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We set up a general framework for systematically building and classifying, in the linear regime, causal
and stable dissipative hydrodynamic theories that, alongside with the usual hydrodynamic modes, also
allow for an arbitrary number of nonhydrodynamic modes with complex dispersion relation (such theories
are often referred to as “quasihydrodynamic”). To increase the number of nonhydrodynamic modes, one
needs to add more effective fields to the model. The system of equations governing this class of
quasihydrodynamic theories is symmetric hyperbolic, thermodynamically consistent (i.e., the entropy is a
Lyapunov function) and can be derived from an action principle. As a first application of the formalism,
we prove that, in the linear regime, the Israel-Stewart theory in the Eckart frame and the Israel-Stewart
theory in the Landau frame are exactly the same theory. In addition, with an Onsager-Casimir analysis, we
show that in strongly coupled plasmas the nonequilibrium degrees of freedom typically appear in pairs,
whose members acquire opposite phase under time reversal. We use this insight to modify Cattaneo’s
model for diffusion, in a way to make its initial transient consistent with the transient dynamics of
holographic plasmas.
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I. INTRODUCTION

When the field equations of a relativistic hydrodynamic
theory are linearized around a homogeneous static state of
global thermodynamic equilibrium, we obtain a system of
linear partial differential equations with constant coeffi-
cients. If we work in the Fourier space (t; x → ω; k), this
system becomes algebraic, and its solutions are a set of
dispersion relations ωn ¼ ωnðkÞ, describing the modes of
the theory. Such dispersion relations can then be compared
with those computed from statistical mechanics by means of
the linear response theory, or other microscopic approaches
that allow one to derive the spectrum of the system’s
collective excitations [1–3].
The dispersion relations can be divided into two broad

classes: the modes such that ωnð0Þ ¼ 0, which constitute
the hydrodynamic sector, and the modes such that
ωnð0Þ ≠ 0, which constitute the nonhydrodynamic sector.
It is found that the structure of the modes belonging to the
hydrodynamic sector is essentially universal (at least for
small k) across most fluids and hydrodynamic theories,
since they happen to be governed by some Navier-Stokes-
type dynamics [4–8]. On the other hand, the structure of
modes in the nonhydrodynamic sector is different for
different fluids and for different hydrodynamic theories,
even at small k [9–11].
For example, let us consider the Israel-Stewart theory

[12], which approximately describes the nonhydrodynamic
sector of ideal relativistic gases [13–15]. Building on the

ideas of Cattaneo [16], the Israel-Stewart theory posits that
the shear stress Πab evolves (in the fluid’s rest frame, for
k ¼ 0) according to the equation

τ∂tΠab þ Πab ¼ 0: ð1Þ

This gives rise to a nonhydrodynamic mode with purely
imaginary frequency: ωðk ¼ 0Þ ¼ −i=τ.
Now, let us compare the Israel-Stewart theory with the

Heller-Janik-Spaliński-Witaszczyk (HJSW) theory [17],
which has been constructed to reproduce the dynamics of
strongly coupled plasmas [18]. Building on the holographic
AdS=CFT description of N ¼ 4 supersymmetric Yang-
Mills theory, the HJSW theory posits that the viscous stress
evolves according to the equation below:

1

2
χτ2∂2tΠab þ τ∂tΠab þ Πab ¼ 0: ð2Þ

This equation gives rise to two nonhydrodynamic modes,
with frequencies

ω�ðk ¼ 0Þ ¼ −i� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ − 1

p
χτ

: ð3Þ

For χ > 1=2 (in N ¼ 4 SYM one finds 1≲ χ ≲ 3 [18]),
these frequencies have also a real part. This implies that the
Israel-Stewart theory cannot reproduce them.
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This raises the following question: given an arbitrary
finite set of dispersion relations1 ωnðkÞ, is there a system-
atic technique for building an effective hydrodynamic
theory which correctly reproduces both the hydrodynamic
and the nonhydrodynamic sector, at least in the small k
limit? In fact, given the universality of the hydrodynamic
sector, we already know that it should arise from some
effective Navier-Stokes kind of dynamics, that is the
expected limit of the equations of motion in the low
frequency regime (i.e., for small Knudsen number).
However, if we want to also reproduce some nonhydrody-
namic modes, there is no universal answer like Navier-
Stokes hydrodynamics [10].
Following Heller et al. [17], the simplest way of

including additional nonhydrodynamic modes in a fluid
model is to add higher-order derivatives in time, as is done
in going from (1) to (2), fixing the prefactors in a way to
generate the desired dispersion relations. The problem is
that, by adding higher derivatives by hand, we completely
change the mathematical structure of the field equations,
and it becomes difficult to predict in advance whether the
resulting theory will be

(i) hyperbolic and causal,
(ii) stable,
(iii) consistent with the second law of thermodynamics.

Of course, if the equations are simple enough (as in the
case of the HJSW theory) we can still try to make some
adjustment afterwards, “forcing the theory to work.” But if
one aims to include several dissipative phenomena and
nonhydrodynamic frequencies, the number of possible
couplings may become very large, and fixing everything
by hand seems to be a formidable task. We definitely need
a more systematic approach, which is what this paper
provides.
Here, we develop a construction technique to build

symmetric-hyperbolic, causal, and Lyapunov-stable fluid
theories in the linear regime, which can reproduce an
(almost) arbitrarily assigned set of dispersion relations
ωnðkÞ, in the limit of small k. All these linear theories are
consistent with the Onsager-Casimir principle [19,20], the
Gibbs stability criterion [21], and the principles of unified
extended irreversible thermodynamics (UEIT) described
in [11].
Throughout the paper we adopt the signature

ð−;þ;þ;þÞ and work with natural units c ¼ kB ¼
ℏ ¼ 1. We follow the same notation of Geroch and
Lindblom [22]: a, b, c, m are space-time indices, while
A, B, C, D are field multi-indices, defined below. The
indices j, k, l are pure space indices running from 1 to 3.

When two indices are symmetrized, e.g., ΞðABÞ, or anti-
symmetrized, e.g., Ξ½AB�, we adopt the prefactor 1=2.

II. GEROCH-LINDBLOM THEORIES

To address the main question outlined in the
Introduction, we need to identify an appropriate set of
fluid theories to work with. It needs to be large enough to
accommodate an arbitrary number of both hydrodynamic
and gapped modes ωnðkÞ, randomly scattered on the
complex plane. On the other hand, the mathematical
structure of all of these theories should be “elegant enough”
so that we can identify some simple criteria for hyper-
bolicity, causality, and stability, which are valid for the
whole set at once. In a seminal paper, Geroch and Lindblom
[22] identified a space of theories that is just right for our
aims. In this section, we briefly review their approach.

A. Assumptions and regime of validity
of the construction

Before moving to outline the mathematical details of the
Geroch-Lindblom theories, it is important to comment on
the regime of validity of our method to construct the
hydrodynamic equations from the dispersion relations
ωnðkÞ.
We assume that the spatial gradients, as measured in the

global rest frame of the fluid, are small (i.e., we work at
small Knudsen number). This also implies that each fluid
element, whose size has to be smaller than the length scale
of the gradients, can be taken to be big enough that
fluctuations of its average properties are practically neg-
ligible. Therefore, we will deal only with nonstochastic
hydrodynamic models.
As a consequence of these assumptions, we will be

content to correctly reproduce only the first orders of an
expansion of the dispersion relations for k → 0. More
specifically, if ωnðkÞ belongs to the hydrodynamic sector,
then the theory should give the correct predictions up to
second order in k,

ωn ¼ ω0
nð0Þkþ

1

2
ω00
nð0Þk2 þOðk3Þ; ð4Þ

because the expansion coefficients ω0
nð0Þ and ω00

nð0Þ carry
crucial information about the transport properties of the
fluid [5].
On the other hand, if ωnðkÞ is a nonhydrodynamic mode,

it is sufficient that the model correctly reproduces the value
of the gap ωnð0Þ, as this contains most of the relevant
information about the initial transient evolution [9,17].
Finally, we make an important remark about the

physical meaning of the nonhydrodynamic sector.
The theories that we will construct are consistent with
the principles of (unified) extended irreversible thermo-
dynamics [11,23], according to which the nonhydrody-
namic modes describe the evolution of some additional

1We consider dispersion relations arising from simple poles of
the linear-response Green’s function, leaving out the possibility
of having modes related to branch cuts. We briefly comment on
this at the end of Sec. X.
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nonequilibrium thermodynamic variables, which are
degrees of freedom of their own right.2

An important example of a nonhydrodynamic mode of
this kind is given by chemical reactions [10]: a reaction in a
fluid that is prepared out of chemical equilibrium can give
rise to a thermodynamic relaxation of the system, which
survives in the homogeneous limit (hence ωnð0Þ ≠ 0), and
which involves a measurable change of a physical observ-
able (the reaction coordinate, or the chemical fractions), see
e.g., Fig. 1 in [25].
It is, therefore, important to keep in mind that the terms

proportional to ∂tΠab and ∂
2
tΠab in Eqs. (1) and (2) are not

subsequent terms in a derivative expansion close to ω ¼ 0
(such a construction is probably meaningless above first
order in 3þ 1 dimensions [26–28]), but they model the
effect of singularities of the retarded correlators in the
complex frequency plane [9,17,24].

B. The mathematical construction

We assume that the macroscopic state of the fluid can be
completely characterized by finite set of fields φA, possibly
subject to some algebraic constraints,3 see also the more
general discussion in [11]. The number and physical
meaning of the hydrodynamic fields φA depends on the
particular substance one may want to model and needs to be
fixed depending on the structure of the nonhydrodynamic
sector that should be reproduced. The label A is a multi-
index, which contains both abstract indices labeling each
tensor field, as well as the space-time indices pertaining to
each tensor, if any.
We now have to choose a class of hydrodynamic

equations for the φA that is general enough for our scope:
we assume that the field equations have the form proposed
by Geroch and Lindblom [22],

Mm
AB∇mφ

B ¼ −ΞA; ð5Þ

where the coefficientsMm
AB and ΞA are algebraic functions

of the fields φA and of the metric gab (“algebraic” means
that they do not depend on the derivatives of the fields but
only on their local value). We are applying Einstein’s
summation convention to the multi-index B. Since B runs
over the whole set of field components (that are possibly
subject to constraints). It seems reasonable to restrict the
dimension of the space labeled by the multi-index A, or B,
to be equal to the number of independent observable fields
in the theory. However, this restriction is not required in the
following: if the number of fields φA were taken to be larger

than the number of independent fields, then some of the
equations in (5) can be used to implement algebraic
constraints. A practical example is given in Appendix B.
How restrictive is Eq. (5)? The fact that the system of

equations is of first order does not constitute a very
restrictive assumption, because higher-order systems of
equations can always be written as first-order systems
involving more independent fields.
Regarding the generality of the system in (5), there is also

a more important point to make. Given that our goal is to
model also the nonhydrodynamic sector of the fluid, or at
least a part of it, the derivatives in time are in general not
small (by definition, a nonhydrodynamic mode is a mode
whose frequency remains finite in the small k limit). This
implies that the often repeated statement that hydrodynam-
ics arises from a derivative expansion, where to increase
accuracy one increases the order, is not applicable in our
case4 [24]. Instead, in the present approach, each mode
represents a physical degree of freedom of the fluid, and the
value of all of the fields φA at a given time t completely
defines the macrostate at t. Then, Eq. (5) follows naturally.
In principle, one could also find higher-degree terms, like
∇mφ

A∇mφB. However, in practically all known situations
one can redefine the fields and rearrange the equations in a
way to recover (5), within a certain level of approximation.
Furthermore, given that we will focus on linear perturba-
tions to a homogeneous background, any term of the form
∇mφ

A∇mφB would anyway disappear.
The set of possible theories identified by Eq. (5) is

still a bit too large, hence we introduce two additional
assumptions:

(i) The system (5) is symmetric, namely

Mm
AB ¼ Mm

BA: ð6Þ

(ii) The quantity φAΞA is strictly non-negative,

σ ≔ φAΞA ≥ 0; ð7Þ

and it can be identified with the entropy produc-
tion rate.

Condition (6) may seem quite restrictive; however, note
that we can always multiply both sides of (5) by an arbitrary
invertible matrix N A

C, so that the coefficients Mm
AB and

ΞA are redefined as follows:

2Adopting the terminology introduced by Grozdanov et al.
[24], we may say that the theories considered in this paper are
“quasihydrodynamic” because they treat weakly nonconserved
quantities on the same footing as exactly conserved quantities.

3For example, if the fluid’s four-velocity ua is included in the
set φA, it will be subject to the algebraic constraint ubub ¼ −1.

4One may argue that, since the gradients in space are assumed
small (k → 0), it should still be possible to perform a gradient
expansion only in space (i.e., a small Knudsen number expan-
sion). However, in relativity, equations whose order in space is
higher than the order in time are usually pathological when
boosted and do not give rise to well-posed initial value problems
[11,29,30]. Hence the truncation in space needs to stop at the first
order, leading to (5).
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Mm
AB ⟶ N A

CMm
AB;

ΞA ⟶ N A
CΞA: ð8Þ

This implies that, in practice, many theories can be recast in
a way to obey (6), at least in the linear limit (as it happens
with the Israel-Stewart theory [12]). As we shall see, Eq. (6)
allows us to easily guarantee, on general grounds, the well-
posedness of the initial value problem.
Condition (7) breaks the symmetry under time reversal

and gives to our system of equations a dissipative character.
The identification of σ with the entropy production rate will
allow us to build a bridge with statistical mechanics.

C. Hyperbolicity, causality, and stability

Now that we have identified a suitable space of theories,
defined by the system in (5), we need to impose conditions
(i, ii), as given in the Introduction. The entropy production
in (7) takes care of condition (iii) automatically.
To take care of condition (i), we follow Geroch and

Lindblom [22]: the symmetric field equation (5) give rise to
a hyperbolic and causal system if

Mm
ABZAZB is timelike furture directed ð9Þ

for all nonvanishing ZA. Symmetric-hyperbolicity guaran-
tees that the field equations give rise to a well-posed initial
value problem, while causality guarantees that information
does not propagate faster than light.
Let us move to condition (ii). By “stability”we mean that

perturbations away from the state of global thermodynamic
equilibrium can only decay and never grow. We will focus,
here, on homogeneous equilibria in Minkowski space-time.
If we linearize the field equations (calling φA the uniform
equilibrium state and φA þ δφA the perturbed state) we find

Mm
AB∇mδφ

B ¼ −ΞABδφ
B; ΞAB ¼ ∂ΞA

∂φB : ð10Þ

On the right-hand side, we have expanded ΞA to the first
order in δφB and we have used the fact that δφA ¼ 0 must
be a solution of the field equations (it is the equilibrium
state) to cancel the equilibrium value of ΞA. Note that the
matrix ΞAB is not necessarily symmetric in A and B. Now,
recalling that Mm

AB is uniform across the spacetime, we
can contract both sides of (10) with δφA to obtain

∇mEm ¼ −σ ð11Þ

with

Em ¼ 1

2
Mm

ABδφ
AδφB;

σ ¼ ΞABδφ
AδφB ≥ 0: ð12Þ

Let us discuss the properties of the vector field Em

defined above:
(i) From condition (9) we know that Em is timelike

future directed:

EmEm ≤ 0; E0 ≥ 0: ð13Þ

(ii) Condition (9) also implies that Em ¼ 0 if and only
if δφA ¼ 0∀A.

(iii) From condition (7), we know that

∇mEm ≤ 0: ð14Þ

All of these conditions together imply that we can associate
to the perturbation δφA a quadratic norm E which is
nonincreasing in time. In fact, given an arbitrary spacelike
Cauchy 3D surface Σ, the integral

E½Σ� ¼
Z
Σ
EmdΣm ðorientation∶ dΣ0 > 0Þ ð15Þ

is quadratic in δφA, positive definite, and vanishes only at
equilibrium. Furthermore, given two spacelike Cauchy 3D
surfaces Σi (“initial”) and Σf (“final”), such that Σf is future
to Σi, we have, by Gauss theorem (Ω is the volume between
the two surfaces)

E½Σf� − E½Σi� ¼
Z
Ω
∇mEmdΩ ≤ 0: ð16Þ

Hence, the norm E cannot increase with time and the
equilibrium state is Lyapunov stable.
In conclusion, as long as the field equations (5) satisfy

(6), (7), and (9), and admit a homogeneous equilibrium
state, the conditions (i,ii,iii) are automatically respected.

III. HYDRODYNAMIC AND
NONHYDRODYNAMIC MODES

Let us imagine to randomly pick up a theory which
respects all the conditions reported in Secs. II B and II C.
What can we say about its Fourier modes? Thanks to the
stability requirement, the imaginary part of their frequency
must be nonpositive,

ImωnðkÞ ≤ 0 ∀ k; ð17Þ

but there is much more that we can say about ωnðkÞ.

A. General properties of the hydrodynamic sector:
The relaxation effect

Assume to prepare the fluid in an arbitrary initial state
and to let it evolve for long times. If the spatial gradients
are not too large, we expect that, after some time, all the
nonhydrodynamic modes will have decayed and the fluid
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will exhibit the universal “Navier-Stokes-type” behavior, in
which the stress-energy tensor can be approximated using a
gradient expansion around the perfect-fluid structure. If the
model does not manifest such behavior, this is a clear signal
that something is wrong. Luckily, Geroch [4] and Lindblom
[5] showed (in the full nonlinear regime) that field
equations of the form (5), satisfying the causality and
stability requirement reported above, are always subject to
a relaxation effect, which makes them eventually indis-
tinguishable from Navier-Stokes-like fluids as t → þ∞. In
other words, for this class of theories, the causality and
stability requirements are enough to guarantee that the
fields have the tendency to “arrange themselves” (after an
initial transient) in a way to mimic first-order stable theories
when gradients are small. The immediate consequence is
that the hydrodynamic sector of these theories is always
“realistic.”

B. General properties of the nonhydrodynamic sector

Let us focus on the nonhydrodynamic sector. We work
in the fluid’s rest frame and assume invariance under
spatial translations (∂j ¼ 0), so that the field equation (10)
reduce to

M0
AB∂tδφ

B ¼ −ΞABδφ
B: ð18Þ

These constitute a system of D ordinary differential
equations for D functions of time, where D is the number
of algebraically independent components of the fields. The
nontrivial solutions of (18) are the nonhydrodynamic
modes with k ¼ 0.
We know from the causality condition (9) that

Mm
ABZAZBð∂tÞm < 0 ð19Þ

for all nonvanishing ZA. It follows that the matrix M0
AB is

positive definite. Combining this result with the symmetry
condition (6), we can conclude that there is an invertible
matrix N C

A such that

M0
AB ¼ δCDN C

AN D
B; ð20Þ

where δCD is the Kronecker symbol. This allows us to
rewrite the system (18) in the simpler form

∂tδφ̃
C ¼ −Ξ̃CDδφ̃

D; ð21Þ

with

ΞAB ¼ Ξ̃CDN C
AN D

B;

δφ̃D ¼ N D
Bδφ

B: ð22Þ

Note that the existence of Ξ̃CD is guaranteed by the fact that
N C

A is invertible.

Finally, let us assume that the matrix Ξ̃CD is diago-
nalizable (the nondiagonalizable case is discussed in
Appendix A). Then, there is a basis of D (in principle
complex) eigenvectors YD

ðnÞ satisfying the eigenvalue

equation

Ξ̃CDYD
ðnÞ ¼ iωnYC

ðnÞ; ð23Þ

and the general solution of the field equation (21) is

δφ̃CðtÞ ¼
XD
n¼1

cnðtÞYC
ðnÞ; ð24Þ

with

cnðtÞ ¼ e−iωntcnð0Þ: ð25Þ

The complex numbers ωn are simply the frequencies of the
homogeneous modes; namely the dispersion relations
ωnðkÞ presented in the Introduction, evaluated at k ¼ 0.
This shows us that the mathematical structure of the
nonhydrodynamic sector depends on the properties of
the matrix Ξ̃CD. For example, the dimension of the kernel
of Ξ̃CD is the number of hydrodynamic modes, whereas the
dimension of its image is the number of nonhydrodynamic
modes. Note also that, if ωn ¼ 0, then cn is a conserved
quantity. Assuming that the conservation of cn “is not a
coincidence,” we can expect it to reflect the existence of a
more fundamental conservation law, which leads us to the
intuitive rule

D ¼
�

Number of
conservation laws

�
þ
�

Number of
nonhydromodes

�
: ð26Þ

In essence, this rule tells us that every conservation law
contributes with one degree of freedom and produces a
hydrodynamic mode, whereas nonconserved degrees of
freedom give rise to nonhydrodynamic modes [11].

C. The structure of the nonhydrodynamic sector

We are now ready to prove our main result. Assume that
the matrix Ξ̃CD (and hence also the matrix ΞAB) is
symmetric. Then, from the spectral theorem, we know
that Ξ̃CD is diagonalizable and iωn ∈ R. Hence, recalling
(17), we have the following theorem:
Theorem.—Given the dynamics defined by (18), if

ΞAB ¼ ΞBA; ð27Þ

then the frequencies of the nonhydrodynamic modes at zero
k have the form
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ωn ¼ −
i
τn

; τn > 0: ð28Þ

This theorem implies that, if we do not break the
symmetry of ΞAB, we cannot model fluids whose non-
hydrodynamic frequencies have a real part for k ¼ 0.
Hence, if we want to go beyond Israel-Stewart-type
theories, and apply the methods of extended irreversible
thermodynamics also to holographic plasmas, we need to
include the possibility that

ΞAB ≠ ΞBA: ð29Þ

If we drop the assumption (27), then iωn will be, in general,
complex. Note also that, if iωn obeys the eigenvalue
Eq. (23), then its complex conjugate, ðiωnÞ�, is also
eigenvalue of Ξ̃CD, with eigenvector ðYD

ðnÞÞ� [to see this,

just take the complex conjugate of (23) and recall that
Ξ̃CD ∈ R]. This implies that those ωn which are not on the
imaginary axis always organize themselves into couples,
whose members have the same imaginary part and opposite
real part; see Fig. 1.
It is instructive to consider a concrete example. Assume

that we want to model the internal dynamics of the shear
stress Πab of strongly coupled plasmas, under the
assumption that it obeys the evolution equation (2), with
χ ≠ 1=2. From Eq. (3), we know that the nonhydrodynamic
sector consists of two modes for each independent compo-
nent of the shear stress. Hence, by rule (26), we can
conclude that we need to double the number of viscous
degrees of freedom with respect to the Israel-Stewart theory,

if we want to have a double number of nonhydrodynamic
modes. We are, therefore, led to postulate that

δφ̃D ¼ ðΠab;ΛabÞ; ð30Þ

where Λab is an additional field which has the same
geometric properties of Πab (it is symmetric, transverse,
and traceless); in this way we guarantee that they have the
same number of independent components. The new variable
Λab is just an effective field: a hydrodynamic degree of
freedom which is used to parametrize the physical states of
the fluid. It does not need to have any deep physical
meaning, unless this is provided by microphysics. Note that,
since the equilibrium state is isotropic (in the rest frame),
bothΠab and Λab vanish at equilibrium. Hence, we dropped
the symbol “δ” for convenience.
Given that the tensor Ξ̃CD is evaluated at equilibrium, it

must be isotropic, so that the most general field equation of
the form (21) is

∂t

�Πab

Λab

�
¼ −

�
γ γI þ a

γI − a γ0

��Πab

Λab

�
: ð31Þ

The γ’s represent the symmetric part of Ξ̃CD, while a is a
skew-symmetric correction. The second law (σ ≥ 0) pro-
duces the stability conditions

γ ≥ 0; γ0 ≥ 0; γγ0 − γ2I ≥ 0: ð32Þ

With a little algebra, one can combine the first-order
equations in (31) to obtain a second-order evolution
equation for the stresses Πab, which has exactly the form
(2), with coefficients

τ ¼ γ þ γ0

γγ0 − γ2I þ a2
≥ 0;

χ ¼ 2
γγ0 − γ2I þ a2

ðγ þ γ0Þ2 ≥ 0: ð33Þ

Now, from Eq. (3) we see that the frequencies of the
nonhydrodynamic modes have a real part if we impose
χ > 1=2. Inserting this requirement into the formula for χ
we obtain the condition

4a2 > 4γ2I þ ðγ − γ0Þ2 ≥ 0: ð34Þ

As we can see, Reω� ≠ 0 implies a ≠ 0.

D. Do we really need all of these fields?

The example of the previous subsection immediately
raises a question: do we really need the additional field Λab
if we want to model a fluid subject to the field equation (2)?
More generally, the rule (26) tells us that, in Geroch-
Lindblom theories, the more nonhydrodynamic modes we

FIG. 1. Geometrical disposition of the frequencies of three
nonhydrodynamic modes on the complex plane. The green dots
represent the modes of a fluid theory with symmetric ΞAB: all the
frequencies sit on the imaginary axis. The red dots represent the
modes of a fluid theory with ΞAB ≠ ΞBA: the frequencies may
have a real part. In both cases, the reality of ΞAB guarantees
perfect symmetry under inversion of the real axis. This implies,
for example, that if the number of modes is odd, at least one of the
frequencies must sit on the imaginary axis.
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have, the more fields we need. Is all this population of fields
“physical,” or is it just a mathematical artifact that is
necessary to make the theory symmetric-hyperbolic causal
and stable?
To answer this question, let us consider again the field

equation (31), and assume for simplicity that γ0 ¼ γ, a > 0
and γI ¼ 0. Then, if we focus on the evolution of the
component (1,2) of the stress tensor (assuming that all the
other independent components are zero), it is possible to
show that

Π12ðtÞ ¼ Π12ð0Þe−γt cosðatÞ;
Λ12ðtÞ ¼ Π12ð0Þe−γt sinðatÞ ð35Þ

is a solution of (31). Moreover, both Π12ðtÞ and Λ12ðtÞ, as
given in (35), are solutions of the damped oscillator
equation (2) with coefficients

τ ¼ 2γ

γ2 þ a2
> 0; χ ¼ γ2 þ a2

2γ2
>

1

2
: ð36Þ

Let us now analyze the qualitative behavior of the stress
Π12, when its evolution is given by Eq. (35); see Fig. 2. At
t ¼ 0, the stress has a comparatively high value, which then
drops rapidly until, at t ¼ π=ð2aÞ, we have Π12 ¼ 0. In this
precise instant of time, the shear stresses are all zero and all
the components of the stress-energy tensor Tab coincide
with those at thermodynamic equilibrium. This implies that,
if we choose to adopt the Israel-Stewart convention,
according to which the state of the fluid is completely
characterized by Tab (we work at zero chemical potential),
then we are forced to conclude that at t ¼ π=ð2aÞ the fluid is

in global thermodynamic equilibrium. The problem is that,
for t > π=ð2aÞ, the stress Π12 keeps evolving, first decreas-
ing below zero and then increasing again. This clearly
shows that the state of the system at t ¼ π=ð2aÞ is not the
true thermodynamic equilibrium state. In other words, there
must be at least one observable, besides Tab, which

(i) is out equilibrium at t ¼ π=ð2aÞ (otherwise the fluid
would be in full thermodynamic equilibrium),

(ii) can be used to characterize the macroscopic state of
the fluid at t ¼ π=ð2aÞ (because evidently Tab is not
enough),

(iii) is dynamically coupled to Π12, so that it can be
considered “responsible” for driving Π12 out of
equilibrium immediately after t ¼ π=ð2aÞ.

This is precisely the role of Λab. It is a nonequilibrium
thermodynamic variable [31], which goes out of equilibrium
when t approaches π=ð2aÞ, and which (when positive)
“pushes” Π12 to assume negative values, by means of the
equation

∂tΠ12 ¼ −γΠ12 − aΛ12: ð37Þ

This argument shows that Λab is just some thermodynamic
quantity which “resonates” with Πab. The more nonhy-
drodynamic modes there are, the more resonating states are
possible and, therefore, the more additional fields of the
type Λab we need, if we want to characterize the thermo-
dynamic state of the fluid completely.

E. Field redefinitions

The fact that the choice of φA is not uniquely prescribed
(each φA is just an effective field) enables us to perform
changes of variables of the kind5

φA ¼ φAðφ̃CÞ: ð38Þ

The new fields φ̃C obey the linearized field equations

M̃m
CD∇mδφ̃

D ¼ −Ξ̃CDδφ̃
D ð39Þ

with

M̃m
CD ¼ Mm

AB
∂φA

∂φ̃C

∂φB

∂φ̃D ;

Ξ̃CD ¼ ΞAB
∂φA

∂φ̃C

∂φB

∂φ̃D : ð40Þ

Note that also M̃m
CD gives rise to a symmetric-hyperbolic

causal system of equations, because, as long as the
conditions (6) and (9) hold for Mm

AB, they are valid also
for M̃m

CD. Furthermore,
FIG. 2. Plot of Π12 (blue line) and Λ12 (red line) as functions of
γt, as given by Eq. (35). Both quantities are given in units of
Π12ð0Þ. We imposed, for aesthetical reasons, a ¼ 3γ. The
evolution of both Π12 and Λ12 is that of a damped harmonic
oscillator, but their relative phase is such that, when Π12 vanishes,
Λ12 is different from zero, and vice versa.

5The fact we are using the same notation φ̃C adopted in
Sec. III B is not a coincidence: the introduction of new fields φ̃C

by means of Eq. (22) was an example of a field redefinition.
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σ ¼ ΞABδφ
AδφB ¼ Ξ̃CDδφ̃

Cδφ̃D ≥ 0: ð41Þ

Therefore, the field redefinition (38) maps (at least in the
linear regime) Geroch-Lindblom theories into equivalent
Geroch-Lindblom theories, which share the same math-
ematical properties as the original theory. This simple result
has three important consequences.
First of all, it tells us that, given a Geroch-Lindblom

theory, we may always try to use field redefinitions to
simplify the field equations as much as we can. An example
of this kind of simplification has already been given in
Sec. III B, when we moved from (18) to (21) using the
redefinition (22) (second line).
Secondly, it shows us that, although the number of

different Geroch-Lindblom theories may seem exceed-
ingly large (apparently making the choice among them
nearly impossible), they are actually less than one may
think. In fact, once the conservation laws, the number of
fields, and their character (e.g., scalar, vector...) are given,
many theories turn out to be equivalent to each other. We
will show later, with some examples, how this can be used
to systematically identify the “best” theory for a selected
physical problem.
Finally, the possibility of making these field redefinitions

generates the same frame ambiguities that we see in first-
order viscous theories. For example, if we have a theory
such that one of the fields is the temperature T and another
field is the bulk-viscous stress Π, we may always define a
new temperature T̃ by means of the equation [32]

T̃ ¼ T þ cΠ; ð42Þ

where c is an arbitrary factor. Both T and T̃ reduce to the
equilibrium thermodynamic temperature at equilibrium, but
they differ in the presence of viscous stresses. This is
analogous to a change of frame of the kind described by
Kovtun [33]. However, there is a fundamental mathematical
difference with respect to first-order theories. In fact, as
long as we are in the linear regime, the field redefinitions
(38) reduce to the linear transformations

δφA ¼ ∂φA

∂φ̃C δφ̃
C: ð43Þ

If we take (43) as the mathematical relation which connects
δφA to δφ̃C, we see that the system (10) and the system (39)
are exactly the same system of equations, written in
different variables. There is really no approximation in
moving from one frame to the other. This implies that all
the mathematical properties of the theory, such as the slope
of the characteristics or the well-posedness of the initial
value problem are left unchanged. We may therefore say
that (in the linear regime) the frame ambiguity of these
theories is actually a frame freedom. Which frame to use is
really a matter of taste.

This is not what happens in first-order theories, where
changing from one frame to another always requires that
we make some truncation of the derivative expansion, even
in the linear regime. More precisely, one always needs to
neglect some term (which is present also in the linear
regime) which contains a third-order derivative, such as
∂
3
t δT̃. Such approximation changes completely the math-
ematical structure of the equations [24]; in particular, it
changes the behavior of the nonhydrodynamic sector (that
is considered spurious in first-order theories), in which
derivatives are not small.

IV. GIBBS STABILITY CRITERION

In Sec. II C, we have reviewed the stability-causality
analysis of Geroch and Lindblom [22]. However, it has been
recently shown [11,21,30,34,35] that, if there is a non-
equilibrium entropy current sm, such that ∇msm ¼ σ ≥ 0,
then the conditions for linear stability (and also for linear
causality) can be derived directly from the maximum
entropy principle. In this section, we provide a quick
overview of such stability criterion. As we shall see in
the next section, demanding the equivalence between the
present stability criterion, and that of [22], has far-reaching
implications.

A. Extremum principle

Assume that a fluid is in weak contact with a heat (and
particle) bath. “Weak contact”means that, although the two
systems interact with each other, the extensive quantities of
the total system “fluidþ bath” approximately decompose
into the sum of the extensive quantities of the two parts,
namely:

Stot ¼ Sþ SH ðentropyÞ;
QI

tot ¼ QI þQI
H ðconserved chargesÞ; ð44Þ

where the quantities without labels refer to the fluid, while
the quantities with the label H refer to the heat bath. In
Eq. (44), all the quantities are computed for an assigned
spacelike Cauchy 3D surface Σ, as the flux of the
corresponding currents (sm, JIm), and one can easily show,
using the Gauss theorem [36], that

ΔSþ ΔSH ≥ 0; ΔQI ¼ −ΔQI
H; ð45Þ

where ΔA ≔ A½Σf� − A½Σi�, with Σf future to Σi.
Now, as discussed in [37], an ideal heat bath is defined

as a body with equation of state (I obeys Einstein’s
convention)

SHðQI
HÞ ¼ const − αHI Q

I
H; ð46Þ

where αHI are some fixed constant factors. Equation (46)
expresses the fact that the bath is an effectively infinite
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reservoir of particles and energy, hence the second deriv-
atives of the entropy, which scale like ½particle-number�−1,
are effectively zero [38]. Combining (45) with (46), we
obtain (recall that αHI are constant)

ΔStot ¼ ΔðSþ αHI Q
IÞ ≥ 0: ð47Þ

Thus, we have found that the quantity Φ ¼ Sþ αHI Q
I can

only grow, or be constant. This implies that the state of
thermodynamic equilibrium of the fluid is the state that
maximizes Φ for free variations [39–41]. From this con-
dition, one can also straightforwardly derive the expression
for the equilibrium density matrix of relativistic systems
[21,42,43].

B. The information current

At equilibrium,Φ ¼ Sþ αHI Q
I is maximal. Hence, if φA

is the equilibrium state of the fluid, and φA þ δφA is an
arbitrary perturbed state, it must be true that

Ẽ ¼ −δΦ > 0; ∀ δφA ≠ 0: ð48Þ

By “δΦ” we mean the exact variation Φ½φA þ δφA�−
Φ½φA�. On the other hand, it follows from the definition that

Ẽ ¼
Z
Σ
ẼmdΣm ðorientation∶ dΣ0 > 0Þ; ð49Þ

with

Ẽm ¼ −δðsm þ αHI J
ImÞ ¼ −δsm − αHI δJ

Im: ð50Þ

However, if the inequality (48) is respected by any variation
δφA (no constraint), and for any spacelike6 Cauchy 3D
surface Σ, then the four-vector Ẽm is timelike future
directed, namely

ẼmẼm ≤ 0; Ẽ0 ≥ 0: ð51Þ

The inequalities (51) are sufficient conditions of Lyapunov
stability [21], and linear causality [34], for theories that
obey the second law.
The current Ẽm quantifies the flow of information about

the total system’s microstate [34]; for this reason, we will
refer to it as “information current.” Although in Eq. (50)
the variations may be interpreted as finite differences, in
the following we will truncate Ẽm to second order in δφA.
Furthermore, we see from (51) that the first-order con-
tribution to Ẽm must vanish identically (consider the
transformation δφA → −δφA), so that Ẽm is a purely

second-order current: Ẽm ¼ OðδφδφÞ. This produces the
covariant Gibbs relation [13,40]

δsm ¼ −αHI δJIm þOðδφδφÞ; ð52Þ

which is, indeed, a universal property of Geroch-Lindblom
theories [22].

V. CONSTRUCTING LINEARIZED
GEROCH-LINDBLOM THEORIES

In this section we address how to practically build a
Geroch-Lindblom theory for a given physical system.
Before describing the procedure we first need a useful
identity relating the dynamical and statistical properties of
the Geroch-Lindblom model at hand.

A. A surprising identity

We consider again the vector field Em, defined in
Eq. (12), and we compare its properties with those of
the information current Ẽm, defined in (50). Both are
second-order vector fields which are confined within the
future light cone, as shown by conditions (13) and (51).
Both vanish only at equilibrium; this follows from con-
ditions (9) and (48). Finally, both have four-divergence −σ,
as shown by Eqs. (11) and (50) (use the conservation laws
∇mJIm ¼ 0). On the other hand, it has been shown by
Gavassino et al. [34] that a vector field that satisfies all
these properties is necessarily unique, which leads us to the
central identity of the paper:

Ẽm ¼ Em ðto second orderÞ; ð53Þ

which implies Ẽ ¼ EþOðδφδφδφÞ, and is equivalent to

δsm ¼ −αHI δJIm −
1

2
Mm

ABδφ
AδφB þOðδφδφδφÞ; ð54Þ

which is the second-order generalization of (52). This
formula is a bit surprising as it establishes a one-to-one
correspondence between the coefficient-matrix Mm

AB (a
dynamical property) of a generic Geroch-Lindblom theory
with its information current (a statistical property). This
result is particularly helpful because it tells us that we
may always use some statistical arguments to estimate7 Em

using (53), and then extract Mm
AB by simply performing

partial derivatives:

Mm
AB ¼ ∂

2Em

∂ðδφAÞ∂ðδφBÞ : ð55Þ

6Σ must be spacelike; otherwise information may propagate
between different points of Σ, and δφA would not be arbitrary
across it [34].

7From now on, we will use the symbols Ẽm and Em

interchangeably. The same is true for Ẽ and E.
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Let us see in more detail how we can use this trick to our
advantage.

B. Four-step procedure to construct linear
Geroch-Lindblom models

We can build a Geroch-Lindblom theory for a given fluid
by following 4 steps:
Step I.—We use rule (26) to “guess” how many fields φA

we need and their geometrical character (e.g., scalar,
vector...). To do this, we need to know clearly which
conservation laws we want to explicitly include. In fact, for
each conservation law, one should construct a correspond-
ing effective field. The standard examples are

energy → temperature fieldT;

momentum → flow fieldua;

baryons → chemical potential field μ: ð56Þ

The remaining fields are dissipation fields [5], like the
fields Πab and Λab introduced in Sec. III C, the number of
whose independent components should equal the number
of nonhydrodynamic modes. Due to the possibility of
making field redefinitions of the type (43), it is not
important how we choose to interpret the various effective
fields (at this stage). It only matters their number and their
geometrical character.
Step II.—We build the most general expression for the

information current Em and for the entropy production rate
σ, given the fields φA. Recalling (12), we see that we only
need to write the most general vector field (in the case of
Em) and the most general scalar field (in the case of σ)
which are quadratic in δφA. In principle, the number of
free coefficients grows roughly like D2; however, we can
always use

(i) symmetries,
(ii) field redefinitions,
(iii) insights from statistical mechanics

to simplify the structure of the theory as much as possible
and restrict our attention to formulas for Em and σ that are
well motivated (from a statistical-mechanical viewpoint).
Step III.—If we compare (10) with (12), we see that the

linearized field equations are given by

∇m
∂Em

∂ðδφAÞ ¼ −
1

2

∂σ

∂ðδφAÞ − Ξ½AB�δφB: ð57Þ

The only ingredient that the study of Em and σ cannot
provide is Ξ½AB� (the antisymmetric part of ΞAB). This needs
to be adjusted to correctly reproduce the nonhydrodynamic
sector of the fluid. In the particular case in which we know
that all the nonhydrodynamic frequencies ωn sit on the
imaginary axis, we can just set Ξ½AB� ¼ 0. If, instead, some
frequencies have a nonvanishing real part, Ξ½AB� must be
nonvanishing.

Step IV.—To make sure the field equations are hyper-
bolic, causal, and stable, we only need to require that Em is
timelike future directed and σ is non-negative, for any
nonvanishing value of δφA. Recalling (12), and considering
that the background is isotropic, we only need to require the
positive definiteness of two quadratic forms: E0 − E1 and
σ. Therefore, there is no need to perform the direct Fourier
analysis.
In order to show how this whole four-step procedure

works in practice, we apply it to the case of heat diffusion in
Sec. VII. In particular, the concrete example outlined in
Sec. VII C will allow us to derive a universal model for
diffusion in strongly coupled plasmas and holographic
fluids, outlined in Sec. IX.

C. The bridge between information and action
principle: Hydrodynamics as a field theory

Equation (57) reminds us of a Euler-Lagrange equation.
Furthermore, the four steps above are similar to the
standard procedure for formulating effective field theories:
Step I = “choose the fields,” Step II = “build the most
general Lagrangian densityL,’ Step III = “compute the field
equations from L,” Step IV = “rule out unphysical equa-
tions.” In addition, the whole idea of using E to derive the
field equations is not so new: we are expanding the
information E (analog to the energy, H) to second order
around its absolute minimum (equilibrium state, analog of
vacuum), with the goal of obtaining linear field equations.
Finally, the dynamics defined by these equations is such
that E does not increase (somehow analogous to the
conservation of H, that is exactly conserved). In view of
this set of analogies, Eq. (53) is not surprising: like the
Hamiltonian determines the equations of motion, the
information E determines the matrix Mm

AB.
The interesting thing is that the above analogy between

our hydrodynamic framework and classical Lagrangian
field theory can be pushed even further: we can we convert
the intuitive correspondence

ðEm; σ;Ξ½AB�Þ ↔ L ð58Þ

into a mathematically precise equivalence. In fact, the field
equations (10) can be obtained from an action principle,
with Lagrangian density

L ¼ LE þ Lσ þ LND; ð59Þ

where8

8We adopt the notation ϕ∇↔ψ ¼ ϕð∇ψÞ − ð∇ϕÞψ .
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LE ¼ Mm
ABδφ

A
1∇
↔

mδφ
B
2 ;

Lσ ¼ ΞðABÞðδφA
1 δφ

B
1 − δφA

2 δφ
B
2 Þ;

LND ¼ 2Ξ½AB�δφA
1 δφ

B
2 : ð60Þ

Here, δφA
1 and δφA

2 are formally doubled fields [44,45],

δφA → ðδφA
1 ; δφ

A
2 Þ; ð61Þ

which should be set equal to each other (δφA
1 ¼

δφA
2 ¼ δφA) in the physical limit, after the variation has

been taken.
Specifying any of the three physical quantities on the

left-hand side of (58) is equivalent to fixing one of the three
terms in the Lagrangian density (59):

(i) prescribing the information current allows one to
write the kinetic term LE via (55);

(ii) prescribing the entropy production rate σ, which
depends only on ΞðABÞ and not on Ξ½AB�, fixes the
dissipative term Lσ ¼ σ1 − σ2, see (12);

(iii) prescribing Ξ½AB� fixes the nondissipative term LND.
We also note that ΞðABÞ and Ξ½AB� are explicitly separated in
the Lagrangian L, in the sense that they are contracted with
different couples δφA

1;2δφ
B
1;2. This makes clear why they

play a different role in the dynamics of the system, as also
explicitly verified in Sec. III C. To understand the role of
ΞðABÞ and Ξ½AB�, we can compute the Euler-Lagrange
equations for the total Lagrangian in (59):

Mm
AB∇mδφ

B
2 ¼ −ΞðABÞδφB

1 − Ξ½AB�δφB
2 ;

Mm
AB∇mδφ

B
1 ¼ −ΞðABÞδφB

2 − Ξ½AB�δφB
1 : ð62Þ

By performing the change of variables [45]

δφAþ ¼ δφA
1 þ δφA

2

2
; δφA

− ¼ δφA
1 − δφA

2 ; ð63Þ

the equations of motion (62) read

Mm
AB∇mδφ

B
� ¼ −ð�ΞðABÞ þ Ξ½AB�ÞδφB

�: ð64Þ

As can be seen, the fields δφAþ, which in the physical limit
reduce to δφA, obey the dissipative field equation (10),
while the additional fields δφA

−, which vanish the physical
limit, obey an antidissipative field equation, with the same
Ξ½AB� but opposite ΞðABÞ. This confirms the idea (presented
in Sec. III D) that ΞðABÞ is responsible for the damping of
the perturbations and Ξ½AB� is responsible for the dynamical
oscillation of the gapped modes seen in Fig. 2, which exists
independently from the second law of thermodynamics.
Finally, we stress that the action principle described above

is formulated using the Eulerian specification of the flow
field, as opposed to the Lagrangian description based on

keeping track of the fluid elements’ worldlines. This is
consistent with the UEIT framework described in [11], as
discussed in Sec. 2.2 therein: contrarily to what is done in
most of the literature, e.g., [37,46–49], here the fields φA on
which the action principle builds are not the comoving
coordinates of the fluid elements. They are, instead, local
nonequilibrium thermodynamic variables (in the “extended”
sense of UEIT), like the effective temperature T or the
viscous stress Πab.

VI. ISRAEL-STEWART HYDRODYNAMICS
AS A GEROCH-LINDBLOM THEORY

Before considering some examples of theories built
directly by using the methodology outlined in Sec. V B,
let us prove that the linearized Israel-Stewart theory is a
Geroch-Lindblom theory. In some sense, this is already
known, because the divergence-type theory (which is a
Geroch-Lindblom theory [22]) is equivalent to the Israel-
Stewart theory, in the linear regime [50]. However, we will
verify explicitly that the Israel-Stewart field equations can
be obtained directly from Eq. (57).
We will also employ our formalism to move from the

Eckart frame to the Landau frame, showing the equivalence
of the two approaches.

A. Eckart frame

The fields of the Israel-Stewart theory in the Eckart
frame can be chosen to be9

ðφAÞ ¼ ðs; P; ua;Π; qa;ΠabÞ; ð65Þ

being the entropy per particle, the nonviscous pressure, the
velocity field, the bulk-viscous stress, the heat flux, and
the shear-viscous stress, respectively. In the equilibrium
state, P and s are uniform, ua ¼ δat (recall that we work in
the equilibrium global rest frame of the fluid) and
Π ¼ qa ¼ Πab ¼ 0. At the linear level, the fields (65)
obey the geometrical constraints

δu0 ¼ δq0 ¼ δΠ0a ¼ δΠ½ab� ¼ δΠj
j ¼ 0: ð66Þ

The information current Em and the entropy production rate
σ are given by [12,21] (notation: j; k ∈ f1; 2; 3g)

E0 ¼ 1

2T

�
nT
cp

ðδsÞ2þ 1

c2s

ðδPÞ2
ρþP

þðρþPÞδujδujþ 2δujδqj

þ β0ðδΠÞ2þ β1δqjδqjþ β2δΠjkδΠjk

�
; ð67Þ

9Following the scheme (56), one could take ðT; μÞ instead of
ðs; PÞ as degree of freedom of the theory. However, Em is more
conveniently written in terms of s and P, thus we have used (43)
to make the change of variables ðT; μÞ → ðs; PÞ.
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Ej ¼ 1

T

�
δPδuj þ δΠδuj þ δΠjkδuk þ

δTδqj

T
− α0δΠδqj

− α1δΠjkδqk

�
; ð68Þ

σ ¼ ðδΠÞ2
ζT

þ δqjδqj
κT2

þ δΠjkδΠjk

2ηT
; ð69Þ

where n, ρ, c2s , cp, ζ, κ, and η are baryon density, energy
density, sound-speed squared, specific heat at constant
pressure, bulk viscosity, heat conductivity, and shear
viscosity. The factors αi [not to be confused with αHI ,
introduced in (46)] and βi are second-order expansion
coefficients of the nonequilibrium entropy current. The
first-order temperature perturbation δT is related to δP and
δs by the equation

δT ¼ T
cp

�
δsþ κp

n
δP

�
; ð70Þ

where κp is the isobaric thermal expansivity (a.k.a. expan-
sion coefficient).
The thermodynamic quantities presented above can be

computed from an equation of state for the enthalpy per
particle,

ρþ P
n

¼ h̃ðs; PÞ; ð71Þ

by means of the thermodynamic relations

dh̃ ¼ Tdsþ dP
n

;

Hh̃ ¼

2
64

T
cp

Tκp
ncp

Tκp
ncp

− 1
n2h̃c2s

3
75; ð72Þ

where Hh̃ is the Hessian of h̃ in the variables ðs; PÞ.
We can, now, derive the Israel-Stewart field equations

using (57). Given that all the nonhydrodynamic modes of
the theory have imaginary gap, we set Ξ½AB� ¼ 0. To keep
trace of the fact that a given field equation has been
obtained from (57) for a given choice of δφA, we write the
respective field φA inside a box before the equation. This
said, the 14 field equations of the Israel-Stewart theory are
(we have multiplied all the equations by T)

s
nT
cp

∂tδsþ
∂jδqj

cp
¼ 0; ð73Þ

P
∂tδP

ðρþ PÞc2s
þ ∂jδuj þ

κp∂jδqj

ncp
¼ 0; ð74Þ

uk ∂t½ðρþPÞδukþδqk�þ∂kðδPþδΠÞþ∂jδΠ
j
k¼0; ð75Þ

Π β0∂tδΠþ ∂jðδuj − α0δqjÞ ¼ −
δΠ
ζ
; ð76Þ

qk ∂tðβ1δqkþδukÞþ∂k

�
δT
T
−α0δΠ

�
−α1∂jδΠ

j
k ¼−

δqk
κT

;

ð77Þ

Πkl β2∂tδΠkl þ h∂kδul − α1∂kδqli ¼ −
δΠkl

2η
; ð78Þ

where hAkli denotes the symmetric traceless part of Akl.
Equations (73) and (74) are simply ∇aδsa ¼ σ and
∇aδðnuaÞ ¼ 0, truncated to the first order (and rescaled
by some constant). We also recognize Eq. (75) as the
conservation of linear momentum. Equations (76), (77),
and (78) are the telegraph-type equations for the dissipation
fields. They coincide with Eqs. (37), (38), and (39) of
Hiscock and Lindblom [12] (under the assumption of a
homogeneous background).
As always happens with variational methods, the exist-

ence of the constraints (66) can generate some complica-
tions when we perform the derivatives with respect to δφA,
because we need to make sure that the final field equations
are compatible with such constraints. The transversality
conditions (δu0 ¼ δq0 ¼ δΠ0a ¼ δΠa0 ¼ 0) are automati-
cally taken care of by our choice of degrees of freedom
(e.g., we take as degree of freedom δuk rather than δua), but
the same is not true for the conditions of symmetry and
tracelessness of the shear-stress tensor (δΠ½jk� ¼ δΠj

j ¼ 0).
In Appendix B we explain how to overcome this obstacle
and obtain the correct form of (78).
As expected, the system of Eqs. (73)–(78) is manifestly

symmetric (it is well known that the linearized Israel-
Stewart theory admits a symmetric formulation [12]). For
example, if we compare (73) with (77), using (70), we
immediately see that (recall that all the equations have been
multiplied by T)

TMj
s;qk

¼ 1

cp
δjk ¼ TMj

qk;s
: ð79Þ

As another example, we can compare (75) with (78) and
find

TMj
uk;Πhl ¼ δjhgkl þ δjl gkh

2
−
δjkghl
3

¼ TMj
Πhl;uk

: ð80Þ

These formulas could also be deduced directly from Ej

using (55).
If we impose hyperbolicity, causality and stability using

the technique of Step IV, we end up repeating the same
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stability analysis of Hiscock and Lindblom [12]. Causality
follows automatically [34,51].

B. A first example of change of frame

In Sec. III E, we showed that every linearized Geroch-
Lindblom theory is invariant under changes of variables, as
given in (43). As a first application of our formalism, we
use this invariance to prove that (in the linear regime) the
Israel-Stewart theory in the Eckart frame [12] is math-
ematically equivalent to the Israel-Stewart theory in the
Landau frame [52].
In order to move from the fields (65) of the Israel-Stewart

theory in the Eckart frame, to the fields

ðφ̃CÞ ¼ ðs; P; ũa;Π; νa;ΠabÞ ð81Þ

of the Israel-Stewart theory in the Landau frame, we only
need to make the change of variables [13,53]

δua ¼ δũa þ δνa

n
; δqa ¼ −

ρþ P
n

δνa: ð82Þ

The transverse vector field νa is the particle-diffusion
current, while ũa is the Landau-frame flow velocity.
Plugging (82) into (67)–(69) we obtain

E0 ¼ 1

2T

�
nT
cp

ðδsÞ2 þ 1

c2s

ðδPÞ2
ρþ P

þ ðρþ PÞδũjδũj

þ β0ðδΠÞ2 þ β̃1δν
jδνj þ β2δΠjkδΠjk

�
; ð83Þ

Ej ¼ 1

T

�
δPδũj þ δΠδũj þ δΠjkδũk

þ Tδ

�
μ

T

�
δνj − α̃0δΠδνj − α̃1δΠjkδνk

�
; ð84Þ

σ ¼ ðδΠÞ2
ζT

þ δνjδνj
κ̃T2

þ δΠjkδΠjk

2ηT
; ð85Þ

where μ is the chemical potential, satisfying the thermo-
dynamic relation

nTδ

�
μ

T

�
¼ δP −

ρþ P
T

δT; ð86Þ

κ̃ is the charge-diffusivity, given by [33]

κ̃ ¼ n2κ
ðρþ PÞ2 ; ð87Þ

and we have introduced the coefficients

β̃1 ¼
ðρþ PÞ2

n2

�
β1 −

1

ρþ P

�
;

α̃i ¼ −
ρþ P
n

�
αi þ

1

ρþ P

�
: ð88Þ

Equations (83)–(85) coincide with Eqs. (39) and (42) of
Olson [52], confirming that Em and σ are indeed the
information current and the entropy production rate of
the Israel-Stewart theory in the Landau frame. Again, we
can use (57) to compute the field equations:

s
nT
cp

∂tδs −
ρþ P
ncp

∂jδν
j ¼ 0; ð89Þ

P
∂tδP

ðρþ PÞc2s
þ ∂jδũj þ T

∂

∂P

�
μ

T

�����
s
∂jδν

j ¼ 0; ð90Þ

ũk ðρþ PÞ∂tδũk þ ∂kðδPþ δΠÞ þ ∂jδΠ
j
k ¼ 0; ð91Þ

Π β0∂tδΠþ ∂jðδũj − α̃0δν
jÞ ¼ −

δΠ
ζ
; ð92Þ

νk β̃1∂tδνk þ ∂k

�
Tδ

�
μ

T

�
− α̃0δΠ

�
− α̃1∂jδΠ

j
k ¼ −

δνk
κ̃T

;

ð93Þ

Πkl β2∂tδΠkl þ h∂kδũl − α̃1∂kδνli ¼ −
δΠkl

2η
: ð94Þ

Given that these equations arise from the same action
principle (see Sec. V C) as those of the Israel-Stewart
theory in the Eckart frame, it is clear that the system
(73)–(78) is equivalent to (89)–(94). This can be easily
verified explicitly, with the aid of the thermodynamic
identity

nT
∂

∂P

�
μ

T

�����
s
¼ 1 −

ðρþ PÞkp
ncp

; ð95Þ

which follows from (70) and (86). Furthermore, it is
straightforward to verify that (89)–(94) are, indeed, the
field equations of the Israel-Stewart theory in the Landau
frame [compare with Eqs. (32)–(37) of Olson [52] ], for
homogeneous backgrounds.
In conclusion, we have proved that, for linear perturba-

tions around homogeneous equilibria, the Israel-Stewart
theory in the Eckart frame and the Israel-Stewart theory in
the Landau frame are exactly the same theory. This implies
that the stability-causality conditions found by Olson [52]
(in the Landau frame) are just a rewrite of those found by
Hiscock and Lindblom [12] (in the Eckart frame). This can
also be checked explicitly. For example, the positivity
conditions for Ω4 and Ω7 of Olson [52] read
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2ðρþ PÞ2β2 þ n2β̃1 − 2nðρþ PÞα̃1 − ρ − P

2ðn2β̃1 þ ρþ PÞβ2 − ðnα̃1 þ 1Þ2 < ρþ P

×
1

ðρþ PÞ2
�
n2β̃1 þ ρþ P −

ðnα̃1 þ 1Þ2
2β2

�
> 0: ð96Þ

Using (88), these conditions can be rewritten as follows:

2β2 þ β1 þ 2α1
2β1β2 − α21

< ρþ P;

β1 −
α21
2β2

> 0: ð97Þ

These are, indeed, the positivity conditions for Ω4 and Ω7

of Hiscock and Lindblom [12].

C. Other frames

The argument above, for the equivalence between the
Eckart and the Landau frame, is valid for any field
redefinition (see Sec. III E), and, hence, for any change
of frame. For example, if one makes the field redefinition

P̃ ¼ Pþ Π; ð98Þ

they will end up with an Israel-Stewart theory in which,
instead of there being an “equilibrium pressure,” plus a
viscous stress, there is just the total pressure P̃. This,
however, comes at the expense of having a coupling δP̃δΠ
in E0 [replace P in Eq. (67) with P̃ − Π], which converts Π
into a viscous correction to energy and particle densities.
The equations of the resulting theory will, then, look very
different from (73)–(78), but their physical content is the
same (in the linear regime).
However, it is important to note that our argument for the

equivalence between different hydrodynamic frames does
not extend to the so-called “Israel-Stewart theory in a
general frame,” proposed by Noronha et al. [54]. The
reason is that such theory has more degrees of freedom than
the Israel-Stewart theory and, therefore, more nonhydrody-
namic modes.

VII. MODELS FOR HEAT CONDUCTION
BEYOND CATTANEO

We give some examples of linearized theories con-
structed through the “four-step procedure” outlined in
Sec. V B. For simplicity, we focus on models for pure
heat conduction, namely models in which the only relevant
conservation law is the energy: QI ¼ U. Following the
logical scheme of (56), we assume that among the effective
fields of the theory there is a field T, which in local
thermodynamic equilibrium becomes the temperature field.
All other fields “mediate” dissipation [5].

A. A warm-up case: Cattaneo’s model

We begin with a pedagogical example, in 1þ 1 dimen-
sions. Let us assume to have only two effective fields:

ðφAÞ ¼ ðT; qÞ; ð99Þ
where q may be interpreted as the heat flux in the positive
direction. By rule (26), we know that the theory will have
only one nonhydrodynamic mode. Let us write down the
most general expressions for Em and σ:

E0 ¼ m1ðδTÞ2 þm2δTδqþm3ðδqÞ2;
E1 ¼ m4ðδTÞ2 þm5δTδqþm6ðδqÞ2;
σ ¼ m7ðδTÞ2 þm8δTδqþm9ðδqÞ2; ð100Þ

where the coefficients mn are some background constants.
Following Step II (see Sec. V B), we can use symmetries,
field redefinitions, and insights from statistical mechanics
to simplify the formulas of Em and σ. Let us see what we
can argue from first principles:

(i) Symmetries: we can assume that the background
state is symmetric under inversion of the x1 axis.
This implies that, under the transformation
ðδT; δqÞ → ðδT;−δqÞ, we should observe a change
ðE0; E1; σÞ → ðE0;−E1; σÞ, which implies

m2 ¼ m4 ¼ m6 ¼ m8 ¼ 0: ð101Þ

(ii) Field redefinitions: we are always free to rescale the
field q as we wish (making the transformation
δq → aδq). We want to set the scale of δq in a
way for it to quantify the flux of energy in the
direction x1. To do so, we can compare the second
line of (100) with the corresponding Israel-Stewart
formula, Eq. (68), and we conclude that, for q to
represent the actual energy flux (and not just a
quantity proportional to it), we must have

m5 ¼ 1=T2: ð102Þ

Comparison with Israel-Stewart also suggests
renaming m3 and m9 as m3 ¼ β1=ð2TÞ and
m9 ¼ 1=ðκT2Þ.

(iii) Statistical mechanics: in local thermodynamic equi-
librium, the fluid’s state must become that of a
perfect fluid. Therefore, we can impose that, for
δq ¼ 0, ðE0; E1; σÞ are indistinguishable from those
of a perfect fluid in hydrostatic equilibrium,10 which
can be computed directly from the Israel-Stewart

10Equation (54) is necessary for making this step, because it
tells us that Em has a statistical interpretation, which makes it
“theory independent.” Without Eq. (54), the same physical state,
modeled with two different hydrodynamic theories, could have
different Em.

L. GAVASSINO, M. ANTONELLI, and B. HASKELL PHYS. REV. D 106, 056010 (2022)

056010-14



formulas (67)–(69) imposing δP ¼ δuk ¼ 0 (hydro-
static equilibrium) and δΠ ¼ δqk ¼ δΠjk ¼ 0 (local
thermodynamic equilibrium). From this we obtain,
recalling (70),

m1 ¼
ncp
2T2

: m7 ¼ 0: ð103Þ

Putting all these results together, Eq. (100) reduces to

E0 ¼ ncp
2T2

ðδTÞ2 þ β1
2T

ðδqÞ2;

E1 ¼ δTδq
T2

; σ ¼ ðδqÞ2
κT2

: ð104Þ

Now we can use (57) to derive the field equations. Since the
nonhydrodynamic frequency is only one, it must sit of the
imaginary axis, and we can impose Ξ½AB� ¼ 0. The result is
(we multiply both equations by T2)

T ncp∂tδT þ ∂xδq ¼ 0; ð105Þ

q Tβ1∂tδqþ ∂xδT ¼ −
δq
κ
: ð106Þ

These are the equations of Cattaneo’s model for heat
conduction [16]. Note that the correct thermodynamic
coefficient in Eq. (105) is indeed cp, and not cv. In fact,
while the pressure must be uniform in a fluid at rest (we can
set δP ¼ 0), individual fluid elements expand and contract,
in response to a change in temperature [55]. Hence, the
density is not constant.
To give an idea of how the action of these theories looks

like, we also write explicitly the Lagrangian density of
Cattaneo’s model, as given in (59) and (60):

T2L ¼ ncpδT1 ∂

↔

tδT2 þ Tβ1δq1 ∂
↔

tδq2

þ δT1 ∂

↔

xδq2 þ δq1 ∂
↔

xδT2 þ
δq21 − δq22

κ
: ð107Þ

One can easily verify that the field equations (105) and (106)
can be recovered as the physical limit (δT1 ¼ δT2 ¼ δT and
δq1 ¼ δq2 ¼ δq) of the Euler-Lagrange equations computed
from the Lagrangian density above.
In conclusion, we have shown that Cattaneo’s model is the

only possible Geroch-Lindblom theory for heat conduction
one can build (in the linear regime) with the choice of fields
(99). The frequency of the single nonhydrodynamic mode
has the standard form (28) (for k ¼ 0), with relaxation time
τ ¼ κTβ1. The stability and causality conditions are com-
puted directly from the information current (Step IV) and
have been extensively discussed in [34].

B. Adding a scalar field: Duality between
bulk viscosity and chemical reactions

In order to go beyond Cattaneo’s model, we need to add
new fields to (99). Let us work in 3þ 1 dimensions and
consider a theory with three fields,

ðφAÞ ¼ ðT;A; qjÞ; ð108Þ

where A is an additional nonconserved scalar degree of
freedom, which vanishes at equilibrium. The physical
interpretation of A may change from system to system.
In view of (56), one may interpret A to be the chemical
potential of a nonconserved current, which is nonzero only
out of equilibrium (e.g., the chemical potential of photons
for a fluid coupled to radiation [49], or the one of phonons in
a neutral superfluid [56]). The presence of A has the effect
of adding a nonhydrodynamic mode to the theory.
Furthermore, the dynamics of A can couple with that of
T and qj, effectively changing the way in which heat
propagates across the system.
It is always possible to perform a change of hydro-

dynamic frame (namely, a redefinition of the temperature)
of the form

T ¼ T̃ þ cA; ð109Þ

where c is an arbitrary constant. We can use this freedom to
set to zero the term proportional to δTδA in E0. Following
the same procedure as in the previous subsection, the most
general expression for Em and σ in the aforementioned
frame is

E0 ¼ 1

2T

�
ncp
T

ðδTÞ2 þ β0ðδAÞ2 þ β1δqjδqj

�
;

Ej ¼ 1

T

�
δTδqj

T
− α0δAδqj

�
;

σ ¼ 1

T

�ðδAÞ2
ξ

þ δqjδqj
κT

�
; ð110Þ

where the term proportional to ðδTÞ2 in σ must be zero
because in local thermodynamic equilibrium (i.e., for
δA ¼ δqj ¼ 0) no entropy should be produced.
Therefore, also the term proportional to δTδA must be
zero, otherwise σ would not be non-negative definite,
violating the second law of thermodynamics.
The field equations, computed using (57), are (again we

multiply them by T2)

T ncp∂tδT þ ∂jδqj ¼ 0; ð111Þ

A Tðβ0∂tδA − α0∂jδqjÞ ¼ −TδA=ξ; ð112Þ

qk Tβ1∂tδqk þ ∂kðδT − Tα0δAÞ ¼ −δqk=κ: ð113Þ
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We could not add any skew-symmetric part to ΞAB. In fact,
by isotropy (recall that ΞAB are background quantities),

Ξqk;T ¼ ΞT;qk ¼ Ξqk;A ¼ ΞA;qk ¼ 0; ð114Þ

hence the only nonzero term of Ξ½AB� could be Ξ½TA�.
However, given that the model needs to obey the con-
servation of energy, there should be at least one equation
having the form of a conservation law

∂tðc1δT þ c2δAÞ þ ∂jðc3δqjÞ ¼ 0: ð115Þ

The only way for this to be possible is to require that
ΞTA ¼ 0, so that Eq. (111) takes the form (115).
What is the physical content of this theory? In the limit of

small ω and k (hydrodynamic sector), we see from (113)
that q is of first order in the gradients, q ¼ Oð∇Þ. Inserting
this estimate into (112), we find thatA ¼ Oð∇2Þ. Hence, to
first order in gradients,A disappears, and we recover Fick’s
law q ∝ −∇T. This is a manifestation of the relaxation
effect [5] discussed in Sec. III A. The nonhydrodynamic
sector, on the other hand, presents four modes. Three of
them are the standard “Cattaneo-type” heat relaxation
modes (one for each spatial dimension), with relaxation
time τq ¼ κTβ1. There is, however, an additional relaxation
mode, with relaxation time τA ¼ ξβ0. If we interpret A as a
chemical potential, this additional mode models a chemical
relaxation towards chemical equilibrium, that is attained at
A ¼ 0 when the direct and inverse chemical reactions
balance.
We also note that the field equations (111)–(113) can be

equivalently obtained imposing δP ¼ δuk ¼ δΠjk ¼ 0 in
the Israel-Stewart theory11 (73)–(78), and making the
identification A ¼ Π. This shows that the bulk-viscous
stress Π is dynamically indistinguishable from the effective
chemical potential A of a nonconserved chemical species,
showing that the mathematical duality

ðbulk viscosityÞ ↔ ðeffective chemistryÞ ð116Þ

for isotropic fluids [10,25,57], survives also in the presence
of heat conduction (that destroys isotropicity). This is
consistent with the recent treatment of bulk viscosity
and heat conduction in relativistic superfluids [56], see
Fig. 1 therein.

C. Adding a transverse vector field

In the previous subsection we have seen that adding a
scalar field to (99) endows the Cattaneo’s dynamics with a
gapped mode that can be interpreted as arising from
chemical relaxation: such a theory is equivalent to the

one of Israel and Stewart. To see if we can produce a model
that is qualitatively different from the Israel-Stewart one, it
is interesting to upgrade (99) to a theory based on three
fields,

ðφAÞ ¼ ðT; qj; pjÞ; ð117Þ

where pj is a transverse vector field, geometrically analo-
gous to qj, which vanishes at equilibrium. Using the
invariance of the theory under field redefinitions of the kind

δqj ¼ c1δq̃j þ c2δp̃j; δpj ¼ c3δp̃j þ c4δq̃j; ð118Þ

we can always choose our fields in such a way that the
information current and the entropy production rate take the
form12

E0 ¼ ncp
2T2

ðδTÞ2 þ β1
2T

ðδqjδqj þ δpjδpjÞ;

Ej ¼ δTδqj

T2
;

σ ¼ 1

T2
ðξ1δqjδqj þ 2ξ2δqjδpj þ ξ3δpjδpjÞ: ð119Þ

The field equations, computed using (57), are

T ncp∂tδT þ ∂jδqj ¼ 0; ð120Þ

qk Tβ1∂tδqk þ ∂kδT ¼ −ξ1δqk − ðξ2 þ bÞδpk; ð121Þ

pk Tβ1∂tδpk ¼ −ðξ2 − bÞδqk − ξ3δpk; ð122Þ

where b is the skew-symmetric part of ΞAB. This is the first
complete model that we meet which cannot be recovered as
a limit of the Israel-Stewart theory. Hence, it is worth
exploring its properties in greater detail.
Reliability criteria.—The stability-causality conditions

for the present theory are summarized below:
(i) Rest-frame Gibbs criterion (E0 > 0):

cp > 0; β1 > 0: ð123Þ

(ii) Causality condition (E0E0 ≥ EjEj):

ncpTβ1 ≥ 1: ð124Þ

(iii) Second law of thermodynamics (σ ≥ 0):

ξ1 ≥ 0; ξ3 ≥ 0; ξ1ξ3 ≥ ξ22: ð125Þ

11This automatically implies that the stability-causality con-
ditions of a theory with the additional field A are the same as
those of its Israel-Stewart dual.

12We are assuming, for simplicity, invariance under parity: we
are neglecting possible contributions to Ej proportional to
εjklδqkδpl, where ϵjkl is the 3D Levi-Civita symbol.
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As a consistency check, in Appendix C 1 we verify
explicitly that, if conditions (123)–(125) are obeyed, the
standard stability-causality criteria discussed in [33,58]

Imω ≤ 0; lim
k→∞

����Reωk
���� ≤ 1 ð126Þ

are, indeed, respected.
Nonhydrodynamic sector.—In the homogeneous limit,

Eqs. (124) and (125) may be compactly written in the form

Tβ1∂t

�
δqk
δpk

�
¼ −

�
ξ1 ξ2 þ b

ξ2 − b ξ3

��
δqk
δpk

�
; ð127Þ

which is analogous to (31). This kind of equation always
appears when there are two dissipation fields with the same
geometric character. Again, we can combine the two
equations to obtain a second-order differential equation
for δqk:

1

2
χτ2∂2t δqk þ τ∂tδqk þ δqk ¼ 0; ð128Þ

with

τ ¼ Tβ1ðξ1 þ ξ3Þ
ξ1ξ3 − ξ22 þ b2

; χ ¼ 2
ξ1ξ3 − ξ22 þ b2

ðξ1 þ ξ3Þ2
: ð129Þ

Equations (128) and (129) are analogous to (2) and (33).
Again, if b is sufficiently large, it is possible to have
χ > 1=2, which produces oscillations of the same kind as
those shown in Fig. 2.
Hydrodynamic sector.—As anticipated in Sec. III B,

Geroch-Lindblom theories relax to Navier-Stokes states.
This means, following Lindblom [5], that, as t → þ∞ (and
for small k), the relaxation terms Tβ1∂tδqk and Tβ1∂tδpk in
(121) and (122) become negligible, converting the dynami-
cal equations (121) and (122) into constraints:

�
∂kδT

0

�
≈ −

�
ξ1 ξ2 þ b

ξ2 − b ξ3

��
δqk
δpk

�
: ð130Þ

These constraints can be used (inverting the matrix on the
right-hand side) to write the dissipation fields in terms of
the gradient of the temperature:

δqk ≈
−ξ3∂kδT

ξ1ξ3 − ξ22 þ b2
; δpk ≈

ðξ2 − bÞ∂kδT
ξ1ξ3 − ξ22 þ b2

: ð131Þ

The first equation is simply Fourier’s law, with heat
conductivity coefficient

κ ¼ ξ3
ξ1ξ3 − ξ22 þ b2

≥ 0: ð132Þ

Plugging (131) into (120), we obtain the heat equation:

∂tδT ≈
κ

ncp
∂j∂

jδT; ð133Þ

proving that the universal diffusive (Fick-type) behavior is,
indeed, recovered. Note that, because of the stability-
causality conditions (123)–(125), one always has

τ ≥ Tβ1κ ≥
κ

ncp
: ð134Þ

In Appendix C 2 we show that the formulas (129) and
(132) for the transport coefficients τ, χ, and κ could be
computed directly from the study of the dispersion relations
of the theory, ωnðkÞ, in the limit of small wave vectors.

D. Adding a skew-symmetric transverse tensor field

In Sec. VII B we have shown that, if we include in our
model for heat conduction a single scalar field A, the
resulting dynamics is just that of Israel-Stewart, where A
plays the role of the bulk stress Π. It is easy to verify that
something similar happens if we insert a transverse
symmetric traceless tensor fieldAjk: the resulting dynamics
is just that of Israel-Stewart, where Ajk plays the role of the
shear stress Πjk.
Instead, we obtain something really new if we consider a

theory built on the fields

ðφAÞ ¼ ðT; qj;ΩjkÞ; ð135Þ

where Ωjk is a transverse skew-symmetric tensor field:

Ωjk ¼ −Ωkj: ð136Þ

Note that, by Hodge duality, one might change degree of
freedom and work with the vector field

pj ¼ 1

2
εjklΩkl; ð137Þ

reducing the present case to that of the previous subsection.
However, since we are focusing, for simplicity, on theories
that are invariant under parity, the theory built on Ωjk and
the one built on pj are different. If parity is broken, one
may just build Em and σ using all the terms of both the
present subsection and the previous one, imposing (137).
The most general information current and entropy

production rate, built from the fields given in (135), and
compatible with the symmetries of the problem, are
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E0 ¼ 1

2T

�
ncp
T

ðδTÞ2 þ β1δqjδqj þ γ1δΩjkδΩjk

�
;

Ej ¼ δTδqj

T2
þ γ2

δΩjkδqk
T2

;

σ ¼ δqjδqj
κT2

þ δΩjkδΩjk

2ξT
: ð138Þ

Note that, in the expressions above, the order of the indices
of δΩjk matters. For example, in the formula for Ej, one
could replace Ωjkδqk with Ωkjδqk, at the price of changing
the sign of γ2. In E0 and σ, the indices have been contracted
in such a way that the coefficients γ1 and ξmust be positive,
to ensure stability and thermodynamic consistency.
Similarly to what happened with the shear stress, we

need to be careful with applying (57) for computing the
field equations, because the constraint (136) must be
respected. This problem is easily solved adapting to Ωjk

the technique outlined in Appendix B forΠjk. The result are
the equations given below:

T ncp∂tδT þ ∂jδqj ¼ 0; ð139Þ

qk Tβ1∂tδqk þ ∂kδT þ γ2∂jδΩj
k ¼ −δqk=κ; ð140Þ

Ωkl Tγ1∂tδΩkl þ γ2∂½kδql� ¼ −TδΩkl=2ξ: ð141Þ

We can use (137) (and its inverse: Ωkl ¼ εkljpj) to rewrite
(140) and (141) in the alternative form

Tβ1∂tδqk þ ∂kδT − γ2ð∇ × δpÞk ¼ −δqk=κ;

2Tγ1∂tδpk þ γ2ð∇ × δqÞk ¼ −Tδpk=ξ; ð142Þ

where ð∇ × pÞj ¼ εjkl∂kpl is the standard 3D-curl of p. We
see that, when the additional field is a transverse skew-
symmetric tensor field, the resulting theory is that of two
vector fields, which are, however, dynamically coupled only
through curls (as long as parity is not broken). Hence, our
method may also be used to model the nonhydrodynamic
sector of Magnetohydrodynamics and spin hydrodynamics.

VIII. ONSAGER-CASIMIR RELATIONS

We have shown that Eq. (54) can be used as a starting
point for the systematic construction of causal and stable
fluid theories. On the other hand, it also enables us to
connect our newly born theories with nonequilibrium
thermodynamics. We can use this bridge to derive some
general Onsager-Casimir relations. In this section we
explain how to do so.

A. The symmetry principle

We focus on homogeneous perturbations which conserve
the value of the total integrals of motion (i.e., we focus on
purely nonhydrodynamic modes). Then,

δJI0 ¼ 0; ð143Þ

which, using (54), implies

E0 ¼ −δs0: ð144Þ

Let us consider again the Lyapunov functional E, defined in
(15), taking Σ to be a surface at constant time (recall that we
are working in the fluid’s equilibrium rest frame).
Homogeneity implies

E ¼ E0V; ð145Þ

where V is the total volume occupied by the fluid.
Combining (144) with (145), and recalling (12), we have

δS ¼ −
V
2
M0

ABδφ
AδφB: ð146Þ

Our goal, now, is to establish a direct connection with
the notation of Casimir [20]. Let us assume that we can
group the fields φA into two categories, depending on their
behavior under time reversal13: the even fields (for which we
use the multi-indices P;Q;…) and the odd fields (for which
we use the multi-indices X; Y; ::), so that, adopting the
notation of [20], we can write

αP ¼ δφP; βX ¼ δφX: ð147Þ

Since the entropy is even in time, we know from (146)
that [20]

M0
PX ¼ M0

XP ¼ 0; ð148Þ

so that the conjugate variables to respectively αP and βX are

γP ¼ VM0
PQδφ

Q; γX ¼ VM0
XYδφ

Y: ð149Þ

Then, the field equations (18) can be rewritten in Casimir’s
form

_αP ¼ pPQγQ þ pPYγY;

_βX ¼ pXQγQ þ pXYγY; ð150Þ

provided that we make the identification

ΞAB ¼ −Vp
CDM0

ACM0
BD: ð151Þ

The coefficients pCD obey the Onsager-Casimir relations

pPQ ¼ pQP; pPX ¼ −pXP; pXY ¼ pYX: ð152Þ

If we combine (148), (151), and (152), we obtain

13Instead of just time reversal, one may consider CPT [8].
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ΞPQ ¼ ΞQP; ΞPX ¼ −ΞXP; ΞXY ¼ ΞYX: ð153Þ

Equations (148) and (153) are powerful constraints arising
from microscopic reversibility, which can be used to further
simplify the equations of a fluid model. We can summarize
them as follows:

(i) If φA and φB have equal behavior under time reversal
(even-even or odd-odd case), then

Ξ½AB� ¼ 0: ð154Þ

(ii) If φA and φB have opposite behavior under time
reversal (even-odd case), then

M0
AB ¼ ΞðABÞ ¼ 0: ð155Þ

B. Application: Onsager and holography

We can, now, employ the Onsager-Casimir symmetry
principle to draw interesting conclusions about the hydro-
dynamics (and nonequilibrium thermodynamics) of strongly
coupled plasmas.
In the Introduction, we mentioned that the nonhydrody-

namic sector of strongly coupled holographic theories
differs from that of Israel-Stewart-type theories because
the frequencies are no longer purely imaginary. In
Sec. III C, we showed that the only way for the frequencies
to have a real part is that Ξ½AB� ≠ 0. Finally, in Sec. VIII A
we verified that, if the hydrodynamic theory is consistent
with the Onsager-Casimir principle, then Ξ½AB� must vanish
whenever φA and φB acquire the same phase under time
reversal (even-even and odd-odd cases). In conclusion, the
only way that we have to reproduce the nonhydrodynamic
sector of holographic plasmas is to impose that each
dissipative flux (like the heat flux qa and the viscous
stresses Π and Πab) is dynamically coupled (through ΞAB)
to a “thermodynamic partner,” with the same geometric
character but opposite behavior under time reversal. In
other words, the nonequilibrium degrees of freedom must
appear in couples,

ðqa; paÞ; ðΠ;ΛÞ; ðΠab;ΛabÞ; ð156Þ

whose members have exactly the same geometrical proper-
ties (e.g., both Πab and Λab are transverse, symmetric and
traceless) but acquire a different phase under time reversal;
see the table below:

Flux Phase of flux Partner Phase of partner

qa −1 pa þ1
Π þ1 Λ −1
Πab þ1 Λab −1

In this way, we can couple each flux with its partner in
the same way as we did in Eqs. (31) and (127), with the
difference that now we can use the Onsager-Casimir
principle to require the antisymmetry of the coupling term,
e.g.,

ΞΠ;Λ ¼ −ΞΛ;Π; ð157Þ

for the case of bulk viscosity.

C. The intuitive interpretation of the partners

If, at first, the introduction of the partners may seem to
be an ad hoc assumption, it is actually a direct conse-
quence of Eq. (2). In fact, Eq. (2) models a damped
armonic oscillator [9], which is the simplest example of a
couple of thermodynamic degrees of freedom having
opposite behavior under time reversal. Let us explore this
analogy in more detail; the setting is similar to that
proposed by Heimburg [59].
We consider a harmonic oscillator with mass M and

Hooke’s constant κ, which is weakly interacting with a heat
bath with entropy SH, energy UH, and (constant) temper-
ature TH. Then, the energy and entropy of the total isolated
system “oscillator þ bath” are

Stot ≈ constþ UH

TH
;

Utot ¼
1

2
κx2 þ 1

2
Mv2 þ UH; ð158Þ

where x and v are the position and velocity of the mass M.
In deriving the equation for the entropy, we assumed that
the oscillator has no additional internal degrees of freedom,
so that Stot ¼ SH.
It is evident that the equilibrium state is x ¼ v ¼ 0.

Hence, if a spontaneous fluctuation ðδx; δvÞ from equilib-
rium occurs, the resulting change of entropy is (recall that
the fluctuation must conserve Utot)

δStot ¼ −
1

2

�
κ

TH
ðδxÞ2 þ M

TH
ðδvÞ2

�
: ð159Þ

We can use Eq. (159) to compute the conjugate “γ
variables” [20] explicitly, and use them to write the
dynamical equations for x and v in the Onsager-Casimir
form:

δ_x ¼ pxx κδx
TH

þ pxv Mδv
TH

;

δ _v ¼ pvx κδx
TH

þ pvv Mδv
TH

: ð160Þ

Now we can apply the symmetry principle, and require
that

SYMMETRIC-HYPERBOLIC QUASIHYDRODYNAMICS PHYS. REV. D 106, 056010 (2022)

056010-19



pxv ¼ −pvx; ð161Þ

where the minus comes from the fact that x is even in time,
while v is odd in time. In addition, we recall that by
definition v ¼ _x, so that

pxx ¼ 0; pxv ¼ TH=M; ð162Þ

and, rewriting pvv as −γTH=M, we obtain

δ_x ¼ δv; δ _v ¼ −
κ

M
δx − γδv: ð163Þ

Combining these two equations we arrive at

ẍþ γ _xþ κ

M
x ¼ 0; ð164Þ

which is the equation of the damped harmonic oscillator.
In conclusion, we have just shown that the equation of

the damped harmonic oscillator is the by-product of
applying the Onsager-Casimir principle to a system in
which both x and its time-derivative v ¼ _x are regarded as
independent nonequilibrium degrees of freedom. Their
skew-symmetric coupling is what gives rise to the oscil-
latory part of the evolution. An analogous mechanism
occurs in holographic fluids, where the partners of the
fluxes are just proportional to the time derivatives of the
fluxes themselves (we will show this explicitly in the next
section).

IX. DIFFUSION PROCESSES IN
HOLOGRAPHIC PLASMAS

We finally have all the ingredients we need to model
diffusion processes in strongly coupled plasmas. In this
final section, we will use our formalism to derive a
universal (albeit approximate) thermodynamically consis-
tent analog of Cattaneo’s model for diffusion, valid for
N ¼ 4 SYM holographic fluids.

A. A universal equation for diffusive phenomena

Let us consider again the scalar-vector-vector theory,
developed in Sec. VII C. It was meant to describe the
propagation of heat in a fluid at finite chemical potential,
but it may equivalently be used to describe the diffusion of
a generic conserved charge (including transverse momen-
tum, as in the shear channel), provided that one assigns a
different interpretation to all the quantities involved.
If we take pj to be the partner of qj, as given in (156), we

can apply the Onsager-Casimir principle and set

ξ2 ¼ 0: ð165Þ

Furthermore, coherently with the quantitative analysis of
Kovtun and Starinets [18], we can impose

τ ¼ κ

ncp
¼ 1

2πmT
; χ ¼ 2; ð166Þ

where the numerical factor m depends on the quantity that
is diffusing (e.g. m ¼ 1 for R-charge and m ¼ 2 for
transverse momentum). The value of κ=ðncpÞ is regulated
to match the diffusion coefficients computed in [18], while
τ and χ have been chosen in such a way that the two
nonhydrodynamic frequencies (3) take the simple form

ω� ¼ 2πmT

�
−
i
2
�

ffiffiffi
3

p

2

�
: ð167Þ

This is not the exact value of the poles computed in [18], but
it is a reasonable approximation, valid for both R-charge
density (m ¼ 1) and transverse momentum (m ¼ 2). With
the choice of transport coefficients above, the inequalities
(134) are saturated, producing the conditions

ncpTβ1 ¼ 1; ξ1 ¼ 0: ð168Þ
The first equation implies that in these fluids information
propagates at the speed of light. This means that the front
(but not necessarily the whole shape) of a localized
perturbation drifts with speed 1. Finally, if we compare
(166) with (129), we can fix the value of the remaining
transport coefficients:

ξ3 ¼ b ¼ 2πmT
ncp

: ð169Þ

Plugging all these results into the system of field equa-
tions (120)–(122), introducing the new fields

q̃j ≔
qj

ncp
; p̃j ≔

pj

ncp
; ð170Þ

and setting the scale of the space-time coordinates xa in such
a way that 2πmT ¼ 1, we find that all the coefficients
disappear, leaving a universal system:

∂tδT þ ∂jδq̃j ¼ 0;

∂tδq̃k þ ∂kδT ¼ −δp̃k;

∂tδp̃k ¼ δq̃k − δp̃k: ð171Þ
In the homogeneous limit, i.e., in the limit in which the
analysis of Sec. VIII A is valid, the second equation of (171)
becomes pk ¼ − _qk. This establishes the thermodynamic
analogy with the damped harmonic oscillator, as outlined in
Sec. VIII C.
Combining all of the equations of (171), we obtain a

closed equation for the effective dynamics of T:

∂tδT ¼ ð1þ ∂tÞ∂a∂aδT; ð172Þ
which, restoring the constants 2πmT, c, kB, and ℏ
becomes
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∂

∂t
δT ¼

�
zþ z2

∂

∂t

��
c2

∂
2

∂xj∂xj
−

∂
2

∂t2

�
δT; ð173Þ

with

z ¼ ℏ
2πmkBT

: ð174Þ

This is the equation we were looking for.

B. Model comparison

In order to have an intuitive idea of how different models
behave, it is interesting to solve numerically their dynami-
cal equations,

∂tδT ¼ ∂j∂
jδT ðFickÞ;

∂tδT ¼ ∂a∂
aδT ðCattaneoÞ;

∂tδT ¼ ð1þ ∂tÞ∂a∂aδT ðholographyÞ; ð175Þ

for a temperature perturbation δT. For simplicity, we
consider a flat 1þ 1 spacetime, namely ∂j∂

j ¼ ∂xx and
∂a∂

a ¼ ∂xx − ∂tt.
In the Fick case we just have to set a single initial

condition δT0ðxÞ on the slice t ¼ 0. The Cattaneo and
holography cases are higher order in time: the initial
condition for ∂tδT is set from the heat equation, namely

∂tδTð0; xÞ ¼ ∂xxδT0ðxÞ, for both the Cattaneo and the
holography scenarios. Similarly, the initial condition for
∂ttδT is ∂ttδTð0; xÞ ¼ ∂xxxxδT0ðxÞ for the holography case.
Numerical comparison of the three models is given in

Fig 3, where several snapshots of the evolution are shown.
To check that signals are indeed subliminal, we take the
usual smooth bump function as our initial condition,

δT0ðxÞ ¼ Θð1 − x2Þ exp
�

1

x2 − 1

�
; ð176Þ

since it has compact support (Θ is the Heaviside step
function). In Fig. 3 we can see that the boundary of the
support of δTðx; tÞ propagates at the speed of light for the
Cattaneo and holography models: despite the fact that from a
numerical point of view it is not immediate to identify the
exact location of the support’s boundary, we see that the
large spatial gradients of δT0 close to x ¼ �1 quickly give
rise to a propagating front that is easy to follow. While the
amplitude of such front quickly goes to zero for the Cattaneo
case, we find it to be more long-lived for the Holography
model. Eventually, all the three models have to relax to the
trivial solution δT ¼ 0.
To test the relaxation property of the system, it is more

convenient to choose an initial condition with smaller
gradients, so that the relaxation will be already evident at
early times. In Fig. 4 we take δT0 to be a Gaussian of

FIG. 3. Evolution of the perturbation δT with compact support for the three models in (175): “Fick” (thin black line), “Cattaneo” (red,
dashed), and “Holography” (thick blue line). Only the x > 0 region shown as the evolution is symmetric. At t ¼ 0, 1, 3, 5 the front of the
Cattaneo and Holography models is respectively located at x ¼ 1, 2, 4, 6, meaning that the signal propagates at the speed of light. The
relaxation effect is visible in the last frame: the three models tend to be more and more indistinguishable close to the origin, as the
amplitude of the front travels and decreases in amplitude.
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variance 2. In fact, with this numerical test we are not
interested in checking the causality property, so that now the
support of the initial data can be noncompact. Since we now
have no regions with large gradients in the initial condition,
we see no clear propagating fronts as in the previous
numerical experiment. However, it is evident that the three
models relax to the usual Gaussian solution of the non-
relativistic heat equation, the differences being smaller than
the 10% already for t ∼ 10.

X. CONCLUSIONS

We have developed a classical field theory for model-
ing dissipative fluids close to equilibrium that is “qua-
sihydrodynamic” [24], in the sense that the model
includes the usual degrees of freedom of a perfect fluid
plus a finite number of quasiconserved local degrees of
freedom. These quasiconserved internal quantities are
treated as genuine hydrodynamic fields: within this
approach, the nonhydrodynamic sector is physical and
describes the local relaxation/oscillation of quasicon-
served quantities [11].
Our quasihydrodynamic formalism arises from an action

principle, constructed using the method of the doubling of
variables [44,45]. The associated Euler-Lagrange equations
have the appealing mathematical structure envisaged by
Geroch and Lindblom [22], which implies that the theories
derived using our approach are symmetric hyperbolic,
causal, and Lyapunov stable by construction.
Thanks to this construction, the contact with non-

equilibrium thermodynamics is straightforward and the
resulting quasihydrodynamic models are automatically
consistent with:

(i) the second law of thermodynamics,
(ii) the Gibbs stability criterion,
(iii) the Onsager-Casimir symmetry principle.

This is valid for both the hydrodynamic and the non-
hydrodynamic sectors of the quasihydrodynamic model.
Starting from our construction, we have seen that the

Cattaneo model for heat conduction [16] and the Israel-
Stewart theory for dissipation [13] are recovered for some
particular choices of the effective fields. Furthermore, using
the invariance of the field equations under field redefinitions,
we could use the formalism to prove that the linearized
Israel-Stewart theory in the Eckart frame [12] and the
linearized Israel-Stewart theory in the Landau frame [52]
are the same theory. We proved this exact mathematical
equivalence explicitly, through a change of variables. As a
corollary, we could show that the stability/causality con-
ditions of Olson [52] are just a rewrite of those of Hiscock
and Lindblom [12]. We verified this equivalence also
explicitly. The most important novelty of our approach is
the possibility of producing theories with arbitrary non-
hydrodynamic sector, including that of strongly coupled
plasmas (e.g. the holographic dual of the N ¼ 4 super-
symmetric Yang-Mills theory [17]). By applying the
Onsager-Casimir symmetry principle, we could show that
the nonhydrodynamic degrees of freedom of such fluids are
thermodynamically (and not only dynamically) equivalent to
those of a damped harmonic oscillator. This means that, in a
fluid of this kind, the time derivative of the viscous stress,
namely hum∇mΠabi, is a quasiconserved quantity (just like
Πab itself [24]), so that Πab acquires an effective “inertia”
[59], which forces the viscous stress to oscillate around zero.
Finally, we stress that some physical systems may display

nonhydrodynamic modes that come in the form of branch
cuts, e.g., [60–62]. This poses a difficulty that probably
cannot be addressed within our framework. In fact, Denicol
et al. [9] have shown that it is always possible to take a
Green’s function with an arbitrary number of frequency
poles at k ¼ 0, and extract from it a differential equation in
time that reproduces such frequency poles. In the presence
of cuts, this procedure may need some modification.
Ultimately, it is not clear if a branch cut can be reproduced
with a differential equation involving a finite number of time
derivatives. From the perspective of our approach, infinite
time derivatives would correspond to infinite algebraic
degrees of freedom, and hence to an infinite number of
effective fields. Therefore, the problem of reproducing
branch cuts within our framework is still open, and it
constitutes an interesting subject for future investigations.
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APPENDIX A: NONDIAGONALIZABLE CASE

Let δφ̃ be the D-dimensional array whose components
are δφ̃D and Ξ̃ the D ×D matrix whose elements are Ξ̃CD.
Then, the system of field equation (21) can be rewritten in
the compact form

∂tδφ̃ ¼ −Ξ̃δφ̃: ðA1Þ

The general solution of this equation is

δφ̃ðtÞ ¼ e−Ξ̃tδφ̃ð0Þ: ðA2Þ

Now, let us focus on the case in which Ξ̃ is nondiagonaliz-
able. Then, the Jordan-Chevalley decomposition guaran-
tees that we can write Ξ̃ as

Ξ̃ ¼ D̂þ N̂; ðA3Þ

where D̂ and N̂ are two (possibly complex) D ×D
matrices such that

(i) D̂ is diagonalizable: there is a basis of (possibly
complex) arrays YðnÞ such that D̂YðnÞ ¼ iωnYðnÞ,

(ii) N̂ is nilpotent: there is a finite positive integer Q
such that N̂Q ¼ 0,

(iii) D̂ and N̂ commute: ½D̂; N̂� ¼ 0.
Given these properties, the general solution of (A2) can be
decomposed as

δφ̃ðtÞ ¼
XQ−1

q¼0

XD
n¼1

ð−1Þq cn
q!

tqe−iωntN̂qYðnÞ: ðA4Þ

This solution is structurally different from (24) and (25)
because of the presence of the factors tq. Such factors will
appear also in the retarded linear-response Green’s func-
tions of the nonhydrodynamic sector, which will take the
generic form (in the homogeneous limit)

GRðτÞ ¼ ΘðτÞ
X
nq

anq
q!

τqe−iωnτ: ðA5Þ

In the frequency space, it becomes

GRðωÞ ¼
X
nq

anq
½−iðω − ωnÞ�qþ1

: ðA6Þ

Thus, the direct signature of the nondiagonalizability of the
matrix Ξ̃CD is the presence of higher-order poles in the
retarded Green’s functions.

APPENDIX B: HANDLING THE CONSTRAINTS
OF THE SHEAR STRESS

Let us focus on a simplified problem. We consider only
the fields ðuk;ΠjkÞ and assume that

E0 ¼ 1

2T
½ðρþ PÞδujδuj þ β2δΠjkδΠjk�; ðB1Þ

Ej ¼ δΠjkδuk
T

; σ ¼ δΠjkδΠjk

2ηT
: ðB2Þ

We need to compute the field equations using (57), but we
know that there are the constraints δΠ½jk� ¼ δΠj

j ¼ 0. This
means that, while performing the derivatives, we cannot
treat all the components of δΠjk as independent. How do
we account for such constraints?
The trick is to introduce five independent unconstrained

functions ZA (five is the number of independent compo-
nents of the stress tensor), which characterize the state of
the stress tensor completely, namely Πjk ¼ ΠjkðZAÞ. For
example, one may have

Πjk ¼

2
64
Z1 þ Z2 Z3 Z4

Z3 Z1 − Z2 Z5

Z4 Z5 −2Z1

3
75: ðB3Þ

Then, we can make the change of variables

δΠjk ¼ ∂Πjk

∂ZA δZA: ðB4Þ

Given that the constraints δΠ½jk� ¼ δΠj
j ¼ 0 must be

verified for any possible value of δZA, it follows that

∂Π½jk�

∂ZA ¼ ∂Πj
j

∂ZA ¼ 0; ðB5Þ

as we can see in the examples below, computed from (B3):

∂Πjk

∂Z2
¼

2
64
1 0 0

0 −1 0

0 0 0

3
75; ∂Πjk

∂Z3
¼

2
64
0 1 0

1 0 0

0 0 0

3
75: ðB6Þ

Using the change of variables (B4), Eqs. (B1) and (B2)
become

E0 ¼ 1

2T

�
ðρþ PÞδujδuj þ β2

∂Πjk

∂ZA

∂Πjk

∂ZB δZAδZB

�
; ðB7Þ

Ej ¼ ∂Πjk

∂ZA

δZAδuk
T

; σ ¼ ∂Πjk

∂ZA

∂Πjk

∂ZB

δZAδZB

2ηT
: ðB8Þ
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Now our degrees of freedom are just ðuk; ZAÞ, which are
unconstrained. Therefore, we are free to use (57) to
compute the field equations:

uk ðρþ PÞ∂tδuk þ
∂Πj

k

∂ZA ∂jδZ
A ¼ 0; ðB9Þ

ZA ∂Πjk

∂ZA

�
∂Πjk

∂ZB

�
β2∂t þ

1

2η

�
δZB þ ∂jδuk

�
¼ 0: ðB10Þ

We may just stop here. However, typically one wants the
equations to be written directly in terms of the shear
stresses. We can reabsorb the variables δZA into δΠjk

using (B4) (recall that the matrix of partial derivatives is a
background constant). Furthermore, we see from the
examples (B6) that the only role of the matrix ∂Πjk=∂ZA

in Eq. (B10) is to extract the symmetric traceless part of the
term in the square brackets, so that our field equations can
be equivalently rewritten as follows:

ðρþ PÞ∂tδuk þ ∂jδΠ
j
k ¼ 0;

β2∂tδΠjk þ h∂jδuki ¼ −
δΠjk

2η
: ðB11Þ

The reader can verify that if we computed the field
equations directly from (B1) and (B2), using (57) and
treating Πjk as an unconstrained variable, we would obtain
exactly the same equations above, with the only difference
that, in the second equation, h∂jδuki would be replaced by
∂jδuk. Such equation would be clearly incompatible with
the constraint of symmetry and tracelessness of the shear
stresses. Our trick of using the degrees of freedom ZA

enforces the constraints δΠ½jk� ¼ δΠj
j ¼ 0 by construction.

APPENDIX C: FOURIER ANALYSIS
OF THE SCALAR-VECTOR-VECTOR THEORY

FOR HEAT CONDUCTION

Working in the Fourier space, we study the dynamical
properties of the model for heat conduction presented in
Sec. VII C. For simplicity, we work in 1þ 1 dimensions.

1. Stability and causality

We consider Eqs. (120)–(122) and assume a space-time
dependence of the kind

δφAðt; xÞ ¼ δφAð0; 0ÞeΓtþikx; ðC1Þ

where Γ ¼ −iω ∈ C and k ∈ R. The stability requirement
is ReΓ ≤ 0, see Eq. (126).
Using (C1), the field equations become algebraic. The

dispersion relations Γ ¼ ΓðkÞ, associated with the field
equations (120)–(122), are given by the condition [63]

det

2
64
ncpΓ ik 0

ik Tβ1Γþ ξ1 ξ2 þ b

0 ξ2 − b Tβ1Γþ ξ3

3
75 ¼ 0: ðC2Þ

The determinant above is a third-order polynomial in Γ, so
that we are left with the following root-finding problem:

A3Γ3 þ A2Γ2 þ A1Γþ A0 ¼ 0 ðC3Þ

with

A0 ¼ ξ3k2;

A1 ¼ ncpðξ1ξ3 − ξ22 þ b2Þ þ Tβ1k2;

A2 ¼ nTcpβ1ðξ1 þ ξ3Þ;
A3 ¼ nT2cpβ21: ðC4Þ

From conditions (123)–(125), we see that all the coeffi-
cients Ai are non-negative. Hence, there are no real positive
roots of (C3). If we decompose Γ into its real and imaginary
parts, Γ ¼ ΓR − iωR (with ΓR;ωR ∈ R), and we assume
that ωR ≠ 0, then ΓR must be solution of [63]

8A2
3Γ3

Rþ 8A2A3Γ2
Rþ 2ðA1A3þA2

2ÞΓRþA1A2−A0A3 ¼ 0:

ðC5Þ

One can verify directly that A1A2 − A0A3 > 0. Hence, the
coefficients of each power of ΓR in (C5) are all positive,
meaning that there is no positive root for ΓR. In conclusion,
all the modes are damped and the system is stable in the
fluid’s rest frame.
Let us move to the causality condition. We need to take

the limit k → ∞, in which (C2) becomes

det

2
64
ncpΓ ik 0

ik Tβ1Γ 0

0 0 Tβ1Γ

3
75 ≈ 0: ðC6Þ

The only nontrivial solutions are plane waves with
dispersion relation (use ω ¼ iΓ)

ω ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTcpβ1

p : ðC7Þ

The causality condition (124) is, therefore, equivalent to the
second condition of (126), which is the standard mode-
based causality condition.
Finally, from theorem 2 of Gavassino [51], we know that,

since the theory is stable in the fluid’s rest frame, and it is
causal, it is also stable in any boosted frame, completing
our analysis.
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2. Small wave-vector limit

Let us work in the limit k → 0. We can expand the
dispersion relations Γ ¼ ΓðkÞ to the second order in k,

Γ ¼ Γ0 þ Γ2k2; ðC8Þ

where the first-order term vanishes by symmetry. Inserting
this expansion into (C3), and truncating to the second order
in k, we obtain an equation of the form B0 þ B2k2 ¼ 0,
where B0 and B2 are some polynomials in Γ0 and Γ2. Given
that this equation must be valid for any small k, we must
impose B0 ¼ B2 ¼ 0. This allows us to determine both Γ0

and Γ2. The solutions, keeping only the leading order in k,
are (recall that ω ¼ iΓ)

ω� ¼ −iðξ1 þ ξ3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðb2 − ξ22Þ − ðξ1 − ξ3Þ2

p
2Tβ1

;

ω3 ¼
−iξ3k2

ncpðξ1ξ3 − ξ22 þ b2Þ : ðC9Þ

The two frequencies ωþ and ω− belong to the nonhydro-
dynamic sector. The relative modes are governed by a
differential equation of the form (128) only if ω� are related
to τ and χ by means of (3). This allows us to compute χ and
τ directly: the result is Eq. (129). Analogously, the
frequency ω3 lives in the hydrodynamic sector and is
consistent with (133) only if (132) holds.
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