
Bjorken sum rule with hyperasymptotic precision

Cesar Ayala 1 and Antonio Pineda2,3
1Instituto de Alta Investigación, Sede Esmeralda, Universidad de Tarapacá,

Avenida Luis Emilio Recabarren 2477, Iquique, Chile
2Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,

Campus UAB, 08193 Bellaterra (Barcelona), Spain
3Grup de Física Teòrica, Departament de Física, Universitat Autònoma de Barcelona,

E-08193 Bellaterra, Barcelona, Spain

(Received 17 August 2022; accepted 7 September 2022; published 27 September 2022; corrected 10 October 2022)

We obtain an improved determination of the normalization of the leading infrared renormalon of the
Bjorken sum rule: ZBðnf ¼ 3Þ ¼ −0.407� 0.119. Estimates of higher order terms of the perturbative
series are given.We compute the Bjorken sum rule with hyperasymptotic precision by including the leading
terminant, associated with the first infrared renormalon. We fit the experimental data to the operator product

expansion theoretical prediction with f̂PV3 as the free parameter. We obtain a good agreement with the

experiment with f̂PV3 × 103 ¼ 32þ187
−196 GeV2 for Q2 ≥ 1 GeV2.
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I. INTRODUCTION

The Bjorken sum rule [1] is one of the cleanest
observables, from the theory point of view, on which to
apply the operator product expansion (OPE) in its non-
perturbative version [2]. At low orders in the 1=Q2

expansion, it has the following form:

MB
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�
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where the definitions are the following1:

γ0NS ¼
16

3
CF; ð2Þ

CBðQÞ ¼ 1þ
X∞
s¼0

CðsÞ
B αsþ1

s ðνÞ: ð3Þ

The first few terms of the perturbative expansion of CBðQÞ
are known. TheOðαsÞ correction has been computed in [4],

the Oðα2sÞ correction in [5], the Oðα3sÞ correction [6], and
the Oðα4sÞ correction in [7–9].
We also consider the correction due to the charm quark

(with finite mass) to the perturbative series of CB. It was
first computed in Ref. [10], and later corrected in Ref. [11].
Arguments from renormalons in the context of heavy
quark physics suggest that the charm decouples at those
scales for the high order coefficients of the perturbative
expansion [12]. Therefore, this is the situation we will
consider in this paper. In any case, the effect of these
corrections is tiny.
Power corrections were calculated in [13,14]. The

Leading Order (LO) renormalization group running of
the twist-four operators has been computed in Ref. [15].
The nonperturbative matrix elements are defined in the
following way:

jgAjsσ ¼ 2hp; sjJ5;3σ jp; si; ð4Þ

where J5;aσ ðxÞ ¼ ψ̄γσγ5taψðxÞ is the nonsinglet axial cur-
rent, ta is a generator of the flavor group, and J5σðxÞ ¼Pnf

i¼1 ψ iγσγ5ψ iðxÞ is the singlet axial current. jgAj is the
absolute value of the constant of the neutron beta decay,
jgA=gV j ¼ F þD ¼ 1.2754� 0.0013 [16].
The dimension two condensate f3 can be related with the

expectation value (sandwiched between the proton state) of
a local operator. f3 is scale dependent and it is defined at
Q2

0, i.e., f3 is the reduced matrix element of R3
2σ , renor-

malized at Q2
0, which is defined for the general flavor

indices, with ti being the flavor matrices, as
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1We will borrow the notation we use in this paper for the
Bjorken sum rule from [3]. See also this reference for extra details
on the sum rules.
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Ri
2σ ¼gψG̃σνγ

νtiψ ; hp;sjRi
2σjp;si¼fisσ ði¼0;…;8Þ;

ð5Þ

and G̃μν ¼ 1
2
εμναβGαβ is the dual field strength.

Each term of the OPE expression written in Eq. (1) is ill
defined. Therefore, as such, the OPE is a formal expression,
and, without further qualifications, it is of little use. The
origin of this problem comes because, even though the
Bjorken sum rule is an observable, and, therefore, is well
defined, the splitting between the different terms of the
OPE is ambiguous. When working in dimensional regu-
larization using minimal-like subtraction schemes, this
reflects in the fact that the perturbative series of CBðαsÞ
is asymptotically divergent. Therefore, its sum does not
converge to a number, and a method has to be used to
regularize the perturbative sum. A suitable one is to first
construct the Borel transform of the perturbative sum and,
afterwards, to do the inverse of the Borel transform (also
named Borel sum or integral). Such inverse is still ill
defined, due to singularities in the positive axis of the Borel
plane. The location and character of such singularities are
determined by the OPE [17,18], but not the overall
normalization. This information is enough to determine
the divergence pattern of the perturbative series up to an
overall normalization (for the case of the Bjorken sum rule,
it has been computed with logarithmic accuracy in [3]).
Such divergent pattern of the perturbative expansion
associated with the OPE is usually referred to as renorma-
lons [19].
To fully fix the leading term of the OPE, we have to

specify how we handle the singularities in the Borel plane
when doing the Borel sum. Following the discussion in
[20], we use the principal value (PV) prescription for the
Borel integral (the median resummation above and below
the real axis). The reason is that the outcome is expected to
be real and scale/scheme independent (see the discussion in
Refs. [20,21]).
Defining CBðαsÞ also defines f3. Therefore, we rewrite

Eq. (1) as

MB
1 ðQ2Þ ¼ gA

6
CPV
B ðαsÞ −

4

27

1
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f̂PV3 ½αsðQ2Þ�
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× ð1þOðαsÞÞ þO
�

1

Q4

�
; ð6Þ

where (often we will work with the variable u ¼ β0t
4π instead

of t)

CPV
B ðαsðQÞÞ ¼ 1þ

Z
∞

0;PV
dt e−t=αsðQÞB½CB�ðtÞ;

B½CB�ðtÞ ¼
X∞
n¼0

CðsÞ
B

s!
ts; ð7Þ

and

f̂PV3 ≡ fPV3 ðQ0Þ½αsðQ2
0Þ�

−γ0
NS

2β0 : ð8Þ

For convenience, we have absorbed the prefactor

½αsðQ2
0Þ�

−γ0
NS

2β0 in f̂PV3 . It is usually stated that, after introduc-
ing such prefactor, f̂3 is a renormalization group invariant
(with the precision the running of the nonperturbative
condensate is known). We would like to emphasize that
this is not necessarily so. In order f̂3 to be renormalization
scale and scheme independent, it is necessary that the
regularization of the perturbative sum of CB is made in such
a way that it is explicitly scale and scheme independent
(something that the PV delivers but not other regulariza-
tions of the perturbative sum), so that the difference
between the Bjorken sum rule and gA

6
CBðαsðQÞÞ is also

scale and scheme independent.
Assuming the validity of the OPE in its nonperturbative

version (which we take for granted), f̂PV3 can be written as
f̂PV3 ¼ f̄PV

3;MS
Λ2

MS
, where f̄PV

3;MS
is a dimensionless constant.

Let us emphasize that such equality holds irrespectively of
the scheme used for the strong coupling constant.
Therefore, we can also generically write

f̂PV3 ¼ f̄PV3;XΛ2
X ¼ f̄PV3;X

�
β0αXðνÞ

4π

�
−2b

e−
4π

β0αX ðνÞð1þOðαXÞÞ;

ð9Þ

where X stands for the renormalization scheme of the
strong coupling constant and we define b ¼ β1=ð2β20Þ (note
that the definition of b that we use in this paper is different
from the one used in Ref. [3]). Therefore, provided f̄PV3;X is
obtained in one scheme, one can easily transform it to a
different scheme using the very same conversion factor one
uses to transform ΛQCD from one scheme to another. In the
present work X ¼ MS.
Whereas the above procedure yields unambiguous and

convenient definitions of the different terms of the OPE,
this does not mean that we have the means to compute
them. In practice, we only have a relatively small set of the
first order terms of the perturbative expansion, and the
experimental (or lattice) data. Nowadays, it is not possible
to compute the nonperturbative corrections from first
principles via analytic methods. At present, it is only
possible to compute them in some cases, numerically,
from lattice simulations. Nevertheless, such computation
is unavoidably plagued by perturbative corrections.
Actually, those are the dominant contribution to the
observable. A paradigmatic case is the computation of
the gluon condensate in the lattice, where its value is orders
of magnitude bigger than the actual size of the non-
perturbative gluon condensate [22,23]. Overall, to fit the
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nonperturbative condensate to lattice or experimental data,
one first needs to compute the perturbative series with
exponential [in −1=αðQÞ] accuracy (or with power in 1=Q2

accuracy). Whereas it is not possible to obtain the exact
expression of CPV

B , it can be computed approximately, and,
more importantly, with a well-defined method to quantify
the error in a parametric way [20,24,25]. This method
adapts the hyperasymptotic expansion used in ordinary
differential equations [26] (see also [27]) to the case of
quantum field theories with marginal operators, and it has
successfully been applied to a variety of observables
[23,25,28]. The hyperasymptotic approximation has not
yet been confronted directly to experimental data. The
Bjorken sum rule yields a fantastic opportunity to check the
OPE in its nonperturbative setup directly into experiment,
without resorting to lattice. Therefore, it is our plan to apply
such a method to the Bjorken sum rule. Nowadays, the
perturbative series of CBðαsðQÞ is known to high enough
orders to start showing its asymptotic nature for the
range of energies for which such sum rule has been
measured. Therefore, this opens the venue to determine
the Borjen sum rule with exponential accuracy. This is
very interesting, since it will allow us to determine the
leading nonperturbative correction with hyperasymptotic
precision.
Overall, we have now turned the problem into evalu-

ating CPV
B with the highest possible accuracy, i.e., includ-

ing the leading terminant. We address this goal in Sec. II.
One necessary ingredient in the evaluation of the terminant
is the determination of the normalization of the renorma-
lon. A previous determination can be found in [3]. In the
present paper, we give an improved determination. On the
one hand, we can use the new term of the perturbative
expansion that is now known. Another improvement is a
new way to determine the normalization of the renorma-
lon, which has proven to be more stable [29]. As this
method had not been applied to the Gross-Llewellyn-
Smith (GLS) [30] and Ellis-Jaffe [31] sum rule, we profit
this paper to do the same analysis for those sum rules. For
the case of the GLS sum rule, the perturbative expansion is
also known to an order higher [9], but not for the Ellis-Jaffe
sum rule. The latter has also been criticized as being less
fundamental than the Bojrken and GLS sum rules
(see [32]).
The paper is organized as follows. In Sec. II, CPV

B
will be computed with hyperasymptotic precision, and
an updated determination of the normalization of the
leading infrared renormalon, as well as new estimates
of the higher order terms of the pertubative series,
are given. Updated determinations of the normalization
of the leading renormalons of the Ellis-Jaffe and GLS
sum rules are also given. In Sec. III, the comparison with
the experimental data will be done allowing us the
extraction of f̂PV3 . Finally, the conclusions are presented
in Sec. IV.

II. HYPERASYMPTOTIC APPROXIMATION
TO CPV

B

A. Renormalons

We first need to know the renormalon structure of the
perturbative series. We take the results relevant to our case
from the analysis made in Ref. [3].
The ultraviolet renormalon structure of the moments of

the deep inelastic scattering structure functions has been
computed in Ref. [33]. For the case of the Bjorken sum
rule, the ultraviolet renormalon formally dominates for
nf > 2 and n → ∞. Nevertheless, at low orders in pertur-
bation theory, the infrared renormalon appears to be
dominant. This can be seen from the fact that the sign
of the known terms of the perturbative series is equal,
whereas if the ultraviolet renormalon were to be dominant,
then we would find a sign alternating series. In any case, we
will perform the conformal mapping [34]:

wðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p ; ð10Þ

to guarantee that the u ¼ −1 renormalon does not play a
significant role. This transformation maps the first infrared
renormalon to w ¼ 1=3 and all other singularities to the
unit circle jwj ¼ 1. In the conformal mapping, the expan-
sion parameter is w ¼ 1=3. In practice, the effect of doing
the conformal mapping is small, which, again, points to the
fact that the effect of ultraviolet renormalons is small in
comparison with the effect of the infrared renormalon
located at u ¼ 1. A similar conclusion was obtained in
Ref. [35] using Pade approximants. We will only give
numbers for the conformal mapping case for theoretical
reasons. Nevertheless, as we have already mentioned, they
will be quite similar to the computation without conformal
mapping.
The Borel transform near the closest infrared renormalon

singularity has the following structure (we have changed
NX → ZX compared with the notation in Ref. [3] to avoid
confusion with NP):

B½CB�ðtðuÞÞ ¼
ν2

Q2
ZB

1

ða − uÞ1þ2bþbB

× ð1þ dB1 ða − uÞ þ dB2 ða − uÞ2 þ � � �Þ
þ SregðuÞ; ð11Þ

where SregðuÞ is an analytic function at u ¼ a. a ¼ 1

and [18]

bB ¼ −
γ0NS

2β0
: ð12Þ

bB dictates the strength of the singularity. It is interesting
to study its dependence on nf. In the Bjorken sum rule,
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if nf ∈ ð0; 6Þ ⇒ 1þ 2bþ bB ∈ ð1; 2Þ so, formally, one
could just keep the first two terms of the series in Eq. (11),
since the next term would go to zero for u → 1.
If the Wilson coefficients multiplying the higher twist

operators were known exactly, then one could also fix the
coefficients dBr . Unfortunately, only their leading log
running is known. Nevertheless, by performing the match-
ing at a generic scale ν, one can resum the terms of the type
ð1 − uÞn lnnðQ2=ν2Þ and obtain the logarithmically domi-
nant contribution to dBr ∼ lnrðQ2=ν2Þ. This was done in [3],
and we have little to add in this respect in this paper. The
outcome for the asymptotic expression of the coefficients
was the following:

CðnÞ
B ¼n→∞ ZB

ν2

Q2

�
β0
4π

�
n Γð1þ bB þ 2bþ nÞ

Γð1þ 2bþ bBÞ
× 1F1ð−bB;−2b − bB − n; lnðQ2=ν2ÞÞ: ð13Þ

The above expression contains subleading terms in the 1=n
expansion. In the strict 1=n expansion, it simplifies to

CðnÞ
B ¼n→∞

ZB
ν2

Q2

�
β0
4π

�
n n!nbBþ2b

Γð1þ2bþbBÞ
�
1þ1

n
lnðQ2=ν2Þ

�
bB
:

ð14Þ

An alternative that we will consider in this paper is to
work with the quantity

C̃BðαsÞ≡ ðCBðαsÞ − 1Þ
�
αsðQÞ
αsðνÞ

�
bB ¼

X∞
n¼0

C̃ðnÞ
B αnþ1

s ; ð15Þ

the coefficients of which have a more compact expression
for its asymptotic expansion:

C̃ðnÞ
B ¼n→∞ ZB

ν2

Q2

�
β0
4π

�
n Γð1þ bB þ 2bþ nÞ

Γð1þ 2bþ bBÞ
; ð16Þ

or

C̃ðnÞ
B ¼n→∞ ZB

ν2

Q2

�
β0
4π

�
n n!nbBþ2b

Γð1þ 2bþ bBÞ
: ð17Þ

As a final comment, the whole previous discussion
also applies to the GLS and Ellis-Jaffe sum rules changing
any subscript B by theGLS and EJ subscripts, respectively.
In particular, bGLS ¼ bB and bEJ¼−γ0S=ð2β0Þ (γ0S ¼ γ0NS þ
4=3nf). Note also that for the case nf ¼ 0, the perturbative
expansions of the three sum rules coincide, as differences
between singlet (S) and nonsinglet (NS) have to do with
light fermion effects, which disappear in the nf ¼ 0

approximation.

B. Determination of the normalization constant

In this subsection, wewill obtain the normalization of the
leading infrared renormalon for the Borjken, GLS, and
Ellis-Jaffe sum rules: ZB, ZGLS, and ZEJ. For short, we will
use the notation ZX, where X ¼ fB;GLS; EJg. A previous
determination of these quantities was obtained in Ref. [3].
In such reference, the ultraviolet renormalon was neglected,
and the normalization of the leading infrared renormalon
was obtained using the following equality [actually, using
the analogous expression after doing the conformal map-
ping of Eq. (10)]:

DXðu ¼ 1Þ ¼
X∞
n¼0

DðnÞ
X ¼ ZX

ν2

Q2
; ð18Þ

where

DXðuÞ ¼ ð1 − uÞ1þ2bþbXB½CX�ðtðuÞÞ ¼
X∞
n¼0

DðnÞ
X un: ð19Þ

It has been observed in Refs. [12,29] that a more stable
result is obtained by determining the normalization directly
from the ratio of the exact and asymptotic expression.
Therefore, this is the path we will follow in this paper
instead. The results will not be very different. To eliminate
the anomalous dimension of the leading infrared renorma-
lon, we consider the perturbative series of C̃B (for con-
sistency, the prefactor is expanded with one-loop accuracy),
defined in Eq. (15), and take the asymptotic expression
given in Eq. (16). To both expressions we do the conformal
mapping and consider the ratio of the corresponding
coefficients at x ¼ 1 with Next to Next to Next to
Leading Order (NNNLO) precision, where x ¼ ν=Q.
These we will take as our central values. Actually, for
the asymptotic expression, we already take the expected
asymptotic expression after conformal mapping, i.e., with
the leading singularity located at w ¼ 1=3 [this is nothing
but multiplying Eq. (16) by 3n]. We have checked that the
difference is indeed small, and well inside of what would be
our errors. We have also checked that not doing the
conformal mapping does not change our determination
significantly, which is consistent with the interpretation that
the ultraviolet renormalon is not important. Another check
of this interpretation comes from taking the nf → ∞ limit
of our results. These should converge to the large β0 results
obtained in [36]. Indeed, this is what approximately
happens: the result converges to the result expected from
the large β0 analysis for the infrared renormalon. Actually,
this also happens even if we do not do the conformal
mapping.
The error in our determination of the normalization of

the infrared renormalon is due to the incomplete knowledge
of the perturbative series. This reflects in that the result will
depend on the scale, the order we truncate, and the explicit
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expression we use to determine the normalization. We use
these three methods as indicators of the error. In particular,
we do the following:

(i) Scale variation between x ∈ ð1=2; 2Þ.
(ii) Difference between Next to Next to Leading Order

(NNLO) and NNNLO at x ¼ 1.
(iii) We consider the difference between using (the

conformal transform of) Eqs. (16) and (17) for the
asymptotic coefficient (as they generate different
1=n corrections).

The three methods yield different ways to measure the fact
that n is not infinity. We take the largest of the three as our
estimate of the error. The scale variation will yield the
largest error that we then symmetrize to its maximum value.
Our best values for NX, and the associated error, can be

found in Table I. They have been computed with NNNLO
accuracy for ZB and ZGLS (and with NNLO for ZEJ, except
for nf ¼ 0, where all three sum rules are equal), after
conformal mapping, at x ¼ 1. The scale dependence of the
results, as well as the convergence, are shown in Fig. 1 for
some selected values of nf. In view of the figures, we
believe that our error is conservative. To reinforce this
conclusion, we also consider different possibilities for the
expression of the asymptotic coefficient after the conformal
mapping: either to do the conformal mapping to the original
asymptotic expression, or to directly write what should be
the new expression for the asymptotic expression (changing
the location of the singularity). The differences are well
inside the error.
The error we quote in this paper is bigger than the error

quoted in Ref. [3]. The reason is that we are more
conservative here. If we had used the same method, we
had obtained a larger error in that reference. Therefore, as
we already said, we consider our error estimate to be
conservative. On the other hand, the central values are quite
close, except for large nf, where we now observe a faster
trend to get smaller values of the normalization as we
increase nf.
In Fig. 1, we can see that the scale dependence becomes

smother as we go to higher orders (for nf ¼ 0 or 3).

The convergence depends on the number of flavors. It is
optimal for nf ¼ 3, which actually happens to be the most
interesting case from the physical point of view, and it
deteriorates for large nf. Also, for large nf, the value of
the normalization is consistent with zero. This fits with the
picture that the renormalon is less important when the
number of flavors grows and one can reach to the point
where the infrared renormalon disappears. For the Ellis-
Jaffe perturbative series with nf ≠ 0 (which is known to
one order less), the same discussion applies but the flip of
sign of the normalization happens at nf ¼ 4, and for
nf ¼ 6, it starts to blow up.
The values of ZB and ZGLS are consistent with each other

within errors. This is consistent with the interpretation that
the light-by-light term does not contribute to the renorma-
lon, as it was done in Ref. [34].
We are then able to give some estimates for the

coefficients of the perturbative series. We provide them
in Tables II–IV. We should stress that our numbers
incorporate the right asymptotic behavior, which is not
the case for large-β0 estimates. For the Bjorken and GLS
sum rules, they were calculated in [36].
Previous estimates of the coefficients of the perturbative

series can be found in the literature for the Bjorken (GLS)
sum rules [34,35,37,38]. Nevertheless, those estimates do
not profit from the knowledge of the Oðα4Þ coefficient,
which was not known back then.

C. Hyperasymptotic expansion of CPV
B

As we have already mentioned, the divergent behavior of
the perturbative series is regulated using the PV prescrip-
tion for the Borel sum [see Eq. (7)]. The exact expression of
the Borel transform is unknown. Therefore, one has to use
approximations. In this context, it is of paramount impor-
tance to have a parametric control on the error with
exponential accuracy. Consequently, we apply the hyper-
asymptotic approach developed in [20,24,25]. The Borel
sum can then be split into a partial sum truncated at the
minimal term, plus the leading terminant, and plus a
leftover of the perturbative expansion (the perturbative
expansion is not known with high enough accuracy to go
beyond that):

CPV
B ðαsðQÞÞ ¼ CðNPÞ

B þ
�
αsðQÞ
αsðνÞ

�
−bB

Ω

þ
XNmax

n¼NPþ1

ðCðnÞ
B − Cðn;asymÞ

B Þαnþ1
s ðνÞ; ð20Þ

where

NP ¼ 2
2π

β0αsðνÞ
ð1 − cαsðνÞÞ; ð21Þ

TABLE I. Values of the infrared renormalon residue of the
Bjorken, Ellis-Jaffe, and GLS leading-twist Wilson coefficient
CX . For nf ¼ 0 the three are equal. Note that the determination
for the Ellis-Jaffe sum rule is obtained at one order less than the
other normalizations (except for the case nf ¼ 0).

nf ZB ZGLS ZEJ

0 −0.506� 0.186 −0.506� 0.186 −0.506� 0.186
1 −0.480� 0.169 −0.473� 0.165 −0.346� 0.171
2 −0.449� 0.149 −0.432� 0.138 −0.249� 0.125
3 −0.407� 0.119 −0.374� 0.098 −0.099� 0.047
4 −0.339� 0.097 −0.279� 0.158 0.176� 0.105
5 −0.224� 0.203 −0.113� 0.323 0.816� 0.485
6 0.037� 0.441 0.256� 0.700 3.18� 2.80
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FIG. 1. Scale dependence of ZX for nf ¼ 0; 3; 6. The dotted (brown) line is the LO result, the dashed (red) line is the Next to Leading
Order (NLO) result, the dash-dotted (blue) line is the NNLO result, and the continuous (black) line the NNNLO result. The horizontal
black line and the gray band represents our prediction and error quoted in Table I.
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CðNPÞ
B ðαsÞ ¼ 1þ

XNP

n¼0

CðnÞ
B αnþ1

s ðνÞ; ð22Þ

Ω≡ ZB
ν2

Q2

1

Γð1þ 2bþ bBÞ
�
β0
4π

�
NPþ1

αNPþ2
X ðνÞ

×
Z

∞

0;PV
dx

x2bþbBþNPþ1e−x

1 − x β0αXðνÞ
4π

: ð23Þ

In the weak coupling limit, this expression can be approxi-
mated by

Ω ≃ KPV
B;MS

ðcÞ½αsðνÞ�12−bB
Λ2

MS

Q2

≃ KPV
B;MS

ðcÞ½αsðνÞ�12−2b−bB
�
β0
4π

�
−2b

e−
4π

β0αsðνÞ
ν2

Q2
; ð24Þ

where

TABLE II. Renormalon-based estimates of the perturbative coefficients CðsÞ
B ðνÞ for ν ¼ Q and for different number of flavors. We use

the expression from Eq. (13).

nf 0 1 2 3 4 5 6

−Cð0Þ
B

0.506(186) 0.480(169) 0.449(149) 0.407(119) 0.341(97) 0.224(203) −0.04ð0.44Þ
−Cð1Þ

B
0.673(248) 0.589(208) 0.502(166) 0.407(119) 0.295(84) 0.163(148) −0.02ð0.25Þ

−Cð2Þ
B

1.48(55) 1.207(426) 0.947(314) 0.698(204) 0.453(129) 0.218(198) −0.02ð0.28Þ
−Cð3Þ

B
4.57(1.68) 3.471(1.22) 2.52(83) 1.698(497) 0.995(284) 0.425(386) −0.04ð0.48Þ

−Cð4Þ
B

18.1(6.7) 12.8(4.5) 8.62(2.85) 5.34(1.56) 2.85(0.81) 1.09(0.99) −0.09ð1.07Þ
−Cð5Þ

B
87.4(32.2) 57.85(20.4) 36.1(12.0) 20.6(6.0) 10.0(2.9) 3.45(3.13) −0.25ð2.99Þ

−Cð6Þ
B

499(184) 309(109) 179.4(59.4) 94.6(27.7) 42.0(12.0) 13.0(11.8) −0.8ð10.0Þ

TABLE IV. Renormalon-based estimates of the perturbative coefficients CðsÞ
EJ for ν ¼ Q and for different number of flavors. We do not

display the column with nf ¼ 0 since the numbers are equal to the Bjorken case. We use the expression from Eq. (13).

nf 1 2 3 4 5 6

−Cð0Þ
EJ

0.346(171) 0.249(125) 0.099(47) −0.176ð106Þ −0.816ð485Þ −3.18ð2.80Þ
−Cð1Þ

EJ
0.406(201) 0.252(126) 0.083(40) −0.116ð69Þ −0.378ð225Þ −0.799ð703Þ

−Cð2Þ
EJ

0.810(402) 0.449(225) 0.129(61) −0.153ð91Þ −0.406ð241Þ −0.646ð57Þ
−Cð3Þ

EJ
2.28(1.13) 1.14(57) 0.293(140) −0.303ð181Þ −0.683ð406Þ −0.882ð776Þ

−Cð4Þ
EJ

8.32(4.13) 3.80(1.90) 0.877(418) −0.803ð480Þ −1.57ð93Þ −1.70ð1.49Þ
−Cð5Þ

EJ
37.1(18.4) 15.5(7.8) 3.25(1.55) −2.66ð1.59Þ −4.55ð2.70Þ −4.20ð3.70Þ

−Cð6Þ
EJ

196(97) 75.4(37.8) 14.4(6.9) −10.6ð6.3Þ 16.0(9.5) −12.8ð11.2Þ

TABLE III. Renormalon-based estimates of the perturbative coefficients CðsÞ
GLS for ν ¼ Q and for different number of flavors. We do

not display the column with nf ¼ 0 since the numbers are equal to the Bjorken case. We use the expression from Eq. (13).

nf 1 2 3 4 5 6

−Cð0Þ
GLS

0.473(165) 0.432(138) 0.374(98) 0.279(158) 0.113(323) −0.256ð700Þ
−Cð1Þ

GLS
0.580(203) 0.482(154) 0.373(98) 0.243(137) 0.083(235) −0.146ð399Þ

−Cð2Þ
GLS

1.19(42) 0.910(291) 0.640(168) 0.372(211) 0.111(315) −0.164ð449Þ
−Cð3Þ

GLS
3.42(1.19) 2.42(77) 1.56(41) 0.818(463) 0.215(614) −0.28ð76Þ

−Cð4Þ
GLS

12.6(4.4) 8.28(2.64) 4.90(1.29) 2.34(1.32) 0.55(1.57) −0.62ð1.70Þ
−Cð5Þ

GLS
57.0(19.9) 34.7(11.1) 18.9(5.0) 8.24(4.66) 1.75(4.98) −1.7ð4.7Þ

−Cð6Þ
GLS

304(106) 172(55) 86.7(22.8) 34.5(19.5) 6.6(18.8) −5.8ð15.9Þ
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KPV
B;MS

ðcÞ ¼ −
ZB

Γð1þ 2bþ bBÞ
�
4π

β0

�
bBþ1

ffiffiffiffiffi
β0
2

r �
−ηc þ

1

3

�
;

ð25Þ

ηc ¼ −2bþ 4π

β0
c − bB − 1: ð26Þ

Cðn;asymÞ
B is Eq. (13). Nmax ¼ 3. By default, we will take

NP ¼ Nmax. This will fix c. For illustration, we show the
relation between NP and c in Fig. 2. In principle, we
would like c to be small or of order 1. ForQ around 1 GeV,
NP ¼ 3 is okay. For larger Q one should ideally take a
larger value for NP. As NP ¼ 3 is the maximum value
known nowadays, it is not possible to take a largest value.
In our analysis, we will always take NP ¼ 3. We have
checked that if we take NP ¼ 2, and the corresponding c,
the variation is minimal.
Note the prefactor multiplying Ω in Eq. (20).

This characteristic is novel compared to earlier analyses
using the hyperasymptotic expansion, and resums the
large lnQ logarithms associated with the anomalous
dimension.
Note also that, in practice, Ω has a hidden dependence in

Q through c. In the weak coupling approximation, this
hidden dependence is encoded in KB. We show the

dependence of K on Q2 in Fig. 3. This makes that Ω
effectively does not behave (leaving aside the anomalous
dimension) as

ffiffiffiffiffiffiffiffiffi
αðμÞp

Λ2

MS
.

For numerics, we will use Eq. (23). The difference with
the weak coupling expressions in Eq. (24) is sizable for
Q2 < 1 GeV. We will discuss this issue further later.

III. COMPARISON WITH EXPERIMENTAL
DATA AND FIT

In this section, we will compare our theoretical predic-
tions with the experimental data. We will use the exper-
imental data for the Bjorken sum rule obtained in [39–48].
We will combine the statistical and systematic errors of

each experiment (in case they are given separately by the
experiment) in quadrature. Nevertheless, for the more
recent (and more precise) data sets from JLAB [45–48],
some correlations are expected. To account for those, we
follow the same procedure as in Refs. [47,48] and combine
part of the systematic error with the statistical one in
quadrature, such that the reduced χ2 is fixed to be one. The
remaining systematic error is taken to be completely
correlated.
In the left-hand side of Eq. (1), target-mass effects have

been included using the Nachtmann variable [49], see also
[50,51]. They read

MN
1 ðQ2Þ≡

Z
1

0

dx
ξ2

x2

�
gN1 ðx;Q2Þ

�
x
ξ
−
1

9

m2
Nx

2

Q2

ξ

x

�
−gN2 ðx;Q2Þm

2
Nx

2

Q2

4

3

�
;

¼
Z

1

0

gN1 ðx;Q2Þdxþ μN4
Q2

þO
�

1

Q4

�
¼ ΓN

1 ðQ2Þ þ μN4
Q2

þO
�

1

Q4

�
; ð27Þ

FIG. 2. Value of c from Eq. (21) as a function of μ2 ¼ Q2.
Red-dotted line is obtained fixing NP ¼ 2, the black continuous
line is obtained fixing NP ¼ 3, and the dashed blue line is
obtained fixing NP ¼ 4.

FIG. 3. Value of KPV
B;MS

from Eq. (25) as a function of
μ2 ¼ Q2. Red-dotted line is obtained fixing NP ¼ 2, the black
continuous line is obtained fixing NP ¼ 3, and the dashed-blue
line is obtained fixing NP ¼ 4.
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where N ¼ p, n (remember that MB
1 ¼ Mp

1 −Mn
1 , and

accordingly ΓB
1 ¼ Γp

1 − Γn
1 and so on), ξ ¼ 2x=ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
Nx

2=Q2
p

Þ is the Nachtmann scaling variable,
mN is the nucleon mass. The quantity M1 is the first
Nachtmann moment of g1 that absorbs all the target mass
corrections, ∼ðm2

N=Q
2Þn, and

μN4 ¼ −
m2

N

9
ðaN2 þ 4dN2 Þ; ð28Þ

where aN2 is the target mass correction given by the
x2-weighted moment of the polarized leading-twist g1
structure function, and dN2 is a twist-three matrix element
given by

dN2 ¼
Z

1

0

dx x2ð2gN1 þ 3gN2 Þ: ð29Þ

For these quantities we use the values given in [47] (a recent
lattice determination can be found in [52]):

dp−n2 ¼ 0.0080ð36Þ; ap−n2 ¼ 0.031ð10Þ: ð30Þ
Note that the elastic contribution has to be included in

the experimental numbers in order the sum rule to be fully
inclusive, i.e.,

Γp=n
1 ðQ2Þ¼1

2
Fp=n
1 ðQ2ÞðFp=n

1 ðQ2ÞþFp=n
2 ðQ2ÞÞþΓp=n

inel ðQ2Þ:
ð31Þ

The empirical parametrization of the elastic form factors is
taken from the recent paper [53]. For large momentum this
contribution is completely negligible. The difference starts
to be sizable for Q2 < 2 GeV2. For Q2 < 1 GeV2, it
becomes very important.
In comparing theory and experiment, we will let f̂PV3 to

be a free parameter, which will then be fitted to the
experimental data. The value of αsðMzÞ ¼ 0.0179ð9Þ is
taken from the PDG [54]. After running down to scales of
the order of 1 GeV using [55], yields

ΛMS ¼ 335þ14
−13 MeV: ð32Þ

We assess the error associated with the parametrization of
the elastic form factors by performing the same fits using
the older parametrization [56]. We then take the difference
as the associated error. It will be small in comparison with
the other experimental errors.
In our final fits, we will neglect the error associated to the

coefficients gA, a2, and d2, as their impact is negligible in
comparison with other uncertainties.
We now consider the theory part of the problem. We first

illustrate the problem of convergence of the perturbative
series by drawing the perturbative series in the MS scheme
at different orders in αs in Fig. 4.

The perturbative series has a relative good convergence.
However, this convergence deteriorates when we approach
to low energies. We also see how the perturbative theo-
retical result diverges from the experimental numbers at
low energies. This is a reflection that, at these scales, we
need a description of the experiment with exponential
accuracy. In other words, power corrections have to be
incorporated, and the perturbative sum needs to be evalu-
ated with exponential accuracy. We do so by using Eq. (6)
with CPV

B evaluated using the expression in Eq. (20), which
has exponential precision. We can see that the agreement
with the experimental data improves. This is specially so
around the 1 GeV region. We can also see a qualitative
change in the figure for scales smaller than 1 GeV (see the
black continuous line). Nevertheless, this is an artifact of
using Eq. (23) for the terminant. If we instead use the weak
coupling expressions for it one has in Eq. (24), the behavior
is different (see Fig. 5). This illustrates that we can not trust
our predictions below 1 GeV. If we eliminate the terminant
and only keep the dimension two condensate (blue dashed
line in Fig. 4), the agreement deteriorates. The black line
has been obtained from a fit letting f̂PV3 to be free using data
fulfilling that Q2 ≥ 1 GeV2. As just mentioned above, we
have used Eq. (6) with CPV

B evaluated with the exponential
precision using the expression in Eq. (20) withNP ¼ 3. For
Ω, we use Eq. (23). The value obtained is listed in Table V.
We now turn to the discussion of how robust this result

is, and to determine the error. In Table V, we disclose in
detail the error budget.
The experimental errors have already been discussed

above. We have separated them into the statistical,
systematic, and the one associated with different

FIG. 4. Leading-twist contribution to the sum rules at different
orders in perturbation theory in the MS scheme with ν ¼ Q
compared with the experimental data. The continuous horizontal
gray line is gA=6. The continuous magenta line is the LO result.
The dotted brown line is the NLO result. The dashed gray line is
the NNLO result. The dash-dotted red line is the NNNLO result.
The blue dashed line corresponds to the NNNLO result plus the
twist-two contribution. The continuous black line is the NNNLO
result plus the twist-two contribution plus the terminant.
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parametrizations of elastic terms. By far, the dominant error
is the systematic error associated with the JLAB data. We
also include the error due to αs [see Eq. (32) in Table V],
which is also much smaller than the systematic error. We
then combine them in quadrature to give our final exper-
imental error.
The theoretical error is generated by our incomplete

knowledge of CPV
B and the incomplete knowledge of the

Wilson coefficient of the dimension-two term of the OPE.
Theoretically, there is also the error associated with higher
order terms of the OPE. These are of Oð1=Q4Þ. This is
parametrically smaller than the other errors associated with
our incomplete knowledge of the terminant and of the
Wilson coefficient of the higher twist. The error of CPV

B is

parametrically of the order Oðα3=2−2b−bBs e−
4π

β0αsÞ. The error
of the higher twist term is parametrically of the order

Oðα1−2b−bBs e−
4π

β0αsÞ. We estimate this error using a variety of
methods:
(1) We allow for a variation of NB according to the error

given in Table I.
(2) We consider the ν scale dependence of the result and

allow for a variation of ν2 ∈ ðQ2=2; 2Q2Þ.
(3) Approximating Ω by its weak coupling expansion at

leading order. In other words, working with the
second equality in Eq. (24).

We now discuss these methods to estimate the error in more
detail.
(1) The error of NB is due to our incomplete knowledge

of the perturbative series, and it can be, to some

extent, be mixed with the Oðα3=2s e−
4π

β0αsÞ corrections
of the terminant.

(2) The scale dependence is a reflection of the incom-
plete knowledge of the terminant and of the Wilson
coefficient of the dimension two term of the OPE.
If we keep the running of the coupling constant

consistently with the precision of the computation,
there would not be scale dependence. We implement
the scale dependence by considering the running of
the coupling with the maximal known accuracy.

(3) Measures the size of the Oðα3=2s e−
4π

β0αsÞ correction to
the terminant. An alternative way to measure these
corrections is to approximate Ω using the first
equality of Eq. (24). This indeed produces larger
errors but still much smaller than the error associated
with NB, or ν. Another alternative consists of
changing NP from 3 to 2. This changes c. If the
terminant were known with infinite precision, the
dependence in c would disappear, in the sense that
the dependence on c of the terminant would cancel
with the dependence on c of the finite sum. There-
fore, the variation of c assesses such dependence.
The effect happens to be very small.

Let us now come back to the issue of the Oð1=Q4Þ
corrections. As we have already mentioned, they are
parametrically subleading than the errors we have consid-
ered. Therefore, we will neglect them.2 Still, fits with
different energy ranges may give indirect hints of their
possible importance. Related to this discussion, a poten-
tially worrisome issue is the size of the elastic terms. For
large momentum this contribution is completely negligible.
The difference starts to be sizable for Q2 < 2 GeV2. For
Q2 < 1 GeV2 becomes very important. In this respect, it is
important to mention that the short distance behavior of the
elastic form factors is expected to produce corrections to
the Bjorken sum rule with powers bigger than 1=Q2 [58]

EG1b E143

EG1–DVCS SMC

E97110/EG4 RSS

E94010/EG1a E155

COMPASS HERMES

0.5 1 5 10

0.15

0.20

0.25

0.30

Q2[GeV2]

1B
(in

el
.+

el
.)

Fit: (Q2 1.01GeV2)

FIG. 5. The NNNLO result plus the twist-two contribution plus
the terminant. The continuous-black line approximates the
terminant to Eq. (23), the dashed-blue line to the second equality
of Eq. (24), and the dotted-red line to the first equality.

TABLE V. Central values and error budget of the fit using the
different datasets we use in this paper. In GeV2, “stat” stands for
the statistical error of the fit, The others are self-explanatory. For
further details see the main text. The fit uses Eq. (6) with NP ¼ 3
and Eq. (23) for Ω. The default value of ν is Q.

Set I Set II

f̂PV
3;MS

× 103 f̂PV
3;MS

× 103

Central 32 123

Stat �23 �58

Sys −174
þ174

−411
þ411

Elastic 31 5

Λðnf¼3Þ
MS

−19
þ19

−33
þ33

NB
−52
þ52

−14
þ14

ν −4
−57

þ9
−20

Exp −6 0

2Their inclusion may improve the fit [47,57], but it is in
potential conflict with neglecting OðαsÞ suppressed effects of
the leading power suppressed corrections, and with neglecting
subleading renormalons of the perturbative series. Therefore, we
refrain from doing so in this paper.
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(for the present discussion, see also [53,56]). Therefore,
one may argue that they are a measure of power corrections
of order 1=Q4 or higher. Nevertheless, such prediction is
not in such a robust status as fully inclusive sum rules, as
they somehow rely on local quark-hadron duality (one
expects them to fail in the large Nc limit). Therefore, we
will not consider this as a source of error, although it would
deserve further studies.
For the final estimate of the theory error, we consider

items 1–3 as different estimators of the incomplete knowl-
edge of the OPE. Even though, there is some overlapping
between them (they measure similar things), we will
consider them as independent, and combine them in
quadrature to give our final theory error of f̂PV3 .
The sensitivity to the theoretical and experimental error

may vary depending on the range of energies used for the
experimental data. Therefore, we use different datasets for
the fits to see the dependence on the dataset. The different
datasets we consider are the following: set I: Q2 ≥ 1 GeV2

and set II: Q2 ≥ 2 GeV2. Set I has 31 points, and the set II
has 19 points (which are less precise). We refrain from
considering smaller values of Q, since the dependence on
the specific parametrization of Ω becomes important. As a
general trend, when we increase the number of points, the
statistical and systematic errors of f̂PV3 decrease. On the
other hand, the error associated with the parametrization of
the elastic form factors moderately increases but to a lesser
extent. On the theory side, we observe the following
dependence on the dataset: As expected, the fit is more
dependent on NB, as we go to smaller energies (set I). We
find a large dependence on ν with the fit to the set I if we
lower ν since we take ν2 ¼ Q2=2. On the other hand, we
find very little dependence if we take higher values of ν. For
set II the error is more symmetric and, overall, smaller.
Finally, the error associated with Ω is very tiny, and
basically zero when using set II for the fit.
For our final numbers we use the results obtained with

the dataset I. This dataset yields smaller errors. For
convenience, we display the results obtained for the differ-
ent datasets:

Set I∶ f̂PV3 × 103 ¼ 32þ180−180ðexpÞþ52−77ðthÞ ¼ 32þ187−196 GeV2

ð33Þ

Set II∶ f̂PV3 × 103 ¼ 123þ417−417ðexpÞþ17−24ðthÞ ¼ 123þ417−418 GeV2:

ð34Þ

For the final error, we combine the experimental and
theoretical error in quadrature. The experimental error is
the dominant one. As we have already mentioned, we take
the numbers obtained from the fit to dataset I as our final
numbers. Our final number for f̂PV3 reads:

f̂PV3 × 103 ¼ 32þ187
−196 GeV2: ð35Þ

Wealso give a number for f̄PV
3;MS

[defined in Eq. (9)]. Its error

is overwhelmingly dominated by the error of f̂PV3 , being the

error associated to Λnf¼3

MS
way subleading. We obtain

f̄PV
3;MS

¼ 0.29þ1.67
−1.75 : ð36Þ

To illustrate the quality of the fit and the impact of the
error, we plot our final results in different ways. In Fig. 6,
we plot our final predicted curve for ΓB

1 , including the error
associated with f̂PV3 . In Fig. 7, we directly show our
prediction of f̂PV3 (and its associated error) and how it
compares with the experimental data. We observe that the
fit (the experimental data) approximately follows a constant
value for f̂PV3 , as expected from the use of a summation
scheme of the perturbative series that is scheme and scale
independent.
The results obtained in this paper can be compared with

the more traditional renormalon subtracted (RS) scheme
[59], as used in Ref. [3]. We obtain fRSð1;GeVÞ ¼
0.152 GeV2, fRSð0.8;GeVÞ ¼ 0.105 GeV2 using the data-
set I and fRSð1;GeVÞ ¼ 0.260 GeV2, fRSð0.8;GeVÞ ¼
0.239 GeV2 using the dataset II.
To translate these determinations of f3 from the RS

scheme to the PV scheme, one has to use the following
expression (NP ¼ Nmax and Q ¼ ν):

f̂PV3 ¼ f3;RSðνfÞ½αsðνfÞ�−
γ0
NS
2β0

þ 27

24
Q2½αsðQÞ�−

γ0
NS
2β0 gA

�XNP

s¼1

Cs;asym
B ðνf;QÞαsþ1

s ðQÞ

þ ΩðNP; ν ¼ QÞ
�
: ð37Þ

Note that the left-hand side is independent of Q and νf. If
we take νf ¼ Q ¼ 1 GeV in the right-hand side, then the

FIG. 6. Plot of ΓB
1 black line: fitted line with the value

f̂PV
3;MS

¼ 0.032þ0.187
−0.196 . The gray band is the f̂PV

3;MS
associated error.
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fits with the RS scheme give very similar numbers to the
ones we have obtained in this paper. Using set I, one
obtains f̂PV3 ¼ −0.003 GeV2, and with set II, one obtains
f̂PV3 ¼ 0.141 GeV2. This shows the stability of the fit to
using a different scheme for handling the renormalon.
Within errors, the result is stable to variation of νf andQ, as
shown in Fig. 8, for dataset I.
We can also compare with the result obtained in [3] using

the RS scheme. We only aim to make a qualitative
comparison. In that paper, it was obtained f3;RSðνfÞ ¼
−0.124þ0.137

−0.142 by a global fit to the Bjorken, Ellis-Jaffe, and
the GLS sum rules to existing data back then with
Q2 ≥ 0.66 GeV2. A pure fit to the very same data to only
the Bjorken sum rule (and treating slightly different the
strong coupling) yields -0.102 GeV2. If we use the new
experimental data, the new value ofNB, and the new known
coefficient of the perturbative expansion, then the result
does not change much, one obtains -0.091 GeV2. Note that

all the experimental systematic error has been combined
with the statistical one in quadrature, since the reduced χ2 is
1.6, bigger than 1. Actually, this is the reason the result is
similar to the one obtained in [3], as it makes that the new
data weights similarly to the old one. If one keeps part of
the systematic error as independent, then the new data
weighs more, and shifts the central value (but then the rest
of the error goes into the systematics, not affecting the
comparison within errors). This effect is seen in the fits
with data constrained to be Q2 ≥ 1 GeV2 or Q2 ≥ 2 GeV2.
Taking into account the error of the determinations and of
the conversion, the difference is of the order of one sigma,
which we consider reasonable. Moreover, in this paper, we
prefer to play a more conservative attitude, in view of the
different behavior of the terminant (depending on the
approximation used for it) for Q2 ≤ 1, and restrict to fits
with Q2 ≥ 1 GeV2.

IV. CONCLUSIONS

In this paper, an updated determination of the normali-
zation of the leading infrared renormalon of the Bjorken,
GLS, and Ellis-Jaffe sum rule has been obtained. Compared
with the evaluation of Ref. [3], this evaluation profits from
new terms of the perturbative expansion that are known
now, as well as from a more optimal way to pin down the
renormalon, as highlighted in Ref. [29]. The results are
summarized in Table I. For the most relevant cases of the
Bjorken sum rule for nf ¼ 0 and nf ¼ 3, they read

NBðnf ¼ 0Þ ¼ −0.506� 0.186;

NBðnf ¼ 3Þ ¼ −0.407� 0.119: ð38Þ

Using these results, estimates of higher order terms of the
perturbative series are also given (see Tables II, III, and IV).
For the first time ever, the hyperasymptotic approxima-

tion has been applied and validated directly in experimental
data (up to possible concerns on the extrapolations to x → 0
of the dispersive integrals of the sum rules, where there is
no direct experimental data). We computed the Bjorken
sum rule with hyperasymptotic precision by including the
leading terminant, associated with the first infrared renor-
malon. One advantage of the present method is that it
minimizes the dependence on the normalization of the
renormalon. Another major advantage is that it allows us to
obtain the “real” size of the nonperturbative corrections, in
the sense that the nonperturbative correction scales as
powers of ΛQCD.
After fitting the experimental data to the OPE theoretical

expression letting f̄PV
3;MS

as a free parameter, we obtain a
reasonable agreement with experiment for Q2 ≥ 1 GeV2

with

f̄PV
3;MS

¼ 0.29þ1.67
−1.75 ; f̂PV3 ¼ 0.032þ0.187

−0.196 GeV2: ð39Þ

FIG. 7. Plot of f̂PV3 ¼ 0.032þ0.187
−0.196 GeV2. The gray band is the

f̂PV
3;MS

associated error.

FIG. 8. Plot of f̂PV3 obtained from the RS determination using
dataset I for different values ofQ2 and for the value of νf ¼ 1 and
0.8 GeV. The horizontal blue line and gray band is the value of
f̂PV
3;MS

and its associated error of our primary fit.
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We emphasize that this result is independent of the
renormalization scale and scheme used for the strong
coupling. The error of f̄PV

3;MS
is overwhelmingly dominated

by the error of f̂PV3 , and the latter is overwhelmingly
dominated by the experimental error. There is some
correlation in the experimental error of the most precise
data from the JLAB experiments [45–48]. We follow the
methodology of [47,48]. This correlation yields the most
important source of error of the present analysis from the
experimental side. Any improvement in this respect will
immediately lead to a reduction of the errors of the numbers
obtained in this paper.
As we can see in Figs. 4 and 7, the fit complies with

expectations. The difference between the leading twist
contribution and the experimental result is reasonably fitted
by a quadratic correction with a Q-independent value of
f̂PV3 . It approximately follows a straight line (see Fig. 7), as
expected. Its value is small and consistent with zero within
one sigma significance.
The introduction of the terminant makes the result more

stable. The inclusion of the terminant introduces a quali-
tative change in the perturbative behavior around the 1 GeV
region, making it much closer to the experimental figure.
One may think that the terminant is basically equivalent to

the nonperturbative condensate (with the same anomalous
dimension), albeit

ffiffiffiffiffiffiffiffiffi
αðμÞp

suppressed. Note, however, that,
effectively, Ω has an implicit Q dependence, since it
depends on c, which is fixed such that NP ¼ 3.
The theoretical error of f̂PV3 is dominated by the scale

variation and NB and ν, and it is bigger when fitting to
dataset I than to dataset II. In any case, it is still much
smaller than the experimental error. All these theoretical
errors would benefit from higher order computations. To
know the anomalous dimension of the condensate to a
higher order would also be of help.
We let to future research the application of the hyper-

asymptotic approximation to other sum rules.
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