo Matsufuru,
Kohsuke Sumiyoshi, and Shoichi Yamada, On the neutrino
distributions in phase space for the rotating core-collapse

HIROKI NAGAKURA PHYS. REV. D 106, 063011 (2022)

063011-18

https://doi.org/10.1103/PhysRevD.92.021702
https://doi.org/10.1103/PhysRevD.92.021702
https://doi.org/10.1103/PhysRevD.102.103017
https://doi.org/10.1103/PhysRevD.102.103017
https://doi.org/10.1016/j.physletb.2021.136550
https://doi.org/10.1103/PhysRevD.104.023011
https://doi.org/10.1103/PhysRevD.104.023011
https://doi.org/10.1093/ptep/ptac082
https://doi.org/10.1103/PhysRevD.105.123003
https://doi.org/10.1103/PhysRevD.105.123003
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1103/PhysRevD.100.023016
https://doi.org/10.1016/j.physletb.2019.135088
https://doi.org/10.1103/PhysRevD.102.063018
https://doi.org/10.1103/PhysRevD.102.063018
https://doi.org/10.1103/PhysRevLett.126.061302
https://doi.org/10.1103/PhysRevLett.126.061302
https://doi.org/10.1103/PhysRevD.104.103003
https://doi.org/10.1103/PhysRevD.104.103003
https://doi.org/10.1103/PhysRevD.103.063001
https://doi.org/10.1103/PhysRevD.104.103023
https://doi.org/10.1103/PhysRevD.104.103023
https://doi.org/10.1103/PhysRevD.104.083035
https://doi.org/10.1103/PhysRevD.104.083035
https://doi.org/10.1103/PhysRevD.104.123026
https://doi.org/10.1103/PhysRevD.104.123026
https://doi.org/10.1088/1475-7516/2022/03/051
https://doi.org/10.1088/1475-7516/2022/03/051
https://doi.org/10.1103/PhysRevD.105.043005
https://doi.org/10.1103/PhysRevD.105.043005
https://arXiv.org/abs/2205.05129
https://arXiv.org/abs/2206.00676
https://arXiv.org/abs/2206.00676
https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1016/j.physletb.2015.10.019
https://doi.org/10.1016/j.physletb.2015.10.019
https://doi.org/10.1103/PhysRevD.103.083013
https://arXiv.org/abs/2203.12866
https://doi.org/10.1103/PhysRevD.88.023011
https://doi.org/10.1088/0067-0049/214/2/16
https://doi.org/10.1088/0067-0049/214/2/16
https://doi.org/10.3847/1538-4357/ab5950
https://doi.org/10.3847/1538-4357/ab5950
https://doi.org/10.3847/1538-4365/aa69ea
https://doi.org/10.3847/1538-4357/ab2189
https://doi.org/10.3847/1538-4357/ab2189
https://doi.org/10.3847/1538-4357/abe1bf
https://doi.org/10.3847/1538-4357/aaac29
https://doi.org/10.3847/2041-8213/ab30ca
https://doi.org/10.3847/2041-8213/ab30ca


supernova simulated with a Boltzmann-neutrino-radiation-
hydrodynamics code, Astrophys. J. 872, 181 (2019).

[80] Wakana Iwakami, Hirotada Okawa, Hiroki Nagakura,
Akira Harada, Shun Furusawa, Kosuke Sumiyoshi,
Hideo Matsufuru, and Shoichi Yamada, Simulations of
the early postbounce phase of core-collapse supernovae in
three-dimensional space with full Boltzmann neutrino
transport, Astrophys. J. 903, 82 (2020).

[81] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-
Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies,
R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers,
Contemporary particle-in-cell approach to laser-plasma
modeling, Plasma Phys. Controlled Fusion 57, 113001
(2015).

[82] Hiroki Nagakura and Masamichi Zaizen, Time-dependent,
quasi-steady, and global features of fast neutrino-flavor
conversion, arXiv:2206.04097.

[83] Sherwood A. Richers, Gail C. McLaughlin, James P.
Kneller, and Alexey Vlasenko, Neutrino quantum kinetics
in compact objects, Phys. Rev. D 99, 123014 (2019).

[84] Chinami Kato, Hiroki Nagakura, and Taiki Morinaga,
Neutrino transport with the Monte Carlo method. II.
Quantum kinetic equations, Astrophys. J. Suppl. Ser.
257, 55 (2021).

[85] R. Bollig, H. T. Janka, A. Lohs, G. Martínez-Pinedo, C. J.
Horowitz, and T. Melson, Muon Creation in Supernova
Matter Facilitates Neutrino-Driven Explosions, Phys. Rev.
Lett. 119, 242702 (2017).

[86] Tobias Fischer, Gang Guo, Gabriel Martínez-Pinedo,
Matthias Liebendörfer, and Anthony Mezzacappa, Muo-
nization of supernova matter, Phys. Rev. D 102, 123001
(2020).

[87] F. J. Botella, C. S. Lim, and W. J. Marciano, Radiative
corrections to neutrino indices of refraction, Phys. Rev. D
35, 896 (1987).

[88] M. Shibata, H. Nagakura, Y. Sekiguchi, and S. Yamada,
Conservative form of Boltzmann’s equation in general
relativity, Phys. Rev. D 89, 084073 (2014).

[89] Arthur Loureiro, Andrei Cuceu, Filipe B. Abdalla,
Bruno Moraes, Lorne Whiteway, Michael McLeod,
Sreekumar T. Balan, Ofer Lahav, Aurélien Benoit-
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