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The motion of a scalar field that interacts with a hot plasma, like the inflaton during reheating, is damped,
which is a dissipative process. At high temperatures the damping can be described by a local term in the
effective equation of motion. The damping coefficient is sensitive to multiple scattering. In the loop
expansion its computation would require an all-order resummation. Instead we solve an effective
Boltzmann equation, similarly to the computation of transport coefficients. For an interaction with
another scalar field we obtain a simple relation between the damping coefficient and the bulk viscosity, so
that one can make use of known results for the latter. The numerical prefactor of the damping coefficient
turns out to be rather large, of order 104.
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I. INTRODUCTION

Scalar fields may play an important role in the early
Universe. They can drive cosmic inflation, and their
quantum fluctuations can provide the seed of galaxy
formation, they can cause phase transitions [1] and generate
the baryon asymmetry of the Universe [2]. They can also be
part or all of dark matter [3], or be responsible for today’s
dark energy [4].
We consider a scalar field φ which is (approximately)

constant in space and which evolves in time. Important
examples are the inflaton field which drives inflation or the
axion field which can be dark matter. To be specific we will
consider φ being the inflaton, keeping in mind that our
discussion applies to many other situations as well.
When inflation ends, the inflaton field φ starts oscillating

coherently around the minimum of its potential. It interacts
with other fields leading to an energy transfer thus creating
a plasma and (re-)heating the Universe. At the same time,
the motion of φ gets damped. The plasma makes up an
increasing fraction of the total energy density. For suffi-
ciently strong interaction the plasma thermalizes.
Eventually this thermal plasma dominates the energy
density; the corresponding temperature is called reheat
temperature TRH. This is, however, not the largest temper-
ature of the plasma, which rises early during the reheating
process and then decreases before it reaches TRH [5,6].

An oscillating inflaton field with frequency ω ¼ mφ, can
be viewed as a state with high occupancy of inflaton
particles with zero momentum and mass mφ. When there
are only few decay products present, the damping is
dominated by inflaton decay into lighter particles [7]. If
many particles have already been produced such that their
occupation numbers are of order one or larger, other effects
come into play. Parametric resonance can lead to very
efficient particle production [8]. Then the decay products
thermalize and acquire a thermal mass. At high temper-
ature, thermal masses can become larger than the inflaton
mass such that the decay of an inflaton into plasma particles
is kinematically forbidden [9]. Then other processes that
involve multiple scatterings become unsuppressed and
open new channels for the energy transfer [10,11]. In this
paper we consider the damping rate in the high-temperature
regime where T is much larger than mφ and the mass of the
plasma particles. We assume that the characteristic fre-
quency ω ∼ _φ=φ and the damping rate γ of φ are small
compared to the thermalization rate of the plasma. Then the
inflaton interacts nearly adiabatically with an almost
thermal plasma. In particular, there is no nonperturbative
particle production through parametric resonance [8].
When the plasma is approximately thermal, its properties
are fully specified by the temperature and by the instanta-
neous value of φ. Therefore the plasma “forgets” about its
past, and its effect on the inflaton dynamics can be
described by local terms. The effective equation of motion
(without Hubble expansion) for the zero-momentum mode
of φ takes the form [12]

φ̈þ V 0
eff þ γ _φ ¼ 0; ð1Þ

where the prime denotes a derivative with respect to φ. The
effective potential Veff and the damping coefficient γ only
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depend on the value of φ and the temperature. For
sufficiently slow evolution, higher derivative terms in
Eq. (1) can be neglected. Note that the form of Eq. (1)
follows from the separation of timescales alone.
If ω and the damping rate γ are small compared to the

thermalization rate, then γ can be obtained from a finite-
temperature real-time correlation function, evaluated in
the zero-momentum, zero-frequency limit [13,14]. E.g.,
the damping coefficient for the axion field is proportional
to the Chern-Simons diffusion rate in QCD [13], the
so-called strong sphaleron rate, which is nonperturbative
and has been calculated on the lattice [15,16]. In many
cases the required correlation functions can in principle be
calculated perturbatively in thermal field theory. They are,
however, sensitive to timescales much larger than the
mean free time of the plasma particles, so that one has to
take into account multiple scatterings. This requires the
resummation of an infinite set of diagrams. Several
authors have applied 1- or 2-loop approximations with
resummed propagators containing a finite width (see e.g.,
[17–20]), which gives rise to a nonzero damping rate.
However, proper treatment of the multiple interaction
requires the resummation of a much larger class of
diagrams [21,22].
Similar complications arise in the computation of trans-

port coefficients, such as bulk viscosity, which can be
written as the zero-momentum zero-frequency limit of a
stress-tensor correlation function [23,24]. For viscosities,
the required summation of diagrams has been performed.
It was shown that this is equivalent to solving an effective
Boltzmann equation [23].
The physics behind bulk viscosity ζ is closely related to

the one of the damping coefficient γ. Both describe small
deviations from thermal equilibrium. In the case of ζ it is
due to a uniform expansion of the system. The deviation
of the trace of the stress tensor from the ideal-fluid form is
proportional to ζ. When the field φ changes with time
and interacts with the plasma particles, it changes their
parameters such as masses or couplings, driving the plasma
out of equilibrium. Since φ is spatially constant, this
deviation from equilibrium is homogeneous and isotropic
as well.
For the model considered in Ref. [14] the damping

coefficient could be related to a correlation function of the
stress tensor. Thus there is a simple relation between γ and
the bulk viscosity ζ of the thermal plasma, so that one can
use the known result for ζ. In this work we consider
interactions of φ with another scalar field χ through
operators that cannot be expressed in terms the stress
tensor, but which still allow for a perturbative treatment. We
can proceed similarly to the computation of the bulk
viscosity, for which the required resummation of diagrams
is equivalent to solving an effective Boltzmann equation
[23]. Damping coefficients have been computed from a
Boltzmann equation long ago using a relaxation time

approximation [12].1 This approximation, however, does
not give the correct result for the bulk viscosity in scalar
theory [23,24]. Here we carefully treat the collision term
as well as thermal effects by employing the effective
Boltzmann equations which were used to perturbatively
compute bulk viscosities in scalar theories [23,24], and in
gauge theories[25,26]. This allows us to obtain the correct
dependence on the coupling constants and explicitly
compute γ at leading order in perturbation theory.
This paper is organized as follows. In Sec. II we obtain the

effective equation of motion for φ and an expression for the
damping coefficient in terms of the plasma-particle occu-
pancy. The latter is computed in Sec. III from an effective
Boltzmann equation. InSec. IV the solution to theBoltzmann
equation is inserted into the effective equation of motion for
φ, and the damping coefficients is expressed in terms of the
known bulk viscosity of the plasma. Section V contains
conclusions and a brief outlook. Appendix A deals with the
thermodynamics of the plasma particles, and Appendix B
describes the solution of the Boltzmann equation.

II. EFFECTIVE EQUATION OF MOTION

In this section, largely following Ref. [12], we obtain the
effective equation of motion (1) from quantum field theory
and relate the coefficients therein to microscopic physics.
We consider a scalar field Φ is coupled to another scalar
field χ through the interaction

LΦχ ¼ −AðΦÞχ2: ð2Þ

Restricting ourselves to renormalizable interactions we
can have

AðΦÞ ¼ μ

2
Φþ λ

4
Φ2 ð3Þ

with coupling constants μ and λ. Without Hubble expansion
the equation of motion for Φ reads

Φ̈ − ΔΦþ V 0ðΦÞ þ A0ðΦÞχ2 ¼ 0; ð4Þ

where V is the part of the tree-level potential that depends
only on Φ. Equation (4) is still an equation for field
operators. We want to write an equation of motion for the
zero-momentummode φ ofΦ, and we assume that φ can be
approximated by a classical field. We write

Φ ¼ φþ Φ̂; ð5Þ

where Φ̂ contains the nonzero momentum modes of Φ.
Through the interaction, χ particles are produced. Once the
χ particles are created, they can also produce Φ particles

1The damping coefficients computed in Refs. [18–20] are of
the same form as in Ref. [12].
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which are represented by Φ̂. Thus the production of Φ
particles also contributes to the damping of φ. This effect is
discussed in [27], where it was found that this contribution
is subdominant unless the energy density in φ is small
compared to the energy density of the χ particles. In the
context of reheating after inflation this would already be
during radiation domination. We assume that φ still
dominates the energy density and neglect this contribution.
Then we can replace the forth term in Eq. (4) by A0ðφÞχ2.
We assume that χ interacts rapidly with itself or other

fields, so that it thermalizes on timescales which are short
compared to the period of φ oscillations. Furthermore, we
assume that the interactions of χ are weak enough, so that
the typical mean free path of χ particles is much larger than
their typical de Broglie wavelength. Then χ is made up of
weakly interacting particles which can be described by
their phase space density, or occupancy fðt;pÞ. Since we
consider a homogeneous system, it only depends on time t
and on the particle momentum p. We may then replace χ2

by its expectation value computed from the occupancy
using the free-field expression

hχ2i ¼
Z

d3p
ð2πÞ3

fðt;pÞ
E

; ð6Þ

where E is the one-particle energy (see below). Thus we
arrive at the effective classical equation of motion

φ̈þ V 0ðφÞ þ A0ðφÞhχ2i ¼ 0: ð7Þ

The deviations from equilibrium are assumed to be
small, so that the occupancy in Eq. (6) can be written as

fðt;pÞ ¼ feqðt;pÞ þ δfðt;pÞ; ð8Þ

with the local equilibrium distribution

feqðt;pÞ ¼
1

expðE=TÞ − 1
: ð9Þ

and δf ≪ feq. The temperature T in Eq. (9) varies slowly
with time. The mass of the χ particles depends on the value
of φ,

m2 ¼ m2
0 þ 2AðφÞ ð10Þ

where m0 is the zero-temperature mass at vanishing φ.
Throughout this paper we assume thatm is small compared
to the temperature.2 The mass appearing in the one-particle
energy E in Eqs. (6) and (9) also receives a thermal
contribution m2

th ∝ T2, so that E ¼ ðp2 þm2
effÞ1=2 with

m2
eff ¼ m2 þm2

th: ð11Þ

To avoid a tachyonic instability [29], m2
eff must be positive.

With the help of Eq. (8), the expectation value in Eq. (6)
becomes

hχ2i ¼ hχ2ieq þ δhχ2i: ð12Þ
The first term in Eq. (12) is nondissipative. It gives a
thermal correction in the effective potential in Eq. (1) [12],

V 0
eff ¼ V 0 þ A0hχ2ieq; ð13Þ

which is precisely the leading term in the high-temperature
limit of the 1-loop effective potential (see, e.g., [30]). The
second term in Eq. (12) is dissipative and will give rise to
the damping term in Eq. (1).

III. BOLTZMANN EQUATION

The occupancy of χ particles in Eq. (6) can be computed
by solving a Boltzmann equation, because the timescale on
which their mass changes is of order 1=ω which is much
larger than their typical de Broglie wavelength of order
1=T. Due to the homogeneity, spatial momentum is
conserved. Thus the Boltzmann equation takes the form

∂tf ¼ C; ð14Þ

where C is the collision term. Now we insert Eq. (8) on the
left-hand side of Eq. (14). We neglect ∂tδf because it is
quadratic in small quantities, so that

∂tf ≃ −feqð1þ feqÞ∂tðE=TÞ: ð15Þ

The zero-momentum mode φ depends on time and changes
the mass of the plasma particles through the interaction (2).
If the oscillation is much slower than the thermalization of
the plasma, this is an adiabatic process that changes the
temperature in Eq. (9) at constant volume.3 Thus the time
dependence of the temperature is determined by

∂tT ¼
�
∂T
∂m2

�
S;V

∂tm2: ð16Þ

In the limit T ≫ m we obtain (see Appendix A)

�
∂T
∂m2

�
S;V

¼ T
4ρ

hχ2ieq; ð17Þ

where ρ is the energy density of the thermal plasma. The
one-particle energy E depends on time through the effective
mass. We thus have2The opposite limit m ≫ T is considered in Ref. [28] with

additional light degrees of freedom. Then χ can be integrated out
giving rise to an effective interaction of φ with the light plasma
particles.

3This does not apply to the case ω≳ T which is considered in
Refs. [31–33].
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∂tðE=TÞ¼
1

2TE

�
1−

hχ2ieq
2ρ

�
E2−T2

∂m2
eff

∂T2

��
∂tm2: ð18Þ

The third term in the square bracket is small compared to
the first, both for hard (jpj ∼ T) and for soft (jpj ∼meff )
momenta, and can be neglected, so that

∂tf ≃ −feqð1þ feqÞ
Q
2T

∂tm2 ð19Þ

with

QðpÞ≡ 1

E
−
hχ2ieq
2ρ

E: ð20Þ

Now we insert Eq. (8) into the collision term. Since C
vanishes in equilibrium, its expansion in δf starts at linear
order,

C ≃ Ĉδf: ð21Þ

Here we have neglected the contribution of Φ particles
because the corresponding collision term is quadratic in the
Φ-χ couplings which we assume to be much smaller than
the self-coupling of χ entering Ĉ.
It is convenient to write the deviation from equilibrium as

δf ¼ −feqð1þ feqÞX: ð22Þ

Similarly, we write the linearized collision term as

Ĉδf ¼ feqð1þ feqÞC̃X; ð23Þ

with the convolution

½C̃X�ðpÞ≡
Z

d3p0

ð2πÞ3 C̃ðp;p
0Þfeqðp0Þ

× ð1þ feqðp0ÞÞXðp0Þ: ð24Þ

Then the kernel C̃ is symmetric [34],

C̃ðp;p0Þ ¼ C̃ðp0;pÞ: ð25Þ

The Boltzmann equation thus turns into an equation for X,

−
∂tm2

2T
Q ¼ C̃X: ð26Þ

Since the collision term vanishes in equilibrium for any
temperature, the linearized collision term has a zero mode
X ¼ X1 associated with a shift of the temperature, which is
given by X1ðpÞ ¼ E. Due to the symmetry of C̃ the right-
hand side of Eq. (26) is orthogonal to X1. For Eq. (26) to be
consistent, the left-hand side must be orthogonal to X1 as

well. This is indeed the case when the second term in
Eq. (20) is taken into account, which can be easily checked.
Due to the zero mode the linear operator C̃ cannot be

inverted. However, it can be inverted on the subspace
orthogonal to the zero mode,4 where orthogonality is
defined with respect to the inner product

ðX;X0Þ≡
Z

d3p
ð2πÞ3 feqð1þ feqÞXðpÞX0ðpÞ: ð27Þ

We can then write the solution as

X ¼ −
∂tm2

2T
C̃−1Q; ð28Þ

and we finally obtain

δf ¼ feqð1þ feqÞ
∂tm2

2T
C̃−1Q: ð29Þ

IV. DAMPING COEFFICIENT AND BULK
VISCOSITY

Coming back to the effective equation of motion (7), we
insert the solution (29) into Eq. (6) to obtain the second
term in Eq. (12) as

δhχ2i ¼ 1

2T
ðQ0; C̃−1QÞ∂tm2: ð30Þ

Here we have introduced Q0ðpÞ≡ 1=E. The factor ∂tm2 is
proportional to _φ. Comparing Eqs. (1) and (7) we see that
the second term in Eq. (12) is indeed responsible for the
damping,

γ _φ ¼ A0δhχ2i: ð31Þ

Inserting A from Eq. (3) we obtain

γ ¼ 1

4T
ðQ0; C̃−1QÞðμþ λφÞ2; ð32Þ

which is our main result.
The computation of C̃−1Q is described in Appendix B.

However, at this point we do not need it explicitly,5

because, as we shall see in a moment, the coefficient
ðQ0; C̃−1QÞ also appears in the computation of the bulk
viscosity ζ of the χ plasma. Therefore it can be read off
directly from known results for ζ. To see this, we first recall
that C̃−1Q is orthogonal to X1 ¼ E, i.e., ðE; C̃−1QÞ ¼ 0.

4This is equivalent to imposing the Landau-Lifshitz condition
on the energy density δρ ¼ ð2πÞ−3 R d3pE δf ¼ 0.

5It will be useful later, when we estimate the size of δf in order
to check the accuracy of our approximations.
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In Eq. (32) we may therefore replace Q0 ¼ Qþ
ðhχ2ieq=2ρÞE by Q without changing our result for γ,
which then reads

γ ¼ 1

4T
ðQ; C̃−1QÞðμþ λφÞ2: ð33Þ

Let us now recall some properties of the bulk viscosity,
as described, e.g., in Ref. [25]. When a plasma is uniformly
compressed or rarified it leaves equilibrium, unless this
happens infinitely slowly. The pressure of the plasma then
differs from the value it would have in the equilibrium state
with the same energy density. This deviation of the pressure
from equilibrium is proportional to the bulk viscosity.
In a plasma with scale invariance the bulk viscosity

vanishes, for two different reasons. The first one is that a
uniform expansion or rarefaction is a dilatation which is a
symmetry transformation in a scale invariant theory.
Therefore such a transformation does not take the system
out of equilibrium. The second is that in a scale invariant
theory the trace of the energy-momentum tensor Tμν always
vanishes. Therefore the pressure P ¼ Tmm=3 equals ρ=3
even out of equilibrium.
Scale invariance is broken by zero-temperature masses

and by the trace anomaly, i.e., by quantum effects. The bulk
viscosity is then quadratic in the measure which controls
the breaking of scale invariance.
The bulk viscosity ζ of the thermal plasma of scalar

particles with mass m was computed for scalar theory in
Refs. [23,24]. Like in QCD [25] it can be written as

ζ ¼ 1

T
ðq; C̃−1qÞ; ð34Þ

with

qðpÞ ¼ −
1

E

��
c2s −

1

3

�
p2 þ c2sm2

sub

�
: ð35Þ

Here cs with c2s ¼ ∂P=∂ρ is the speed of sound. In a scale
invariant theory c2s equals 1=3, so that the first term in the
square bracket in Eq. (35) vanishes. Furthermore,msub with

m2
sub ≡m2

eff − T2
∂m2

eff

∂T2
ð36Þ

is the so-called subtracted mass. In the massless limit
m ¼ 0, m2

eff equals T2 times a function of the coupling
constants [see Eqs. (10), (11)]. Then the only contribution
to the subtracted mass is from the running of the couplings
renormalized at the scale T. The subtracted mass is thus a
measure of the deviation from scale invariance as well,
because it vanishes when m ¼ 0 and the couplings do not
run. Since q appears twice in Eq. (34), the bulk viscosity is
indeed quadratic in the measure of scale-invariance
violation.

Now we replace p2 by E2 −m2
eff in Eq. (35) which turns

it into

qðpÞ ¼
��

c2s −
1

3

�
m2

eff − c2sm2
sub

�
1

E
−
�
c2s −

1

3

�
E: ð37Þ

Comparing Eqs. (20) and (37) we see that both Q and q
consist of a term proportional to 1=E, and one proportional
to E. Furthermore, q appears on the left-hand side of a
Boltzmann equation precisely like Q in Eq. (19),6 and is
thus orthogonal to X1 as well. Therefore q must be
proportional to Q. Here we are interested in the limit
T ≫ m in which [23]

jc2s − 1=3j ¼ Oðm2
sub=T

2Þ ≪ 1 ðT ≫ mÞ; ð38Þ

and also m2
eff ≪ T2. Therefore we can approximate the

square bracket in (37) by −m2
sub=3. This gives us the

approximate factor of proportionality, so that q≃
−ðm2

sub=3ÞQ. Then we obtain the following simple relation

γðφ; TÞ ¼ 9

4

ζ

m4
sub

ðμþ λφÞ2 ð39Þ

of the dampingcoefficient in the effective equationofmotion
(1)and thebulkviscosityof theχ plasma.Like inRef. [14] the
nontrivial dependence on the interaction of the plasma
particles, on thermal masses, etc., is precisely the same for
both quantities.Note thatm4

sub in the denominator of Eq. (39)
removes the factors related to thebreakingof scale invariance
from ζ,which can also be seen explicitly inEqs. (41) and (43)
below. Thus, despite its similarity to the bulk viscosity, the
damping coefficient is not related to the breaking of scale
invariance.
The bulk viscosity for a self-interacting scalar field was

computed in Ref. [23]. For the quartic self-interaction

Lχχ ¼ −
g2

4!
χ4 ð40Þ

and T ≫ m the leading-order result reads

ζ ¼ b
4

m4
subm

2
eff

g8T3
ln2

�
κ2m2

eff

T2

�
; ð41Þ

with b ¼ 5.5 × 104 and κ ¼ 1.25. The effective mass for
the χ particles is given by

m2
eff ¼ m2 þ g2

24
T2; m2 ¼ m2

0 þ
λ

2
φ2: ð42Þ

Inserting Eq. (41) into Eq. (39) we obtain the damping
coefficient

6See Eq. (3.7) of Ref. [25].
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γðφ; TÞ ¼ a
m2

eff

g8T3
ln2

�
κ2m2

eff

T2

�
ðμþ λφÞ2 ð43Þ

with the remarkably large numerical prefactor

a ¼ 3.1 × 104: ð44Þ

In the temperature range T ≫ m=g2 the form (41) and thus
Eq. (43) remain valid when a cubic self-interaction is
included in (40), while in the intermediate regime m ≪
T ≪ m=g2 the bulk viscosity depends nontrivially on the
relative strengths of cubic and quartic χ self-couplings [23].
It is obvious from the dependence on the coupling constant
g that the result (43) cannot be obtained from a one-loop
approximation to a correlation function, as anticipated in
Refs. [22,28]. Instead, by solving the Boltzmann equation
we have summed an infinite set of diagrams which all
contribute at leading order in g.
We can compare our result with the one obtained in

Ref. [12] for a single scalar field by putting χ ¼ φ, μ ¼ 0,
and, up to an Oð1Þ factor, g2 ¼ λ. In Ref. [12] the
Boltzmann equation was solved in the collision-time
approximation, i.e., by replacing the linearized collision
term on the right-hand side of Eq. (21) by a constant times
δf. Such an approximation does not take into account the
zero eigenvalues and the hierarchy of nonzero eigenvalues
of C̃. In Ref. [12] the collision time is determined by 2 → 2
scattering which changes momenta but not particle num-
bers. Bulk viscosity and the damping coefficient γ are,
however, determined by the slowest equilibration process,
corresponding to the smallest eigenvalue of the linear
collision operator, since it is the inverse of the collision
operator that appears in Eqs. (32) and (34). In scalar field
theory the slowest process is particle number equilibration.
Therefore the computation of Ref. [12] does not give the
correct dependence on the coupling constant and under-
estimates the values of γ and ζ. Similarly, in Ref. [35] the
rate for elastic scattering was used to estimate the damping
coefficient.
The importance of particle number changing processes

for the bulk viscosity is well known. The reason why they
are also important for the damping coefficient is the
following. When φ evolves in time, it changes the mass
of the χ particles, but not their momenta. This, in turn,
changes the energy density of χ particles but leaves their
number density unaffected. In order to relax to equilibrium,
the χ particle number has to adjust to the equilibrium value
corresponding to their new energy density.
Let as finally discuss the range of validity of the effective

equation of motion (1). There the damping term is linear in
_φ. This is related to the linearization of the Boltzmann
equation, which requires that δf ≪ feq. In Appendix B we
show that

δf=feq ∼
meff

g8T4
∂tm2 ð45Þ

for the interaction (40). When φ oscillates with frequency ω
and amplitude φ̃, the time derivative ∂tm2 can be estimated
as λωφ̃2. For gT ≫ m we thus need

λωφ̃2 ≪ g7T3 ð46Þ

in order to be able to linearize the Boltzmann equation.
We may also apply the condition (46) to a model with a

single scalar field φ which was considered in Ref. [12] by
putting μ ¼ 0 and λ ∼ g2. Then (46) turns intoωφ̃2 ≪ g5T3.
The energy density inφwould be ρφ ∼ ω2φ̃2 ≪ ðω=TÞg5T4.
Due to ω ≪ T, the energy carried by φwould be only a tiny
fraction of the plasma energy density ρ ∼ T4. For the more
interesting case that we have several fields, φ can give the
dominant contribution to the total energy without violating
the condition (46).

V. CONCLUSION

A slowly moving homogeneous scalar field φ interacting
with a thermal plasma drives it slightly out of equilibrium,
giving rise to dissipation and damping. In the high-temper-
ature regime the damping coefficient in the effective
equation of motion for φ can be efficiently computed by
solving an appropriate Boltzmann equation, see Eq. (32).
We have considered a plasma made of a single species of
scalar particles. In this case we obtained a simple relation of
the damping coefficient to the bulk viscosity of the plasma,
Eq. (39). This extends a result [14] which was obtained for
a scalar field with derivative interaction. Like in the
computation of viscosity, the solution of the Boltzmann
equation is dominated by the slowest process required for
equilibration. This can be easily generalized to multi-
component plasmas, where again one has to identify the
slowest process to solve the Boltzmann equation and then
use the resulting phase space density to compute the
dissipative terms in the effective equation of motion for
the scalar field.
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APPENDIX A: MASS DEPENDENCE OF THE
TEMPERATURE

The free energy of an ideal gas has the high-temperature
expansion
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FðT; V;m2Þ ¼ Vð−aT4 þ bT2m2 þ � � �Þ ðA1Þ

with positive constants a and b; m is the mass of one
particle species. The coefficient a can also contain the
contributions from other light species. At leading order
our expansion is related to the energy density by ρ ¼ 3aT4.
For a scalar

∂F
∂m2

¼ V
2
hχ2ieq; ðA2Þ

which gives b ¼ hχ2ieq=ð2T2Þ. The entropy is

S ¼ −
∂F
∂T

¼ Vð4aT3 − 2bTm2 þ � � �Þ: ðA3Þ

This can be inverted to obtain the expansion for the
temperature, T ¼ T0 þ T2 þ � � �, for which we obtain

T0 ¼
�

S
4aV

�
1=3

; ðA4Þ

T2 ¼
b
6a

m2

T0

: ðA5Þ

Differentiating T2 with respect to m2 then gives Eq. (17).

APPENDIX B: SOLVING THE BOLTZMANN
EQUATION AND ESTIMATING δf

The linearization of the Boltzmann equation is only
possible if the deviation from equilibrium is small,
δf ≪ feq. This condition restricts the allowed values of
the couplings and the amplitude of the zero-momentum
mode φ.
To estimate the size of δf in Eq. (29) we derive its

explicit form, closely following Ref. [24]. For a self-
interacting scalar field one has to include two contributions
in the collision term,

C̃ ¼ C̃el þ C̃inel: ðB1Þ

C̃el describes elastic 2 → 2 scattering which conserves
particle number. Therefore it has the additional zero mode
X0 ¼ 1, associated with a shift of the chemical potential,
and cannot be inverted on the subspace orthogonal to
X1 ¼ E. One also has to include an inelastic contribution
C̃inel describing particle number changing processes, even
though its matrix element is higher order. C̃ has a single
small eigenvalue c on the subspace orthogonal to X1, with
the approximate eigenvector

X0⊥ ¼ X0 − αX1; ðB2Þ

where α ¼ ðX1; X0Þ=ðX1; X1Þ. The small eigenvalue is
approximately

c ¼ ðX0⊥; C̃inelX0⊥Þ
ðX0⊥; X0⊥Þ

; ðB3Þ

while the other nonvanishing eigenvalues are of order C̃el.
In the numerator of Eq. (B3) we may replace X0⊥ by X0

because C̃inelX1 vanishes. This eigenvalue gives the leading
contribution to C̃−1, so that

C̃−1Q ≃
ðX0⊥; QÞ

ðX0; C̃inelX0Þ
X0⊥: ðB4Þ

In the numerator of Eq. (B4) we can replace X0⊥ by X0,
because X1 is orthogonal to Q. We insert this into Eq. (29),
which finally gives

δfðpÞ ¼ feqðpÞ½1þ feqðpÞ�

×
∂tm2

2T
ðX0; QÞ

ðX0; C̃inelX0Þ
X0⊥ðpÞ: ðB5Þ

We now use this to estimate the size of δf. We will
encounter the integrals

In ≡
Z

d3p
ð2πÞ3 feqð1þ feqÞEn; ðB6Þ

for n ¼ −1, 0, and 1. For n ≥ 0 these are saturated at
jpj ∼ T, giving In ∼ T3þn. Since feq ≃ T=E for E ≪ T, the
integral I−1, is logarithmically infrared divergent in the
massless limit and is cut off by meff. Thus I−1 receives
leading order contributions both from jpj ∼ T and from
jpj ∼meff ≪ T, with the result

I−1 ¼
T2

2π2
ln

�
2T
meff

�
: ðB7Þ

The factor ðX0; QÞ in the numerator of Eq. (B5) contains
I−1 and I1 and is of order T2 modulo logarithms, because
hχ2ieq=ρ ∼ T−2. The denominator depends on the type of
interaction (see below).
Since the size of δfðpÞ depends on jpj, we need to know

which values of jpj give the dominant contributions to
ðQ0; C̃−1QÞ ∝ ðQ0; X0⊥Þ, which enters the damping coef-
ficient in Eq. (32). Using Eq. (B2) we find that the integrals
(B6) appear in the combination I−1 − αI0. The factor α is of
order 1=T. Thus jpj ∼ T and jpj ∼meff are equally impor-
tant. In both regions X0⊥ ∼ 1. Due to the Bose factors in
Eq. (22) the ratio δf=feq increases with decreasing jpj, so
that it takes its largest value when jpj ∼meff . Putting
jpj ∼meff , collecting all factors and ignoring logarithms
we obtain
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δf=feq ∼
T2

∂tm2

meffðX0; C̃inelX0Þ
: ðB8Þ

For the χ self-interaction (40) and the χ-φ interaction (2)
with μ ¼ 0, C̃inel describes scattering involving 6 particles.
The corresponding squared matrix is proportional to g8.

The momentum integral which enters the denominator in
Eq. (B4) is saturated by soft momenta (T ∼meff )) [23]. It
containsup to sixBosedistributions,which for softmomenta
satisfy feqðpÞ ≃ T=E, giving rise to a factor T6. By dimen-
sional analysis one then finds ðX0; C̃inelX0Þ ∼ g8T6=m2

eff ,
which yields the estimate (45).
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