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We reconsider the two-flavor version of the massive chiral Gross-Neveu model in 1þ 1 dimensions. Its
phase diagram as a function of baryon chemical potential, isospin chemical potential, and temperature has
previously been explored. We recapitulate the results, adding the missing tricritical curves. They can be
determined exactly by extending the standard stability analysis, using fourth-order almost degenerate
perturbation theory. Results for three different bare masses are presented and discussed.
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I. INTRODUCTION

The two best known Gross-Neveu (GN) models [1] are
the original one with discrete chiral symmetry (ψ → γ5ψ )
and Lagrangian

LGN ¼ ψ̄i∂=ψ þ g2

2
ðψ̄ψÞ2 ð1Þ

and the chiral GN model with U(1) chiral symmetry
(ψ → eiγ5αψ),

LNJL ¼ ψ̄i=∂ψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄ iγ5ψÞ2�: ð2Þ

We will only be dealing with 1þ 1 dimensions and the
large Nc limit of fermions with a U(Nc) “color” symmetry.
We refer to the fermions as quarks and to flavor as color,
following the common practice used in the Nambu–
Jona-Lasinio (NJL) model in 3þ 1 dimensions. Color
indices will be suppressed as usual (ψ̄ψ ¼ PNc

k¼1 ψ̄kψk

etc.). Extending model (2) to SU(2) chiral symmetry by
introducing isospin, we arrive at the Lagrangian

LisoNJL ¼ ψ̄i=∂ψ þ G2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð3Þ

familiar from the standard NJL model in 3þ 1
dimensions [2]. As already indicated in the subscripts of
the Lagrangians, we shall refer to (1) as GN model, (2) as
NJL model, and (3) as NJL model with isospin (isoNJL).

Actually, the focus of the presentworkwill be on themassive
versions of these models obtained by adding a Dirac mass
term (bare mass mb)

δL ¼ −mbψ̄ψ : ð4Þ

However, by way of introduction, we find it appropriate to
briefly recall what is known about the phase diagrams of
models (1)–(3) in the chiral limit [3].
The starting point for solving the isoNJL model (3) in the

large Nc limit is the Dirac Hartree-Fock (HF) equation,

ð−iγ5∂x þ γ0Sþ iγ1τ⃗ · P⃗ − μ − ντ3Þψ ¼ ωψ : ð5Þ

We have introduced a baryon chemical potential μ and an
isospin chemical potential ν. The scalar and pseudoscalar
mean fields S; P⃗ satisfy the following self-consistency
conditions:

S ¼ −G2hψ̄ψi;
P⃗ ¼ −G2hψ̄iγ5τ⃗ψi; ð6Þ

where the brackets denote either ground state or thermal
averages. Let us now assume that the charged pseudoscalar
condensate vanishes, P⃗⊥ ¼ 0. Then the HF Hamiltonian
becomes diagonal in isospin space with

ð−iγ5∂x þ γ0S� iγ1P3 − μ ∓ νÞψ ¼ ωψ ; ð7Þ

for isospin up and down, respectively. In each isospin
channel, the Dirac HF equation reduces to that of a single-
flavor NJL model. For isospin up, the mean field is Δ ¼
S − iP3 and the chemical potential μþ ν. For isospin
down, the corresponding parameters are Δ ¼ Sþ iP3

and μ − ν. Although the HF Hamiltonian is diagonal in
isospin, the two isospin channels are still coupled through
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the self-consistency condition, as P3 involves the difference
between up and down contributions.
It is now easy to see that the phase diagram of the isoNJL

model in (μ, ν, T) space can be constructed from the known
phase diagrams of the GN and NJL models in (μ, T) space.
To this end, consider first the special cases where one of the
chemical potentials vanishes. For ν ¼ 0 (pure baryon
chemical potential), the NJL equations for isospin up
and down have the same chemical potential μ and complex
conjugate mean fields Δ ¼ S ∓ iP3. This is only possible
if Δ is real (P3 ¼ 0). Thus the isoNJL phase diagram in the
ν ¼ 0 plane is identical to the GN phase diagram in the
(μ, T) plane, as indeed first noticed in the numerical study
[4]. The GN phase diagram, in turn, is known analytically
[5] and features three phases, a chirally restored one, a
homogeneous massive one, and a soliton crystal. For
μ ¼ 0 on the other hand (pure isospin chemical potential
ν), the NJL equations (5) have opposite chemical potentials
�ν, and the mean fields are complex conjugates. This is
exactly what it takes to solve both equations with the
standard NJL solution, so that the phase diagram of the
isoNJL model in the μ ¼ 0 plane is that of the one-flavor
NJL model with chemical potential ν. It is also well-known
analytically and consists of a chirally restored phase and a
soliton crystal of “chiral spiral” type [6,7]. Thus, the phase
diagram of the isoNJL model on the boundaries ν ¼ 0,
μ ¼ 0 is completely determined by the single-flavor GN
and NJL phase diagrams, see Fig. 1.
How can these boundary phase diagrams be continued

into the bulk of (μ, ν, T) space? As noticed in Ref. [3], the
same trick used originally to derive the chiral spiral, namely
a chiral rotation with a linearly x-dependent phase, can be
applied to the isospin case as well. This shows that the
phase boundaries of the isoNJL model are independent of
ν, just like the phase boundary of the NJL model is
independent of μ. The full phase diagram can thus be

generated by simply translating the GN phase diagram
rigidly into the direction of the ν axis, see Fig. 2. The
resulting mean field is the product of the GNmean field and
the NJL chiral spiral phase factor,

S ∓ iP3 ¼ SGNðμ; T; xÞe�2iνx: ð8Þ

The structure of a double helix emerges where up and down
contributions have opposite handedness. This gives rise to
three distinct phases of the massless isoNJL model: A
chirally restored one (I), a double chiral spiral with constant
radius (II), and a double chiral spiral with x-dependent
radius, modulated by the shape of the GN kink crystal (III).
One finds that this solution is self-consistent, in spite of the
fact that P1;2 ¼ 0 has been assumed from the outset. No
better HF solution (with neutral and charged pion con-
densates) has been found so far, including the earlier
variational calculations [8,9].
This is the status of the phase diagrams of models (1)–(3)

in the chiral limit. The purpose of the present paper is to
continue investigating the phase diagram of the massive
isoNJL model. As already known from the one-flavor
models, we cannot expect an analytical solution any more,
but have to engage in numerical calculations as well. This
complicates matters significantly, but the phase diagram is
also expected to be richer than in the chiral limit.
The paper is organized as follows. In Sec. II we review

what is known about the phase diagram of the massive
isoNJL model to date. In Sec. III we outline a method
recently proposed to find the exact tricritical point in the
massive NJL model. In Sec. IV we adapt this method to
the massive isoNJL model and present detailed results for
the full phase diagram, including for the first time the
tricritical curve in (μ, ν, T) space.
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FIG. 1. Boundary phase diagram of the massless isoNJL model
if one of the chemical potentials vanishes. At ν ¼ 0, it is the same
as the massless GN model. At μ ¼ 0, it is the same as the
massless NJL model with chemical potential ν.
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FIG. 2. Phase diagram of the massless isoNJL model in the bulk
of (μ, ν, T) space. The phase boundary sheets result from moving
the GN phase diagram rigidly into the direction of the ν axis. I)
chirally restored phase, II) chiral spiral with constant radius, III)
chiral spiral with radius modulated by GN soliton crystal.

MICHAEL THIES PHYS. REV. D 106, 056026 (2022)

056026-2



II. CONSTRUCTING THE PHASE DIAGRAM OF
THE MASSIVE isoNJL MODEL

We now turn to the massive versions of models (1)–(3)
by adding the Dirac mass term (4) to each Lagrangian.
Here, the phase diagrams of the GN and NJL model are
again known analytically (massive GN [10]) or at least
numerically (massive NJL [11]). Recall that during renorm-
alization, the two bare parameters mb and G2 are traded for
the physical fermion mass in vacuum (m) and the so-called
“confinement parameter” (γ) according to the gap equation

π

2NcG2
¼ γ þ ln

Λ
m
; γ ¼ πmb

2NcG2m
¼ mb

m
ln
Λ
m
: ð9Þ

Here, Λ=2 is the momentum cutoff, and Eq. (9) arises
at the vacuum level like in the simplest GN model (for a
pedagogical introduction, seeRef. [6]). This version belongs
to the two-flavor isoNJL model (3). In the case of the one-
flavor models (1), (2), replaceG2 by g2=2.We use units such
thatm ¼ 1 for any γ in the following. TheDiracHF equation
for the massive isoNJL model is unchanged as compared to
(5), but the self-consistency conditions (6) now read

S −mb ¼ −G2hψ̄ψi;
P⃗ ¼ −G2hψ̄iγ5τ⃗ψi: ð10Þ

We assume once again that the charged components of P⃗
vanish. Then the reasoning used in the chiral limit goes
through literally, yielding a Hamiltonian diagonal in isospin
space and Eq. (5) for up and down quarks. Let us start again
by looking at the special cases where one of the chemical
potentials vanishes. The problem then reduces to the single-
flavor GN (ν ¼ 0) andNJL (μ ¼ 0) phase diagrams, now for
the massive models. Here, only two phases exist, a massive
homogeneous one and an inhomogeneous onewith spatially
periodic order parameter, see Fig. 3. The massless phase is
forbidden since chiral symmetry is explicitly broken by the
bare mass. On the NJL side, the “horizontal” solid line is a
perturbative second-order phase boundary determined via a
stability analysis. The “vertical” dotted curve is a first-order
phase boundary inferred from a numerical HF calculation.
The homogeneous solution and a periodic inhomogeneous
solution with finite amplitude coexist along this line. These
two curves meet at a tricritical point indicated by a dot.
Originally, this point had been found by pushing the
numerical HF calculation towards the endpoint of the
first-order line (“bottom up” approach [12]). More recently,
a new method based on next-to-leading-order (NLO) per-
turbation theory has been devised to find the exact position
of the tricritical point from the perturbative side (“top down”
approach [13]), superseding the earlier numerical result. On
the GN side, the horizontal part also belongs to a second-
order phase transition accessible via a stability analysis.
Upon crossing it, the system becomes unstable against the
creation of a periodic structure of infinitesimal amplitude.

The vertical part is nonperturbative. Here, the system is
unstable against formation of a single baryon. At the cusp,
there is a tricritical point, and the wave number of the
inhomogeneous phase vanishes. The massive GN results
have been obtained in an analytical way [10]. Let us also
mention that the base points of the phase boundaries
at T ¼ 0 are located at the masses of the most strongly
bound baryons in bothmodels. Their values are known from
independent works, analytically in the GN model [14] and
numerically in the NJL model [15].
Due to the different character of the phase diagrams on

the boundaries ν ¼ 0 and μ ¼ 0, it is interesting to study
how the massive isoNJL model will manage to interpolate
between the two graphs if both chemical potentials are
nonvanishing. Figure 3 immediately shows that the inter-
polating phase boundary sheet must depend nontrivially on
all three coordinates, in contrast to the chiral limit of Fig. 2.
An inspection of Fig. 3 suggests to split the problem into
four distinct questions: How are the horizontal perturbative
phase boundaries connected? What is the curve in the
T ¼ 0 plane, connecting the two base points and separating
homogeneous from inhomogeneous phases at zero temper-
ature? What is the shape of the phase boundary sheet
connecting the two vertical nonperturbative curves? And,
finally, what is the shape of the tricritical curve connecting
the two tricritical points? The first three questions have
already been answered [3,12]. We illustrate the solution in
Secs. II A–II C, using as an example the case γ ¼ 0.1. The
last question is the main topic of the present work and will
be covered in Secs. III and IV.

A. Perturbative sheet and stability analysis

If we set P1 ¼ P2 ¼ 0, then the grand canonical poten-
tial of the isoNJL model can be written as a sum over two
NJL model expressions,
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FIG. 3. Boundary phase diagram of the massive isoNJL model
(γ ¼ 0.1) if one of the chemical potentials vanishes. At ν ¼ 0, it is
the same as the massive GN model. At μ ¼ 0, it is the same as the
massive NJL model with chemical potential ν.
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ΨisoNJLðμ; ν; T; S; P3Þ ¼ ΨNJLðμþ ν; T; S − iP3Þ
þ ΨNJLðμ − ν; T; Sþ iP3Þ: ð11Þ

This equation holds provided we use G2 ¼ g2=2 and
the same γ parameter on both sides. Solving the isoNJL
model is therefore closely related to solving the NJL model.
We start with the easiest part of the phase diagram, the
perturbative second-order phase boundaries separating the
homogeneous from the inhomogeneous phases. The sta-
bility analysis consists in the following steps: perturb
the massive Dirac Hamiltonian by a harmonic potential
of the form

V ¼ γ02S1 cosð2QxÞ − iγ12P1 sinð2QxÞ; ð12Þ

evaluate analytically the shift of the single particle energies
in second-order perturbation theory, and expand the grand
canonical potential to leading order in the correction. This
still has to be minimized with respect tom;Q; S1; P1. At the
phase boundary, m is the same as the fermion mass in the
homogeneous phase. Due to (11), many formulas can be
taken over from the NJL model. The minimizations amount
to setting the Hessian determinant and its derivative with
respect to Q equal to 0,

detM ¼ 0; ∂Q detM ¼ 0; ð13Þ

with M the Hessian matrix

M ¼
�

∂
2
S1
Ψ ∂S1∂P1

Ψ

∂P1
∂S1Ψ ∂

2
P1
Ψ

�
: ð14Þ

In such a leading order (LO) stability analysis, not all of the
parameters can be determined. Aside from the critical
temperature as a function of μ, ν, one can extract the ratio
R ¼ S1=P1 and the wave number Q, but not the overall
strength of the perturbation. R and Q characterize the
unstable mode. They are not immediately relevant for the
location of the phase boundary, but will play a role for
finding the tricritical point.
Although technically quite simple, such a stability

analysis gives already a fairly good impression of the full
phase diagram. It is available for a number of γ values [3].
In the example at hand (γ ¼ 0.1), the result is shown in
Fig. 4, smoothly interpolating between GN and NJL
perturbative critical curves. As expected from the boundary
phase diagrams at μ ¼ 0 and ν ¼ 0, this calculation leaves
open the details of the homogeneous “wound” around
μ ¼ 0, ν ¼ 0. This will be the subject of the upcoming
subsections and sections.

B. Nonperturbative phase boundary in the T = 0 plane
and baryon masses

The next step is to find the phase boundary at T ¼ 0,
connecting the base points of the GN and NJL phase
diagrams. These latter are given by the masses of the most
strongly bound baryons of the two models and are known
analytically (MGN) or numerically (MNJL) in the massive
models, as a function of γ. Since these base points are now
also part of the isoNJL phase diagram at T ¼ 0, the two-
flavor isoNJL model must possess baryons with the same
masses. As shown in Ref. [12], MGN is the mass of the
isoNJL baryon with maximal baryon number and zero
isospin, consisting of Nc up quarks and Nc down quarks.
MNJL is the mass of the baryon with zero baryon number
and maximal isospin made out of Nc up quarks and Nc
down antiquarks. Many other multifermion bound states
with different baryon number and isospin are expected to
also play a role along the phase boundary in the T ¼ 0
plane. This has been investigated in Ref. [12]. Somewhat
surprisingly, apart from MGN and MNJL, only one other
baryon mass enters into the construction of the phase
boundary: the mass Mup of the baryon with half maximal
baryon number and half maximal isospin, consisting solely
of Nc up quarks. The result for the phase boundary is the
first quadrant of an octagon with vertices at the points
ðμ; νÞ ¼ ðMGN; 2Mup −MGNÞ and ð2Mup −MNJL;MNJLÞ,
see Fig. 5. It can be made up by intersecting the three lines

ν ¼ MNJL; μ ¼ MGN; μþ ν ¼ 2Mup; ð15Þ

where MNJL ¼ 0.3853, MGN ¼ 0.7240, Mup ¼ 0.4129 at
γ ¼ 0.1. Actually, the octagon shape results from con-
structing the envelope of a whole family of straight lines
and seems to be universal for all γ values. In order to
construct this family and the envelope, the masses of all
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FIG. 4. Adding the perturbative second-order sheet to the phase
diagram of Fig. 3. The surface is the result of a LO stability
analysis [3] and interpolates between the horizontal perturbative
second-order phase boundaries of GN and NJL model at ν ¼ 0
and μ ¼ 0, respectively.
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possible baryons had to be computed numerically in HF,
even though only three masses are needed eventually.

C. First-order sheet at finite T and summary

The most tedious part of the calculation is the non-
perturbative sheet interpolating between the vertical non-
perturbative phase boundaries of GN and NJL models. It
requires a full numerical HF calculation. One has to
evaluate the grand canonical potential for the mean fields
SðxÞ; P3ðxÞ. These are assumed to be periodic with wave
number q and parametrized in terms of their Fourier
components Sl; Pl. For a given point (μ, ν, T), one has
to minimize the effective potential with respect to all the
Sl; Pl, and q. One chooses a trajectory across the antici-
pated phase boundary and compares the result with the
homogeneous solution. If one finds two curves intersecting
at a point along the trajectory, this point belongs to the first-
order phase boundary sheet. The result for γ ¼ 0.1 from
Ref. [12] is shown in Fig. 6 (crosses). It interpolates
between the nonperturbative curves on the boundary and
also matches nicely onto the octagon shape of the T ¼ 0
phase boundary. The technique used here is identical to the
one developed previously for the massive NJL model, so
that we do not go into further details. All points shown were
clearly identified as first-order transitions.
Finally, we put all the ingredients discussed so far

together in one plot, Fig. 7. This summarizes the state of
the art of the massive isoNJL phase diagram at present, for
the example of γ ¼ 0.1. We find a consistent picture,
supporting our assumption that P⃗⊥ ¼ 0. All the different
pieces based on independent calculations and a variety of
techniques fit together very well, like the pieces of a a
jigsaw puzzle. The most glaring deficit is probably the fact
that we do not know yet how to interpolate between the
tricritical points. Hence the line separating the first- and

second-order sheets remains poorly defined. As mentioned
in Ref. [12], numerical HF calculations in this region were
not precise enough, a difficulty first encountered in the
massive NJL model. Recently, a better method has been
proposed, tailored to the tricritical points and, in principle,
exact [13]. This will be reviewed and applied to the case at
hand, the massive isoNJL model, in the next two sections.

III. PRECISE DETERMINATION OF THE
TRICRITICAL CURVE

Recently, a novel method of locating the tricritical point
has been devised and tested successfully in the massive
NJL model [13]. The basic idea is to start from the stability
analysis, but pushing perturbation theory to NLO (fourth
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FIG. 5. Adding the nonperturbative phase boundary in the
T ¼ 0 plane to the phase diagram of Fig. 3. As shown in
Ref. [12], it has the shape of the first quadrant of an octagon
and is fully determined by three baryon masses of the isoNJL
model, see main text.
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FIG. 6. Adding the first-order sheet at T > 0 (crosses) to the
phase diagram of Fig. 3. It interpolates between the vertical
nonperturbative phase boundaries of the GN (ν ¼ 0) and NJL
(μ ¼ 0) models. From numerical HF calculation [12].
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FIG. 7. Present status of the massive isoNJL phase diagram at
γ ¼ 0.1, constructed by putting together the ingredients shown in
Figs. 3–6. A tricritical curve connecting the tricritical points of
the GN and NJL models on the boundaries is still missing.
From [12].
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order in S1, P1). In the case of the single-flavor NJL model,
the procedure may be summarized as follows:
(1) Find a point on the perturbative sheet close to where

the tricritical point is expected via a LO stability
analysis. Find the coordinates (μ, ν, T) together with
the ratio R ¼ S1=P1 and the wave number Q of the
unstable mode.

(2) Do a fourth-order perturbative evaluation, first of the
HF single particle energies and then of the thermo-
dynamic potential, keeping R, Q fixed at the LO
values. The remaining parameters are m;P1.

(3) Choose 3 masses m0; m0 � Δm with m0 the mass of
the homogeneous solution at point (μ, ν, T) on the
perturbative sheet and Δm ≪ m0. Minimize the
grand canonical potential for each mass value with
respect to P1. The resulting effective potential is a
function of m only,

Ψ̃ðmÞ ¼ min
P1

Ψðm;P1Þ: ð16Þ

(4) The criterion for the tricritical point is the vanishing
of the second derivative of the effective potential,
∂
2
m Ψ̃jm0

or, in discretized form,

Ψ̃ðm0 þ ΔmÞ − 2Ψ̃ðm0Þ þ Ψ̃ðm0 − ΔmÞ
Δm2

¼ 0: ð17Þ

The main technical difficulty which had to be overcome
is the fact that perturbation theory breaks down near the
spectral gaps of a periodic potential. This becomes more
serious in higher order perturbation theory where the usual
LO “almost degenerate perturbation theory” cannot be
applied any more. The way out is to go via an effective
Hamiltonian in the space of strongly mixed states and
diagonalize it exactly, using a formalism from many-body
perturbation theory due to Lindgren [16]. The method has
been shown to work very well for the massive NJL model
and is supposedly exact, just like the LO stability analysis
for the perturbative sheet.
When applying this method to the isoNJL model, all we

have to do is use Eq. (11) and reduce the technicalities to
those of the NJL model. One question which then arises is
this: Can we be sure that the criterion developed for the
massive NJL model also applies to the isoNJL model? The
nature of the two tricritical points on the boundaries ν ¼ 0
(GN) and μ ¼ 0 (NJL) seems to be very different at first
glance. In the NJL model, the two phase boundaries
adjacent to the tricritical point meet tangentially under
0°, whereas the corresponding angle is 180° at the cusp of
the GN model. On the other hand, since we have the
representation (11) of the isoNJL model as a sum of two
NJL models, it is plausible that the methods for finding the
tricritical points in both models are closely related. As an
additional check, we have applied the method of Ref. [13]
to the GN model. Since P1 ¼ 0, there are minor changes in

the stability analysis. The unstable mode is only charac-
terized by Q; there is no ratio R. In the fourth-order
perturbative calculation, one can use the machinery devel-
oped in Ref. [13] by simply setting P1 ¼ 0. We have
evaluated the second derivative (17) for several μ values
near the tricritical point. The result is shown in Fig. 8 for
γ ¼ 0.3. We have not quite succeeded in reaching the point
where the second derivative vanishes. However, as the
figure shows, we can come very close to it. A linear
extrapolation from the two last points then yields the value
μ ¼ 0.799, in excellent agreement with the known GN
tricritical point at the same γ (μ ¼ 0.7986). The same kind
of agreement was reached at other values of γ. Apparently,
the tricritical point in the GN model lies right at the edge of
the perturbative sheet, but this is not expected for any other
point on the tricritical curve. Thus we are confident that the
perturbative method of locating the tricritical point can also
be trusted in the isoNJL model. The results will be
presented in the following section.

IV. RESULTS AND DISCUSSION

We have computed the tricritical curve still missing in
the phase diagram Fig. 7 for the massive isoNJL at γ ¼ 0.1.
The method has been sketched above and explained in
more detail in Ref. [13], where it was applied to the massive
NJL model. The main complication of the two-flavor
model is the fact that we now have to determine a full
curve of unknown shape and location, except for the
endpoints. This means that we have to repeat the NLO
perturbative calculation many times, each calculation being
basically the same as for the one-flavor NJL model. Our
result for γ ¼ 0.1 is shown in Fig. 9. The tricritical curve
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FIG. 8. Proof that the NLO stability analysis developed for the
NJL model is also capable of locating the tricritical point of the
massive GN model. The example γ ¼ 0.3 is shown. The second
derivative of the effective potential could be followed as a
function of μ down to μ ¼ 0.8 (circles). Extrapolation to 0 yields
the value μ ¼ 0.799, in excellent agreement with the known
tricritical point.
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thus obtained is fully compatible with the other building
blocks of the phase diagram and enables us to delimit the
inhomogeneous region of the phase diagram in a quanti-
tative way.
In order to exhibit the shape of the tricritical curve in

greater detail, we propose to look at its projection onto the
T ¼ 0 plane. The result is shown in Fig. 10 for γ ¼ 0.1. We
have marked the points which have actually been calculated
by circles. The fat solid line is an interpolating curve and
corresponds to the tricritical curve shown in the 3D Fig. 9.
Due to the complicated shape of the tricritical curve, a fairly
large number of points was needed. We have also included
the T ¼ 0 phase boundary into Fig. 10, the thin polygon.

The tricritical curve and the base curve are obviously
correlated. At T ¼ 0, we know that the instability along the
three straight line segments is determined by three different
baryons. Correspondingly, we shall refer to the three
segments as GN (near ν ¼ 0), up (tilted), and NJL (near
μ ¼ 0) parts. A similar division can be made for the first-
order sheet and the tricritical line. The GN and NJL parts
are still strongly influenced by the boundary phase dia-
grams. In these regions, the temperature drops to a common
level. The up region seems to be the one with the simplest
features. The projected tricritical curve follows the slope of
the line μþ ν ¼ const, the first-order sheet is steep and
essentially planar, and the temperature is slowly varying.
This is perhaps the most interesting part since it has no
correspondence in the one-flavor phase diagrams. As
speculated in Ref. [13], it is quite likely that there are
additional phase boundaries inside the crystal phase, starting
from the vertices of the T ¼ 0 octagon and going inside the
crystal region. If this is true, then the question arises, what
happens if we go up in temperature? If the internal phase
boundary would persist all the way through the inhomo-
geneous phase, then there should be phase boundaries in
addition to the tricritical curve discussed so far. We have
searched for thiswith ourmethod of finding tricritical points,
butwithout success. This indicates that if such internal phase
boundaries really exist atT ¼ 0, then they disappear at some
temperature below the perturbative sheet.
In Ref. [13], the nonperturbative sheet of the massive

isoNJL phase diagram has been evaluated at three values of
γ, 0.1, 0.2, and 0.3. Therefore, we have also repeated the
calculation of the tricritical curve for γ ¼ 0.2 and γ ¼ 0.3 to
see the evolution with increasing bare fermion mass. The
3D plots are shown in Figs. 11 and 13, along with the
projections onto the T ¼ 0 plane and the T ¼ 0 phase
boundaries in Figs. 12 and 14. Qualitatively, the three phase
diagrams and tricritical curves at the three different γ values
look very similar. As is particularly striking in the projec-
tions, the up part becomes more dominant with increasing γ
and the simpler features of that part of the phase boundary
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FIG. 9. Final phase diagram for the massive isoNJL model at
γ ¼ 0.1. The tricritical curve has been added to the previous
phase diagram Fig. 7, now delimiting more clearly second-order
and first-order sheets of the phase boundary between homo-
geneous and inhomogeneous phases.
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FIG. 10. Projection of tricritical curve onto the T ¼ 0 plane for
γ ¼ 0.1. The circles are the points actually computed; the fat
curve is just an interpolation which has been used for Fig. 9. The
thin polygon is the phase boundary at T ¼ 0 and γ ¼ 0.1
discussed in Sec. II B. Relevant baryon masses: MGN ¼ 0.7240,
MNJL ¼ 0.3853, Mup ¼ 0.4129.
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FIG. 11. Same as Fig. 9, but for γ ¼ 0.3.
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show up more clearly. Thus, at the highest γ, the T ¼ 0 line
and the projection of the tricritical curve are almost
indistinguishable and account for a large part of the phase
boundary, see Fig. 14. The strong variation of the projected
tricritical curve near the largest ν values (the “nose”) is a
reflection of the part of the curve which rises steeply in
temperature, as can be inferred from the 3D plot, Fig. 13.
As mentioned above, the up parts of the tricritical curves

have essentially constant temperature and, at the same time,
the lowest one along the whole tricritical curve. In order to
exhibit this effect more clearly, we have also plotted
projections of the three tricritical curves onto the (μ, T)
and (ν, T) planes, see Figs. 15 and 16. Common to all bare
masses is the observation that the temperature decreases in
the GN section, stays constant through the up section, and
increases more strongly in the NJL section. This reinforces
the impression that the physics in the up section should be
most easily accessible, perhaps by using some heavy quark
approximation for large γ.
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FIG. 12. Same as Fig. 10, but for γ ¼ 0.3. Relevant baryon
masses: MGN ¼ 0.8041, MNJL ¼ 0.6142, Mup ¼ 0.4546.
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FIG. 13. Same as Fig. 9, but for γ ¼ 0.5.
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FIG. 14. Same as Fig. 12, but for γ ¼ 0.5. Relevant baryon
masses: MGN ¼ 0.8501, MNJL ¼ 0.7334, Mup ¼ 0.4710.
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FIG. 15. Projection of tricritical curves onto the ν ¼ 0 plane.
From top to bottom: γ ¼ 0.1, 0.3, 0.5.
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FIG. 16. Projection of tricritical curves onto the μ ¼ 0 plane.
From top to bottom: γ ¼ 0.1, 0.3, 0.5.
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