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Recently, a nice work about the understanding of one-loop integrals has been given by Arkani-Hamed
and Yuan [arXiv:1712.09991] using the language of the projective space associated to their Feynman
parametrization. We find this language is also very suitable to deal with the reduction problem of one-loop
integrals with general tensor structures as well as propagators having arbitrary higher powers. In this paper,
we show how to combine Feynman parametrization and embedding formalism to give a universal treatment
of reductions for general one-loop integrals, even including the degenerated cases, such as the vanishing
Gram determinant. Results from this method can be written in a compact and symmetric form.
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I. INTRODUCTION

In recent years, we have witnessed enormous progress in
computing and understanding the analytic structure of
scattering amplitude. At the one-loop level, it is well-known
that a general one-loop integral in the D = 4 — 2¢ dimension
can always be reduced to a linear combination of one-loop
scalar integrals having no more than five propagators
(master integrals) with reduction coefficients being rational
functions of kinetic variables [1-17]. These master integrals
at the one-loop level (i.e., tadpoles, bubbles, triangles,
boxes, and pentagons) are well known. Therefore, the main
problem of one-loop integrals is to calculate the reduction
coefficients. There are a host of methods to deal with the
reduction at the integrand level and integral level, such as
Integration-By-Parts (IBP) [18,19], Passarino-Veltman(PV)
reduction [3], Ossola-Papadopoulos-Pittau(OPP) reduction
[20-22], and the unitarity cut method [14,17,23-29].

Although in practice, we will not meet many situations
where propagators have higher powers, a complete reduc-
tion method should be able to deal with it. From this point
of view, the IBP method is a complete method since it treats
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these complicated cases within the same framework as the
ones without higher poles. Recently, combining the uni-
tarity cut and the derivation over mass, the reduction
coefficients for higher pole cases can be calculated [30],
except for the tadpole coefficients.

Recently, we have proposed an improved PV-reduction
method for one-loop integrals [31,32]. The reduction
coefficients can be expressed with the cofactors of the
Gram matrix and have some symmetries. Thus, it is useful
to understand these symmetries appearing in our inter-
mediate recursion relations and the final results. Notably,
the analytical structure of one-loop integrals is studied by
investigating Feynman parametrization in the projective
space for its compactness and the close relation to geometry
[33]. Inspired by the geometric angle, we find it could be
convenient to do reduction for one-loop integrals in
projective space. By our study in this paper, one can see
that the symmetry and simplicity of reduction coefficients
are illustrated clearly with the denotations in [33].

Motivated by the work [33], we will develop an alter-
native method to determine the reduction coefficients of
one-loop integrals in the D =4 —2¢ dimension. The
general tensor integrals with higher poles are related to
integrals E, ;[T] in projective space by

_ [ a7
= [ Sioge 0

where A is a simplex in n-dimensional space, which is
defined by H;X=X;>0, VI=1,2,...,n. The T is a general
tensor, which is contracted with k X’s. The homogeneous
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coordinate X; is denoted by a square bracket X =
[x1:xp:...:x,], and two coordinates are equivalent
to each other up to a scaling, ie., [x;:ixp:...ix,]~
[kxy:kxy:... kx,] for any k # 0. The measure in the
projective space is given by the differential form,

i,
X5 dXp, AdX A A dX

(n—1)!
X0X = QVX,X,.

(Xd1X) =
(1.2)

As pointed out in [33], the integral E,; satisfies a nice
recursion relation, which will be recalled in Appendix A.
This property is the key to carry out reduction in this paper.

This paper is structured as follows. In Sec. II, we discuss
how to write a general one-loop integral as a sum of
integrals E, ; in projective space. In Sec. III, we derive
recursion relations for E, [V’ ® L*] and dimension
recursion relations for nondegenerate Q, then apply them
to the reduction of one-loop integrals. In Sec. IV, we
discuss the reduction framework for degenerate Q. In
Sec. V, we show how to obtain the general expression of
reduction coefficient from n-gon tensor integrals to n-gon
scalar integrals, while general expressions of reduction
coefficients are given in Appendix C. More reduction
results are listed in Appendix B.

II. ONE-LOOP INTEGRALS
IN PROJECTIVE SPACE

In this paper, we will discuss the reduction of the most
general one-loop integrals,

/de Tl GEN < /de Al GEN <
iz?? [Ty Dy ) ixPP Tl (k= g;)* = m]"”

(2.1)

where ¢; = Z{;} p;- As pointed out in [31], we can
recover the tensor structure by multiplying each index
with an auxiliary vector R; , . Furthermore, we can combine
these R; to R = )", a;R; to simplify the expression (2.1)
to a Lorentzian invariant form,

. Pk (2R - k)"
Lp= | —55tm 2_ 20"
" Iz Hj:l((k_qj) _mj) I

(2.2)

To recover the result of (2.1), one can expand R and extract
the coefficient of [ [/_, a; from the auxiliary formula (2.2).
With the above explanation, we will focus on the form (2.2)
and transform it into projective space as suggested in [33].
First, to make our formulas elegant, we denote y* = k*,
v; = q;; thus, (2.2) becomes

. / d’y (2R -y)
= ] PP O =) =)

(2.3)

Then we put the whole formula into the embedding space
with two higher dimensions by lifting

Yo YM = (Y* Y7, V#) = (1,y°, %), (2.4)
where we use the light-cone coordinates, i.e., the metric
Ny =n_y =—%, 1, = diag(+, — — ——) while all other
entries vanish. For clarity, we will use the capital letters 7, J
to denote the components of vectors in the embedding
space, greek letters u, v to denote the components of
Lorentzian vectors, and lowercase letters i, j for the
external legs. We will also use capital letters Y, X
simultaneously to denote vectors in the embedding space
and projective space without ambiguity. Therefore, we can
simplify the denominator of (2.3) into the inner product of
two vectors in the embedding space, and the quadratic
expression has been somehow linearized, for example,

(y—yi)?=-2Y7, (2.5)
After defining
Y= (LyF—miyl). M =(0.1.0.....0).
RM = (0,0, R*), (2.6)
it is easy to check that (2.3) becomes
, =2Y - Y ) ' P2y - R)"

where v =}, v;. The projective space invariant mea-

sure is given by [[dPY] = [ % [GL(1) acts as an

overall scaling of the Y coordinates] and the factor
(Y - Yo )"™P=" is necessary for the last expression to be
genuinely an integral over the projective light cone. Using
the most general Feynman parametrization,

1 r-m) [1
= - dxy...dx,6 E i — 1
ATTASR LAY ||F(m,~)A e ( - i )

[
(ZixiAi)Zimi ’

X

and putting the Feynman parameters into the projective
space, (2.7) becomes

r) F(U) / n—1 v,—1
I, ., = Xd" X)X Ve
0 = Ty Jy KT
=2Y - Y )r P2y - R)”
dPy ( = , (2.8
< [ e 28)
where X = [x;:x,:...:x,], which is a vector in a different

projective (Feynman parametrization) space, W = 5 %Y
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. . _ 1
and there is an additional factor X%~ ' =[], x;'" =

[T~ (H;X)"~'. Then the Feynman parametrization integral
has been written into the compact form [, (Xd""'X) (see
[33] for more details). We can further simplify (2.8) using the
common trick,

n _ I(v) n—1 v,—1 (=)"P+r(D)
IV%D‘HF@»/JXC‘ X)X ()

0 r 0 v=D—r
RM YM
< (Rim) (4i0)

D 1
x/[d N

Up to now, the last integral in (2.9) can be done easily.
One way to solve it is to translate it back to the form (2.3),
which is'

(2.9)

/ dPy 1
L] T s T

[(D/2)

_ o/,
ot VW (2.10)

and we have

n _ (=)"""T(D/2) . vt (om0 \'

W=, e nx (R aWM)
<YM avf]M) o wyor, (2.11)

The action of (Y’
Yo Yo,

o awM) can be done easily after using the fact
=0, and we get

() _ (_)1}+r1"(D/2) n—1 v,—1
W = /A (Xd1 X)X

F(v-%-r)

r(D/2)

0
LX)v—D-r RM wW-W —(U—D/Q—r)’
(L= (R0 ) v w)
(2.12)
where we have written (=2Y - W) =>,x;=L-X with

= [1:1:...:1].> The action of (RM 52) is more compli-
cated. By power counting, we have the general expansion,

Z C r+1

(R-0y)’ RY)Z(R-W), (2.13)

'"We have used the fact W_ = 1 by the Feynman parametriza-
tion. The integration result can be found in the formula (A.44) in
the book of Peskin and Schroeder [34].

*The reason that we can ignore the action of (RM
(=2Y - W) is because Y, - R = 0.

awM) on

where k can be an arbitrary number and i has the same parity
as r due to the power of R? must be an integer. The expansion
coefficients C¥, are determined by initial conditions
Cp; = 6;0.C}; = 2k5; 1 and the recursion relation,
k(i k ; k

Cr+] i (l + l)Cr,i+1 + (Zk —r—=1 + )Crl 1 (214)
From the recursion relation, one can solve C¥; for general
r, 1 as

2rry1—'r z+1 5
ck. = (k+1-
nmil(r =) 'H +
2rr!k!FM —i
__ 2kt ),ﬂ. . len (1s)
Vail(r=i)l(k—=51)! 2

Plugging (2.13) into (2.12), we get
Ji) F(U_—g_r)ZCD/Hr L(R2)r7i
WP T () £
" /< dn- 1X>Xv”_1(R W)i(Lx)v—D—r
A (W - W)= '

(2.16)

Since the remaining integrals are in the projective space of
Feynman parameters, we should rewrite W - W, R - W as

_ (z y) - (zx,,y,,) =S e Vo)
a=1 b=1 a,b
= XQ0X,

R-W=> xR-V,=V-X
b=1

V=[R-q;:R-qy:...:R - q,]. (2.17)
Then, we get
](’).D ZMZCD/ZH v Rz)%
Vs ( )v+rH1—*
Xdr- IX X"n—l X)i(LX v—=D—r
x/< X)XV )( T
A (X0X)' =

For general one loop integrals (2.1), one can calculate Q as

1

Now the expression (2.18) is written as the integration over
the X-projective space. Using the result of [33]

E, [T E/AW’

2.20
(XQX) 220
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where A is a simplex in n-dimensional space defined by
HX=X;,>0,Vi=1,2,...,n and T is a kth tensor
contracted with k£ X’s, the general one loop integral in the
projective space (2.18) can be written as

" _F(U—D/Z—r D21 oy
Ivn;D_( @+rH1—* ZC ' L

X En,21}—n—D—r+i[®j Hj‘/._ ® Vl]’ (221)

where for simplicity, we write E, ;[V¢ ® L¥9] = E, ;[V]
by neglecting the power of L.

For the later use, we need to do symmetrization for
the tensor ® ; j H J’ ® Vi. To do so, we can use the same
trick as used in (2.1) and (2.2), ie., Z= ) 7/ z;H; and
S =1tV + Z. Thus, (2.21) can be obtained from

(ﬂ—D/Z—}" D/2+r—v rl v—n-i
( ) I (v ZC [ R2 Eyvmn-p-r+ilS" +]
(2.22)

after taking the coefficients of #z"»~! = ¢ ;':lz:.j"_'

Taking care of numerical factors, the final expression is

r) - i!F(U_D/Z_r) D/2+r—v/ p2\=i
1 = R
Z(—l)v+r(v—n+i) r.Q ( )2

i=0

XEnZL —n—D— r+1[SL n+l] (223)

tizv”‘_l :

A special case of (2.23) is that for v, =1, and r = 0, we
have

In;D = (_1)nr‘(n - D/2)En,n—D [Ln_D]’ (224)

where I,., is the scalar integral of n propagators in D
dimension.

Before ending this section, we want to point out that in
our discussion, for example in (2.8), the power v — D — r
could be positive or negative with the arbitrary choice of r.
Since we have kept the dimension D arbitrary, we can take
D properly (even a negative number) to make v — D —r a
positive integer to make later discussion legitimate. At the
end of reduction, we can analytically continue D to the
proper dimension. We have checked with several examples
that such a continuation is allowed.

In this paper, we mainly discuss Feynman integrals in
D = 4 — 2e-dimension space. At the one-loop level, the
master integrals are related to E, ,_p[L""P], n=1,2,....5.
So the main task of one-loop integral reduction is to reduce
general integral E,, . [S* ® L*~“] to the basis E, <5 ,_p [L"7P].

III. REDUCTION FOR NONDEGENERATE Q

Having transformed our problem (2.1) to the form (2.23),
in this section, we will show how to use the tricks of
integrals in projective space (see [33]) to generate recursion
relations of E, [V¢ ® L¥=%]. By applying these recursion
relations iteratively, one can reduce a general one-loop
integral to the basis with coefficients written by elegant
expressions. In other words, the reduction can be done
universally in the new projective space form. As we will
point out, the reduction coefficients will have an interestm%
pattern other than the obvious permutation symmetry.
Moreover, the reduction process can be carried out in
Mathematica automatically.

A. Recursion relation

In this subsection, we derive the recursion relations of
E, V¢ ® LF=9]. We first consider the case Q is non-
degenerate. The key equation is the following [see Eq. (4.2)
in [33]]:

Xd'xX)T[xf] 1 (') [X*"]Xd"*X)
(XQX)"H 7n+k—2 X (XQX)"H 2
k—1 (Xd"“X}(tr T)[X*?]
n+k-2 (X0X)" 2™ - G

where dy = dX’ a_?(“ troT = Q1_1112 T!1%2-Ix The proof of the
formula can be found in Appendix A. By integrating (3.1),
we get

EilT) = a, EY,  [(H,07'T))]

+ PurEnialtroT]. (3.2)

where summing over b is implicit and to simplify our
denotations, we have defined

1 k-1

S L =———— (33
n+k—2 P n+k—2 (3.3)

Ay =

Let us give a little explanation for the first term on the right-
hand side of (3.2). When integrating a total derivative term,
we should choose a patch. For simplicity, we assume
X, = 1. Then we get the contribution from the boundary
X, =0 and X, =+4oco for b #i By the dimensional
regularization, the term with X, = 4+oo0 gives zero. For
the term X;, = 0, in {(Q~'T)[X*!]Xd"2X), only when the
first index of Q~! takes the value b, the contribution is
nonzero, which is equivalent to be written as (H,Q~'T).

3In the work [31,32], one can see that the recursion relations,
for example, the bubble tensors to bubble basis and the triangle
tensor to triangle basis, are similar, except for the boundary
conditions. This similarity has explained the interesting pattern
we observe in this paper.
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When we repeatedly do the recursion relation, there will
be a set of X, setting to zero. Writing the index set as
b;={by.by,....,b;} with 1 <b; <b;y; <n, we define
Xm,) to be the new vector in lower-dimensional projective
space obtained by removing these components belonging
to the set b; from the original vector X. With this under-
standing, the meaning of

(bj)
En—j.k

(3.4)

k —1-j
7] = / T1X )Xo d™ X))
- n—j+k
B0y (X)) Qv Xow)) =
is clear. Equation (3.4) represents the integral got by
removing propagators belonging to b;.

Now we consider the reduction of E, ;[T] with T =
Vi ® LK as given in (2.23). Since tensor T is contracted
with k X’s, we can symmetrize its last kK — 1 indices as
below,

o e oL,

" 0ES

VIQLF -V ® (3.5)

where the o is the permutation acting on the tensor
V=l @ L*=. By applying (3.1), one has

E, [Vt = a, [(HV)ED, V] + i(VV)E, o[V
+ (k—i—1)(VL)E, ;»[V']]. (3.6)

where for simplicity, the L tensor part has been omitted. To
make our formula more compact, here we have defined
(AB) = AQ~!B. Here, we want to remark on a subtle point.
In (3.6), the Q is n x n matrix as defined in E,; and

appears in front of Eib_)l «1- When we try to iteratively use

(3.6) for E,(Tb_)l’k_l, that Q will become the (n — 1) x (n — 1)
matrix Q<b). Thus, for later convenience, we define
(AB)(aj) = A(aj)(Q(aj))_lB(aj) where the matrix (Q(a/‘>)_]
is the inverse of the matrix obtained by removing the rows
and columns of the index set a; from the original matrix Q.

As the main result of the whole paper, the recursion
relation (3.6) plays a crucial role in the reduction of one-
loop integrals. By comparing the power of V, one sees that
it has been reduced from the lhs to rhs. Furthermore, from
(2.23), one sees that the power is given by v + i — n, where
v contains the contribution of higher power of propagators
and i contains the contribution of the tensor numerator;
thus, (3.6) provides the universal reduction of both cases.
As shown in Fig. 1, after iteratively using (3.6), we get a

(a,_y)
n'<n,k' <k’

I,y in dimension D’ = n' — k’. So starting with a general
one-loop integral, one can always reduce it to the scalar
integrals in different dimensions with coefficients being
rational functions of external momenta. If we prefer the

linear combination of E i.e., the scalar integral

AN
i
5@ [ J [ J [ J [ J ( )
\/\r
410 [ J [ J [ J ( ) ( )
\/~
30 [ J [ J ( ) ( )
\/~
20 ./ ( )
) %
® n)
0 1 2 3 4 5
FIG. 1. The reduction process of E,_s ;[V'=>], where the black

points represent zero terms. The red, orange, and cyan arrows
represent the first, second, and third terms, respectively in (3.6).

scalar basis in a given D-dimensional space, we need to
find the formula to shift the dimension of the scalar basis to
a fixed D.

B. Dimension recursion

As we have seen in (2.24), the integral E, ; corresponds
to the scalar n-gon diagram in (n — k)-dimensional space.
To find dimension recursion relations, we set V = L in
(3.6) and get

[R— b —
En,k = an,k(HbL)E,(l_)l,k_1 + ﬂn,k(LL)En.k—Z-

(3.7)
To reduce E, ;, where n —k =D +2s, s€ Z,s #0, we
can iteratively use (3.7), which is established for the
scalar integrals already. Noticing that in the rhs of (3.7),
the first term has the same dimension as the lhs with one
propagator being removed, while the second term has
two higher dimensions with the same number of propa-
gators. Depending on the sign of s, we can take different
manipulations.
(1) s > 0: For this case, we need to reduce an integral in
a higher dimension to D dimension, so we solve the
second term in the rhs of (3.7) and get

. Eypi2 — an,k+2(HjL)E;(i]-)1,k+1
nk — T T .

Prir2(LL)

(3.8)

It is obvious that such a rewriting (3.8) is legitimate
when and only when (LL) # 0. For (LL) = 0, we
have

056025-5
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E, = an,k<HjL)E£zj—)l,k—1' (3'9)
Both sides have the same dimension, but the rhs of
(3.9) has one less propagator. One well-known
example of (LL) = 0 is that the bubble with null
external momentum is not a basis anymore, and it is
reduced to two tadpoles. Having established (3.8)
and (3.9), we can reduce (D + 2s)-dimensional
integrals to D dimensional iteratively using either
(3.8) or (3.9) depending on if (LL) is zero or not at
that step.4

(i) s < O: For this case, we can use (3.7) directly.

E, = an,k(HjL)E,S’_)l,k_l +Bui(LL)E, ;. (3.10)

As pointed out before, the first term on the rhs
corresponds to the scalar integrals in the same
dimension but with the j-th propagator has been
removed and the second term corresponds to the
scalar integral in D’ = n — k + 2 dimension. For the
boundary situation, i.e., n = 1, the first term van-
ishes, and the second term gives a higher dimen-
sional scalar basis. Repeating it, we can reduce E,, ;
to scalar integrals in D-dimensional space.

C. Examples

To illustrate our method and avoid complicated compu-
tation in general cases, we first consider the reduction of
tensor bubbles,

D r
1) :/;D’Zm, (3.11)
where
Dy = (£~ q)* —mj, Dy = (¢ ~q)* —mj. (3.12)
We set g; = 0 for simplicity, then
St M
1 0 1
B e
3 (mi +m3 - 43) m3

Here, we give some results for different choices of ranks
and powers to illustrate our idea.
(1) Tensor bubble with primary propagator

We first consider reducing a rank-1 bubble
)

1(21) = I?Ll}. Since there are no higher poles, we

just choose S =V,r=1,v=n =2 1n (2.23), and
we have

*Please remember that as emphasized under (3.6), at each step,
Q is different.

056025-6

(i)

1Y = —r(1 = p/2)C?* 7 Ey 5 _p[V]

First, we use (3.6) to reduce E,,_p[V] and get

Ey,r plV]= aZ.Z—D(HiV)Egl;)l—D +P22-p(VL)Ey _p,
(3.15)

where the first term FE))_, corresponds to
D-dimensional scalar tadpoles generated by remov-
ing the ith propagator of bubble /,, while the second
term E, _p corresponds to a (D + 2)-dimensional
bubble. We need to lower the dimension of the
second term further. Here, we assume (LL) # 0, by
using (3.8), we get

(i)

where the two terms in the numerator correspond to
the D-dimensional bubble and two tadpoles. Plug-
ging (3.16) and (3.15) to (3.14) and recognizing
them as master integral according to (2.24), we have

(1) (LL)(H;V)—(H;L)(VL) 2(VL)
I, = - — Iy 4+—=1,.
22 (TL) )
(3.17)
So the reduction coefficients are
o __(IDHY) - (L)L) _R-q,
2521 (H) - 2
q;3
o _(IDLY) - (L)L) __R-a
2 (L) 3
VT 2_ .2 2
CS_)}2 _ 2(_14) _ (m7 mz";‘]z)R 9> (3.18)
(LL) q3

Tensor bubble with massless legs

One can notice there is a pole of g3 in the reduction
)

coefficients of 75", which comes from (LL),

(L) = - n
=2(mi +m3)q3 + (mi —m3)* + g3

For g5 = 0, we have (LL) = 0, so we have

Exp plV]=ay,_p(H, V)E(ﬂ)_u +B2o-p(VL)E, _p.
(3.20)



UNIVERSAL TREATMENT OF THE REDUCTION FOR ONE-LOORP ...

PHYS. REV. D 106, 056025 (2022)

Here we need to reduce E, _p,

b
o, D(HbL)Egl) D

(b)
E =E . (3.21)
S Pra-p(LL)
where we have used (3.9) and
(b)
E
(b) 1,1-D
E B 5 T T (322)
PP B L))
Using (2.24), we finally get
P 1-D(VL)(H,L —
190 = VLEL) _ )|,
D (LL)y ’
(3.23)
Explicitly, we have
JD=0 _ _2(Dml (D —=2)m3)R - ‘]21
2 = 2 212
D(mj — m3)
4m%R “q>
———==1,5. 3.24
D(m% _ m%)z 2;2 ( )

(iii) Scalar bubble with higher poles
Then, we consider reducing scalar bubbles 7, ;.
with higher poles v = v; 4+ v, = 3. Due to there
being no tensor structure in the numerator, we just
set S =7 = ZIHI + 22H2, r = 0 in (223),

Ivz;v=3 = _F<3 - D/Z)EZA—D [Z]

e (3.25)

where v, = {1,2},{2,1}. First, we use (3.6) to
reduce E,4_p[Z] and get

Er 4 plZl=a4-p( iZ)E(ll,)S—D +Pra-p(ZL)Ey 5 _p,

(3.26)
where the first term E(1l)3— p corresponds to (D — 2)-
dimensional scalar tadpoles generated by removing

the ith propagator of bubble /,, while the second
|

term E,, p corresponds to wanted D-dimensional
bubble. We need to lift the dimension of the first
term further. By using (3.10), we get

EEI)% p =P D(LL)E(1)1 D» (3.27)

where we have used E((){é)—p = 0, and the rhs corre-

sponds to D-dimensional scalar tadpoles. Plugging
(3.27) and (3.26) to (3.25) and recognizing them as
master integrals according to (2.24), we have

Ivz;v:3 n (D 2) (LL)( )(H Z) 12;?
ZVZ_]
1 _
+-(D-3)(ZL) I,. (3.28)
2 -l
There are two configurations,
1 -
21
1 I
+(D=3)(ZL)| I,
2 .
1 S
= _Z(D = 2)(LL);(HiH\)1;
1 _
+5(D=3)(HLL,
1 _
Iy = Z(D 2)(LL)(HiZ)| 1y
22
1 _
+-(D-3)(ZL)| I,
2 .
1 _
=-7 (D =2)(LL);(H;Hy)I,;
1 _
+ 3 (D —=3)(H,L)I,. (3.29)

Explicitly, using (3.13), we find the reduction
coefficients are

D-2
my —my)* = q3)((my +my)* = q3)
C o (D-2)mim-g)
BU=22 T 2m(my = mo)? = 3) ((my + ma)” = 43)”
(D =3)(mi —m3 - ¢3)

C{2.1}—>2;i = ((

S , 3.30
2132 ((ml—mz) _92)((7”1""”2) —q%) | |
. o (D =2)(m? + m2 - 43)
U220 2m3 ((my = my)? = g3)((my +my)* = q3)
. - D-2
02722 ((my = ma)” = g3)(m1 + ma) = 3)”
D —=3)(m? —m? + ¢3
Comn ( )(m? —m3 + ¢3) (3.31)
((m; -

my)* — q3)((my +my)* — q3)°

056025-7
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(iv) Tensor bubble with higher poles

At last, we consider a combined case 1 Here, we need to set S=tV+Z, Z = z;H; + z,H,. Setting v = 3,

> Sy u=3"

r=1,n=21in (2.23), we have

0

vy v=3 T

—I'(3-D/2)E» 4_p[S?]

A (3.32)

First, we use (3.6) iteratively to pull out all S’s in the numerator,

Ey4_p[S*] = ar4_p|(H;S)E 5 p[S] +
= Q24— plfra- D(i) 74) E(ll -D
+ (2= D)(SL)a r-p(

D)(SL)E»»p|S]]
+(SS)Ez-p

= D)(SL)E, _p]].

(SS)Ezp-p + (2 -
)

SEN p+ (1 (3.33)

Among the four terms above, we only need to deal with the last term E, _j, since it corresponds to a (D + 2)-
dimensional bubble, which has been discussed in (3.21). Finally, we have

i _(D=-2)((LL)(H;Z)(ZL) + (LL)(ZL) ;) (H;Z) — (H;L)(ZL)*) .
v;0=3 ( ) o 27
2 ZL)?
+% (% - (ZZ)) ZZVQ_]Iz. (3.34)
One can get the reduction results for / F{lz)yl}, 1 ?1),2}- For example,
1y = =S (CENEV (D) + (ED)(FH:)(VE) + (L) (VD) (R
+ (EE) L) (F9) ~ A (VI + | C 2 v |, (539)

where for simplicity, we will not present explicit expressions for these coefficients.

Note that the reduction coefficients in these examples are
rational functions. For some special masses and momenta
configurations, denominators can become zero, which leads
to several kinds of divergences. Since only (LL) = LQ~'L
appears in the denominators, all divergences come from the
Q matrix and its all submatrices, which have detQ = 0 or
(LL) = 0. For example, the pole of g3 in (3.18) comes from
LQO™'L [see (3.19)]. The divergence of C {2.1}—2 18 given by
mi ((m,
responds to det O

—my)? = q3)((m, + m,)* — ¢5) = 0, whichis cor-
2) = 0ordet Q = 0. One can find the pole
(LL) = 0 comes from the dimension shifting process (3.8),
which can be addressed by employing (3.7) to reduce E,, ; to
lower topology. To deal with the divergences coming from
det O = 0, we need to consider the reduction method for
degenerate Q elaborated in the next section.

IV. REDUCTION FOR DEGENERATE Q

In this section, we generalize our reduction method to
degenerate Q. The basic idea is to generalize the recursion
relation (3.1) to the formula (A9). When Q is degenerate,

|
the characteristic equation Q& = 0 always has solutions,
and we denote the N, as the null space spanned by linearly
independent ¢£’s.

A.OL#0

When Q is degenerate, the recursion relation (3.1) in the
last sections breaks down for det Q = 0. Our idea is to
consider the tensor structure with one L in the first place and
make other (k — 1) indices completely symmetric by sum-
ming over all permutations between i V’s and (k — 1 — i)
L’s. Using (A9), we have

E,«[(QOL)®V' ®L"‘1_i}

Enx |(QOL)® G, 1), > olvieLt ']]

0ES)_|

*ank(HbQL) n)lk 1[ ]+ﬁnk|: (VQL) nk—2[vi_1]

kLQL)En.k_z{vf]]. (“.1)

056025-8
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For a degenerate Q, we can always find a matrix Q =
[£1.6, ... 8], & € My so that QO = 0. Then the lhs of
(4.1) vanishes. If Q*L # 0, where Q* is the adjugate matrix
of Q, we can take O = Q*. With the denotation,

(AB) = (AQB), (4.2)
(4.1) becomes
an,k(H—f;L)E;(f_)l.k+l [Vl] + iﬂn.k(V_.L)En,k[Vi_l}
+ (k+1=)Bu 1 (LL)E,,[V]] = 0. (4.3)

Depending on the value of (H) we have following the
two cases:
(1) When (LL) # 0, (4.3) can be rewritten as

1
(i—k=1)(LL)

+i(VL)E, [V,

H,L)E®

=01y, .
ECvi] = V7]

(4.4)

where the first term in rhs corresponds to the lower
topologies and the second term has tensor rank
reduced by one.

(2) When (LL) = 0, (4.3) can be rewritten as

—(H}';L) b ;
4'E£l—)l,k+l[v 1,

E‘Q‘ZO Vi —
i V] (i + 1)(VL)

(4.5)

where, although the tensor rank increased by one on
the rhs, it belongs to the lower topologies. One
particular thing of (4.5) is that since V depends on

the auxiliary R, we will always have (VL) # 0.
Another tricky point is that although R appears in the
denominator in (4.5) in the intermediate steps, it will
be canceled in the final reduction coefficients. Thus,
they are a new type of spurious singularities, which
is tightly related to our method.

B. OL=0
Since QL = 0, every term in (4.3) vanishes. Now we can
put V in the first place of the tensor structure and use (A9)
to reach
E,«[(QOV)V]
= Aul(HOV)ED, 1, [VI] 4 i(VOV)E, o[V
+ (k=i =1)(VOL)E, ;[V']]. (4.6)

Using 00 = QL = 0, (4.6) becomes

0= Aul(HOVIEL, (V] +i(VOV)E, o[ V7],
(4.7)

and we have

A —(H,V
Epilvi) = —0Y)_ g

V) g i)
(i+1)(VV)

(4.8)

Again, although R appears in the denominator through
(VV) in the intermediate steps, it will be canceled in the

final reduction coefficients. Similarly, (W) is another new
type of spurious singularity in our method.

C. Dimension recursion

Having reduced to scalar integrals with different dimen-
sions, we want to shift the dimension to a given D.
Depending on various situations, we have

(i) For QL #0, we can always choose QQ =0,

(H) # 0. Then using (4.4) for the case i = 0, the

second term vanishes, and we have
—-(H /;L) b
Er= 7_-E£,—>1,k+1- (4.9)

(1 + k) (LL)
(ii) For QL = 0, we use (4.8) with i = 1. Then, we shift
V — L + eK with a reference K such that KA,
and get

L
=

K)
— Ei(l—)],k+] [(L + €eK)?].

2¢(KK)

En,k + €En.k[K] =

(4.10)

Comparing both sides, especially the e term, we have

—(H,K
— n—1,k+1
(KK)

~—

|
—~
=

En.k =

K.  (4.11)

We lower the topology in the rhs, so we can reduce it
further by using the equation recursively. The depend-
ence of the choice of K in the intermediate steps will
vanish in the final reduction coefficients, as shown in
the examples in the next section.

D. Examples

In this section, we illustrate our method for degenerate
Q. To avoid unnecessary and complicated calculations and
compare with the reduction procedures for nondegenerate
Q discussed in the Sec. III C, we focus on bubbles with
some special masses and momenta configurations.

056025-9
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®

(i)

QL = 0: Massless scalar bubble with equal internal
masses

To check the validity of our method, we first
consider a scalar bubble with m; = m, = m and
g5 = 0, defined as

I my.q; 0 o / de 1
’ ) PP =m0 - q0)* =]
(4.12)

which can be reduced to two tadpoles.’
We find Q defined in (3.13) degenerates to a
corank-1 matrix,

m2 m2 ~ m2 —m2
Q:{mz mz]’ Q:Q*:{—mz mz}

(4.13)

Since Q0 =0 and Q*L =0, using (2.24), we
have

12 - F(2 - D/2)E2.2_D. (414)

One can see the rhs is not irreducible anymore, by
employing (4.11),

—(H,K)

<0 EY)_pK].  (4.15)

E2,2—D =

where the reference vector K satisfies Q*K # 0 and
the rhs corresponds to integrals of tadpole topology
acquired by removing one propagator from /,. We
then use (3.6) to pull out the K,

b — b
EP) K] = prap(RD) nE' ]y (4.16)

Note that the Q matrix in (4.16) is just a number
Qupy =m*, so its inverse in (KL)y is just
Q(—,}) = . Combining (4.15), (4.16), and (4.14),
we finally find

my=my,q>=0 2_D(HbK)(KL)(b) D-2
I, = - I, = 3 I,5.
2 (_KK) ’ 2m ’
(4.17)

One can check that the result above does not depend
on the choice of K = (a, b) as long as a # b.

QL = 0: Massless tensor bubble with equal internal
masses

*One can check this by using FIRE or direct calculation.

056025-10

Here, we consider the reduction of the tensor

bubble 73"~
of (3.14),

0. Recalling the first equation

1) = —0(1-D/2)(D = 2)Eypp[V],  (4.18)

we just need to reduce E;,_p[V]. Due to QL =0,
we use (4.8) to get

—1

2(VV)

EyyplV] = (HV)EY_ VY], (4.19)

where the rhs corresponds to integrals of tadpoles
with the nondegenerate Q matrix Q ;) = m?. We can
use (3.6) to reduce it iteratively,

b)
1,

+(1=D)(VL) 11 -p(VL) ( EY ).
(4.20)

There are two terms in the last line, we need to

reduce the second one E( )1 p since it corresponds

to the (D + 2)-dimensional tadpole. Using (3.8) to
lower the dimension to D, we get

(b) EPY,
EW, = (4.21)
M Bie(LL)
Plugging (4.20), (4.21), (4.19) into (4.18), we have

Igl);ml =mj.q3=0

(H,V)((1-D)(

_ VD + L

2(VV)(LL)
(4.22)

Using

(VV)=m2(R-q,)?,

(H,V) = {-m’R- qz, m*R-q,},

7 (R-q, _ R-q,

-4} -5}

(LL) iy = . (4.23)

m

we find the reduction relation,
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I(l):mlzmz,qﬁzo _ (D - 2)R “q>

) o Iy4, (4.24)

where 1, 1 is just the tadpole 7;[m] with mass m.
(iii) QL # 0: Scalar bubble

We then consider the scalar bubble [ ;1) with
degenerate Q but m; # m,. Here, we will show that
it can be reduced to two tadpoles using our method.
The equation det Q = 0 gives two solutions,

g3 = (my £ m;y)?, (4.25)

which are just the poles in the reduction coefficients
of bubbles [see (3.31)].6 Here, we choose

- 2 +
0=0 = ( " m‘2m2>. (4.26)
+mym, mj

One can check that QL # 0 for m, # m,. Due to
(LL) # 0, we can use (4.4) to reduce E,,_p, in the

expansion,
—TQ2-D/)Essp  (427)
and we get
Eyyp = @ES?S—D
(3- D)(LL)
( H,L)Brs- D

(b)
(D —3)(D) LL),E{_p.  (4.28)

Plugging (4.28) into (4.27), we have

im0 _ (D=L (4.29)
) 2;b* :

2(D - 3)(LL)

One can find the explicit expression easily. For
g3 = (m; + m,)?, the explicit expression is

ml:stqZZO D —_ 2
I 2 = I .1
2 2(D—3)m2(m1 —|—m2) zl
D-2
+ (4.30)

1, 5.
2(D=3)m(my+my) **

(iv) OL # 0: Tensor bubble
Here, we discuss the reduction of the rank-1
bubble with g3 = (m; + m,)?. First, we expand it
using (2.23)

The condition is the threshold (or the Landau poles) of the
integrals. It appears because the singularity of Landau poles
becomes higher with higher power of propagators. Thus, it will
appear in both master integrals and the reduction coefficients.

1) = -T(1=D/2)(D = 2)E,,_p[V]. (4.31)

Choosing O = Q*, due to (H) = LO*L #0, we
can use (4.4) to reduce the rhs to
B
(D - 2)( LL)
x [(H,L)E gz) o[Vl + (VL)E; 5 p),
(4.32)

Eyr plV] =

where the second term has been discussed in the
last example. We just need to reduce the first term

E%)_ plV], which corresponds to a tadpole. Using
(3.6), we find

b 55 b
EY) V] = prs (VD) EV)_y.  (433)

where the rhs is a D-dimensional scalar tadpole.
Plugging (4.33), (4.32) into (4.31), we get

I(l) ‘/2 <mlim2> _( L)(V_)( )I
2 - —— 1
(LL)
2 (VL L
12 L) pmtmitms (39
D - 2( L)
Then, we refer to the result (4.29) and find
I(l)q') (mlimz) _(HbL)(W)(b) N
’ (Th)
H L LL Vi
L EL)ED), <2 ) s
(D-3)(LL)

For g3 = (m; + m,)?, the explicit expression is

Jg=mmp _ (D=2)m) +(D=3)m)R-q,
’ (D =3)my(my +my)? !
R-q Ly

(D 3)(my+my)* >

(4.36)

V. GENERAL EXPRESSION OF Cﬁ,’l,,

It seems hard to solve (3.6), but if we only care about the
reduction coefficients to the same topology, we can ignore
the first term for it contributes only to lower topologies.
Then by iteratively using (3.6), keeping only the second
and the third term, one finds that

056025-11
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.[H'Ak—z—l+1)

T17, (k+n—21)
(5.1)

4 i!
E V= >» —F——5-(V
X E,, j—i-j + Lower topology.

Although the first term has the same topology, with
different choices of i, j, the dimension is different, thus
we need to reduce it further.

To simplify our denotation, we define

it (k=i k+n—i-j—2)!

E .= 5.2
mREET G = (k=i = )k +n—2)! (52)
Thus, (5.1) becomes
nkvl ZgnkthT/ ) nk—i—j
+ Lower topology. (5.3)

Here, we give the computation for tensor reduction with all
propagators power one.” Thus, we need to reduce all
|

E,,,n_D_(,_,-)[Vi] to E,,_p. After using (3.8) to repeatedly
lift k£, we have

En.k
(E)s H?:l (ﬂn,k—2s+21)

Oy k- 2s+21( jL) (])
) n 1,k—1-2s+21

En,k—2s =

s
+
;H[) lﬂnk 2s+2p(

s, ST
@Ly " - (LL) n—1,k=1-2(s—})
(5.4)
where we have defined
1
ot = T G
Ky = 202 (5.5)

H;;:l ﬁn,k—2s+2p

Since the second term in (5.4) belongs to lower topologies,
which can be ignored, finally, we have

En,n—D—(r—t)[V = Zgn,n—D—(r—i),i;j(VV)%(W)jEn,n—D—(r-&-j) + Lower
J
+ .
J =\ nn— Drﬂ
- gn n—D—(r—i),i; V)T(VL)] 4 En.n— + Lower
Z D— J (LL) ] D
+ _ .
S g VFVEY 225 O 4 Lower, (5:6)
T ' (LL)= T'(n—D/2)
So
r I'n—-D/2—-r r—n ;
Il’l;)D = Z ( n-+r )CD/2+ (Rz) 2 E}’l n—D— (r 1) [V ]
= (=D
r KJr
F(” _D/2_ r) D/2+r— 2 —— . nn-DI (_)n
= _ (R%) Enn- (r=i).i;j(VV)2 (VL) — I,.p + Lower
s (_1)n+r rl Z D— j ) ( ) (LL)% F(I’l _ D/Z) D
_ ( ) (n B D/2 D/2+r n + = (_V)%(W)J
- F(I’l _ D/2 ; jz C gn n—D—(r—l’),i;]'ICn_n_D ﬂ(R ) 2 (LL rTﬂ n;D + Lower. (57)
[
From it, we read out reduction coefficient, with
. (VV)3 (VL) VT(n—-D/2 —
e =35 e @ O sy TP
i=0 j= ( )T F(i’l - D/2)
D/24+r—n
X Cr,/ * gn,n—D—(r—i),i;j’C:;n_D’%j, (59)

"The general results for arbitrary tensor structure, general
powers as well as the coefficients for lower topologies are given
in Appendix C.

where we require r, i, j having the same parity.
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VI. DISCUSSION

Although the main target of the paper [33] is to under-
stand general one-loop integrals from a geometric point of
view, it does contain many important and valuable results.
In this paper, we have elaborated on the method to compute
reduction coefficients for general one-loop integrals.

The essential idea of the method is to put the whole one-
loop Feynman integrals in the projective space, in which
integrals have compact forms and geometry properties.
Using a vital recursion relation of E, ;[T], one achieves the
wanted reduction. The advantage and the most promising
point of this method are that we can solve any one-loop
integrals with higher poles and tensor structures at the same
time, which is demonstrated by some examples in Secs. III
and IV. The language of projective space simplifies the
reduction process a lot by keeping the elegant contractions
like (HL),(LL) in these recursion relations without
expansion, thus making the whole reduction process a
symbolic calculation. Although results listed in the paper
can be obtained by other methods, such as the PV-reduction
and IBP method, the very compact and symmetric analytic
form is the new feature of our method. It is also efficient for
practical calculation.

For some programs based on the traditional IBP method,
like FIRE, LiteRed, KIRA, etc. [35—41], they do reduction by
solving linear equations where the determinant of the Gram
matrix appears with the full-expanded form, which makes

|

the final results too complicated to read. The appearance of
(reduced) Gram matrix has also been observed in our recent
work [31,32].

One obvious idea is to generalize the above method to
the reduction of two-loops and higher-loops. Recently,
using the improved PV-reduction method with auxiliary
vectors, we have shown how to do the general tensor
reduction for two-loop sunset integrals [42]. From the
results in [31,32] and results in this paper, we see that these
two methods have some correspondences. In other words,
they treat the same thing from different but related angles.
Thus, it is natural to ask if we can translate two-loop
integrals to a form in the projective space and establish a
similar recursion relation, possibly using the reduction
results of the sub-one-loop integrals studied in this paper.
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APPENDIX A: RECURSION RELATIONS
OF E, [T

In this section, we recall the proof of the relation (3.1)
given in [33]. Let us calculate directly

O~ T[X*1Xd"2X 1 XQdx) , o _ i ane
(JETE X0 L k- 2) B2 orrpoc a2y + (- 100 TX 1)
(XOX)™ (X0X)" (X0X)
+ (k=1)X,, o2 Q7 TiidbswieX, X, - dX; X, A d"2Xelh e || (A1)
where we require 7 is completely symmetric of the last (k — 1) indices i,, i3, ...i;. For simplicity, we denote
AI = QZ\'I Txizj}.“ikXiins X Blr = (Q_IT[Xk_ZDIr‘ (AZ)

Thus, (A1) becomes

X k=2

(0! T[Xk‘l]Xd"‘2X>] 1
(X0X)™=

= (XQX)%H {—(n—l— k—=2)

Using the fact,

XQA=XQ07'TX=T[x", B,/ = (tr,T)[X*2],

(A4)
and the Schouten identity,
dX'(AXdX"=?) + Al(Xd""'X) — X! (Ad""'X) =0, VA!
(AS)

(XQdX)
(X0X)

(AXA"2X) + (n—1)(Ad"™ X) + (k— 1)dX,; (B'Xd"2X) .

(A3)

[
to simplify the first term in (A3) as

XQdX(AXd"2X) = OXdX(-A(Xd"'X) + X(Ad""'X))
= —(XQA)(Xd"'X)

+ (0XX)(Ad""'X), (A6)
and the third term in (A3) as
dX;(B'xd"?2X) = X!(B,d"'X) — BL(Xd""'X), (A7)

056025-13



BO FENG, JIANYU GONG, and TINGFEI LI

PHYS. REV. D 106, 056025 (2022)

the (A3) becomes

X <Q‘1T[X"_l]wkdj_zx> :(n+k—2)Ldn,:X>
(Xox) =" en
B (k— 1)trQT[Xk_2]<Xd"_1X>’
(A8)

which is nothing but the wanted (3.1).

The derivation above can be generalized to the case
det Q = 0, where the Q! does not exist. In this case, we
can replace Q' by arbitrary matrix Q in (A1) and repeat
the same derivations to reach the similar expression likes
(A8), except Q™! replaced by 0. Rearranging (A8), we get

En,k[(QQT>] = an,kEy(zb—)l,k—l[(HbQT)] +/)7n,kEn,k—2[trQT]7

(A9)
where (QQT) has the same rank as T,
(QOT)Ilzwils = Q1 | TIoladsw i
(trpT) s lele = Qy f THE+1r (A10)
|
) r=2
o _ 2R*H,L) 2D(HL)VL)? 2(HV)((

In (A9), the lhs is the first term in rhs of (A8), while the first
term on the rhs is the boundary contribution of lhs of (AS).

APPENDIX B: MORE RESULTS
1. Bubbles

Here list the results for rank from r = 1 to r = 4, where
we set g; = 0.

G r=1

m_~~_(LL)(HV)=-(HL)(VL),  2(VL)

L= (1) bt
(B1)

So we have

) _ (LL(HV)-(HL)(VL) _ R-q

22 (LL) g

a _ (LL)HV)-(HL)(VL) R-q,

N (LL) ¢

m _2(VQT'L)  (mi-mi+gq3)R-q
al,= LoL) ! 2q2 2- 2 (B2

)
221~ (D= 1)(LL) (
@ AR -(VV)) N 4D(VL)?
=2~ (p-N(TL)  (D-1

The exact form is

@ _ (mi-mi+g3)R? _D(m%

—mi+43)(R-q,)*

22 (D-1)g} (D-1)q3 ’
0 _ _Rmi-mi—q3) (=Dmi+Dm;—=3Dq;+4q3)(R 45)’
2-21 (D-1)q3 (D-1)q3 ’
o _ _R(E2mi(mi+q5) + (m3—g)* +mi)  (=2mi(Dm3—(D=2)g5) + D(m3 = ¢))* + Dmi)(R-g5)?
o (D-1)g3 (D-1)q4 '
(i) r =3
0 4(D+1)(H1V)((_L)(,>(_L)+(W)2+(VL)%,>)_ (HV)(=2(VV) = (VV);) +3R?)
2-2:1 D(L_)%l) (L—)
+4(D+2)(H,-L)(W)3+4(H,~L)(_L)(D(_L) + (VL)* =3(LL)(VV) + 3R*(LL) ;)
(D-1)(LL)? D(LL);,(LL)
+ D —ﬁ()%(L)é)(-L))(LL) (D*(VL)> + D(VL)* =3D(LL)((VV) = 2(VL)* + 3DR*(LL) ;)),
@ _ 24RX(VL)  8(D+2)(VL)® 24(VV)(VL)
“==p-nar - nEn T b-nED (B4)
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The exact form is

(D+2)(m? = m3P(R- g2  3R°R-q

(3)
cY o =-
2-22 (D-1)g5 D-1
N (2D(D +2)m3 — 2(D* = 2D + 4)m?)(R - ;) + 3D(m? — m3)’R’R - q,
(D-1)Dg;
_R-q,(6R*((D —2)m} + Dm3) + D(D +2)(R - ¢5)°)
(D -1)Dg; ’
O 3R?(4(D — 1)m3q3 — Dm} + 2Dm3m?} — Dm3 + Dg3)R - ¢,
S (D - 1)Dq;
(R- )’ 2 2 2 2 2 2
2
+ D(D +2)m} + D(D + 2)m3 + D(7D — 10)43),
2 2 2 3
3 _ (mi—m3+q35)(R-q5)
== gt 2mi(D+2)mi ~ (D~ 4)g3) + (D +2)(m} ~ g3 + (D + 2]
_3R*(mi —mj3 + 3)(=2mi(m3 + q3) + (m3 — ¢3)° + m))R - q B5
(D-1)g; ' (B3)
iv) r=4

@  8(D+2)(HL)(VL)*((D*+3D—4)(VL)>+6D(LL)(R*=(VV)))

22 T (D-1)D(D+1)(LL);(LL)’

(D2 +4D+3)(VL)*+3(LL)2, (R* = (VV))*+6(D+ 1) (LL) (VL )*(R* - (VV))

((D?+4D?~D—4)(VL)*+6(D*+D~2)(LL) ;,(VL)*(R*~ (VV))

(HL)
D(D>—1)(LL)% (LL)

8(D+2)(D+4)(H,L)(VL)*
(D*=1)(LL)*

+3D(LL), (R*=(VV))*) +

iy (PDICSITY)~(79) 68+ (V) (3() -3 4680
8(D+3)(VE) + (V) (VL) + (VIR ) (77
D(LL)}, ’
@ ~96(D+2)(VL)*(R*—(VV)) 48(R*—(VV))? 16(D*+6D+8)(VL)* B6
e o 1723 SN 7 0 117 A o [/ A3 (B9)

2. Triangles

For triangle topology, we have presented results for scalar triangles with higher poles. Here, we present some examples,
including the tensor triangles without higher poles and with higher poles.

For the tensor triangles without higher poles, we have

@ r=1

o _ (HL)(VL) a  2(VL)
3350 ﬁ - (Hiv)’ C3_>3 = (fL) . (B7)
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The expression is the same as (B2) for bubble topology. This phenomenon is not an accident and will be persistent to
other topologies.

i) r=2
@  (HL)HL)y(VL)?*  (H;L)(H;V)((VL); + (VL))
C3—>3;i] (LL),(LL) B IL), + (H;V)(H,;V) + (i < ),
@) 2(H:L)((D =2)(VL)* + (LL)((R* = (VV)))  2(D = 1)(H,L)(VL)22(H;V)((VL); + (VL))
I (D=2)(LL);(LL) (D=2)(LL)? (LL) ’
@ _A((D-1)(VL)*+ (LL)(R* = (VV)))
Cis = (D-2)TL) (B8

Again, the last two coefficients are very similar to these given in (B3).
For the tensor with higher poles, we have

@ v—4,r=1
Ci.:)—>3 ij - é (D~ 2)(3)(17)(([_113)(?)(,) + (i <)),
— . INAY - -
E'_i)—ﬁ;? = D4 3 <(H,(L)_£)L) _ (H’S)(SL)(I) _ (HiS>(SL)> ’

Here, we have suppressed the process to take the coefficient of 1z 7 li.e., | v-1. The similarity of the above
expression with the one given in (3.25) is obvious.
(i) v=4,r=2

oo _P-YHELDHEL),SL) (D - 2)HL)q (HS)(SL) + (SL)(SL) + (SL)’)
i3 _L)(i) (LL) 6(_L)(i)
+2 (D =2)(H;S)(H;S) ) ((SL) ;) + (SL) + (SL) i) + (i < J).
o _ (HLSL(D=2)(L) +3(LL)y (R’ = (S5)) (D —1)(HL)(SL)
o 3(LL)(LL) 3(LL)?
(HiS)((LL) ) ((SS) (5 + 2(S8) = 3R?) = (D =2)((SL){,) + (SL)(SL) ) + (SL)*))
_'_ — ’
3(ID),
c»  _2D-V(L)?  2(SL)(R? - (SS))

v3—3 3( L)2 (H) . (BIO)

Here, when calculating the reduction coefficients, we take the coefficient of z¥3~! for terms containing one R? and
one S, while we take the coefficient of 2z¥3~! for terms containing three S’s.

3. Boxes
For the box topology, we present three cases: (1) r=1,v—n=0, (2) r=0,v—n=1, 3) r=1,v—-—n=1. As
pointed out in the triangle topology, the reduction coefficients have some similarities between different topologies. In fact,

the similarity is classified by the pair (r, v — n) as one can check by using the results listed in the Appendix and the main
body of the paper.
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G r=1L,v—-n=0

a _ (HL)(VL)
4457 (_L)

_@w). = 2%) (B11)

i) r=0,v—-n=1

= —%6 (D = 2)(LL) g0 (L) (D) 1) (FI,Z) + permutations of (ijk)).
as =3 (0= IID) e (FL) (F) + (i < )))
Cypsi = = (D= (L), (F2),
Cop :%(D—S)(ﬂ). (B12)
(i) r=1,v—n=1
¢ = (D= 2)(TL) 5 (AT 5 (H5) (HS) ) + permutations of (ij8)),
C) =g (D= 3)EL) ) (HHES) + < ),
W (D-4(ED)ES)GL), + (L)) - (L)L)
vamdit 4(LL) '
ca=3 (P - ) (B13)

4. Pentagons

For pentagon topology, the reduction coefficients are similar, so we just present one example, i.e., scalar pentagon with
higher poles.

1 v==06
vl %(D - 2)(H)Ujkl)((HiL)Uk)(HjZ)(HkL)(j) (HIL)(ijk) + permutations of (ijkl)),
CVS_)S;{]?{ = —% (D =3)(LL) ;5 ((H:L) () (HiL) ;;,(H,Z) + permutations of (ijk)),
C) = (D= 4)(EL), (HD) ) (HZ) + (i < )
Cymsi = =7 (D =5)(LL);(H,Z),
Covmss = 5 (D~ 6) (7). (B14)

One thing we want to point out is that these coefficients have a manifest permutation symmetry. Using these observations,
the expression can be very compact, as shown above.
APPENDIX C: GENERAL EXPRESSION OF REDUCTION COEFFICIENTS

One can solve the recursion relations (3.6) in Sec. III iteratively8 and get general expressions for the final reduction
coefficients. Here, we present only the final results for nondegenerate O without derivation details. We define

®For the degenerate case discussed in the Sec. IV, one can do similar computation, although it will be more complicated.
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‘/Tznliqls zn+1rHank 21 (Cl)

with
P =+ 1=d)Pe o+ (k—i+1+d=25)P ., . (C2)

where we set 735‘_‘ 45 = Oforeither d < 0 ors < 0. With the initial condition 730 o = 1, (C2) can be solved. For simplicity, we
define

by.by.bs,...b — —
51 I)k EE;—I k2—13 l)’ (WV)“)l) = (WV)(bl,bz,b3....,b,)

(HL)y, = (Hp, L)(Hp,L) o) (Hp, L) (5,1) " (Hp, L) v,.,)
(L)) = QDMLY ELY, - LY, TG (c3)
and
i-1 L, i-L-1 -1 b —L,—1 S S g |
{Lj.s}, 1,=0 j,= "1 -‘12 =0 j,=0 11 12 izl 1,=0 jaiosa:"la—l;]/l’l‘l
F?]{;i f;llks]zfz;z Si,k—l—Zsl.l]fz—é,k—2—231—2s2,12 . f-z:sz:k—a—%]—252—...—2s4_|,l,,_|
14l =l,=s, 1L, +1,+2s, ladda —— i
Slp.{Lis} b, l_Il(SS 1,_’)1 ' '(SL) p',)l ! '(SS)(bzu)(SL)ébay (C4)
P

where specially

Z = z f?iiio =1, (m); =1, Sifljstby, = (SS)7 (SL)%, Enk=2lsoldojo = Enkizjor  (C5)

- ’ 0
{Listy  Jo=0

Then, we denote some notations used in dimension shifting as follows:

K J
- 1 K- = Oy k2542 K= Kt
nk,s Hs (,B ) ’ nk.sij T ) ’ nk,s Hﬂn.k+2s+2—2p’ n.k,s; J n,k+2s—2j Hﬂn.k+25+2—2p’
[=1\Fn.k=2s+21 p=1 ﬂn,k—2s+2p p=1 p=1

(Co)
and

s s—=j1 s=j1—J2 s=j1=j2==Ji-1

b 1 B B B B
,Cn,kls;l - § : § : § : E : —) Iansh]Cn Lk=1,5—j; jzlcﬂ 2.k=2.5—j1—j2ij3 ',Cn—l.k—l.s—j]—jz—j3—-~-—j,

$3d1)
e e e et (LL)y

s S=hos—hiTi2 S=hamiim

b + + + +
’Cn,k,zs;z—ZZ Z Z ’anw]’Cn—l,k—l,s—j];jz’Cn—z,k—z.s—jl—jz;jg""Cn—z,k—l,s—jl—jz—j3—--~—j,
i1=0 j,=0 j3=0 Ji=0

b, _ 1-Sign(s):b,
Kn,k,ZS;l - Kn,k.\Zs\;l : (C7)

The final expression for general reduction coefficients is

ro &)
(r) _ n,u,r r=i T (b, )by
¢ b, Z ’ |:Z Z Ci’al’az’{l"i's}al (RZ) ’ Sé{l'j.s}u ba (HS) <H )(bal );;Kn_‘;lv_;_zlsal ‘—l,,] —Ja, 3a2:|

v,—nb, Pl - -
1tap=a. Lj=0
oeshal {Lis},

ti Zvn—l
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where we have defined y(n,v,r,i) =r—i+2n—2v,&(n,v,i) = v —n+ i, and the dimensionless factor is

(_)r+v+n+a1+a21—*(v _ D/2 _ r)i!

n,v,r

nn—D—u(n,v,r,i),E(n,v,i)

Ciava(Lisl, ~ T(n—ay —a,—D/2)(v—n+i)!~ sty

(€9)

gn—al,n—al—D—,u(n,v,r,i)—Z\sﬂl [layifay *
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