
Nonlinear Compton scattering and nonlinear Breit-Wheeler pair production
including the damping of particle states

T. Podszus,1,* V. Dinu ,2,† and A. Di Piazza 1,‡

1Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg, Germany
2Department of Physics, University of Bucharest, P.O. Box MG-11, Măgurele 077125, Romania
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In the presence of an electromagnetic background plane wave field, electron, positron, and photon states
are not stable because electrons and positrons emit photons and photons decay into electron-positron pairs.
This decay of the particle states leads to an exponential damping term in the probabilities of single
nonlinear Compton scattering and nonlinear Breit-Wheeler pair production. In this paper, we investigate
analytically and numerically the probabilities of nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production including the particle states’ decay. For this, we first compute spin- and polarization-
resolved expressions of the probabilities, provide some of their asymptotic behaviors, and show that the
results of the total probabilities are independent of the spin and polarization bases. Then, we present several
plots of the total and differential probabilities for different pulse lengths and for different spin and
polarization quantum numbers. We observe that it is crucial to take into account the damping of the states in
order for the probabilities to stay always below unity, and we show that the damping factors also scale with
the intensity and pulse duration of the background field. In the case of nonlinear Compton scattering, we
show numerically that the total probability behaves like a Poissonian distribution in the regime where the
photon recoil is negligible. In all considered cases, the kinematic conditions are such that the final particles
momenta transverse to the propagation direction of the plane wave are always much smaller than the
particles longitudinal momenta and the main spread of the momentum distribution on the transverse plane
is along the direction of the plane wave electric field.
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I. INTRODUCTION

With the ongoing progress in laser technology toward
higher intensities, lasers represent a promising tool to test
QED in a regime where quantum effects induced by the
laser field play an important role. In QED, the vacuum is
pictorially described as being populated by fluctuations of
virtual electron-positron pairs which can be polarized by a
sufficiently large electromagnetic field. The so-called
critical field of QED Fcr ¼ m2=jej ¼ 1.3 × 1016 V=cm ¼
4.4 × 1013 G (here, m and e < 0 are the electron mass and
charge, respectively, and we use units where ϵ0¼ℏ¼c¼1)
[1–3] determines the typical field scale of QED. In the
presence of an electric field of the order of Fcr, the vacuum
becomes unstable under electron-positron pair production,

and the interaction energy of a Bohr magneton with a
magnetic field of strength Fcr is of the order ofm. The field
strength Fcr corresponds to a critical laser intensity
Icr ∼ 1029 W=cm2, which is far from being reached by
available lasers. Indeed, today’s record for the laser peak
intensity I0 is about 1.1 × 1023 W=cm2 [4], and even
upcoming laser facilities are aiming for intensities of the
order of I0 ∼ 1023–1024 W=cm2 [5–9]. However, due to the
Lorentz invariance of QED, physical observables like
transition probabilities depend on the electromagnetic field
only via Lorentz- and gauge-invariant parameters, such that
the interesting regime where field-induced quantum effects
dominate the dynamics can be efficiently entered exper-
imentally already with today’s technology. For an electron
(photon) of four-momentum pμ ¼ ðϵ; pÞ [qμ ¼ ðω; qÞ]
moving in a background field, represented by the field
tensor Fμν

0 ¼ ðE0;B0Þ in the laboratory frame, the proba-
bility of a physical process depends on the so-called
quantum nonlinearity parameter χ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðFμν

0 pνÞ2j
p

=mFcr

(κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðFμν

0 qνÞ2j
p

=mFcr), with the metric tensor ημν ¼
diagðþ1;−1;−1;−1Þ [10–17]. In case of an electron or
positron, this parameter corresponds to the field strength
that the electron or positron experiences in its rest frame in
units of the critical field.
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First experiments probing laser-electron interactions in the
regime χ0 ≲ 1 were performed in the late 1990s at the
Stanford Linear Accelerator Center (SLAC) [18–20], and
recently two experiments have been carried out close to the
χ0 ∼ 1 regimebyusing an all-optical setupwhere the electron
beam was generated via laser wake-field acceleration
[21,22]. Further experiments for testing the strong-field
regime of QED with intense lasers are planned at DESY
(Deutsches Elektronen-Synchrotron) [23] and at SLAC [24].
Already at intensities lower than Icr, classical nonlinear

effects due to the interaction with the background field
become significant and complicate the theoretical descrip-
tion of the electron and positron dynamics. These nonlinear
effects are controlled by the so-called classical nonlinearity
parameter ξ0 ¼ jejE0=mω0, where E0 is the electric-field
amplitude and ω0 is the central angular frequency of the
laser pulse. For ξ0 ≳ 1, the energy that an electron or a
positron gains by the acceleration in the background field in
one laser wavelength is comparable to its rest energy, and
the interaction of the charge with the background field
cannot be treated perturbatively anymore [10–17]. Indeed,
for optical lasers, the parameter ξ0 exceeds unity already at
intensities of the order of 1018 W=cm2 and the interaction
with the background field has to be treated exactly in the
calculations in this case. This problem is commonly solved
by working in the so-called Furry picture [25]. Here, the
background field is taken into account in the quantization
procedure of the fermion field [1,2], such that the corre-
sponding Dirac equation includes the interaction with the
background field. An analytical solution of the Dirac
equation can be found in the case of a plane-wave back-
ground field [26] (see also Ref. [1]), and the corresponding
states are known as Volkov states.
Two elementary processes which have been thoroughly

investigated by employing Volkov states are the emission
of a photon by an electron or positron (nonlinear Compton
scattering) and the decay of a photon into an electron-
positron pair (nonlinear Breit-Wheeler pair production),
which, among others, were studied in Refs. [11,27–53]
(nonlinear Compton scattering) and Refs. [13,28,52,54–65]
(nonlinear Breit-Wheeler pair production).
Considering an electron (photon) moving in a plane

wave laser pulse, it turns out that the leading-order in the
fine-structure constant α ¼ e2=4π ≈ 1=137 total probabil-
ity of nonlinear Compton scattering (nonlinear Breit-
Wheeler pair production) exceeds unity for a sufficiently
long total phase duration ΦL of the laser pulse (or for a
sufficiently large laser intensity). Probabilities larger than
unity are of course unphysical and in contradiction with the
unitarity of the S-matrix. Instead, for nonlinear Compton
scattering, it can be interpreted as the average number of
photons emitted by the electron in the classical limit rather
than as a probability [66]. In general, from the QED
perspective, the reason behind this apparent contradiction
is that higher-order loop corrections and processes become
significant. This is intuitively clear for nonlinear Compton

scattering since the emission of several photons by an
electron due to nonlinear multiple Compton scattering
processes becomes sizable with an increasing pulse length
[67–72]. A first investigation to taking into account these
effects was carried out in Ref. [73] for χ0 ≲ 1. The
probability for an arbitrary number of consecutive incoher-
ent photon emissions by an electron was calculated, taking
into account the recoil at each photon emission. Each
probability was then “renormalized” by imposing that the
total probability of emitting either no photons or an
arbitrary number of photons was unity. The renormalization
ensures that the final probability of nonlinear (multiphoton)
Compton scattering stays below unity even for large phase
lengths of the laser pulse. These results where confirmed in
Refs. [74,75] by means of a kinetic approach, which also
included the effects of nonlinear Breit-Wheeler pair pro-
duction [75]. In Refs. [74,75], also inclusive quantities like
average momenta are computed, and an approach to obtain
the momentum expectation values of an electron including
multiple photon emissions and loops has been put forward
in Ref. [76].
In Ref. [77], the probability of an electron emitting an

arbitrary number of photons was derived via the following
considerations. The probability of an electron emitting N
photons was calculated by first combining the probability
of the electron to emit N − 1 photons until a certain time t,
with the probabilities to emit one photon between t and
tþ dt, with dt being an infinitesimal positive time interval,
and with the probability of emitting no photons from time
tþ dt on, and finally by integrating the result over all
possible times t (a similar method was used in Ref. [78] to
compute the pair-production yield as an observable to
diagnose the intensity of the laser beam producing the
pairs). Additionally, the photon recoil was taken into
account. The obtained recursive equation for nonlinear
multiphoton Compton scattering contains an exponential
damping term describing the “decay” of the electron state
by emitting a photon. This damping term depends on time
and on the energy of the electron and ensures that the total
probability of emitting either no or an arbitrary number of
photons is unity. The results in the regime χ0 ≲ 1 were in
agreement with those in Ref. [73].
In Ref. [79], the probability of nonlinear Compton

scattering and of nonlinear Breit-Wheeler pair production
was computed from first principles. The derived expres-
sions are equivalent to the resummation of all one-particle
reducible diagrams containing an arbitrary number of
corrections to the electron and photon states by the one-
loop mass and polarization operators, respectively (see
Fig. 1 for the case of nonlinear Compton scattering). This
was achieved by calculating the S-matrix with the “exact”
electron and photon states, which are the solutions of the
Schwinger-Dyson equation. This work and Refs. [73–77]
were framed within the so-called locally constant-field
approximation (LCFA). In the LCFA probabilities of QED
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processes reduce to the corresponding probabilities in a
constant crossed field averaged over the phase-dependent
plane wave profile. This is reasonable in the limit of
low-frequency plane waves with fixed electric-field ampli-
tude, since here the formation length of QED processes
is much smaller than the typical wavelength of the plane
wave [11]. The assumption is valid if ξ0 ≫ 1 at χ0, κ0 ∼ 1,
which was assumed throughout the derivation (we did not
consider the problems which occur for the LCFA at low
photon energies in the case of nonlinear Compton scattering
[50,53]). It can be shown that the solution of the Schwinger-
Dyson equation intrinsically includes the resummation of all
corrections by the one-loop mass and polarization operator
for the exact electron or positron and photon state, respec-
tively. The final probabilities for nonlinear Compton scatter-
ing and nonlinearBreit-Wheeler pair production comprise an
exponential damping term, describing the “decay” of the
electron states by emitting a photon and the decay of
the photon state into an electron-positron pair. This decay
of the particle states turned out to become significant if
αξ0ΦL ≳ 1. It is interesting to notice that the result for the
probability of nonlinear Compton scattering is structurally
similar to the single photon emission probability derived by
the probabilistic approach in Ref. [77]. However, the
probability in Ref. [79] additionally includes spin and
polarization effects as well as the decay of the photon state
into an electron-positron pair.
In Ref. [72], an approach has been developed to

investigate higher-order QED processes also beyond the
LCFA but for sufficiently long plane wave pulses that the
dynamics is dominated by the so-called cascade channel. In
the cascade channel, the higher-order process occurs as a
sequence of the elementary building blocks represented by
nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production.
The aim of the present work is to present new analytical

insights and numerical examples on the probabilities of
nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production including the particle states decay
derived in Ref. [79]. The paper is organized as follows.
First, we give a detailed analytical evaluation of the
differential and the total probabilities, together with the
asymptotic behavior for one final particle getting all or
none of the initial light-cone energy. Further, we prove that
the results of the total probabilities are independent of the
spin and polarization basis that we use in the calculations.
Then, we pass to the numerical evaluation of the results.

We present plots of the differential and the total proba-
bilities at two different pulse lengths for both nonlinear
Compton scattering and nonlinear Breit-Wheeler pair
production. In the case of nonlinear Compton scattering,
we compare the results with a Poissonian distribution. For
the differential probability, we show different plots cor-
responding to different combinations of spin and polari-
zation of the initial and final particles. Finally, the main
conclusions of the paper are presented. An Appendix
contains the explicit computation of the traces of Dirac
matrices, which are not essential for the understanding of
the main results of the paper.

II. ANALYTICAL CALCULATIONS

A. Notation

As indicated in the Introduction, we investigate the
probability of nonlinear Compton scattering and nonlinear
Breit-Wheeler pair production including the particle states
decay, which was presented in Ref. [79], and for better
comparison, we employ the same notation here.
We consider a plane wave background field with central

photon four-momentum kμ0 ¼ ω0nμ, where we introduced
the quantity nμ ¼ ð1; nÞ, with the three-dimensional unit
vector n pointing along the direction of propagation of
the background field. Additionally, we introduce the
quantity ñμ ¼ ð1;−nÞ=2 such that ðnñÞ ¼ 1. Since the
background field is a plane wave, its four-potential
AμðϕÞ ¼ ðA0ðϕÞ;AðϕÞÞ only depends on the light-cone
time ϕ ¼ ðnxÞ ¼ t − n · x. Further, it is a solution of the
free wave equation ∂μ∂μAν ¼ 0, as we assume that it fulfills
the Lorentz gauge condition ∂μAμðϕÞ ¼ 0. By additionally
fixing the gauge such that A0ðϕÞ ¼ 0, the vector potential is
perpendicular to the direction of propagation of the plane
wave, i.e., n · AðϕÞ ¼ 0, if AðϕÞ → 0 at ϕ → �∞, which
we also assume in the following.
By introducing the two four-vectors aμj ¼ ð0; ajÞ with

j ¼ 1, 2, which obey the relations ðnajÞ ¼ −2ðñajÞ ¼
−n · aj ¼ 0 and ðajaj0 Þ ¼ −aj · aj0 ¼ −δjj0 , with j; j0 ¼ 1,
2, the vector potential of the plane wave can be expressed as
AðϕÞ ¼ ψ1ðϕÞa1 þ ψ2ðϕÞa2. Here, ψ jðϕÞ denotes the jth
pulse shape function, and it vanishes for ϕ → �∞. In the
following, we will only consider the case of a linearly
polarized plane wave, such that we choose without loss of
generality ψ2ðϕÞ ¼ 0 and ψ1ðϕÞ ¼ A0ψðϕÞ, with A0 < 0
being related to the amplitude of the electric field of the
plane wave. The functions ψðϕÞ and ψ 0ðϕÞ are assumed to

FIG. 1. The amplitude of nonlinear Compton scattering computed with the exact electron and photon states (thick straight and wiggly
lines, respectively) is equal to the resummation of all one-particle reducible diagrams with corrections to the one-loop mass operator (M)
on the Volkov-electron states (thin double lines) and to the one-loop polarization operator (P) on the photon states (thin wiggly lines)
(see Ref. [79]).
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be such that jψðϕÞj; jψ 0ðϕÞj≲ 1. Here and in the following,
a prime at a function denotes the derivative of the function
with respect to its argument. The electromagnetic field
tensor is then given by FμνðϕÞ ¼ nμA0νðϕÞ − nνA0μðϕÞ ¼
Aμν
0 ψ 0ðϕÞ, where we have introduced the notation

Aμν
0 ¼ A0ðnμaν1 − nνaμ1Þ. The dual of the field tensor is

F̃μνðϕÞ ¼ Ãμν
0 ψ 0ðϕÞ, where Ãμν

0 ¼ ð1=2ÞεμνλρA0;λρ and we
define the four-dimensional Levi-Civita tensor as ε0123 ¼
þ1 [note that in the chosen reference frame it is
Ãμν
0 ¼ A0ðnμaν2 − nνaμ2Þ]. Since the four-potential and the

field tensor always occur multiplied by the electron charge,
we introduce the notation AμðϕÞ ¼ eAμðϕÞ, A0 ¼ eA0,
and F μνðϕÞ ¼ eFμνðϕÞ.
The quantities nμ, ñμ, and aμj fulfill the relation

ημν ¼ nμñν þ ñμnν − aμ1a
ν
1 − aμ2a

ν
2. It is useful to employ

light-cone coordinates, and for an arbitrary four-vector
vμ ¼ ðv0; vÞ, the components in light-cone coordinates
are v− ¼ ðnvÞ ¼ v0 − n · v, vþ ¼ ðñvÞ ¼ ðv0 þ n · vÞ=2,
and v⊥ ¼ ðv⊥;1; v⊥;2Þ ¼ −ððva1Þ; ðva2ÞÞ ¼ ðv · a1; v · a2Þ.
Further, we introduce the notation v̂ ¼ γμvμ, where γμ

are the Dirac-matrices, and we define γ5 ¼ iγ0γ1γ2γ3.

B. Nonlinear Compton scattering

In the case of nonlinear Compton scattering, we assume
the incoming (outgoing) electron to have four-momentum
pμ ¼ ðε; pÞ (p0μ ¼ ðε0; p0Þ), with energy ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
(ε0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02

p
), and an asymptotic spin quantum number

s ¼ �1 (s0 ¼ �1). The spin quantization axis of the incom-
ing (outgoing) electron is chosen along the four-vector
ζμ¼−Ãμν

0 pν=ðp−A0Þ (ζ0μ ¼ −Ãμν
0 p0

ν=ðp0
−A0Þ), which cor-

responds to the three-dimensional spin vector ζ (ζ 0) pointing
in the same direction of the magnetic field in the case of a
constant crossed field and in the rest frame of the incoming
(outgoing) electron. For the outgoing photon, the four-
momentum is qμ ¼ ðω; qÞ, with energy ω ¼ jqj, and we
define its two transverse polarization states, identified by the
index j ¼ 1, 2, along the four-vectorΛμ

1ðqÞ¼Aμν
0 qν=ðq−A0Þ

and the pseudo-four-vector Λμ
2ðqÞ ¼ Ãμν

0 qν=ðq−A0Þ, which
fulfill the relation ðΛjðqÞΛj0 ðqÞÞ ¼ −δjj0 with j; j0 ¼ 1, 2.
With these definitions, the probability of nonlinear

Compton scattering including the damping of particle
states within the LCFA, which was derived in Ref. [79],
is given by the expression

Pðe−→e−γÞ
j;s;s0 ¼

Z
d3q
16π2

α

p−p0
−ω

Z
dϕþe

2Imf m
p−

R
ϕþ
−∞

dφMsðp;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

q−
Pjðq;φÞ�g

×
Z

dϕ−e
i m

2

2p−
q−
p0−

f½1þπ2⊥;eðϕþÞ�ϕ−þE2ðϕþÞ
m2

ϕ3−
12
g
Tj;s;s0 ; ð1Þ

where we introduced the trace

Tj;s;s0 ¼
1

4
tr

��
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p0

−

�
Λ̂jðqÞ

�
1þ n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�

2p−

�

×ðp̂þmÞð1þ sγ5ζ̂Þ
�
1 −

n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�
2p−

�
Λ̂jðqÞ

×

�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p0
−

�
ðp̂0 þmÞð1þ s0γ5ζ̂0Þ

�
; ð2Þ

the transverse momentum

π⊥;eðϕÞ ¼
p⊥
m

−
p−

q−

q⊥
m

−
A⊥ðϕÞ

m
; ð3Þ

and the plane wave electric field (times the electron charge)
EðϕÞ ¼ −A 0ðϕÞ. Due to energy-momentum conservation,
the minus component and the perpendicular component of
the outgoing electron momentum are fixed to p0

− ¼ p− −
q− and p0⊥ ¼ p⊥ − q⊥, respectively. As we explained in the
Introduction, the probability comprises a damping term due
to the particle states decay, which is the first exponential
function in Eq. (1). The exponent contains the imaginary

parts of the mass and polarization operator, more precisely,
the one-loop mass operator within the LCFA, given by the
expression [80–82]

Msðp;ϕÞ ¼
αm
2π

Z
∞

0

du
Z

∞

0

dv
ð1þ vÞ3 e

−iu
h
1þ1

3

χ2pðϕÞ
v2

u2
i

×

�
5þ 7vþ 5v2

3

χ2pðϕÞ
v2

u − isχpðϕÞ
�
; ð4Þ

for s ¼ �1, with the ϕ-dependent quantum nonlinearity
parameter defined as χpðϕÞ ¼ −ðp−=mÞA0ψ

0ðϕÞ=Fcr, and
the transverse part of the one-loop polarization operator
within the LCFA, given by [83–85]
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Pjðq;ϕÞ ¼
α

48π
mjκ2qðϕÞ

Z
∞

0

duu
Z

1

0

dve−iu½1þ
ð1−v2Þ2

48
κ2qðϕÞu2�

× ð1 − v2Þ½3 − ð−1Þjv2�; ð5Þ

for j ¼ 1, 2, with κqðϕÞ ¼ −ðq−=mÞA0ψ
0ðϕÞ=Fcr.

According to the optical theorem, the quantity
−ð2m=p−ÞIm½Msðp;ϕÞ� is equal to the total probability
per unit ϕ that an electron of four-momentum p and spin
quantum number s emits a photon [80], and the quantity
−ð2m=q−ÞIm½Pjðq;ϕÞ� is equal to the total probability per
unit ϕ that a photon of four-momentum q and polarization
quantum number j decays into an electron-positron pair
[84]. Hence, this exponential damping can be understood as
the electron and photon states not being stable in the

background field but decaying, where the electron “decays”
by emitting a photon and the photon decays into an
electron-positron pair.
Further, we notice that the damping exponential depends

on the spin of the incoming and outgoing electrons and on
the polarization of the outgoing photon. This prevents one
from employing the commonly used spin and polarization
sum rules when solving the trace in Eq. (2), such that the
spin- and polarization-resolved traces have to be calculated.
A complete analytical derivation can be found in the
Appendix. Here, we only present the main steps of the
calculations. With our choice of the spin and polarization
basis, the trace for the two polarization states j ¼ 1, 2
reduces in a linearly polarized field to

T1;s;s0 ¼ ð1þ ss0Þ
�
ðpp0Þ −m2 −

1

2

q−
p−

q−
p− − q−

�
p1 −

p−

q−
q1

�
2

−
�
2þ 1

2

q−
p−

q−
p− − q−

�
A2

0ψ
02ðϕþÞ

ϕ2
−

4

þ
�
2þ 1

2

q−
p−

q−
p− − q−

��
p1 −

p−

q−
q1 þA0ψðϕþÞ

�
2
�

− iðsþ s0Þm
2
A0ψ

0ðϕþÞϕ−
q−
p−

�
2þ q−

p− − q−

�
− ss0

q−
p−

q−
p− − q−

�
p2 −

p−

q−
q2

�
2

ð6Þ

and

T2;s;s0 ¼ ð1 − ss0Þ
�
ðpp0Þ −m2 −

1

2

q−
p−

q−
p− − q−

�
p1 −

p−

q−
q1

�
2

−
1

2

q−
p−

q−
p− − q−

A2
0ψ

02ðϕþÞ
ϕ2
−

4
þ 1

2

q−
p−

q−
p− − q−

�
p1 −

p−

q−
q1 þA0ψðϕþÞ

�
2
�

þ ð1þ ss0Þ2
�
p2 −

p−

q−
q2

�
2

þ ss0
q−
p−

q−
p− − q−

�
p2 −

p−

q−
q2

�
2

þ iðs − s0Þm
2
A0ψ

0ðϕþÞϕ−
q−
p−

q−
p− − q−

: ð7Þ

We observe that the traces depend on the pulse shape
function ψðϕþÞ. However, it should be possible to express
the dependence on ψðϕþÞ in a manifestly gauge-invariant
way. In order to achieve this, we consider the transverse
momentum π⊥;eðϕþÞ defined in Eq. (3). After some
simplifications, all the dependence on ψðϕþÞ and q1 turns
out to be in the electron quasi-momentum π⊥;eðϕþÞ, which
can be removed by performing the integral in ϕ− and
using the properties of the Airy functions. Indeed,
terms proportional to the derivative in ϕ− of the second
exponential function in Eq. (1), i.e., terms proportional to
½1þ π2⊥;eðϕþÞ þ ðA2

0ψ
02ðϕþÞ=m2Þðϕ2

−=4Þ�, vanish when
performing the integral over ϕ−. By performing the
appropriate substitutions, the traces ultimately depend only
on the derivative ψ 0ðϕþÞ of the pulse shape function, and
the probability is therefore manifestly gauge invariant.
Ignoring the corresponding vanishing terms, the traces
can be equivalently written as

T1;s;s0 ¼−2ð1þ ss0Þm2

− ð1þ ss0Þ
�
4þ q−

p−

q−
p− −q−

�
A2

0ψ
02ðϕþÞ

ϕ2
−

4

− iðsþ s0Þm
2
A0ψ

0ðϕþÞϕ−
q−
p−

�
2þ q−

p− −q−

�

−
�
2þ2ss0 þ ss0

q−
p−

q−
p− −q−

��
p2−

p−

q−
q2

�
2

ð8Þ

and

T2;s;s0 ¼−ð1−ss0Þq−
p−

q−
p−−q−

A2
0ψ

02ðϕþÞ
ϕ2
−

4

þ iðs−s0Þm
2
A0ψ

0ðϕþÞϕ−
q−
p−

q−
p−−q−

þ
�
2þ2ss0 þss0

q−
p−

q−
p−−q−

��
p2−

p−

q−
q2

�
2

: ð9Þ
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We transform the integral in the photon momentum
into light-cone coordinates using the relation d3q ¼
ðω=q−Þdq−d2q⊥ and introduce the notation

T̃j;s;s0 ¼−
1

4π2m2

p−

q−p0
−

Z
dϕ−

×
Z

d2q⊥e
i m

2q−
2p−p0−

f½1þπ2⊥;eðϕþÞ�ϕ−þE2ðϕþÞ
m2

ϕ3−
12
g
Tj;s;s0 : ð10Þ

Now, the integral in the perpendicular photon momentum
q⊥ can be computed analytically by using the two basic
integrals [86]Z

d2q⊥e
i m

2q−
2p−p0−

π2⊥;eðϕþÞϕ− ¼ 2πi
q−p0

−

p−ðϕ− þ i0Þ ; ð11Þ
Z

d2q⊥
�
p2 −

p−

q−
q2

�
2

e
i m

2q−
2p−p0−

π2⊥;eðϕþÞϕ− ¼ −2π
p02

−

ðϕ− þ i0Þ2 :

ð12Þ
For the integral in ϕ−, we use the integral representa-

tion AiðzÞ ¼ R
∞
−∞ðdϕ̃=2πÞ expðizϕ̃þ iϕ̃3=3Þ of the Airy

function [86]. With the substitutions ϕ̃ ¼ ½q−E2ðϕþÞ=
ð8p−p0

−Þ�1=3ϕ− and z ¼ ½q−=ðp0
−χpðϕþÞÞ�2=3, the integral

in ϕ− can be taken. Hence, the probability of nonlinear
Compton scattering including the damping of particle states
is finally given by

Pðe−→e−γÞ
j;s;s0 ¼−

αm2

4p2
−

Z
p−

0

dq−

Z
dϕþT̃j;s;s0

×e
2Imf m

p−

R
ϕþ
−∞

dφMsðp;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

q−
Pjðq;φÞ�g;

ð13Þ
where

T̃1;s;s0 ¼
�
1þ ss0

�
1 −

q2−
2p−ðp− − q−Þ

��
Ai1ðzÞ

þ
�
3þ q2−

p−ðp− − q−Þ
þ ss0

�
3þ q2−

2p−ðp− − q−Þ
��

×
Ai0ðzÞ
z

þ ðsþ s0Þ
�
2
q−
p−

þ q2−
p−ðp− − q−Þ

�

×
AiðzÞffiffiffi

z
p sgnðψ 0ðϕþÞÞ ð14Þ

and

T̃2;s;s0 ¼
�
1þ ss0

�
1þ q2−

2p−ðp− −q−Þ
��

Ai1ðzÞ

þ
�
1þ q2−

p−ðp− −q−Þ
þ ss0

�
1−

q2−
2p−ðp− −q−Þ

��

×
Ai0ðzÞ
z

þðs0− sÞ q2−
p−ðp− −q−Þ

AiðzÞffiffiffi
z

p sgnðψ 0ðϕþÞÞ;

ð15Þ

with Ai1ðzÞ ¼
R
∞
z dxAiðxÞ and with sgnðψ 0ðϕþÞÞ denoting

the sign of ψ 0ðϕþÞ. Note that without the exponential
damping term the results reduce to the expressions of the
spin- and polarization-resolved probabilities of nonlinear
Compton scattering, which can be found in Ref. [87]. This
observation can be used to prove analytically that the

probability Pðe−→e−γÞ
s ¼ P

j;s0P
ðe−→e−γÞ
j;s;s0 is always smaller

than unity. In fact, since the damping exponentials are
smaller or equal to unity, it is

Pðe−→e−γÞ
s

<−
αm2

4p2
−

X
j;s0

Z
p−

0

dq−

Z
dϕþ T̃j;s;s0e

2Im m
p−

R
ϕþ
−∞

dφMsðp;φÞ

¼
Z

dϕþ
∂PNC

s;p

∂ϕþ
e−

R
ϕþ
−∞

dφ
∂PNCs;p
∂φ ¼−

Z
dϕþ

∂

∂ϕþ
e−

R
ϕþ
−∞

dφ
∂PNCs;p
∂φ

¼ 1−e−
R

∞
−∞

dφ
∂PNCs;p
∂φ < 1; ð16Þ

where ∂PNC
s;p=∂ϕ indicated the probability without damping

of nonlinear Compton scattering per unit of light-cone
time ϕ.
At this point, we also want to investigate the asymptotic

behavior of the differential probability for the two cases
q− ≪ p− and p− − q− ≪ p−. In the first case, the photon
recoil is negligible, whereas in the second case, almost all
light-cone energy of the incoming electron goes into
the photon. The differential probability is obtained from
Eq. (13), and it is given by

∂Pðe−→e−γÞ
j;s;s0

∂q−
¼ −

αm2

4p2
−

Z
dϕþe

DNC
j;s;s0 T̃j;s;s0 ; ð17Þ

where we have renamed the exponent of the exponential
damping function as

DNC
j;s;s0 ¼ 2Im

�
m
p−

Z
ϕþ

−∞
dφMsðp;φÞ

þ
Z

∞

ϕþ
dφ

�
m
p0
−
Ms0 ðp0;φÞ þ m

q−
Pjðq;φÞ

��
: ð18Þ

As already mentioned, according to the optical theorem, the
probabilities of nonlinear Compton scattering and non-
linear Breit-Wheeler pair production are related to the
imaginary part of the mass and polarization operator,
respectively. Hence, the exponent of the damping term,
DNC

j;s;s0 , is equal to minus the sum of the probability of
nonlinear Compton scattering between −∞ and ϕþ for the
incoming electron with light-cone energy p− and spin
quantum number s, and of the probabilities of nonlinear
Compton scattering of the outgoing electron with light-
cone energy p0

− and spin quantum number s0 and of
nonlinear Breit-Wheeler pair production of the outgoing
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photon with light-cone energy q− and polarization quantum
number j both between ϕþ and þ∞ [80,84], i.e.,

DNC
j;s;s0 ¼ −

Z
ϕþ

−∞
dφ

∂PNC
s;p

∂φ
−
Z

∞

ϕþ
dφ

�
∂PNC

s0;p0

∂φ
þ ∂PNBW

j;q

∂φ

�
:

ð19Þ

1. Asymptotic expression for q− ≪ p−

We first analyze the asymptotic expression of the differ-
ential probability in the asymptotic region q− ≪ p−. Also,
we assume that the quantum nonlinearity parameter χpðφÞ
of the electron is fixed, such that the absolute value of the
quantum nonlinearity parameter κqðφÞ ¼ ðq−=p−ÞχpðφÞ of
the photon is much smaller than unity (if jχpðφÞj is
larger than unity, the ratio q−=p− is assumed to be
sufficiently small such that jκqðφÞj ≪ 1). Thus, we can
use in the damping term the corresponding asymptotic
expression for the probability of nonlinear Breit-Wheeler
pair production: [11]

∂PNBW
j;q

∂φ
≈

κqðφÞ≪1
ffiffiffi
3

2

r
αm2jκqðφÞjj

8q−
e
− 8
3jκqðφÞj: ð20Þ

Since it is exponentially suppressed in the limit κqðφÞ → 0,
we neglect it below. Furthermore, due to the conservation
of the minus component of the four-momentum, if q−≪p−,
then p0

− ≈ p−, and the damping function reduces to

DNC
j;s;s0 ≈

q−≪p−2m
p−

Im

�Z
ϕþ

−∞
dφMsðp;φÞþ

Z
∞

ϕþ
dφMs0 ðp;φÞ

�
:

ð21Þ
Now, we will shortly see that for q− ≪ p−, the spin-
dependent terms of the probability of nonlinear Compton
scattering can be neglected [29], such that the damping
exponent effectively reduces to a constant, which is equal to
minus the probability of an electron of momentum p−
emitting a photon between phase −∞ and þ∞ averaged
over the electron spin.
In the functions T̃j;s;s0 , we can expand the Airy functions

for z ¼ ðq−=ðp0
−χpðϕþÞÞÞ2=3 ≈ ðq−=ðp−χpðϕþÞÞÞ2=3 ≪ 1

[we assume that χpðϕþÞ is fixed and that the ratio
q−=p− is much smaller than 1=jχpðφÞj if jχpðφÞj < 1],
and we obtain

T̃1;s;s ≈
z≪1

−
2×32=3

Γð1
3
Þz ; T̃1;s;−s ≈

z≪1
−

q2−
2p2

−

1

31=3Γð1
3
Þz; ð22Þ

T̃2;s;s ≈
z≪1

−
2

31=3Γð1
3
Þz ; T̃2;s;−s ≈

z≪1
−

q2−
2p2

−

32=3

Γð1
3
Þz : ð23Þ

As expected in the classical limit where the photon recoil is
small, we see that the probability of spin flip is substantially
suppressed as compared to the case s ¼ s0. Further, the
damping function in Eq. (21) in the dominant case s ¼ s0 is

independent of the integration variables and corresponds in
the classical limit to the mean number of photons emitted
by an electron. Hence, within this limit, the total probability
of emitting a single photon is in agreement with that
obtained from the Poissonian distribution.

2. Asymptotic expression for p− − q− ≪ p−

Now, we evaluate the asymptotic expression of the
differential probability in Eqs. (17) and (18) in the region
p0
− ¼ p− − q− ≪ p−. In this case, since we again assume

χpðφÞ to be fixed, the absolute value of the quantum
nonlinearity parameter χp0 ðφÞ ¼ ðp0

−=p−ÞχpðφÞ of the out-
going electron is assumed to be smaller than unity. We use
the corresponding asymptotic expression for the probability
of nonlinear Compton scattering in Eq. (19), which is
independent of p0 and given by [11]

∂PNC
s0;p0

∂φ
≈

χp0 ðφÞ≪1 5

2
ffiffiffi
3

p αm2jχpðφÞj
p−

: ð24Þ

The damping function is then

DNC
j;s;s0 ≈

p0
−≪p−

2Im

�
m
p−

Z
ϕþ

−∞
dφMsðp;φÞþ

m
p−

Z
∞

ϕþ
dφPjðp;φÞ

�

−
Z

∞

ϕþ
dφ

5ffiffiffi
3

p αm2jχpðφÞj
p−

: ð25Þ

In the functions T̃j;s;s0 , we assume that the ratio p0
−=p−

is sufficiently small that z¼ðq−=ðp0
−χpðϕþÞÞÞ2=3 ≈

ðp−=ðp0
−χpðϕþÞÞÞ2=3≫1. We obtain for photon polariza-

tion j ¼ 1 and identical spin quantum numbers (s ¼ s0)

T̃1;s;s ≈
z≫1

−
1ffiffiffi
π

p z−3=4e−
2
3
z3=2

�
p−

p0
−
ð1 − s sgnðψ 0ðϕþÞÞÞ

þ 2
p0
−

p−
s sgnðψ 0ðϕþÞÞ

�

−
1

96
ffiffiffi
π

p z−9=4e−
2
3
z3=2ð124þ 20s sgnðψ 0ðϕþÞÞÞ

−
1

9216
ffiffiffi
π

p z−15=4e−
2
3
z3=2

×
p−

p0
−
ð3938 − 770s sgnðψ 0ðϕþÞÞÞ: ð26Þ

Note that here in the special case of s ¼ sgnðψ 0ðϕþÞÞ
compensations occur and this is why higher-order terms
have been reported in the expression above. However, by
keeping in mind that the functions T̃j;s;s0 are ultimately
integrated over the light-cone time ϕþ to compute the
emission probability, the function sgnðψ 0ðϕþÞÞ takes both
valuesþ1 and −1 (we implicitly assume here that the plane
wave describes an oscillating laser wave). Therefore, the
scaling of the probability will be determined by the term in
T̃1;s;s scaling as z−3=4=p0

−, and we can approximate
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T̃1;s;s ≈
z≫1

−
2ffiffiffi
π

p z−3=4e−
2
3
z3=2 p−

p0
−
; for s ¼ −sgnðψ 0ðϕþÞÞ:

ð27Þ
For opposite spin quantum numbers (s ¼ −s0), the

asymptotic expression is

T̃1;s;−s ≈
z≫1

−
1

4
ffiffiffi
π

p z−9=4e−
2
3
z3=2 p−

p0
−
: ð28Þ

With photon polarization j ¼ 2, we have for identical spin
quantum numbers (s ¼ s0)

T̃2;s;s ≈
z≫1

−
1

4
ffiffiffi
π

p z−9=4e−
2
3
z3=2 p−

p0
−

ð29Þ

and for opposite spin quantum numbers (s ¼ −s0)

T̃2;s;−s ≈
z≫1

−
1ffiffiffi
π

p z−3=4e−
2
3
z3=2 p−

p0
−
½1þ s sgnðψ 0ðϕþÞÞ�

−
1

9216
ffiffiffi
π

p z−15=4e−
2
3
z3=2

×
p−

p0
−
½3938þ 770s sgnðψ 0ðϕþÞÞ�: ð30Þ

Analogously as above, the scalingof the emissionprobability
will be determined by the approximated expression

T̃2;s;−s ≈
z≫1

−
2ffiffiffi
π

p z−3=4e−
2
3
z3=2 p−

p0
−
; for s ¼ sgnðψ 0ðϕþÞÞ:

ð31Þ
C. Nonlinear Breit-Wheeler pair production

Now, we pass to the probability of nonlinear Breit-
Wheeler pair production including the particle states decay.
Here, the incoming photon has four-momentum

qμ ¼ ðω; qÞ, with polarization quantum number j ¼ 1, 2,
and the outgoing positron (electron) has four-momentum
pμ ¼ ðε; pÞ [p0μ ¼ ðε0; p0Þ] and spin quantum number
s ¼ �1 (s0 ¼ �1). The symbols of quantum numbers of
the particles have been chosen in order to exploit the
crossing symmetry between the amplitudes of nonlinear
Compton scattering and of nonlinear Breit-Wheeler pair
production. The expression of the probability was com-
puted in Ref. [79], and it is given by

Pðγ→e−eþÞ
j;s;s0 ¼

Z
d3p
16π2

α

q−p0
−ε

Z
dϕþe

2Imf m
q−

R
ϕþ
−∞

dφPjðq;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

p−
Msð−p;φÞ�g

×
Z

dϕ−e
i m

2

2p−
q−
p0−
f½1þπ2⊥;pðϕþÞ�ϕ−þE2ðϕþÞ

m2
ϕ3−
12
g
Gj;s;s0 ; ð32Þ

with the trace

Gj;s;s0 ¼
1

4
tr

��
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p0

−

�
Λ̂jðqÞ

�
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p−

�

×ðp̂ −mÞð1þ sγ5ζ̂Þ
�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p−

�
Λ̂jðqÞ

×

�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p0
−

�
ðp̂0 þmÞð1þ s0γ5ζ̂0Þ

�
ð33Þ

and with

π⊥;pðϕÞ ¼
p⊥
m

−
p−

q−

q⊥
m

þA⊥ðϕÞ
m

: ð34Þ

The trace can be simplified and the integrals in the
perpendicular positron momentum and ϕ− can be taken
analogously as in the case of nonlinear Compton scattering.

An important difference is, however, that the relations for
momentum conservation are instead p0⊥ ¼ q⊥ − p⊥ and
p0
− ¼ q− − p−.
By performing the trace over the matrix contractions

(see the Appendix for the derivation), the expressions for
the two polarization quantum numbers j ¼ 1 and j ¼ 2
become

G1;s;s0 ¼ ð1þ ss0Þ
�
1

2

q2−
p−p0

−

�
m2 þm2π2⊥;pðϕþÞ −A2

0ψ
02ðϕþÞ

ϕ2
−

4

�
− 2

�
m2π2⊥;pðϕþÞ −A2

0ψ
02ðϕþÞ

ϕ2
−

4

��

þ iðsþ s0Þm
2
A0ψ

0ðϕþÞϕ−
q−
p−

�
2 −

q−
p0
−

�
þ
�
2þ 2ss0 − ss0

q2−
p−p0

−

��
p2 −

p−

q−
q2

�
2

ð35Þ
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and

G2;s;s0 ¼ ð1 − ss0Þ 1
2

q2−
p−p0

−

×

�
m2 þm2π2⊥;pðϕþÞ −A2

0ψ
02ðϕþÞ

ϕ2
−

4

�

þ iðs − s0Þm
2
A0ψ

0ðϕþÞϕ−
q2−

p−p0
−

−
�
2þ 2ss0 − ss0

q2−
p−p0

−

��
p2 −

p−

q−
q2

�
2

: ð36Þ

Here, we have already expressed the pulse shape function in
terms of π⊥;pðϕþÞ. The dependence on π⊥;pðϕþÞ can in turn
be removed by using the fact that the integral over terms
proportional to ½1þπ2⊥;pðϕþÞþðA2

0ψ
02ðϕþÞ=m2Þðϕ2

−=4Þ�
vanish when performing the integral in ϕ−, due to the
properties of the Airy functions. In this way, by adding
and subtracting suitable terms, the traces can be written in a
manifestly gauge-invariant way. Furthermore, we transform
the integral in the positron momentum into light-cone
coordinates by using that d3p ¼ ðε=p−Þdp−d2p⊥, and we
employ the notation

G̃j;s;s0 ¼−
1

4π2m2

q−
p−p0

−

Z
dϕ−

×
Z

d2p⊥e
i m

2q−
2p−p0−

f½1þπ2⊥;pðϕþÞ�ϕ−þE2ðϕþÞ
m2

ϕ3−
12
g
Gj;s;s0 : ð37Þ

The integral over the transverse positron momentum p⊥ is
taken by employing the two Gaussian integrals [86]

Z
d2p⊥e

i m
2q−

2p−p0−
π2⊥;pðϕþÞϕ− ¼ 2πi

p−p0
−

q−ðϕ− þ i0Þ ; ð38Þ

Z
d2p⊥

�
p2 −

p−

q−
q2

�
2

e
i m

2q−
2p−p0−

π2⊥;pðϕþÞϕ−

¼ −2π
�

p−p0
−

q−ðϕ− þ i0Þ
�
2

; ð39Þ

and the integral in ϕ− results again in Airy functions. In this
way, the probability of nonlinear Breit-Wheeler pair pro-
duction including the damping of particle states finally reads

Pðγ→e−eþÞ
j;s;s0

¼−
αm2

4q2−

Z
q−

0

dp−

Z
dϕþG̃j;s;s0

×e
2Imf m

q−

R
ϕþ
−∞

dφPjðq;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

p−
Msð−p;φÞ�g; ð40Þ

with

G̃1;s;s0 ¼
�
−ð1þ ss0Þ − ss0

q2−
2p−p0

−

�
Ai1ðzÞ

þ
�
−3ð1þ ss0Þ þ

�
1þ ss0

2

�
q2−

p−p0
−

�
Ai0ðzÞ
z

− ðsþ s0Þ
�
q−
p−

−
q−
p0
−

�
AiðzÞffiffiffi

z
p sgnðψ 0ðϕþÞÞ ð41Þ

and

G̃2;s;s0 ¼
�
−ð1þ ss0Þ þ ss0

q2−
2p−p0

−

�
Ai1ðzÞ

þ
�
−ð1þ ss0Þ þ

�
1 −

ss0

2

�
q2−

p−p0
−

�
Ai0ðzÞ
z

þ ðs0 − sÞ q2−
p−p0

−

AiðzÞffiffiffi
z

p sgnðψ 0ðϕþÞÞ: ð42Þ

Without the exponential damping term, the above probability
reduces to the result of the spin- and polarization-resolved
probability of nonlinear Breit-Wheeler pair production
calculated in Ref. [87]. Analogously as in the case of
nonlinear Compton scattering, it can be proved analytically
that the probability in Eq. (41) is always smaller than unity
[see the discussion below Eq. (15)].
Now, we investigate the asymptotic behavior in the

two regions q− − p− ≪ q− and p− ≪ q− and for the
differential probability of nonlinear Breit-Wheeler pair
production

∂Pðγ→e−eþÞ
j;s;s0

∂p−
¼ −

αm2

4q2−

Z
dϕþe

DNBW
j;s;s0 G̃j;s;s0 ; ð43Þ

with

DNBW
j;s;s0 ¼ 2Im

�
m
q−

Z
ϕþ

−∞
dφPjðq;φÞ

þ
Z

∞

ϕþ
dφ

�
m
p0
−
Ms0 ðp0;φÞ þ m

p−
Msð−p;φÞ

��
;

ð44Þ

which we obtained from Eq. (40). According to the optical
theorem, the exponent of the damping term is here equal to
minus the sum of the total probability of nonlinear Breit-
Wheeler pair production between −∞ and ϕþ for the
incoming photon with light-cone energy q− and polarization
quantum number j and the total probabilities of nonlinear
Compton scattering between ϕþ and þ∞ for the outgoing
electronwith light-cone energyp0

− and spin quantumnumber
s0 and for the outgoing positron with light-cone energy p−
and spin quantum number s [80,84], i.e.,

DNBW
j;s;s0 ¼ −

Z
ϕþ

−∞
dφ

∂PNBW
j;q

∂φ
−
Z

∞

ϕþ
dφ

�
∂PNC

s0;p0

∂φ
þ ∂PNC

s;p

∂φ

�
:

ð45Þ
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1. Asymptotic expression for q− − p− ≪ q−

First, we consider the asymptotic region p0
− ¼

q− − p− ≪ q−. Thus, by assuming that the quantum non-
linearity parameter κqðφÞ of the photon is fixed, the absolute
value of the quantum nonlinearity parameter of the electron
χp0 ðφÞ ¼ ðp0

−=q−ÞκqðφÞ ismuch smaller than unity [if κqðφÞ
is larger than unity, the ratio p0

−=q− is assumed to be
sufficiently small such that jχp0 ðφÞj ≪ 1], and we use for
the damping term in Eq. (45) the corresponding asymptotic
expression for the probability of nonlinear Compton scatter-
ing, which is independent of p0 and given in Eq. (24). The
exponent of the damping term becomes [we use the fact that
χpðφÞ ¼ ðp−=q−ÞκqðφÞ]

DNBW
j;s;s0 ≈

p0
−≪q− 2m

q−
Im

�Z
ϕþ

−∞
dφPjðq;φÞ

þ
Z

∞

ϕþ
dφMsð−q;φÞ

�
−
Z

∞

ϕþ
dφ

5ffiffiffi
3

p αm2jκqðφÞj
q−

:

ð46Þ

Concerning the function G̃j;s;s0 , we can expand
the Airy functions for z ¼ ðq−=ðp0

−χpðϕþÞÞÞ2=3 ≈
ðq−=ðp0

−κqðϕþÞÞÞ2=3 ≫ 1. In the case of photon
polarization j ¼ 1 and identical spin quantum numbers
(s ¼ s0), we obtain the expression

G̃1;s;s ≈
z≫1

−
1ffiffiffi
π

p z−3=4e−
2
3
z3=2

�
q−
p0
−
ð1 − s sgnðψ 0ðϕþÞÞÞ þ 2

p0
−

q−
s sgnðψ 0ðϕþÞÞ

�
þ 1

96
ffiffiffi
π

p z−9=4e−
2
3
z3=2 ½124þ 20s sgnðψ 0ðϕþÞÞ�

−
1

9216
ffiffiffi
π

p z−15=4e−
2
3
z3=2 q−

p0
−
½3938 − 770s sgnðψ 0ðϕþÞÞ�: ð47Þ

As in the case of nonlinear Compton scattering, the
scaling of the probability is determined by the case
s ¼ −sgnðψ 0ðϕþÞÞ, where

G̃1;s;s ≈
z≫1

−
2ffiffiffi
π

p z−3=4e−
2
3
z3=2 q−

p0
−
: ð48Þ

For opposite spin quantum numbers (s ¼ −s0), we have

G̃1;s;−s ≈
z≫1

−
1

4
ffiffiffi
π

p z−9=4e−
2
3
z3=2 q−

p0
−
: ð49Þ

With photon polarization j ¼ 2, the asymptotic expansion
is for identical spin quantum numbers (s ¼ s0)

G̃2;s;s ≈
z≫1

−
1

4
ffiffiffi
π

p z−9=4e−
2
3
z3=2 q−

p0
−

ð50Þ

and for opposite spin quantum numbers (s ¼ −s0)

G̃2;s;−s ≈
z≫1

−
1ffiffiffi
π

p z−3=4e−
2
3
z3=2 q−

p0
−
½1þ s sgnðψ 0ðϕþÞÞ�

−
1

9216
ffiffiffi
π

p z−15=4e−
2
3
z3=2

×
q−
p0
−
½3938þ 770s sgnðψ 0ðϕþÞÞ�: ð51Þ

The scaling of the probability of nonlinear Breit-Wheeler
pair production is determined by the case s ¼ sgnðψ 0ðϕþÞÞ,
i.e.,

G̃2;s;−s ≈
z≫1

−
2ffiffiffi
π

p z−3=4e−
2
3
z3=2 q−

p0
−
: ð52Þ

2. Asymptotic expression for p− ≪ q−

Due to the symmetry of the probability of pair produc-
tion under the exchanges p− ↔ p0

−, s ↔ s0, and ψ 0ðϕþÞ ↔
−ψ 0ðϕþÞ [see Eqs. (40)–(42)], the asymptotic expressions
of the differential probability of nonlinear Breit-Wheeler
pair production in the region p− ≪ q− can be easily
obtained from those derived in the region p0

− ≪ q− via
the corresponding substitution rules.

D. Arbitrary spin and polarization basis

So far, both here and in Ref. [79], the calculations were
performed by employing a special direction for the electron
or positron spin and for the photon polarization. This
choice of the spin and polarization four-vectors has the
advantage that the mass and polarization operator become
diagonal. Consequently, the equations including the damp-
ing of the states can be solved in a relatively straightforward
way. However, if the final probabilities are summed over a
spin and/or a polarization quantum number, the results
should be in the end independent of the choice of the
corresponding spin and polarization basis, which we would
like to prove explicitly below.
In the case of the spin state of an electron, the two free,

positive-energy spinors u1ðpÞ and u−1ðpÞ form a spin basis
[1]. They are normalized as u†sðpÞus0 ðpÞ ¼ 2εδss0 , with
s; s0 ¼ �1, and fulfill the relation γ5ζ̂usðpÞ ¼ susðpÞ (for
the positron, the spin basis is formed by the two free
negative-energy spinors v1ðpÞ and v−1ðpÞ, normalized as
v†sðpÞvs0 ðpÞ ¼ 2εδss0 ) [1]. A spinor corresponding to an
arbitrary spin direction, indicated here as uþðpÞ, can be
expressed by a linear combination of the two basis spinors
u1ðpÞ and u−1ðpÞ as
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uþðpÞ ¼ β1u1ðpÞ þ β−1u−1ðpÞ; ð53Þ

where β1; β−1 are two complex numbers such that
jβ1j2 þ jβ−1j2 ¼ 1. The two coefficients β1 and β−1 are
related to thepolar angle θ and the azimuthal angleφ between
the spin vector ζ and the new spin axis [1]. The spinor uþðpÞ
in Eq. (53) forms a basis together with the spinor

u−ðpÞ ¼ β�−1u1ðpÞ − β�1u−1ðpÞ; ð54Þ

which is perpendicular to uþðpÞ. Now, in Ref. [79], the
probabilities were calculated by using the exact electron,
positron, and photon states, which were obtained by solving
the corresponding Schwinger-Dyson equations. For the

electron out-state ΨðoutÞ
e ðxÞ, the Schwinger-Dyson equation

is fγμ½i∂μ−AμðϕÞ�−mgΨðoutÞ
e ðxÞ¼R

d4yM̄Lðy;xÞΨðoutÞ
e ðyÞ,

with M̄Lðy; xÞ ¼ γ0M
†
Lðy; xÞγ0 andMLðy; xÞ being themass

operator in a plane wave. This equation is linear in the spin
basis u1ðpÞ and u−1ðpÞ, such that we can decompose an

arbitrary electron state in terms of the two statesΨðoutÞ
e;1 ðxÞ and

ΨðoutÞ
e;−1ðxÞ, which are solutions of the Schwinger-Dyson

equation constructed via the spinors u1ðpÞ and u−1ðpÞ,
respectively. The electron out-state ΨðoutÞ

e;b ðxÞ of an arbitrary
spin direction b ¼ fþ;−g, given by the solution of the
Schwinger-Dyson equation for the spinor ubðpÞ, can be
expressed then by the linear combination

ΨðoutÞ
e;þ ðxÞ ¼ β1Ψ

ðoutÞ
e;1 ðxÞ þ β−1Ψ

ðoutÞ
e;−1ðxÞ;

ΨðoutÞ
e;− ðxÞ ¼ β�−1Ψ

ðoutÞ
e;1 ðxÞ − β�1Ψ

ðoutÞ
e;−1ðxÞ: ð55Þ

The physicalmeaning of the stateswith the above choice of β1
and β−1 is that at x0 → ∞ in the rest frame of the electron the
spin axis points along the chosen axis and fulfills the above-
mentioned relations. Considering now the process of non-
linear Compton scattering, the S-matrix element for an
incoming electron of spin quantum number s, an outgoing
photon of polarization j, and an outgoing electron with spin
quantum number b is proportional to

Sðe
−→e−γÞ

s;j;þ ¼ β�1S
ðe−→e−γÞ
s;j;1 þ β�−1S

ðe−→e−γÞ
s;j;−1 ð56Þ

and

Sðe
−→e−γÞ

s;j;− ¼ β−1S
ðe−→e−γÞ
s;j;1 − β1S

ðe−→e−γÞ
s;j;−1 : ð57Þ

By using these S-matrix elements, we then easily obtain the
probability of nonlinear Compton scattering for the two spin
quantum numbers þ and − of the final electron as

Pðe−→e−γÞ
s;j;þ ¼

Z
d3q
ð2πÞ3

d3p0

ð2πÞ3 jS
ðe−→e−γÞ
s;j;þ j2

¼
Z

d3q
ð2πÞ3

d3p0

ð2πÞ3 ½jβ1j
2jSðe−→e−γÞ

s;j;1 j2

þ jβ−1j2jSðe
−→e−γÞ

s;j;−1 j2 þ β1β
�
−1S

ðe−→e−γÞ�
s;j;1 Sðe

−→e−γÞ
s;j;−1

þ β�1β−1S
ðe−→e−γÞ
s;j;1 Sðe

−→e−γÞ�
s;j;−1 � ð58Þ

and

Pðe−→e−γÞ
s;j;− ¼

Z
d3q
ð2πÞ3

d3p0

ð2πÞ3 jS
ðe−→e−γÞ
s;j;− j2

¼
Z

d3q
ð2πÞ3

d3p0

ð2πÞ3 ½jβ−1j
2jSðe−→e−γÞ

s;j;1 j2

þ jβ1j2jSðe
−→e−γÞ

s;j;−1 j2 − β1β
�
−1S

ðe−→e−γÞ�
s;j;1 Sðe

−→e−γÞ
s;j;−1

− β�1β−1S
ðe−→e−γÞ
s;j;1 Sðe

−→e−γÞ�
s;j;−1 �: ð59Þ

Taking now the sum of the probabilities for both spin states
b ¼ fþ;−g, i.e., taking the sum of Eqs. (58) and (59), we
obtain

X
b¼fþ;−g

Pðe−→e−γÞ
s;j;b ¼

Z
d3q
ð2πÞ3

d3p0

ð2πÞ3 ½jS
ðe−→e−γÞ
s;j;þ j2þjSðe−→e−γÞ

s;j;− j2�

¼
Z

d3q
ð2πÞ3

d3p0

ð2πÞ3 ½jS
ðe−→e−γÞ
s;j;1 j2þjSðe−→e−γÞ

s;j;−1 j2�

¼
X

s0¼f1;−1g
Pðe−→e−γÞ
s;j;s0 ; ð60Þ

which is identical to the analogous result obtained for the
original spin axis. Hence, the probability summed over a spin
quantumnumber is independent of the used quantization axis.
It can easily be shown that the same holds for electron in-
states and for the positron in- and out-states.
In order to describe the photon polarization states, we

have chosen the two four-vectors Λμ
1ðqÞ and Λμ

2ðqÞ. An
arbitrary polarization basis is given by the two four-vectors

Λμ
þðqÞ ¼ b1Λ

μ
1ðqÞ þ b2Λ

μ
2ðqÞ

Λμ
−ðqÞ ¼ b2Λ

μ
1ðqÞ − b1Λ

μ
2ðqÞ; ð61Þ

with b1, b2 being two real numbers such that b21 þ b22 ¼ 1.
Analogously to the case of the spin, one can show that also
in this case the probability summed over the polarization
indexes does not depend on the polarization basis.

III. NUMERICAL CALCULATIONS

A. Methods

The results in the following section have been produced
using two types of integration: (1) a purely numerical one in
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order to obtain probability densities, fully differential with
respect to an outgoing particle’s momentum, and (2) a
quadrature which takes advantage of the fact that in light-
front coordinates the transverse momenta yield analytical
Gaussian integrals, thus leaving just one longitudinal
momentum integral to be done numerically in order to
derive the total probability of the process.
We successfully compared the two methods against each

other, by integrating the results of method 1 with respect to
the transverse momenta and leaving aside the longitudinal
integral in method 2. In fact, since the longitudinal
momentum is practically proportional to the energy for
the ultrarelativistic particles we consider, the latter is a good
method of obtaining the energy spectrum. In both methods,
before proceeding to perform the ϕþ integral in Eqs. (1)
and (32), we expressed the integrals over ϕ− through Airy
functions and stored them in an interpolation table in
logarithmic form. Then, we also produced interpolation
tables that store, for different spin and polarization numbers
and longitudinal momentum values, the mass and polari-
zation integrals in Eqs. (4) and (5), respectively. These were
then used in computing differential probabilities and total
ones. All the numerical quadratures were performed using
adaptive Gauss-Konrod rules.
An important step for the production of fully differential

spectra was to divide the ϕþ integration domain into some
well-chosen subintervals so that the adaptive integrator did
not miss any relevant region. For large values of ξ0, the
integrand has some very narrow peaks, apart from which it
is almost vanishing and, unless the integrator is led to those
peaks, it would stop short of finding them, yielding a
negligible result for the whole integral. To find the peaks,
we first had to identify and store the intervals of monot-
onicity of the vector potential and then identify the possible
peaks in each such interval using a nonlinear equation
solver. As the positions of these sharp peaks change with
the transverse momenta, a prior analytical (sharp) Gaussian
integration with respect to the latter yielded a ϕþ integral
that is easy to handle without any subdivision of intervals.
For the Compton case, the longitudinal momentum adap-
tive quadrature has been made faster through a deformation
of its variable, to reduce the number of subdivisions needed
to get a good precision at very small q−, while keeping in
mind, though, that the behavior of the LCFA result is
different from the exact one in this limit.

B. Results

In this section, we present plots based on numerical
implementations of the analytical results obtained above.
We use the linearly polarized (along the x direction) plane
wave laser pulse with Gaussian envelope described by the
vector potential

AðϕÞ ¼ A0e−ðϕ=τÞ
2

sinðω0ϕÞa1: ð62Þ

All plots have been made for a carrier angular frequency ω0

corresponding to 1.55 eV in our units, which also corre-
sponds to a wavelength of 0.8 μm. The parameter τ
describes the length of the pulse, and we have chosen

FIG. 2. Nonlinear Compton scattering total probabilityPðe−→e−γÞ
s

including the decay of thewave functions (top panel), as compared
to the result obtained from a Poissonian distribution whose
average photon number is the total “undamped emission proba-
bility” PNC

s;p (bottom panel). The pulse length corresponds to
τ ¼ 5 fs, and the initial electron spin corresponds to s ¼ 1.

FIG. 3. Same as in Fig. 2, but for τ ¼ 20 fs.
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the two values τ ¼ 5 fs and τ ¼ 20 fs. Within the full width
at half maximum (FWHM) of the intensity, the pulse
contains about 2.2 cycles for τ ¼ 5 fs and 8.8 cycles
for τ ¼ 20 fs. Since our analytical results are valid
within the LCFA, we consider below amplitudes of the
vector potential corresponding to ξ0 ¼ 5, and we also
restrict the parameters η0 ¼ χ0=ξ0 ¼ ðk0pÞ=m2 for non-
linear Compton scattering and ρ0 ¼ κ0=ξ0 ¼ ðk0qÞ=m2 for
nonlinear Breit-Wheeler pair production, with kμ0 ¼ ω0nμ

to values not exceeding (approximately) unity, by setting an
upper bound of 100 GeV for the incoming particle’s energy.
For larger values of ξ0, one can further relax the condition
on η0 and ρ0, allowing them to take even larger values.
We present both probability densities, differential with

respect to the momentum of one of the outgoing particles
(which determines the momentum of the other outgoing
particle through the conservation laws) and total proba-
bilities. Concerning the probabilities integrated over the

FIG. 6. Fraction of the total probability of nonlinear Breit-Wheeler pair production corresponding to same-spin pairs,

ðPs P
ðγ→e−eþÞ
j;s;s Þ=Pðγ→e−eþÞ

j for j ¼ 1 (left panel) and for j ¼ 2 (right panel). In both cases, the pulse duration corresponds to τ ¼ 20 fs.

FIG. 4. The probability Pðγ→e−eþÞ
j of nonlinear Breit-Wheeler pair production in a short, τ ¼ 5 fs pulse, by a photon with polarization

quantum number j ¼ 1 (left panel) and j ¼ 2 (right panel).

FIG. 5. Same as in Fig. 4, but for τ ¼ 20 fs.
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unconstrained momentum of one of the final particles, we
observe the following. The meaning of the spin and
polarization quantum numbers implicitly depends on the
momenta of the particles because the spin and polarization
four-vectors depend on the particles’ momenta. Thus, in
general, once one integrates over the unconstrained
momentum of one of the final particles, the physical
meaning of the discrete quantum numbers of the final
particles is unclear. However, we will always consider

head-on collisions with the incoming particle having an
energy much larger than mξ0, such that the angular spread
of the produced particles is small. In this case, one can then
conclude that the spin and polarization linearly independent
directions approximately correspond to the directions of the
electric and magnetic field of the (linearly polarized)
background plane wave in the laboratory frame. Within
this approximated framework, one can then investigate, for
instance, the occurrence of electron spin flip for nonlinear

FIG. 7. Sections through the nonlinear Compton scattering probability distribution in GeV−3, for τ ¼ 20 fs, ε ¼ 10 GeV, ξ0 ¼ 10,
and incoming electron spin quantum number s ¼ 1. The color levels indicate percentages of the maximum reached by the distribution in
that section. The approximate value of that maximum is shown at the upper right corner of each subplot.
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Compton scattering and the distinction between same-spin
and different-spin states of the pair produced in nonlinear
Breit-Wheeler process. It is interesting to discriminate
between such cases, for their probabilities can be very
different.
It is convenient to introduce the notation Pðe−→e−γÞ

s ¼P
j;s0 P

ðe−→e−γÞ
j;s;s0 and Pðγ→e−eþÞ

j ¼ P
s;s0 P

ðγ→e−eþÞ
j;s;s0 for non-

linear Compton scattering and nonlinear Breit-Wheeler
pair production, respectively.

In Figs. 2 and 3, we show the total probability Pðe−→e−γÞ
s

of nonlinear Compton scattering (top panels) and the
one-event value of the Poisson distribution corresponding
to the average PNC

s;p given by the first-order probability of

nonlinear Compton scattering, computed by ignoring the
decay of particles states, i.e., [see also the discussion below

Eq. (15)] PNC
s;p ¼ −ðαm2Þ=ð4p2

−Þ
P

j;s0
R p−
0 dq−

R
dϕþT̃j;s;s0

(bottom panels). For sufficiently small values of η0, such

FIG. 8. Sections through the nonlinear Compton scattering probability distribution in GeV−3, for τ ¼ 20 fs, ε ¼ 10 GeV, ξ0 ¼ 50,
and incoming electron spin quantum number s ¼ 1. The color levels indicate percentages of the maximum reached by the distribution in
that section. The approximate value of that maximum is shown at the upper right corner of each subplot.
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that χ0 ≪ 1, the photon recoil is negligible, and we expect
that the emissions are independent of each other. In
Ref. [66], it was shown that in this classical limit the
probability of emitting an arbitrary number of photons
follows a Poissonian distribution. Indeed, we observe that
at such low values of χ0 the Poissonian distribution well
approximates the full QED results [see also the discus-
sion below Eq. (21)]. As χ0 increases, important
differences start to be seen.

Two pulse length parameters τ have been considered:
τ ¼ 5 fs (Fig. 2) and τ ¼ 20 fs (Fig. 3). In the first case, the
probability increases as ξ0 increases, reaches a maximum at
ξ0 smaller than about 10, and then decreases. In the
classical regime of low values of χ0, the maximum value
is e−1, as predicted by the Poissonian PNC

s;pe−P
NC
s;p . For the

longer pulse used in Fig. 3, the whole plot is in the region
where the probability decays with ξ0. Indeed, the decay of

FIG. 9. Sections through the nonlinear Breit-Wheeler pair production probability distribution in GeV−3, for τ ¼ 20 fs, ω ¼ 10 GeV,
ξ0 ¼ 10, and incoming photon polarization state j ¼ 1. The horizontal axes correspond to px (MeV), and the vertical ones correspond to
py (MeV).
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the states is now stronger, and essentially any increase of ξ0
reduces the single-photon emission probability, as multiple
photon emissions become favored over the single-photon
emission. As mentioned in the Introduction, the decay of
the particle states becomes significant if the quantity αξ0ΦL

is of the order of unity or larger. This corresponds to values
of ξ0 ≳ 9.9 and ξ0 ≳ 2.5 for a pulse with τ ¼ 5 fs (Fig. 2)
and τ ¼ 20 fs (Fig. 3), respectively. Here, we estimated the
total phase duration by the FWHM of the intensity; i.e., we

set ΦL ¼ ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
ω0τ. We see that for larger values of τ the

damping effect becomes significant already at smaller
values of ξ0.
For the probability of nonlinear Breit-Wheeler pair

production, we show plots similar to the aforementioned
ones, in Figs. 4 (for a pulse duration corresponding to
τ ¼ 5 fs) and 5 (for a pulse duration corresponding to
τ ¼ 20 fs). A logarithmic scale is used for the energy of
the incoming particle in both cases, but in the present case,
we started from higher values than for nonlinear Compton

FIG. 10. Same as in Fig. 9, but for incoming photon polarization state j ¼ 2.
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scattering, due to the exponential suppression of the
process that occurs at low κ0 ¼ ρ0ξ0. In both cases, the
probability shows a maximum in ξ0 (see also Ref. [88]).
This feature is observable in the plots only at high
incoming photon energies for the shorter pulse, but also
at lower incoming photon energies for the longer pulse,
indicating that the size of the effect also depends on the
damping of the states.

It can be seen from Fig. 6 that, as ρ0 increases toward
unity, the probability for ðj ¼ 1; s ¼ s0Þ reduces to around
80% of the total nonlinear Breit-Wheeler pair production
probability [implying that for ðj ¼ 1; s ¼ −s0Þ it grows to
around 20%], whereas the probability for ðj ¼ 2; s ¼ s0Þ
stays smaller than 3%. Analogous behaviors can be
observed in nonlinear Compton scattering, according to
the crossing symmetry existing between the two processes.

FIG. 11. Sections through the nonlinear Breit-Wheeler pair production probability distribution in GeV−3, for τ ¼ 20 fs, ω ¼ 10 GeV,
ξ0 ¼ 50, and incoming photon polarization state j ¼ 1. The horizontal axes correspond to px (MeV), and the vertical ones correspond to
py (MeV).
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Now, we present sections of the fully differential dis-
tribution of the photon momentum for the nonlinear
Compton scattering effect (Figs. 7 and 8) and of the
momentum of the positron produced in the nonlinear
Breit-Wheeler pair production process (Figs. 9–12). In
all cases, we fix the energy of the incoming particle to
10 GeV (recall that the incoming particle is counter-
propagating with respect to the plane wave), and we
consider two laser intensities corresponding to ξ0 ¼ 10

and 50, which are equivalent to 2.1 × 1020 W=cm2 and

5.4 × 1021 W=cm2, respectively. The sections are plotted
as functions of qx ¼ −q1 and qy ¼ −q2 for nonlinear
Compton scattering and of px ¼ −p1 and py ¼ −p2 for
nonlinear Breit-Wheeler pair production, by keeping the
light-cone energy of the emitted photon and of the
produced positron fixed (which also means, with very
good approximation, to keep fixed q3 or q− and p3 or p−,
respectively). Indeed, the plots show that the outgoing
particles are most probably produced with transverse
momenta much smaller than jq3j and jp3j, respectively

FIG. 12. Same as in Fig. 11, but for incoming photon polarization state j ¼ 2.
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(see that the scale of the sections is in MeVunits, instead of
the GeV units used for the longitudinal momentum). As
expected, the sections are asymmetric, spreading more
along the direction of the electric field of the plane wave,
i.e., the x direction.
Both in the case of nonlinear Compton scattering and

nonlinear Breit-Wheeler pair production, for some quantum
number combinations, the spectra vanish if the component
of the momentum of the particle along the magnetic field of
the wave, i.e., along the y direction, vanishes. This can be
explained analytically looking at Eqs. (8) and (9) for
nonlinear Compton scattering and at Eqs. (35) and (36)
for nonlinear Breit-Wheeler pair production. These equa-
tions show that for both processes the probabilities vanish
in the cases ðj ¼ 1; s ¼ −s0Þ and ðj ¼ 2; s ¼ s0Þ for q2 ¼ 0
and p2 ¼ 0, respectively. Now, since the incoming particle
is assumed to counterpropagate with respect to the plane
wave for both processes, we have that p2 ¼ 0 in nonlinear
Compton scattering and q2 ¼ 0 in nonlinear Breit-Wheeler
pair production. Thus, if in addition q2 ¼ 0 in nonlinear
Compton scattering and p2 ¼ 0 in nonlinear Breit-Wheeler
pair production, the corresponding probability vanishes for
the mentioned spin and polarization combinations.
Furthermore, we see in Figs. 7–12 that the maximum of
each section is found at the origin for the complementary
combinations ðj ¼ 1; s ¼ s0Þ and ðj ¼ 2; s ¼ −s0Þ. For the
examples of nonlinear Breit-Wheeler pair production
processes of Figs. 9–12, the aforementioned cases ðj ¼ 1;
s ¼ s0Þ and ðj ¼ 2; s ¼ −s0Þ also have an altogether larger
probability than the complementary ones ðj ¼ 1; s ¼ −s0Þ
and ðj ¼ 2; s ¼ s0Þ, as it can be recognized also noticing
the different scales of the panels.
For nonlinear Compton scattering, we only show results

for the initial spin state defined by s ¼ 1 (see Figs. 7 and 8)
as the s ¼ −1 case gives very similar results, provided one
changes the sign of s0, too. The different scales in the
transverse photon momenta for each individual plot show a
general tendency of broadening of the probability distri-
bution on the transverse plane for increasing energies of the
emitted photon.
Finally, for nonlinear Breit-Wheeler pair production, the

probability density always vanishes for the energy of any
final particle approaching the energy of the incoming
photon. In addition, for (j ¼ 2, s ¼ s0), it also vanishes
when the final particles both have half of the total available
energy (see Figs. 10 and 12).

IV. CONCLUSIONS

In conclusion, we presented analytical expressions and
numerical evaluations of the probabilities for nonlinear
Compton scattering and nonlinear Breit-Wheeler pair pro-
duction including the particle states decay. The probabilities
take into account that in a plane wave background field the
electron and photon states are not stable because electrons
and positrons emit photons and because photons themselves

decay into electron-positron pairs. Within our approach
based on the locally constant-field approximation, the decay
of the states leads to an exponential damping term in the
expressions of the probabilities, which depends on the plane
wave light-cone time aswell as on the light-cone energies and
discrete quantum numbers of the participating particles.
In the analytical part, we first calculated the spin- and

polarization-resolved traces and took the integrals over the
transverse momenta and phase differences. The final
probabilities depend on the spin and polarization quantum
numbers, on the incoming particle four-momentum, as well
as on the quantum nonlinearity parameter. Furthermore, we
computed the asymptotic expressions for the probabilities
differential in the light-cone momentum of one final
particle for arbitrary spin and polarization quantum num-
bers in the limit of one of the outgoing particles gaining all
or none of the light-cone energy of the incoming particle.
All calculations were carried out using particular spin and
polarization four-vectors, and we proved that the results for
the total probabilities are independent of the chosen spin
and polarization bases.
In the numerical part, we presented plots of the total and

differential probabilities for nonlinear Compton scattering
and nonlinear Breit-Wheeler pair production by consider-
ing two different pulse lengths. Due to the particle states
decay, the total probabilities stay below unity in all cases.
The damping becomes important for αξ0ΦL ≳ 1 at values
of the quantum nonlinearity parameter of the order of unity,
such that it increases more rapidly with ξ0 for larger values
of the pulse phase length ΦL. For nonlinear Compton
scattering, we saw that the probability behaves like a
Poissonian distribution for low values of χ0 such that
photon recoil is negligible, whereas important differences
arise when χ0 increases. For the differential probability, we
found it has its maximum at vanishing perpendicular
momentum in the case of polarization j ¼ 1 and same
spins s ¼ s0 and in the case of polarization j ¼ 2 and
opposite spins s ¼ −s0; otherwise, it vanishes at qy ¼ 0.
The same behavior is observed for nonlinear Breit-Wheeler
pair production for the same spin and polarization combi-
nation and for py ¼ 0, i.e., for the component of the
positron momentum along the magnetic field of the wave.
For nonlinear Breit-Wheeler pair production, we have also
seen that the differential probability vanishes for all spin
and polarization combinations if the light-cone energy of
the incoming photon all goes to either the electron or the
positron. Also, for (j ¼ 2, s ¼ s0), the differential proba-
bility vanishes if the electron and the positron have the
same light-cone energy, i.e., half the light-cone energy of
the incoming photon. Finally, in all the cases we inves-
tigated numerically, the kinematic conditions were such
that (1) the transverse momenta of produced particles are
much smaller than the corresponding longitudinal momen-
tum and (2) the main spread of the transverse momenta is
along the direction of the plane wave electric field.
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APPENDIX: COMPUTATION OF THE TRACE

We present here the computation of the traces for
nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production given in Eqs. (2) and (33),
respectively. For this, we first simplify the expressions
by introducing the quantity

Qp;sðϕþ;ϕ−Þ ¼
�
1þ n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�

2p−

�

× ðp̂þmÞð1þ sγ5ζ̂Þ

×

�
1 −

n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�
2p−

�
: ðA1Þ

With this notation, the trace for nonlinear Compton
scattering is given by

Tj;s;s0 ¼
1

4
trfΛ̂jðqÞQp;sðϕþ;ϕ−ÞΛ̂jðqÞQp0;s0 ðϕþ;−ϕ−Þg;

ðA2Þ

and for nonlinear Breit-Wheeler pair production, the trace
reads

Gj;s;s0 ¼−
1

4
trfΛ̂jðqÞQ−p;sðϕþ;ϕ−ÞΛ̂jðqÞQp0;s0 ðϕþ;−ϕ−Þg:

ðA3Þ

Now, the function Qp;sðϕþ;ϕ−Þ can be decomposed into a
linear combination of the matrices 14×4, γ5, γμ, iγμγ5, σμν ¼
ði=2Þðγμγν − γνγμÞ such that

Qp;sðϕþ;ϕ−Þ ¼ c114×4 þ c5γ5 þ cμγμ þ c5μiγμγ5 þ cμνσμν;

ðA4Þ

where the coefficients are obtained by solving the following
traces

c1 ¼
1

4
Tr½14×4Qp;sðϕþ;ϕ−Þ�; ðA5Þ

c5 ¼
1

4
Tr½γ5Qp;sðϕþ;ϕ−Þ�; ðA6Þ

cμ ¼
1

4
Tr½γμQp;sðϕþ;ϕ−Þ�; ðA7Þ

c5μ ¼
1

4
Tr½iγμγ5Qp;sðϕþ;ϕ−Þ�; ðA8Þ

cμν ¼
1

8
Tr½σμνQp;sðϕþ;ϕ−Þ�: ðA9Þ

These traces can be calculated, and we present them here
for a linear polarized plane wave background field:

c1 ¼ m − i
s

4p−
ϵαβγδζαF βγψ

0ðϕþÞϕ−pδ; ðA10Þ

c5 ¼ 0; ðA11Þ

cμ ¼ pμ −AμðϕþÞ −
1

p−
nμp⊥ ·A⊥ðϕþÞ

þ 1

2p−
nμ

�
A2⊥ðϕþÞ −A 02⊥ðϕþÞ

ϕ2
−

4

�

− i
ms
4p−

ημνϵ
αβδνζαF βδψ

0ðϕþÞϕ−; ðA12Þ

c5μ ¼ imsζμ þ
1

4p−
ημνϵ

αβδνpαF βδψ
0ðϕþÞϕ− ðA13Þ

and

cμν ¼
1

2

�
−i

m
2p−

F μνψ
0ðϕþÞϕ− − sϵμνρσpρζσ

þ s
2p−

ðηνρϵμστδ − ημρϵνστδÞpρζσF τδψðϕþÞ

þ s
2p−

ϵμντρnτζρ
�
AδðϕþÞAδðϕþÞ

−A0
δðϕþÞA0δðϕþÞ

ϕ2
−

4

��
: ðA14Þ

The total trace of nonlinear Compton scattering, given in
Eq. (A2), contains also the function Qp0;s0 ðϕþ;−ϕ−Þ for
which we introduce the notation

Qp0;s0 ðϕþ;−ϕ−Þ¼ c0114×4þc05γ
5þc0τγτþc05τiγ

τγ5þc0τλσ
τλ;

ðA15Þ

where the primed coefficients are obtained analogously to
Eqs. (A5)–(A9). With this, the trace for nonlinear Compton
scattering can be reduced to the form
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Tj;s;s0 ¼ −c1c01 þ c5c05 þ ðcμc0τ − c5μc05τÞð2Λμ
j ðqÞΛτ

jðqÞ þ ημτÞ − 2cμνc0τλη
νλð4Λμ

j ðqÞΛτ
jðqÞ þ ημτÞ: ðA16Þ

The trace turns out to only depend on contractions of the primed and the corresponding not primed coefficients. These
contractions can be calculated, and they are given by

c1c01 ¼ m2 − i
m
4
ϵαβγδF βγψ

0ðϕþÞϕ−

�
s
p−

ζαpδ −
s0

p0
−
ζ0αp0

δ

�
þ 1

16

ss0

p−p0
−
ϵαβγδF βγζαpδϵ

α0β0γ0δ0F β0γ0ζ
0
α0p

0
δ0ψ

02ðϕþÞϕ2
−; ðA17Þ

c5c05 ¼ 0; ðA18Þ

cμc0τð2Λμ
j ðqÞΛτ

jðqÞ þ ημτÞ ¼ ðpp0Þ þ ðp⊥ þ p0⊥Þ ·A⊥ðϕþÞ

−
�
p0
−

p−
p⊥ þ p−

p0
−
p0⊥

�
·A⊥ðϕþÞ þ

1

2

�
p0
−

p−
þ p−

p0
−

��
A2⊥ðϕþÞ −A 02⊥ðϕþÞ

ϕ2
−

4

�

þAμðϕþÞAμðϕþÞ − i
m
4
ϵαβγδF βγψ

0ðϕþÞϕ−

�
s
p−

ζαp0
δ −

s0

p0
−
ζ0αpδ

�

þ 2ðpΛjðqÞÞðp0ΛjðqÞÞ − 2½pμ þ p0
μ�Λμ

j ðqÞðΛjðqÞAðϕþÞÞ þ 2ðΛjðqÞAðϕþÞÞ2; ðA19Þ

c5μc05τð2Λμ
j ðqÞΛτ

jðqÞ þ ημτÞ ¼ −m2ss0½2ðζΛjðqÞÞðζ0ΛjðqÞÞ þ ðζζ0Þ� þ i
m
4
ϵαβγδF βγψ

0ðϕþÞϕ−

�
s0

p−
pαζ

0
δ −

s
p0
−
p0
αζδ

�

þ i
m
2
ϵαβγδF βγψ

0ðϕþÞϕ−

�
s0

p−
pαðζ0ΛjðqÞÞ −

s
p0
−
p0
αðζΛjðqÞÞ

�
Λj;δðqÞ

−
1

16p−p0
−
ϵαβγδpαF βγϵ

α0β0γ0δ0p0
α0F β0γ0 ½ηδδ0 þ 2Λj;δðqÞΛj;δ0 ðqÞ�ψ 02ðϕþÞϕ2

−; ðA20Þ

and

2cμνc0τλη
νλð4Λμ

j ðqÞΛτ
jðqÞþημτÞ¼−ss0½ðpζ0Þðp0ζÞ− ðpp0Þðζζ0Þ�−2ss0½ðpζ0Þðp0ΛjðqÞÞðζΛjðqÞÞþðζp0Þðζ0ΛjðqÞÞðpΛjðqÞÞ

− ðpp0ÞðζΛjðqÞÞðζ0ΛjðqÞÞ− ðζζ0ÞðpΛjðqÞÞðp0ΛjðqÞÞ�

þ i
m
4
ψ 0ðϕþÞϕ−ϵ

μνρσ½F μνþ4Λj;μðqÞðΛτ
jðqÞF τνÞ�

�
s0

p−
p0
ρζ

0
σ −

s
p0
−
pρζσ

�

−
ss0

2

�
AδðϕþÞAδðϕþÞ−A0

δðϕþÞA0δðϕþÞ
ϕ2
−

4

�
½ðζζ0Þþ2ðζΛjðqÞÞðζ0ΛjðqÞÞ�

�
p−

p0
−
þp0

−

p−

�

þ ss0ψðϕþÞðζζ0Þ
�
p− −p0

−

p−p0
−

ðp0FpÞ−2
ðp0ΛjðqÞÞ

p0
−

ðpFΛjðqÞÞ−2
ðpΛjðqÞÞ

p−
ðp0FΛjðqÞÞ

�

−
ss0

4p−p0
−
ψ2ðϕþÞðϵρ0σγδp0

ρ0ζσF γδÞðϵρσ0γ0δ0pρζ
0
σ0F γ0δ0 Þ: ðA21Þ

Inserting Eqs. (A17)–(A21) into Eq. (A16) and simplifying the expression for the two polarization states j ¼ 1 and j ¼ 2
leads finally to Eqs. (6) and (7), respectively.
The trace for nonlinear Breit-Wheeler pair production given in Eq. (A3) can be derived directly from the result of

nonlinear Compton scattering in Eqs. (A16)–(A21) by multiplying Eq. (A16) by an overall minus sign and by changing the
sign of the four-momentum pμ in Eqs. (A17)–(A21). With that, one finally obtains Eqs. (35) and (36) for the two
polarization states j ¼ 1 and j ¼ 2, respectively.
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A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu,
and P. Audebert, High Power Laser Sci. Eng. 4, e34 (2016).

[6] Extreme Light Infrastructure (ELI), https://eli-laser.eu/.
[7] Center for Relativistic Laser Science (CoReLS), https://

www.ibs.re.kr/eng/sub02_03_05.do.
[8] J. Bromage, S.-W. Bahk, I. A. Begishev, C. Dorrer, M. J.

Guardalben, B. N. Hoffman, J. B. Oliver, R. G. Roides,
E. M. Schiesser, M. J. Shoup III, M. Spilatro, B. Webb,
D. Weiner, and J. D. Zuegel, High Power Laser Sci. Eng. 7,
e4 (2019).

[9] Exawatt Center for Extreme Light Studies (XCELS), https://
xcels.ipfran.ru/.

[10] H. Mitter, Acta Phys. Austriaca XIV, 397 (1975).
[11] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).
[12] F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Rep. Prog.

Phys. 72, 046401 (2009).
[13] H. R. Reiss, Eur. Phys. J. D 55, 365 (2009).
[14] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.

Keitel, Rev. Mod. Phys. 84, 1177 (2012).
[15] G. V. Dunne, Eur. Phys. J. Special Topics 223, 1055 (2014).
[16] A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S.

Bulanov, arXiv:2107.02161.
[17] A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt,

H. Taya, and G. Torgrimsson, arXiv:2203.00019.
[18] C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege,

T.Kotseroglou,A. C.Melissinos,D. D.Meyerhofer,W.Ragg,
D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E.
Spencer, D. Walz, S. C. Berridge, W.M. Bugg, K. Shmakov,
and A.W. Weidemann, Phys. Rev. Lett. 76, 3116 (1996).

[19] D. L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997).
[20] C. Bamber et al., Phys. Rev. D 60, 092004 (1999).
[21] J. M. Cole et al., Phys. Rev. X 8, 011020 (2018).
[22] K. Poder et al., Phys. Rev. X 8, 031004 (2018).
[23] H. Abramowicz et al., arXiv:1909.00860.
[24] S.Meuren, P. H. Bucksbaum,N. J. Fisch, F. Fiúza, S.Glenzer,

M. J. Hogan,K.Qu,D. A. Reis, G.White, andV. Yakimenko,
arXiv:2002.10051.

[25] W. H. Furry, Phys. Rev. 81, 115 (1951).
[26] D. M. Volkov, Z. Phys. 94, 250 (1935).
[27] I. I. Gol’dman, Phys. Lett. 8, 103 (1964).
[28] A. I. Nikishov and V. I. Ritus, Sov. Phys. JETP 19, 529

(1964).
[29] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electro-

magnetic Processes at High Energies in Oriented Single
Crystals (World Scientific, Singapore, 1998).

[30] D. Yu. Ivanov, G. L. Kotkin, and V. G. Serbo, Eur. Phys. J. C
36, 127 (2004).

[31] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).

[32] C. Harvey, T. Heinzl, and A. Ilderton, Phys. Rev. A 79,
063407 (2009).

[33] F. Mackenroth, A. Di Piazza, and C. H. Keitel, Phys. Rev.
Lett. 105, 063903 (2010).

[34] M. Boca and V. Florescu, Eur. Phys. J. D 61, 449 (2011).
[35] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106

(2011).
[36] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101

(2011).
[37] D. Seipt and B. Kämpfer, Phys. Rev. ST Accel. Beams 14,

040704 (2011).
[38] V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037

(2012).
[39] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 85, 062102

(2012).
[40] V. Dinu, Phys. Rev. A 87, 052101 (2013).
[41] D. Seipt and B. Kämpfer, Phys. Rev. A 88, 012127 (2013).
[42] K. Krajewska, M. Twardy, and J. Z. Kamiński, Phys. Rev. A

89, 032125 (2014).
[43] T. N. Wistisen, Phys. Rev. D 90, 125008 (2014).
[44] C. N. Harvey, A. Ilderton, and B. King, Phys. Rev. A 91,

013822 (2015).
[45] D. Seipt, V. Kharin, S. Rykovanov, A. Surzhykov, and

S. Fritzsche, J. Plasma Phys. 82, 655820203 (2016).
[46] D. Seipt, A. Surzhykov, S. Fritzsche, and B. Kämpfer, New

J. Phys. 18, 023044 (2016).
[47] A. Angioi, F. Mackenroth, and A. Di Piazza, Phys. Rev. A

93, 052102 (2016).
[48] C. N. Harvey, A. Gonoskov, M. Marklund, and E. Wallin,

Phys. Rev. A 93, 022112 (2016).
[49] A. Angioi and A. Di Piazza, Phys. Rev. Lett. 121, 010402

(2018).
[50] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel,

Phys. Rev. A 98, 012134 (2018).
[51] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Phys.

Rev. D 99, 016020 (2019).
[52] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel,

Phys. Rev. A 99, 022125 (2019).
[53] A. Ilderton, B. King, and D. Seipt, Phys. Rev. A 99, 042121

(2019).
[54] H. R. Reiss, J. Math. Phys. (N.Y.) 3, 59 (1962).
[55] N. B. Narozhny and M. S. Fofanov, J. Exp. Theor. Phys. 90,

415 (2000).
[56] S. P. Roshchupkin, Phys. At. Nucl. 64, 243 (2001).
[57] T. Heinzl, A. Ilderton, and M. Marklund, Phys. Lett. B 692,

250 (2010).
[58] T.-O. Müller and C. Müller, Phys. Lett. B 696, 201 (2011).
[59] A. I. Titov, H. Takabe, B. Kämpfer, and A. Hosaka, Phys.

Rev. Lett. 108, 240406 (2012).
[60] T. Nousch, D. Seipt, B. Kämpfer, and A. Titov, Phys. Lett. B

715, 246 (2012).
[61] K. Krajewska, C. Müller, and J. Z. Kamiński, Phys. Rev. A

87, 062107 (2013).
[62] M. J. A. Jansen and C. Müller, Phys. Rev. A 88, 052125

(2013).
[63] S. Augustin and C. Müller, Phys. Lett. B 737, 114 (2014).
[64] S. Meuren, C. H. Keitel, and A. Di Piazza, Phys. Rev. D 93,

085028 (2016).
[65] B. King, Phys. Rev. A 101, 042508 (2020).
[66] R. J. Glauber, Phys. Rev. 84, 395 (1951).

NONLINEAR COMPTON SCATTERING AND NONLINEAR BREIT- … PHYS. REV. D 106, 056014 (2022)

056014-23

https://doi.org/10.1364/OPTICA.420520
https://doi.org/10.1017/hpl.2016.34
https://eli-laser.eu/
https://eli-laser.eu/
https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://doi.org/10.1017/hpl.2018.64
https://doi.org/10.1017/hpl.2018.64
https://xcels.ipfran.ru/
https://xcels.ipfran.ru/
https://xcels.ipfran.ru/
https://xcels.ipfran.ru/
https://doi.org/10.1007/978-3-7091-8424-0_7
https://doi.org/10.1007/BF01120220
https://doi.org/10.1088/0034-4885/72/4/046401
https://doi.org/10.1088/0034-4885/72/4/046401
https://doi.org/10.1140/epjd/e2009-00039-3
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1140/epjst/e2014-02156-4
https://arXiv.org/abs/2107.02161
https://arXiv.org/abs/2203.00019
https://doi.org/10.1103/PhysRevLett.76.3116
https://doi.org/10.1103/PhysRevLett.79.1626
https://doi.org/10.1103/PhysRevD.60.092004
https://doi.org/10.1103/PhysRevX.8.011020
https://doi.org/10.1103/PhysRevX.8.031004
https://arXiv.org/abs/1909.00860
https://arXiv.org/abs/2002.10051
https://doi.org/10.1103/PhysRev.81.115
https://doi.org/10.1007/BF01331022
https://doi.org/10.1016/0031-9163(64)90728-0
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1103/PhysRevA.80.053403
https://doi.org/10.1103/PhysRevA.79.063407
https://doi.org/10.1103/PhysRevA.79.063407
https://doi.org/10.1103/PhysRevLett.105.063903
https://doi.org/10.1103/PhysRevLett.105.063903
https://doi.org/10.1140/epjd/e2010-10429-y
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.83.022101
https://doi.org/10.1103/PhysRevA.83.022101
https://doi.org/10.1103/PhysRevSTAB.14.040704
https://doi.org/10.1103/PhysRevSTAB.14.040704
https://doi.org/10.1103/PhysRevD.86.085037
https://doi.org/10.1103/PhysRevD.86.085037
https://doi.org/10.1103/PhysRevA.85.062102
https://doi.org/10.1103/PhysRevA.85.062102
https://doi.org/10.1103/PhysRevA.87.052101
https://doi.org/10.1103/PhysRevA.88.012127
https://doi.org/10.1103/PhysRevA.89.032125
https://doi.org/10.1103/PhysRevA.89.032125
https://doi.org/10.1103/PhysRevD.90.125008
https://doi.org/10.1103/PhysRevA.91.013822
https://doi.org/10.1103/PhysRevA.91.013822
https://doi.org/10.1017/S002237781600026X
https://doi.org/10.1088/1367-2630/18/2/023044
https://doi.org/10.1088/1367-2630/18/2/023044
https://doi.org/10.1103/PhysRevA.93.052102
https://doi.org/10.1103/PhysRevA.93.052102
https://doi.org/10.1103/PhysRevA.93.022112
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevA.98.012134
https://doi.org/10.1103/PhysRevD.99.016020
https://doi.org/10.1103/PhysRevD.99.016020
https://doi.org/10.1103/PhysRevA.99.022125
https://doi.org/10.1103/PhysRevA.99.042121
https://doi.org/10.1103/PhysRevA.99.042121
https://doi.org/10.1063/1.1703787
https://doi.org/10.1134/1.559121
https://doi.org/10.1134/1.559121
https://doi.org/10.1134/1.1349445
https://doi.org/10.1016/j.physletb.2010.07.044
https://doi.org/10.1016/j.physletb.2010.07.044
https://doi.org/10.1016/j.physletb.2010.12.023
https://doi.org/10.1103/PhysRevLett.108.240406
https://doi.org/10.1103/PhysRevLett.108.240406
https://doi.org/10.1016/j.physletb.2012.07.040
https://doi.org/10.1016/j.physletb.2012.07.040
https://doi.org/10.1103/PhysRevA.87.062107
https://doi.org/10.1103/PhysRevA.87.062107
https://doi.org/10.1103/PhysRevA.88.052125
https://doi.org/10.1103/PhysRevA.88.052125
https://doi.org/10.1016/j.physletb.2014.08.042
https://doi.org/10.1103/PhysRevD.93.085028
https://doi.org/10.1103/PhysRevD.93.085028
https://doi.org/10.1103/PhysRevA.101.042508
https://doi.org/10.1103/PhysRev.84.395


[67] E. Lötstedt and U. D. Jentschura, Phys. Rev. Lett. 103,
110404 (2009).

[68] D. Seipt andB.Kämpfer, Phys. Rev.D 85, 101701(R) (2012).
[69] F. Mackenroth and A. Di Piazza, Phys. Rev. Lett. 110,

070402 (2013).
[70] B. King, Phys. Rev. A 91, 033415 (2015).
[71] V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018

(2019).
[72] V. Dinu and G. Torgrimsson, Phys. Rev. D 102, 016018

(2020).
[73] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.

Rev. Lett. 105, 220403 (2010).
[74] N. Neitz and A. Di Piazza, Phys. Rev. Lett. 111, 054802

(2013).
[75] N. Neitz and A. Di Piazza, Phys. Rev. A 90, 022102 (2014).
[76] G. Torgrimsson, Phys. Rev. Lett. 127, 111602 (2021).
[77] M. Tamburini and S. Meuren, Phys. Rev. D 104, L091903

(2021).
[78] I. A. Aleksandrov and A. A. Andreev, Phys. Rev. A 104,

052801 (2021).

[79] T. Podszus and A. Di Piazza, Phys. Rev. D 104, 016014
(2021).

[80] V. N. Baier, V. M. Katkov, A. I. Milstein, and V. M.
Strakhovenko, Sov. Phys. JETP 42, 400 (1976).

[81] V. I. Ritus, Sov. Phys. JETP 30, 1181 (1970).
[82] S. Meuren and A. Di Piazza, Phys. Rev. Lett. 107, 260401

(2011).
[83] S. Meuren, K. Z. Hatsagortsyan, C. H. Keitel, and A.

Di Piazza, Phys. Rev. D 91, 013009 (2015).
[84] V. N. Baier, A. I. Milstein, and V. M. Strakhovenko, Sov.

Phys. JETP 42, 961 (1976).
[85] W. Becker and H. Mitter, J. Phys. A 8, 1638 (1975).
[86] NIST Handbook of Mathematical Functions, edited by

F.W. J. Olver, D. W. Lozier, R. F. Boisvert, and C.W.
Clark (Cambridge University Press, Cambridge, England,
2010).

[87] D. Seipt and B. King, Phys. Rev. A 102, 052805 (2020).
[88] A. Mercuri-Baron, M. Grech, F. Niel, A. Grassi, M. Lobet,

A. Di Piazza, and C. Riconda, New J. Phys. 23, 085006
(2021).

T. PODSZUS, V. DINU, and A. DI PIAZZA PHYS. REV. D 106, 056014 (2022)

056014-24

https://doi.org/10.1103/PhysRevLett.103.110404
https://doi.org/10.1103/PhysRevLett.103.110404
https://doi.org/10.1103/PhysRevD.85.101701
https://doi.org/10.1103/PhysRevLett.110.070402
https://doi.org/10.1103/PhysRevLett.110.070402
https://doi.org/10.1103/PhysRevA.91.033415
https://doi.org/10.1103/PhysRevD.99.096018
https://doi.org/10.1103/PhysRevD.99.096018
https://doi.org/10.1103/PhysRevD.102.016018
https://doi.org/10.1103/PhysRevD.102.016018
https://doi.org/10.1103/PhysRevLett.105.220403
https://doi.org/10.1103/PhysRevLett.105.220403
https://doi.org/10.1103/PhysRevLett.111.054802
https://doi.org/10.1103/PhysRevLett.111.054802
https://doi.org/10.1103/PhysRevA.90.022102
https://doi.org/10.1103/PhysRevLett.127.111602
https://doi.org/10.1103/PhysRevD.104.L091903
https://doi.org/10.1103/PhysRevD.104.L091903
https://doi.org/10.1103/PhysRevA.104.052801
https://doi.org/10.1103/PhysRevA.104.052801
https://doi.org/10.1103/PhysRevD.104.016014
https://doi.org/10.1103/PhysRevD.104.016014
https://doi.org/10.1103/PhysRevLett.107.260401
https://doi.org/10.1103/PhysRevLett.107.260401
https://doi.org/10.1103/PhysRevD.91.013009
https://doi.org/10.1088/0305-4470/8/10/017
https://doi.org/10.1103/PhysRevA.102.052805
https://doi.org/10.1088/1367-2630/ac1975
https://doi.org/10.1088/1367-2630/ac1975

