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The purely gravitational evidence supporting the need for dark matter (DM) particles is compelling and
based on Galactic to cosmological scale observations. Thus far, the promising weakly interacting massive
particles scenarios have eluded detection, motivating alternative models for DM. We consider the scenarios
involving the superheavy dark matter (SHDM) that potentially can be emitted by primordial black holes
(PBHs) and can decay or annihilate into ultrahigh-energy (UHE) neutrinos and photons. The observation of
a population of photons with energies E ≥ 1011 GeV would imply the existence of completely new
physical phenomena, or shed some light on DM models. Only the ultrahigh-energy cosmic-ray
observatories have the capabilities to detect such UHE decay products via the measurements of UHE
photon-induced extensive air showers. Using the upper bound on the flux of UHE cosmic rays beyond
1011.3 GeV implying Jð> 1011.3 GeVÞ < 3.6 × 10−5 km−2 sr−1 yr−1, at the 90% C.L. reported by the Pierre
Auger Observatory, we obtain global limits on the lifetime of the DM particles with masses
1015 ≤ MX ≤ 1017 GeV. The constraints derived here are new and cover a region of the parameter space
not yet explored. We compare our results with the projected constraints from future POEMMA and JEM-
EUSO experiments, in order to quantify the improvement that will be obtained by these missions.
Moreover, assuming that an epoch of early PBHs domination introduces a unique spectral break, f�, in the
gravitational wave spectrum, the frequency of which is related to the SHDMmass, we map potential probes
and limits of the DM particles masses on the f� −MX parameter space.
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I. INTRODUCTION: SOURCES OF
CONSTRAINTS ON X PARTICLES

The current cosmological understanding of structure
formation, without taking the hazardous jump away from
standard General Relativity gravity, implies postulating the
existence of Dark Matter (DM). Such existence, which
entails specific gravitational consequences on structures
that have been well established [1,2], although cosmologi-
cally dominant, continues to fail to produce constituent
particles events in direct detection attempts, whether
through nuclear recoil tanks or in accelerators [3–13], or
in indirect surveys seeking detection through annihilation
events of weakly interacting massive particle (WIMP) [14].

So far, many fundamental characteristics of DM particles
remain quite unconstrained, including their mass or their
self-annihilation time. Solutions to problems of the particle
physics Standard Model (SM) have given birth to a wealth
of DM models. Although most of them keep DM in a
separate noninteracting sector, none of the models have
won over the favors of the field because of their compelling
theoretical appeal.
For many decades, the favored models characterized DM

as a relic density of WIMPs [15–18] (for a precise calcu-
lation of the WIMP relic abundance, see Refs. [19,20];
partial-wave unitarity dictates an upper bound on theWIMP
mass ≤ 110 TeV). However, the extensive experimental
program setup forWIMP detection in the direct and indirect
detection experiments [21–33] as well as in the LHC has
given negative or inconclusive results so far [34–36].
Despite these facts, a complete exploration of the WIMP
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parameter space remains the highest priority of the DM
community, and WIMP discovery is still a viable option in
next-generation experiments.
Because the assumption of relatively low-mass DM

seems quite natural, it is rarely questioned. However, the
null results from DM searches began closing the favored
parameter space for the WIMP models and at the same
time started to open a door to alternatives to the WIMP
paradigm.
More recently, dark sector interactions have been given

more serious consideration, the viability of which has been
scrutinized in Comelli et al. [37]. Observational effects on
galaxy clusters dynamics of such interactions have gathered
credibility [38–46]. However, most of the current con-
straints tend to favor stable or long-lived, cold or warm,
nonbaryonic DM [47]. They consequently prompted the
exploration of improved interacting models that respect
those constraints, opening fairly large mass and interaction
strength ranges for acceptable DM candidates [48].
Alternative views on DM have emerged a while ago.

The most radical of them suggests that DM interacts
only gravitationally, explaining the negative experimental
results. For example, cold DM could be a manifestation
of the gravitational sector itself consisting of massive
gravitons of bimetric gravity [49,50]—the only known
self-consistent, ghost-free extension of General Relativity
with massive spin-2 fields [51].
Among the well-motivated and less radical ideas for

what DM could be, the WIMPzilla hypothesis postulates
that DM is made of gravitationally produced (nonthermal
relic) superweakly interacting supermassive so-called X
particles—the superheavy Dark Matter (SHDM) [52–58].
The hypothesis of DM consisting of heavy long-lived
particles has attracted significant attention in the context
of inflationary cosmology [59–62]. There are several
scenarios of effective DM particles production at various
stages of early Universe evolution. SHDM can be created
gravitationally at the end of inflation [52–54,61], during
preheating [63,64] and reheating [59,65,66], and from the
collisions of vacuum bubbles at phase transitions [55,64],
or from emission [67] of the primordial black holes (PBHs)
(see Ref. [57] for a review).
Of course, SHDM particles have been considered before

to a certain extent. In particular, there is an extensive
literature regarding observational constraints on unusually
heavy DM candidates [for example, see Refs. [68–71], and
references therein]. The earliest observational hint of
SHDM existence was provided in the AGASA experiment
by detection of superGZK cosmic rays [ [72] with GZK
standing for Greisen, Zatzepin, and Kuzmin]. This GZK
cutoff was later supported in results from next-generation
cosmic-ray experiments [73,74]. The IceCube PeV neu-
trinos detection [75,76] have led to various DM decay
propositions of interpretations [77–82]. However, recent
analyses of the respective γ-ray signal [83,84] have

deprecated most of them, although the photon production
suppression feature of a few of those DMmodels keep them
conceivable [80,85,86]. The ultrahigh-energy cosmic rays
(UHECRs) flux appears, from experimental data, to be
dominated, above its “ankle,” by an astrophysical, extra-
galactic component [87], most possibly sourced from
starburst galaxies [88]. Supposing the systematic uncer-
tainties of current high-energy hadronic interaction models
remain sufficiently small, we can expect the acceleration
of heavier nuclei, in addition to protons, as sources of
this flux. Nevertheless, experimental data still allow for a
minority component of different origin which, beyond the
suppression, could still dominate the flux [71,89].
The possibility that the by-products of the decay of

unstable SHDM particles can contribute to the UHECR
flux has been studied extensively in the past [see for
instance Refs. [90–95] ]. In these models, DM is composed
of supermassive particles produced gravitationally during
inflation [52–54,57]. These particles would be clustered in
the halo of the galaxies, such as ours.
The discovery of gravitational waves (GWs) by

Laser Interferometer Gravitational Wave Observatory
(LIGO) and Virgo Collaboration of black holes [96–100]
and neutron stars [101,102] has opened up a new cosmic
frontier for the SHDM search by examination of the
stochastic GW background (SGWB) [103–106] in the
multifrequency range [67].
Two main problems should be addressed in the dis-

cussion of SHDM models: how particles with very high
mass (MX > 1013 GeV) can be quasistable, with a lifetime
much longer than the age of the Universe t0, and how their
abundance can be dominant in the Universe today. The
stability of SHDM can be achieved assuming the existence
of a discrete gauge symmetry that protects the particle from
decaying, in the same way as neutralino stability through R
parity in supersymmetry. This discrete symmetry can be
weakly broken, assuring a lifetime τX > t0, through worm-
hole [60] or instanton [59] effects. An example of a particle
with a lifetime exceeding the age of the Universe can be
found in [107]. Instanton decays induced by operators
involving both the hidden sector and the SM sector may
give rise to observable signals in the spectrum of UHECRs
[59,60]. Another possible way to stabilize such particles
may be a modification of the standard cosmological
expansion law in such a way that the density of these
heavy relics would be significantly reduced [108].
Therefore, technically the SHDM models have two main

parameters: mass MX and lifetime, τX, in which a minority
component of the UHECRs originates from the decay of
these unstable particles. Stable X particles are not so
interesting from the experimental point of view since their
annihilation cross section is bounded by unitarity:
σannX ∼ 1=M2

X, which makes its indirect detection impos-
sible for today’s experiments [109]. The spectrum from
SHDM decay is expected to be dominated by gamma rays
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[110–112] and neutrinos [77,113] because of more effec-
tive production of pions than nucleons in the QCD
cascades. Since the photons would not be attenuated owing
to their proximity, they become the prime signal because it
is easier to detect photons than neutrinos. However, such
γ-ray production can be substantially different for different
decay channels [71].
While it is very challenging to probe such superheavy

DM via the traditional direct, indirect, or collider experi-
ments, this paper aims to show the current bounds on such
X particles, with a mass larger than the weak scale by
several (perhaps many) orders of magnitude, from the
perspective of the recent cosmic-ray and GWobservations.
In this paper, we examine particles’ mass range from 1015

to 1017 GeV together with the most recent UHECR and
GW data to derive the strongest lower limit on the lifetime
of decaying superheavy WIMPs (WIMPzillas) and their
mass. In Sec. II we estimated the photon flux from SHDM
decays. For this, we evaluated two separate contributions:
the astrophysical factor and the particle physics factor. We
used current high-energy γ-ray measurements [114] to
examine bounds that one may put on the parameter space
of decaying SHDM. In addition, from the relation of the
GW spectrum break, f�, with the SHDM mass, following
Ref. [67], we mapped potential probes and limits of the
SHDM particle masses on the f� −MX parameter space in
Sec. III. Result discussion is given in Sec. IV and we
conclude in Sec. V.

II. BOUNDS ON SHDM FROM THE γ-RAY FLUX

Given the mass of the SHDM particles, the decay time
corresponding to the scenario for the largest SHDM
cosmic-ray flux, compatible with the upper limits to the
photon fraction obtained by the Pierre Auger Observatory
(PAO), can be estimated from the predicted integral γ-ray
flux [110], which may be observed on Earth by an
observatory with uniform exposure, as

JðEÞ ¼ NðE > EminÞ
4πMXτX

( R
V
ρDMðrÞωðδ;a0;θmaxÞ

r2 dV

2π
R π

2

−π
2
ωðδ; a0; θmaxÞ cosðδÞdδ

)
:

ð1Þ

This expression can be easily adopted in case we start
to look at cosmic rays using the Moon’s regolith [115].
Here NðE > EminÞ is an integral number of photons with
energies higher than Emin produced in the decay of X
particle; θ is the angle between the line of sight and the axis
defined by Earth and the Galactic center [116]; τX is the
SHDM lifetime, 1011–1022 years; MX is the SHDM par-
ticle mass, 1015–1017 GeV; ρDMðrÞ≡ ρXðrÞ is the density
of DM in the Galaxy as function of distance, r, from the
Galactic Center, in GeV

cm3 . Integration in the numerator ranges
over all the volume of the halo (RH ¼ 260 kpc) and in the

denominator over all the sky [the averaging over right
ascension is included in the definition of the directional
exposure, ωðn̂Þ].
The directional exposure, ωðn̂Þ, provides the effective

time-integrated collecting area for a flux from each direc-
tion of the sky n̂ðα; δÞ, characterized by the right ascension
α and the declination δ. For an experiment at latitude λ,
which is fully efficient for particles arriving with zenith
angle < θmax and that experiences stable operation, ωðn̂Þ
actually becomes independent of α when integrating the
local-angle detection efficiency over full periods of sidereal
revolution of the Earth. Full efficiency means that the
acceptance depends on θ only through the reduction in the
perpendicular area given by cosðθÞ. The ω dependence on
declination, δ, geographical latitude of the given experi-
ment λ, and the maximal zenith angle θmax accessible for
fully efficient observation in the experiment, rely on
geometrical acceptance terms and is given by [117,118]

ωðS;Δt; δ; λ; θÞ ¼ SΔt
2π

cosðλÞ cosðδÞ sinðamðθ; δ; λÞÞ

þ SΔt
2π

amðθ; δ; λÞ sinðλÞ sinðδÞ; ð2Þ

where S is the effective surface of the given experiment
(detector array); Δt is the total exposure time of the
given experiment (or time of data collection). The location
of the Pierre Auger Observatory, 35.1° − 35.5°S; 69.6°W
at 875 g=cm2 atmospheric depth [119], corresponds to the
Pampa Amarilla plain, in the Mendoza Province of
Argentina, close to the Malargüe town. Initiating data
collection in January 2004 and completing its baseline
design construction by 2008, by 2021 the PAO collected
exposure had exceeded 7.68 × 104 km2 sr yr, exceeding
the sum over all of the other cosmic-ray experiments
available [120]. Therefore, for the PAO with S¼ 1.037×
104 km2, Δt ¼ 7.41 yr from Ref. [120], λ ¼ −35.2° and
−15° ≤ δ ≤ 25°.
The parameter am of the observatory is given by

amðθ; δ; λÞ ¼
8<
:

0 for ξ > 1

π for ξ > −1
arccosðξÞ otherwise;

with

ξðθ; δ; λÞ ¼ cosðθmaxÞ − sinðλÞ sinðδÞ
cosðλÞ cosðδÞ : ð3Þ

The DM galactic distribution, or DM density profile
ρDM, is a function of the Galactic longitude, l, and latitude
b, which in turn is related to the line-of-sight, s, coordinate:

rðs; b; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ r2⊙ − 2sr⊙ cosðbÞ cosðlÞ

q
; ð4Þ
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where r⊙ ¼ 8.5 kpc denotes the distance between the Earth
and the Galactic Center. The local DM density is an
important ancillary parameter when constraining DM
signatures. However, due to the lack of a robust estimate
of ρX, the distribution of DM is assumed to follow a density
profile inspired by numerical simulations, typically an
analytic fit such as the well-known Navarro-Frenk-White
(NFW) [121] or Einasto [122,123] profiles, with two or
more free parameters whose best-fit values are then
determined from dynamical constraints. In this work we
adopt both reference profiles: the NFW profile

ρNFWX ðrÞ ¼ ρs

�
r
rs

�
1þ r

rs

�
2
�
−1

ð5Þ

with rs ¼ 28.44 kpc [121], and the Einasto profile

ρEinastoX ðrÞ ¼ ρse
−2
α½ð rrsÞα−1�; ð6Þ

in contrast with the somewhat steeper NFW profile,
with rs ¼ 30.28 kpc, α ¼ 0.17 [122,124], and ρs ¼
0.105 GeV cm−3 [89]. Most recent systematic efforts to
estimate a proper DM profile were summarized in
Ref. [125].
With all this in hand, and defining the element of Galaxy

volume in Eq. (1) as

dV ¼ r2 sinðφÞdrdφdθ ¼ r2 sin

�
π

2
− δ

�
drdδdθ; ð7Þ

one can rewrite the flux expression (1) as follows:

JðEÞ ¼ 1

4π

1

MXτX

dN
dE

(R 50kpc
0

ρXðrÞ
r2 r2dr

R π
2

−π
2
sinðπ

2
− δÞdδ R 2π

0
ωðδ;a0;θmaxÞ

1
dθ

2π
R π

2

−π
2
ωðδ; a0; θmaxÞ cosðδÞdδ

)
: ð8Þ

Using the radius of the Galactic halo RH ¼ 260 kpc, the integral in Eq. (8) can be split into two integrals as was shown in
Refs. [89,126]:

JðE; θÞ ¼ 1

4π

1

MXτX

dN
dE

�
2

Z
r⊙

r⊙ sin θ
r

ρXðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2⊙sin2θ

p drþ
Z

RH

r⊙

r
ρXðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r2⊙sin2θ
p dr

�
: ð9Þ

Therefore, the expected energy distribution on Earth
follows the initial decay spectrum, whereas the angular
distribution incorporates the (uncertain) distribution
of DM in the Galactic halo via the line-of-sight integral
[91,94,127,128].
The energy spectrum, dN=dE, of the expected gamma

rays depends on the exact SHDM decay mechanism and is
model dependent. In our computation we used the follow-
ing flat spectrum similar to [89]:

dNðEÞ
dE

∼ cosðδÞωðS;Δt; δ; λ; θÞ
�
M0.9

X log
�
2E
MX

�
−1.9

�
;

ð10Þ

validated for X → qq̄ decay, it is independent of the particle
type, assuming the photon/nucleon ratio is 2≲ γ=N ≲ 3
and the neutrino/nucleon ratio is 3≲ ν=N ≲ 4. In com-
parison with the other spectra available in the litera-
ture [129–132], the spectrum from [89] is much flatter.
This allows one to have fixed photon/nucleon and
neutrino/nucleon ratios along the whole energy range.
The consideration of the bosonic decay channels such
as WW=ZZ=hh, or leptonic ee=μμ=ττ would require a
different stable particle spectra in Eq. (9).

The PAO is composed of two types of instruments:
(a) fluorescence telescopes, that measure light from
atmospheric nitrogen excitation by air shower particles,
and (b) ground particle detectors, that sample air
shower fronts arriving at the Earth’s surface. Its
maximum zenith angle falls at θmax ¼ 90°, with
the downward-going (DG) channel constrained to
60° ≤ θ ≤ 90° while the Earth-skimming (ES) channel
extends to 60° ≤ θ ≤ 95° [see Ref. [133] ]. Therefore, in
order to make a direct comparison with current limits
on the diffuse UHE γ-ray flux, from Eq. (9), following
[110], we compute the angle-averaged integral γ flux
over the whole sky ð0 < θ < πÞ, averaging over the
directional exposure at the declination of the Auger
Observatory, where the declination limits are −15° ≤
δ ≤ 25° [118].
The SHDM flux contributions from the extragalactic and

galactic halos need to be resolved as they can be important
due to the fact that the gamma rays and protons originating
in that extragalactic halo come from a narrow region of the
sky. Therefore, in that region the contribution of the
extragalactic halo can be more important than the one
corresponding to our galaxy, especially in regions far from
the galactic center where the galactic contribution decreases
considerably [126].
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The fluxes obtained for the various DM masses and DM
density profiles are listed in Table I.

III. BOUNDS ON SHDM FROM THE
GRAVITATIONAL WAVES OBSERVATIONS

Today, the scientific community has started to synthesize
the various astronomical messengers, namely photons,
neutrinos, cosmic rays, and gravitational waves. While
photons, neutrinos, and cosmic rays still have a vital role to
play in multimessenger astronomy, GW observation with
pan-spectral electromagnetic radiation has enriched our
understanding of violent astronomical events [101].
The details of the SHDM production mechanism can

leave their footprint on the primordial GW amplitude as
well as the spectral features. However, such a scenario is
only present if DM mass would be generated by sponta-
neous symmetry breaking of an Abelian symmetry, which
is not the general case.
An early Universe cosmological phase transition induced

by this spontaneous symmetry breaking [134] may result in
emergence of a cosmic-string network [135,136]—linelike
topological defects. Cosmic strings restore that broken
Abelian symmetry at the core of these topological defects

with vortex types of behavior [137]. Their network loses
energy through the shrinking of its closed loops following
their emission of GWs [138,139]. The resulting primordial
GW signal contains key signatures of ultraviolet physics
that would otherwise remain far beyond the reach of regular
ground detection. This is why such signal is a main focus of
current and future investigations of the SGWB [103–106].
In addition, observation of such a signal [140–142] can be a
complementary probe to the range of SHDM mass if one
assumes that such DM particles are produced by emission
of the PBHs.
The shape of the GW spectrum from a cosmic-string

network is expected to follow a convex cored power law,
the slope of which varies with amplitude and frequency,
as well as is parametrized by the product Gμ between the
string tension μ and Newton’s gravitation constant G.
The standard form of the spectral GWenergy density can

be expressed today as the power law:

ΩGWðfÞ ¼
2π2

3H2
0

A2f2yr

�
f
fyr

�
5−γN

; ð11Þ

where f is the oscillation frequency of the emitted GWs,
fyr ¼ 1 yr−1, A is the characteristic GW strain amplitude,
γN is the spectral index of the pulsar timing–residual cross-
power spectrum, and H0 ¼ 67.7 km=ðMpcsÞ is the present
Hubble constant.
Following the recipe defined in [67] one can approx-

imately determine the frequency at which the GW
spectrum, ΩGWðfÞh2, changes slope from a plateau
described by f0 to f−1=3 with the help of the following
expression:

f� ≃ 2.1 × 10−8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50

zeqαΓGμ

s �
MX

T0

�3
5

T
−2
5

0 t−10 ; ð12Þ

where Γ ≃ 50 is the constant rate of GW radiation,
α ¼ 0.1 characterizes the cosmic-string loop size at the
time of formation, zeq ¼ 3387 is the redshift at the usual
matter-radiation equality, occurring at the time teq, T0 ¼
2.725 K is the photon temperature today, and t0 ¼
13.81 Gyr is the age of the Universe.
With Eq. (12) we computed the turning-point frequen-

cies, f�, for the range of masses MX ¼ 1012–1017 GeV
assuming the dimensionless combination [67,143] between
the corresponding cosmic-string tension and SHDM par-
ticle mass,

Gμ ∼ GM2
X: ð13Þ

The obtained frequencies lie within the range from 2.16 to
0.021 Hz, for masses ranging from 1012 to 1017 GeV,
respectively. With such an assumption, furthermore admit-
ting that the Gμ value for MX ¼ 1016 GeV is below the
Cosmic Microwave Background (CMB) limit on Gμ [144]

TABLE I. Integral fluxes for the DM particle candidates with
mass, MX. DM fluxes computed with the help of Eq. (9)
assuming the Einasto and NFW DM density profiles. In addition,
we show results obtained with the energy spectra from [129,130].

MX, (GeV) τX , (years) Jð> E0Þ τX, (years) Jð> E0Þ
Einasto, rs ¼ 30.28 kpc

1015 1021 6.803 × 10−5 1022 6.803 × 10−6

1016 1021 7.406 × 10−5 1022 7.406 × 10−6

1017 1021 8.571 × 10−5 1022 8.571 × 10−6

1015 [129] 1021 1.028 × 10−3 1022 1.028 × 10−4

1016 [129] 1021 3.250 × 10−3 1022 3.250 × 10−4

1017 [129] 1021 1.028 × 10−2 1022 1.028 × 10−3

1015 [130] 1021 5.867 × 10−4 1022 5.867 × 10−5

1016 [130] 1021 1.855 × 10−3 1022 1.855 × 10−4

1017 [130] 1021 5.867 × 10−3 1022 5.867 × 10−4

NFW, rs ¼ 28.44 kpc
1015 1021 7.736 × 10−5 1022 7.736 × 10−6

1016 1021 8.112 × 10−5 1022 8.112 × 10−5

1017 1021 8.186 × 10−5 1022 8.186 × 10−5

1015 [129] 1021 2.047 × 10−4 1022 2.047 × 10−5

1016 [129] 1021 6.473 × 10−4 1022 6.473 × 10−5

1017 [129] 1021 2.047 × 10−3 1022 2.047 × 10−4

1015 [130] 1021 1.168 × 10−4 1022 1.168 × 10−5

1016 [130] 1021 3.694 × 10−4 1022 3.694 × 10−5

1017 [130] 1021 1.168 × 10−3 1022 1.168 × 10−4

NFW, rs ¼ 30.28 kpc
1015 1021 5.451 × 10−5 1022 5.451 × 10−6

1016 1021 5.675 × 10−5 1022 5.675 × 10−6

1017 1021 5.988 × 10−5 1022 5.988 × 10−6
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FIG. 1. Map of the possible probes ofMX and hence of the PBH evaporation temperature projecting the turning-point frequencies f�,
Eq. (12), for the various SHDM particle masses. Here, each diagonal line corresponds to theGμ value in the range 10−19 to 10−7 running
from top to bottom. Below Gμ ¼ 10−7 lies the CMB limit for the cosmic string tension [145]. The relevant sensitivity curves of current
or future GW detectors, such as the Einstein Telescope (ET), Cosmic Explorer (CE), LISA [146], and BBO [147], are reproduced from
[67] using Eq. (12). The light-yellow region is the allowed parameter space assuming the PHB emission to SHDM scenario from [67].
The dark- and light-green bands denote the predicted turning-point frequencies computed assuming the 1σ and 2σ prediction on Gμ
parameter taken from [144] obtained from the fits to the NANOGrav data [140] for the examined SHDM particle masses.

FIG. 2. The red graded area represents solutions of Eq. (14) with respect to the characteristic GW strain amplitude, A, at f ¼ f�ðMXÞ,
projected onto the γN-A plane. Three benchmark points for A and γN parameters, which were listed in Ref. [144], are shown as markers
(circle, shaded star, star). The dark and light contours denote the 1σ and 2σ posteriors in the NANOGrav analysis that allow to describe
the observed stochastic process. Here, we use the contours taken from Ref. [140]. The black dashed vertical line indicates the theoretical
prediction for a population of supermassive black hole binaries, γN ¼ 13=3. Points on the vertical line denote a 95% upper limit on
the dimensionless strain amplitude A ¼ 3 × 10−15 and A ¼ 1.34 × 10−15 at a reference frequency of 1 yr−1 and a spectral index of 13=3
obtained from the European Pulsar Timing Array data and from the NANOGrav report, respectively [141,142].
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(see black data points in Fig. 1) while taking the resulting
1σ value of Gμ [144] from the fits to the NANOGrav signal
[140], which is ½4; 9� × 10−11, we determined f� in the
range of 1.76(1.17) to 27.94(18.63) Hz. This result is

shown with the green band in Fig. 1 with the different
probes of the MX and hence the PBH evaporation temper-
ature. Assuming that PBHs evaporation causes a break in
the GW spectrum at the turning-point frequency [67],
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FIG. 3. Comparison of the upper constraints obtained in the literature with the 95% C.L. exclusion plot for massMX and lifetime τX of
DM particles. The constraints that were obtained with the data of Pierre Auger full-sky analysis [148] assuming NFW DM profile (solid
green lines), or with assumption that the DM profile is given by the Einasto model (dashed blue lines), constraints obtained using the DM
flux estimation from Mikhail Kuznetsov given in the Ref. [89], are shown with the gray bold solid line. The lower limit on the lifetime of
SHDM particles together with the stereoscopic τx sensitivity (defined by the observation of one photon event above 1011.3 GeV in 5 yr of
data collection) of POEMMA (dashed dark gray line) was taken from [89]. The Alcantara 95% C.L. excluded region (dashed-dotted dark
magenta line) and the Kalashed-Kuznetsov excluded region (solid magenta line), curves are all taken from [89]. The regions accessible to
the JEM-EUSO experiment, each region corresponding to a different choice of the power-law index in the inflation potential, β ¼ 2; 4=3; 1,
are plotted from left to right [93]. The γ-ray limits placed by Chianese et al. [71] (orange solid line) and the limits placed by Kachelriess
et al. [113] (red dotted line) are also shown. For illustration purposes, the 95% C.L. upper limit on mass obtained from the possible value of
the Hubble rate at the end of inflation for a reheating efficiency of 1% (10%) is shown as the vertical dashed (dotted) line [149]. The
constraints derived from diffuse γ-ray and neutrino limits from the PAO (solid bold dark red line) and from the KASKADE-Grande (solid
bold red line) are shown. We also show for comparison the constraints obtained assuming Burkert DM profile (black short dashed line)
using the data of Pierre Auger partial-sky analysis [148].
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f�ðMXÞ, from Eqs. (11) and (12) one may solve the
following equality:

2.1 × 10−8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50

zeqαΓGμ

s �
MX

T0

�3
5

T
−2
5

0 t−10

¼ 2π2

3H2
0

A2f2yr

�
f�ðMXÞ
fyr

�
5−γN

; ð14Þ

with respect to the characteristic GW strain amplitude, A,
by scanning over γN in the range of 3.5 to 5.5 with the
step size of 0.005, Gμ in the range of 10−12 to 10−7 with
the step size of 10−13, and α in the range of 10−6 to 0.2 with
the step size of 0.025. The obtained solutions are compared
with the NANOGrav observation in Fig. 2, where the red
cone represents the domain of solutions for the mass range
of MX ¼ 109–1019 GeV. The results for the benchmark
values of Gμ and α parameters, which are listed in [144],
are shown with the solid and dashed blue lines to guide
the eye.

IV. RESULTS AND DISCUSSION

The integral fluxes of photons at the location of the
Auger Observatory for the different masses of the DM
particle candidates are shown in Table I.
In Fig. 3 we compare the result of this work with the

current lifetime limits placed by PAO, the KASCADE-
Grande observations [89]. We add the existing γ-ray limits
placed by Chianese et al. [71] (orange solid line) and
Kachelriess et al. [113] (red dotted line). We also project
the sensitivity regions for the future POEMMA, JEM-
EUSO space missions. The regions accessible by the
POEMMA experiment are shown with the dashed black
line [89]. The regions accessible to the JEM-EUSO experi-
ment, each region corresponding to a different choice of the
power-law index in the inflation potential, β ¼ 2; 4=3; 1,
are plotted from left to right [93].
We see that the integral DM flux for the examined range

of the DM particle candidate masses is of order 10−5; see
Table I. With such a DM flux, the examined SHDM particle
candidates with masses of 1015–1017 GeV and lifetime
of 1021 yr may be already excluded by the current γ-ray
observations; see Fig. 3 (top). In the case that some
mechanisms could increase the DM flux by an order
of magnitude with the same lifetime, small regions on
the τX −MX parameter space could then be constrained,
but only by future detectors, such as JEM-EUSO,
POEMMA; see Fig. 3 (bottom). The constraints obtained
using the DM flux estimation from Kuznetsov given in
Ref. [89] are shown with the gray solid line.
We estimate that the value of the GW spectral break,

which can be computed from the SHDM particle mass,
could represent the smoking gun in the indirect searches for
the SHDM with a certain mass. It is exciting that the GW

spectral break, f�, for the range of the examined SHDM
masses would be precisely within the sensitivity ranges of
midband detectors such as BBO and LISA; see Fig. 1.
In Fig. 2 we map the extracted characteristic GW strain

amplitude, A, by scanning the spectral index of the pulsar
timing–residual cross-power spectrum, γN , using Eq. (14)
on the recent finding of a stochastic common-spectrum
process by NANOGrav. No matter what prior assumption
we made on the initial values of SHDM mass, Gμ, α all
obtained solutions intersect at the same value of the spectral
index, γN ≃ 4. The slope of the lines in Fig. 2 is driven by
the choice of MX and Gμ. For Gμ we took the obtained 1σ
and 2σ Gμ from the fits to NANOGrav data [144].

V. SUMMARY AND CONCLUSION

The abundance of SHDM can easily be dominant in the
Universe today, with an SHDM density ΩSHDM ∼ΩDM.
This effect can be obtained by gravitational production
that resembles the production of density fluctuations
during inflation. The gravitational production of particles
during inflation [58,62] is the only experimentally veri-
fied DM production mechanism as the observed CMB
fluctuations have exactly the same origin. This is because
the production of SHDM during inflation gives rise to
isocurvature perturbations that become sources of gravi-
tational potential energy contributing to the tensor power
spectrum of the CMB [150]. This implies a detectable
primordial tensor-to-scalar ratio r in the CMB power
spectrum. At the end of inflation, a fraction of fluctua-
tions are not stretched beyond the horizon but remain as
particles because the inflation slows down. The weakness
of gravitational interaction naturally explains the tiny
initial abundance of WIMPzillas [55]. Indeed, for such an
abundance to be cosmologically relevant today, the X
particles must be supermassive. The combined [Ade et al.
[151], Planck satellite, together with Ade et al. [152],
BICEP2 and the Keck array] 95% C.L. upper bound,
r < 0.07, already constrains the X-particle mass to be
MX ≲ 1017 GeV in the limit of instantaneous reheating
[149]. For slightly less efficient reheating, this upper limit
strengthens to MX ≲ 1016 GeV.
There are several sources of constraints for the SHDM

parameters. In the energy range of interest the mass, MX,
and lifetime, τX, are constrained by cosmic-ray observa-
tions. The mass is subjected to cosmological constraints
[52,54,55,57,150,153] and GW observations [67]. The
lifetime of the DM particles can be effectively constrained
with the observed fluxes of various high-energy particles
or with the upper limit on these fluxes. The upper limits
to the γ-ray flux obtained by Auger [110] and the non-
detection of events above 1011.3 GeV by Auger impose
tight constraints [89] to the flux corresponding to
this hypothetical SHDM component; see dark red bold
line in Fig. 3. The strongest limits for DM masses smaller
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than ∼109 GeV are obtained from KASCADE-Grande
[71]; see red bold line in Fig. 3. In [154] the constraints
(see thin magenta solid line in Fig. 3) have been placed
using the shape of charged cosmic-ray spectra. However,
with the modern cosmic-ray data this method is not as
effective in constraining τX as neutrino [83,84] and γ-ray
[84,93,110–112] data. Some fingerprints of the SHDM on
GW signal were discussed in [67,143].
In the present paper, we have investigated the hypothesis

of SHDM as a source of a subdominant component in the
observed UHECR flux. The SHDM hypothesis is a viable
candidate for DM in the Universe. Due to the expected
small flux from the decay of SHDM particles, the studies in
this paper have been done in the context of the next
generation of UHECR observatories, POEMMA, JEM-
EUSO, and ZAP [115], which are planned to have larger
exposures compared with current ones. The limits obtained
assuming the NFW DM profiles are weaker than those
assuming the Einasto profiles. Given reports made in [71],
this makes NFW limits the loosest among commonly used
DM distributions.
Taking into account all currently available constraints in

the literature on the SHDM, one may conclude that if the

DM flux is around 10−5 km−2 sr−1 yr−1 for masses in the
range 1015–1017 GeV independently on the decay channel
such SHDM hypothesis can be excluded. However, if there
is some mechanism that may increase that flux by at least
one order of magnitude, then there remains a window of
opportunities to find these particles on the future
POEMMA, JEM-EUSO, and ZAP experiments.
Since the examined DM mass range significantly exceeds

the sensitivity regions of the traditional DM detection experi-
ment, in view of the recent proposals [67,143] to search for
the SHDMvia GWastronomywe put bounds on the possible
DM signal probes with such detection technique.
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