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Classical and quantum annealing are computing paradigms that have been proposed to solve a wide
range of optimization problems. In this paper, we aim to enhance the performance of annealing algorithms
by introducing the technique of degeneracy engineering, through which the relative degeneracy of the
ground state is increased by modifying a subset of terms in the objective Hamiltonian. We illustrate this
novel approach by applying it to the example of l0-norm regularization for sparse linear regression, which
is, in general, an NP-hard optimization problem. Specifically, we show how to cast l0-norm regularization
as a quadratic unconstrained binary optimization (QUBO) problem, suitable for implementation on
annealing platforms. As a case study, we apply this QUBO formulation to energy flow polynomials in high-
energy collider physics, finding that degeneracy engineering substantially improves the annealing
performance. Our results motivate the application of degeneracy engineering to a variety of regularized
optimization problems.
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I. INTRODUCTION

Quantum annealing [1–3] is a computing paradigm for
solving optimization problems, with applications ranging
across computer science problems [4], machine learning [5],
quantum chemistry [6], protein folding [7], and beyond.
Such optimization problems often require minimizing a cost
function, which can be reformulated as finding the ground
state of a classical Ising Hamiltonian [8]. Many problems
of practical importance, however, have cost functions over
exponentially many spin configurations, reminiscent of
classical spin glasses [9–11]. These characteristics make
it extremely difficult for classical algorithms, including
classical annealing, to find the ground state of the classical
Ising Hamiltonian [3].
Quantum annealing was conceived as an alternative to

solve this task, where one elevates the classical Ising
Hamiltonian to a quantum spin Hamiltonian to take
advantage of tunneling in the optimization landscape [3].
Since the first quantum annealing device became commer-
cially available in 2011 [12], a large number of proof-of-
principle demonstrations have been performed (see, e.g.,

Refs. [13–18]). Quantum annealing still faces several
conceptual and hardware challenges, however—in particu-
lar, the inability to outperform classical annealing algo-
rithms in many applications (see Ref. [19] for a review).
In this paper, we introduce the technique of degeneracy

engineering in order to enhance the performance of
classical and quantum annealing. We show that for some
applications, one can bias the spectral landscape toward
more optimal solutions, dramatically improving both
classical and quantum annealing performance on these
problems. We illustrate this novel concept by applying it to
l0-norm regularization for sparse linear regression, which
is a nonconvex optimization problem that is, in general,
NP-hard [20]. Specifically, we first show how to cast
l0-norm regularization as a quadratic unconstrained binary
optimization (QUBO) problem, suitable for implementa-
tion on (quantum) annealing platforms. The key insight is
to use a redundant (qu)bit encoding scheme for the linear fit
coefficients, which allows the l0-norm penalty term to be
written in quadratic form. The smallest redundant encoding
scheme requires only one extra (qu)bit per coefficient. By
using a higher degree of redundancy, though, one is able to
increase the relative degeneracy of the desired ground-state
configuration to the first excited state of the regularizer,
which, in practice, yields better annealing performance on
the full problem.
Sparse linear regression is a topic of general interest,

but here we focus on a case study in high-energy collider
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physics. Energy flow polynomials (EFPs) are a linear basis
of collider observables [21], which can be used to accom-
plish a broad range of classification and regression tasks
in collider physics. Most EFP studies to date have used
standard linear regression with a subset of Oð1000Þ EFPs
[22,23], but it is likely that many collider tasks could be
accomplished to the desired accuracy using only a handful
of EFPs. This is a natural venue to explore sparse linear
regression, but there are known cases where the two most
popular sparse linear regression approaches—ridge regres-
sion using l2-norm regularization [24] and lasso regression
using l1-norm regularization [25]—yield unsatisfactory
results [21,26]. While the l0-norm penalty is expected
to yield better performance in such cases, it is computa-
tionally daunting to implement. These considerations make
this problem an ideal test bed for exploring the performance
of degeneracy engineering.
In detailed numerical simulations, we assess the potential

gains from quantum annealing by comparing standard
simulated annealing [27] to path integral Monte Carlo
(PIMC) [28]. While PIMC is a classical annealing strategy,
it is a useful proxy for quantum annealing [29], and it is
exact in the long equilibration time limit. We compare five
different regularization methods, including the standard
l2-, l1-, and l0-norm regularizations, as well as two novel
heuristics. Focusing on l0-norm regularization, we then
compare two different encoding schemes with different
degrees of redundancy, thus examining the potential
benefits of degeneracy engineering. Our case study is
based on EFP sparse regression tasks with known analytic
solutions, so we have an absolute performance benchmark.
Using our QUBO implementation with the smallest redun-
dant encoding scheme, we find relatively poor regression
performance. Going to a higher degree of redundancy,
though, we achieve significantly better performance.
This motivates further studies of degeneracy engineering
for other optimization problems beyond sparse linear
regression.
The remainder of this paper is organized as follows. In

Sec. II, we review lp-norm-regularized linear regression
and its binary encoding on quantum or classical computers,
followed by a derivation of l0-norm regularization in
QUBO form. In Sec. III, we introduce the concept of
degeneracy engineering, which improves the annealing
performance by increasing the relative degeneracy of the
ground-state configuration. In Sec. IV, we outline different
optimization strategies, including a review of classical
annealing and PIMC, a proposal of novel heuristics, and
considerations for quantum annealing. In Sec. V, we review
EFPs, including a detailed overview of the observables and
data sets used in our case study. In Sec. VI, we present the
numerical results of our case study, comparing the smallest
redundant encoding scheme to the scheme with two
redundant qubits, comparing the l0-norm regularization
to its l1- and l2-norm counterparts, and comparing

simulated annealing to PIMC. We conclude in Sec. VII,
including a broader discussion of the role of redundant
encoding schemes for classical and quantum annealing.

II. SPARSE LINEAR REGRESSION
AS A QUBO PROBLEM

A. Review of lp-norm regularization

For generic regression problems, the goal is to find a
function h∶ Rn → R that approximates the mapping of
inputs x⃗ to outputs y seen in a training data set S. One way
to achieve this is by minimizing the mean squared error
(MSE) loss function:

LMSE ¼
X
s∈S

ðys − hðx⃗sÞÞ2: ð1Þ

For linear regression, one chooses a set of K functions
haðx⃗Þ and real fit coefficients ca, such that

hðx⃗; fcagÞ ¼
XK
a¼1

cahaðx⃗Þ: ð2Þ

To avoid overfitting, one is often interested in finding a
sparse, approximate minimizer of the MSE. To achieve this
in practice, one introduces a regulator R that penalizes
nonzero values of ca:

L ¼ LMSE þ λR; ð3Þ

where λ controls the strength of the regularization. For
lp-norm regularization, the regularization term is

RðpÞ ¼
XK
a¼1

RðpÞ
a ; RðpÞ

a ¼ jcajp; ð4Þ

where j·j is the absolute value. When p ¼ 0, we define the
limit as

lim
p→0

RðpÞ
a ¼

�
0 ca ¼ 0

1 ca ≠ 0;
ð5Þ

such that the l0-norm penalty depends only on whether ca
is nonzero, independent of its magnitude. Since l0-norm
regularized regression is computationally challenging to
implement, this problem is well suited for exploring the
performance of degeneracy engineering.

B. Redundant binary encodings

To formulate a quadratic representation of the l0-norm
regularizer, we first consider binary encodings of the real fit
coefficients ca. For an M-bit representation, we have
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ca ¼
XM
i¼1

gib
ðiÞ
a ; ð6Þ

where gi are fixed real numbers, and the binary coefficients

bðiÞa take values of 0 or 1.
For a nonredundant encoding, one typically chooses a

standard binary encoding, such as gi ¼ 2i. More generally,
though, gi can take any desired fixed value, including a
negative value, at the expense of having multiple binary
representations for the same real number [30]. As a
concrete example, consider a four-bit encoding, where

g⃗ ¼ f−2;−1; 1; 2g: ð7Þ

For a fixed a, there are 24 ¼ 16 possible choices for the

values of bðiÞa , but only 7 unique values of ca, namely

ca ∈ f−3;−2;−1; 0; 1; 2; 3g: ð8Þ

In the context of annealing, these redundant encodings are
irrelevant for the ground state if the corresponding values of
the loss function are the same or higher than for the default
encoding. We will exploit this freedom in implementing
l0-norm regularization.

C. Quadratic loss for l0-norm penalty

When inserting the binary representation for the fit
coefficients ca in Eq. (6) into the MSE loss function in
Eq. (1), we see that the dependence on the binary

coefficients bðiÞa is at most quadratic. Thus, standard linear
regression can be cast as a QUBO problem.
A QUBO problem consists of finding a vector

x� ¼ arg min
x∈Bn

QðxÞ ð9Þ

that is minimal with respect to a quadratic polynomial
Q∶ Bn → R over binary variables xi ∈ B for B ¼ f0; 1g
and i ∈ ½n�,

QðxÞ ¼
Xn
i¼1

Xi

j¼1

Jijxixj: ð10Þ

Here, the coefficients Jij ∈ R satisfy 1 ≤ j ≤ i ≤ n, and [n]
is the set of strictly positive integers less than or equal to n.
When adding the lp-norm regularization in Eq. (4), we

still have a QUBO form for p ¼ 2, but not for any other
value of p. To understand the role of redundant encodings
in this context, it is instructive to first consider the p ¼ 1
case. Because of the absolute value signs in Eq. (4), this is
not of QUBO form, but it is “almost QUBO” since one

could remove the absolute value sign if one knew that a
given ca was either always positive or always negative.
Taking inspiration from this observation, consider a redun-
dant encoding of ca where there are both positive and
negative values of gi, such as in Eq. (7). In that case, we
have the following inequality:

jcaj ≤
XM
i¼1

jgijbðiÞa : ð11Þ

This would be an equality if bðiÞa were only nonzero when gi
was positive, or when gi was negative, but not both. From
the perspective of minimizing Eq. (3), though, cases with

nonzero values of bðiÞa for mixed signs of gi are irrelevant, as
long as there is another encoding of ca that only uses all
positive or all negative values of gi [and therefore satisfies
Eq. (11) as an equality]. This is indeed the case for the
example in Eqs. (7) and (8). Therefore, without changing
the solution of the sparse regression problem, we can use a
modified l1-norm regulator:

Rð1−modÞ
a ¼

XM
i¼1

jgijbðiÞa ; ð12Þ

which is now of QUBO form.
We can do something similar for the l0-norm regulator:

Rð0−modÞ
a ¼

XM
i¼1

bðiÞa ; ð13Þ

which is again of QUBO form. Here, though, for an N-bit
binary encoding, there are only N þ 1 values of ca that
have the correct regulator, namely all of the individual gi
values (which get a penalty of 1) and the value 0 (which
gets a penalty of 0). Ideally, we would want a large fraction

of achievable ca values to have at least one bðiÞa configu-
ration with the right penalty. This can be achieved by
leveraging a redundant encoding using ancilla bits, as we
explain next.

D. Single ancilla bit encoding

The first example of a redundant encoding involves just a
single ancilla bit per fit coefficient. This ancilla bit ra plays
no role in determining the value of ca, but it appears in the
l0-norm regulator as follows:

Rð0−singleÞ
a ¼ ra þ ð1 − raÞ

XM
i¼1

bðiÞa : ð14Þ

This single ancilla bit encoding (ABE) is shown graphically
in Fig. 1(a), where to match Eq. (17) below, we have
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separated out bðiÞa into positive (pðiÞ
a ) and negative (nðiÞa ) fit

coefficients.
In the context of annealing, we care about the lowest

energy configuration. Minimizing Eq. (14) over the ancilla
bit ra, we find that

min
ra

Rð0−singleÞ
a ¼

�
0 ca ¼ 0

1 ca ≠ 0;
ð15Þ

which is precisely the desired l0-norm regulator.
We note that an approximate formulation of l0-norm

regularization as an optimization problem has recently been
proposed in Ref. [31]. This approach, however, is based on
the general expression of k-local problems as QUBO
problems, which requires potentially inefficient gadgetiza-
tion techniques [32–34].

III. DEGENERACY ENGINEERING

A. General principles

The key idea behind degeneracy engineering is to
increase the relative ground-state to excited-state degener-
acies of a tractable subset of terms in a given problem
Hamiltonian via the addition of ancilla (qu)bits. More
specifically, this technique changes the relative degener-
acies (but not the values) associated with this subset of
Hamiltonian terms, which in our case is the l0-norm
regularizer. Consequently, if one were to optimize the
problem Hamiltonian, the success probability of finding
the true ground-state energy would be enhanced.
Heuristically, the success probability of finding the true
ground-state energy of the full Hamiltonian is also
enhanced. Degeneracy engineering is motivated by similar
techniques in variational quantum simulation, where it has
been shown that a strong over-parametrization of quantum
circuits improves the chance of finding a good approxi-
mation of the true solution [35–38].

As we demonstrate in the next subsection, the concept
of degeneracy engineering is particularly well suited for
Hamiltonians including a penalty term. While ground-state
energies of generic Hamiltonians can be negative, penalty
terms employ absolute values and thus vanish under
minimization. This feature makes penalty terms the ideal
candidates for degeneracy engineering. While it is gen-
erally hard to engineer multiple negative values for
generic ground-state energies, one can straightforwardly
engineer multiple zero values for the ground-state energy of
a penalty term. In particular, this can be achieved by
exploiting cancellations of positive and negative contribu-
tions to the ground-state energy, as we will exemplify
in Eq. (18) below. Thus, degeneracy engineering could
provide advantages for any optimization problem contain-
ing a penalty term, including penalty terms enforcing
physical symmetries.

B. Double ancilla bit encoding

To illustrate the concept of degeneracy engineering, we
apply it to the example of l0-norm regularization for sparse
linear regression.
The l0-norm regulator in Eq. (14) has a single minimum,

minra R
ð0−singleÞ
a ¼ 0, where ra ¼ 0 and bðiÞa ¼ 0. However,

the regulator also has an exponentially large degeneracy of

the first excited state, minra R
ð0−singleÞ
a ¼ 1, where ra ¼ 1.

Thus, in practice, the optimization using the single ABE is
expected to perform poorly.
To mitigate this problem, we want to modify the relative

degeneracy of the states under consideration. Our goal is to
match the degeneracy levels of the minimum and the first
excited state, without changing the energy values. To this
end, we consider a double ancilla bit encoding (double
ABE) of the l0-norm loss function.
For concreteness, consider the binary encoding:

gi ¼ 2i: ð16Þ

(a) (b)

FIG. 1. Graphical representation of the l0-norm regularizer with (a) single ABE and (b) double ABE. Circles correspond to a penalty

of þ1 for the ancilla bits ra and qa (blue) and positive contributions pðiÞ
a (green) and negative contributions nðiÞa (orange) to the fit

coefficients. Lines correspond to penalties of −1 (single solid blue), −2 (double solid green), and þ2 (double dashed orange).
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Next, we introduce a redundant encoding where the Zero fit
coefficient has multiple representations:

ca ¼
XM
i¼0

giðpðiÞ
a − nðiÞa Þ: ð17Þ

Here, pðiÞ
a (nðiÞa ) are binary coefficients that yield positive

(negative) contributions to the fit coefficients.
For the double ABE, we add two ancilla bits (qa and ra)

per fit coefficient:

Rð0−doubleÞ
a ¼ qa þ ð1þ 2qa − raÞ

XM
i¼1

pðiÞ
a

þ ra þ ð1þ 2ra − qaÞ
XM
i¼1

nðiÞa

− 2
XM
i¼1

pðiÞ
a nðiÞa ; ð18Þ

as shown graphically in Fig. 1(b). Minimizing Eq. (18) over
the ancilla bits ra and qa, we recover the desired l0-norm
regulator in Eq. (15), but with a higher relative ground-state
degeneracy; we now describe in more detail why this is so.

C. Comparing the encodings

The graphical illustrations in Fig. 1 can help build
intuition about the differing behaviors of the single ABE
in Eq. (14) and the double ABE in Eq. (18). Here, the
ancilla bits ra and qa are depicted as blue nodes, the

positive contributions pðiÞ
a to the fit coefficients are shown

as green nodes, and the negative contributions nðiÞa are
shown as orange nodes. Turning on any of the nodes is
associated with a penalty of þ1. Solid blue edges corre-
spond to a pairwise penalty of −1, which comes from
Eq. (14) and from the first two lines of Eq. (18). Double
dashed orange edges correspond to a pairwise penalty of
þ2 from the first two lines of Eq. (18), while double solid
green edges correspond to a pairwise penalty of −2 from
the third line of Eq. (18).
For the single ABE, the only configuration with zero

penalty is the one with all nodes turned off, corresponding
to ca ¼ 0. The configurations with penalty þ1 arise from
connected graphs, where the connection is enabled by
turning on the ancilla bits ra. Thus, there is only one
ground-state configuration with ca ¼ 0 and a slew of
excited-state configurations for ca ≠ 0.
For the double ABE, by contrast, there are a large

number of configurations with zero penalty and ca ¼ 0,
particularly the 2M configurations associated with turning
on pairs of nodes connected by double solid green edges.
The configurations with penalty þ1 and ca ≠ 0 arise from

connected graphs that do not involve any double solid
green edges, of which there are 2M. Thus, there is a balance
between the number of ca ¼ 0 and ca ≠ 0 configurations
and therefore an improved loss landscape for our l0-norm
regularizer.
It is instructive to compare the single and double ABE in

the simplest case ofM ¼ 1, with two binary fit coefficients
pa and na. For the single ABE, we have one ancilla bit ra.
There are four different ways to encode ca ¼ 0, of which

the lowest lying state with Rð0−singleÞ
a ¼ 0 arises from the

following:
(i) turning off all bits.

There are two different ways to encode ca ¼ 1, which are

the lowest lying states with Rð0−singleÞ
a ¼ 1:

(i) turning on just pa; and
(ii) turning on just pa and ra.

Thus, the relative degeneracy of the lowest lying ca ¼ 0
and ca ¼ 1 configurations is 1∶2.
For the double ABE, we have two ancilla bits ra and qa.

There are now eight different ways to encode ca ¼ 0, of

which the two lowest lying states with Rð0−doubleÞ
a ¼ 0 are

(i) turning off all bits, just as for the single ABE; and
(ii) turning on just pa and na.

Similarly, we can encode ca ¼ 1 in four different ways, of

which the two lowest lying states with Rð0−doubleÞ
a ¼ 1

arise from
(i) turning on just pa; and
(ii) turning on just pa and ra.

Thus, the relative degeneracy between the lowest lying
ca ¼ 0 and ca ¼ 1 configurations is 1∶1.
In this way, we have used the double ABE to success-

fully engineer a larger ground-state degeneracy without
changing the lowest lying energy levels of the system. This
general principle of exponentially increasing the ground-
state degeneracy of the regularizer can be generalized to
M > 1 in a straightforward fashion, by turning on various

combinations of pairs of ðpðiÞ
a ; nðiÞa Þ.

There is some freedom in Eq. (18) that could be
exploited for practical applications. We chose a penalty
of þ2 in Eq. (18) (i.e., the dotted orange edges between qa
and pðiÞ

a and between ra and nðiÞa ) to reduce the degeneracy
of the first excited states. With a penalty of þ1 instead, one
could take a connected configuration with total penalty þ1

and turn on additional pðiÞ
a and nðiÞa pairs without additional

costs. As long as it is greater than þ1, the precise value of
this penalty term could be adjusted to optimize the loss
landscape.

D. Possible generalizations

For concreteness, we perform our case studies using just
the two example encodings described above. There is,
however, a whole family of related redundant encodings
that might be relevant for practical applications.
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As one extreme example, it is possible to avoid highly
connected ancilla bits and instead implement tree graph
structures, where each node has penalty þ1 and each edge
has penalty −1. In this encoding, there are separate graphs
for positive and negative coefficients. In each graph, the
gi ¼ 1 node is directly connected to the gi ¼ 2 node,
instead of being indirectly connected via the ancilla bit.
Then, gi ¼ 2 is directly connected to gi ¼ 4, which is
directly connected to gi ¼ 8, and so on. Meanwhile, gi ¼ 4
is connected to an additional gi ¼ 1 bit, gi ¼ 8 is con-
nected to additional gi ¼ 1 and gi ¼ 2 bits, and so on.
However, such an encoding not only requires a large
overhead of additional bits, but the only configuration
with ca ¼ 0 and zero penalty is the one with all nodes
turned off.1 Thus, even though such tree graph structures
might be advantageous for specific tasks, the double ABE
encoding discussed above is, in general, more efficiently
implementable. We leave to future work a study combining
these redundant tree graphs with partially connected
ancilla bits.

IV. OPTIMIZATION STRATEGIES

The results in Sec. VI are based on three different
optimization strategies—classical annealing, PIMC, and
sparse regularization heuristics—which we describe in this
section. While we do not perform quantum annealing on a
quantum computer, we review why PIMC is a useful proxy
for studying quantum optimization, and we discuss some
general considerations when implementing sparse regres-
sion on physical quantum devices.

A. Review of classical annealing

As a representative measure of the performance of
traditional classical optimization algorithms, we perform
population annealing [27]. For this, we consider a family
of canonical distributions parametrized by the inverse
temperature β,

pβðxÞ ¼
1

Zβ
e−βEðxÞ; ð19Þ

where EðxÞ is the energy of the state x and Zβ is the
partition function. As an alternative to the traditional
simulated annealing method of optimization, population
annealing considers a population of R0 replicas of the
state x. This population is initialized randomly (i.e., infinite
temperature), the first annealing step is performed at
temperature 1=β0, and then the system is cooled to some
finite temperature 1=βl by an annealing schedule of l
steps. Unlike simply performing simulated annealing R0

times, however, with each cooling step, replicas are

duplicated or deleted based on an estimate of their relative
Boltzmann weights. At each cooling step, the population is
reequilibrated according to some Monte Carlo algorithm.
As a representative classical method, we equilibrate using
Metropolis-Hastings [39].

B. Path integral Monte Carlo as a proxy
for quantum annealing

As a representative measure of the performance of
quantum optimization algorithms, we consider a proxy
for quantum annealing called the PIMC method. In most
stoquastic formulations of quantum annealing, one con-
siders the following parametrized quantum Hamiltonian:

HðsÞ ¼ ð1 − sÞHi þ sHf ¼ ΓðsÞ
XN
i¼1

σxi þ JðsÞL̃; ð20Þ

where Hi is the initial Hamiltonian and Hf is the final
Hamiltonian, called the problem Hamiltonian. The
annealing parameter s ¼ t=tf ∈ ½0; 1� is given by the ratio
of the time t and the total annealing time tf, thus linearly
increasing from 0 to 1. Here, L̃ is the operator form of the
loss function L from Eq. (3) encoded in the σz basis.
To numerically simulate the performance of quantum

annealing, we use PIMC. This method employs the Trotter-
Suzuki mapping of the quantum annealing Hamiltonian in
Eq. (20) to a classical energy function with an extra
imaginary time dimension, which is discretized into M
imaginary time slices [40]. This well-known mapping
from a d-dimensional quantum Ising system to a (dþ 1)-
dimensional classical Ising system can be straightforwardly
derived using the Trotter breakup formula and spin-1=2
algebra; see Appendix A for details. We then perform
Monte Carlo sampling using the Swendsen-Wang cluster
update algorithm [41] with the population annealing update
heuristic [27], forming clusters only in the imaginary
time direction on the mapped set of spins [42]. PIMC
has been numerically found to accurately simulate quantum
annealing in many stoquastic systems [29].

C. Refined regression as novel heuristics

To assess the performance of annealing strategies for
l0-norm regression, we study two novel heuristics: refined
l1-norm regression and refined l0-norm regression.
Regression with l1-norm regularization is often used

as a proxy for regression with l0-norm regularization
due to the efficiency of the former. Because the l1-norm
penalty has constant absolute slope everywhere except
the origin, it leads to sparse solutions, just like the
l0-norm case. We take this a step further and consider
refined l1-norm regression. In this strategy, coefficients
ca that are set to zero by the initial l1-norm regularized
regression are clamped to zero. Then, ordinary linear

1We used powers of 2 for simplicity, but there are ways to
optimize the coefficients to reduce the size of the required graph.
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regression is performed on the remaining coefficients to
minimize the MSE loss function of Eq. (1). The solution
found via this heuristic performs at least as well as the
originally found solution in terms of sparsity and MSE
loss, though not necessarily in terms of the regular-
ized loss.
We use a similar heuristic to postprocess the results of

our annealing strategies for l0-norm regularized linear
regression. In refined l0-norm regression, coefficients set
to zero by the annealing process are clamped to zero, and
ordinary linear regression is performed on the remaining
coefficients. Here, the solution found via this heuristic
performs at least as well as the annealed l0-regularized
solution on all performance measures. Given the low
computational overhead of unregularized linear regression,
we implement this refinement step when presenting our
baseline annealing results.

D. Considerations for quantum annealing

General adiabatic quantum computation is known to be
equivalent to the gate model of quantum computation [2].
Due to experimental considerations, however, most current
implementations of quantum annealing platforms use time-
dependent stoquastic Hamiltonians of the form of Eq. (20),
yielding a model of computation that is not believed to be
as powerful as general quantum computation. Recently, it
was shown that even under a restriction to stoquastic
Hamiltonians, there exist oracle separations between quan-
tum annealing and classical algorithms for certain classes
of problems [43].
Outside of these specific classes of problems, however, it

has been numerically shown that for many QUBO prob-
lems, PIMC—a classical algorithm—performs essentially
as well as quantum annealing [29]. For this reason, we
consider PIMC to serve as a good proxy for quantum
annealing in our study.
As we will emphasize in Sec. VII, the concept of

degeneracy engineering has important implications for
both classical and quantum annealing, beyond just
QUBO problems. When solving any optimization problem
that employs penalty terms, one can try to engineer multiple
zero values for the lowest-energy contribution to the
penalty. Extrapolating from the construction in Fig. 1, it
appears that degeneracy engineering generally requires
ancilla qubit(s) that employ a large degree of connectivity
to the other qubits on the platform. Our results therefore
stress the importance of good qubit connectivity in quan-
tum annealing platforms.

V. CASE STUDY WITH ENERGY FLOW
POLYNOMIALS

The results in Sec. VI are based on a case study in
collider physics, where we apply our QUBO formulation of
l0-norm regularization to EFPs. In this section, we briefly

review the key properties of EFPs and introduce the
observable relations and data sets used in our study.

A. Review of energy flow polynomials

EFPs were introduced in Ref. [21] to accomplish a wide
range of jet analysis tasks in high-energy collider physics.
EFPs form a discrete linear basis for all infrared- and
collinear-safe observables, and many common jet observ-
ables are exact linear combinations of EFPs. Many collider
tasks can be accomplished using only a handful of EFPs,
which makes them an ideal candidate to explore sparse
linear regression.
To visualize and calculate the EFPs, Ref. [21] established

a one-to-one correspondence between EFPs and loopless
multigraphs. For anM-particle jet and a multigraph G with
N vertices and d edges ðk; lÞ ∈ G, the corresponding
functional expression for the EFP reads

EFPG ¼
XM
i1¼0

· · ·
XM
iN¼0

z1 · · · ziN
Y

ðk;lÞ∈G
θβikil ; ð21Þ

where β is an angular weighting factor (not to be confused
with inverse annealing temperature). For our numerical
studies, we take β ¼ 2. In our case study, the energy
fraction zi carried by particle i and the angular distance θij
between particles i and j are defined as

zi ¼
pTiP
jpTj

and θij ¼ ðΔy2ij þ Δϕ2
ijÞ1=2: ð22Þ

Here, pTi is the transverse momentum of particle i, and we
use the definitions Δyij ¼ yi − yj and Δϕij ¼ ϕi − ϕj,
where yi and ϕi are the rapidity and the azimuthal angle
of particle i.
There are a rich variety of linear relations between

different jet observables and EFPs [21,26], a few of which
we study in this paper. Even for fixed β, the set of all EFPs
is an overcomplete basis and therefore needs to be explored
using regularized linear regression. This motivates the
application of l0-norm regression to study these linear
relations.
For our numerical study, we use the EnergyFlowmodule,

which is based on Ref. [21]. This PYTHON package provides
all the necessary tools to compute EFPs on collider events,
as well as tools to download, read, and manipulate the data
sets described in Sec. V C. In our study, we test twelve
different linear relations between collider observables and
EFPs, which are described in Sec. V B and summarized in
Table I.

B. Testing relations between observables

Many common jet observables, including the jet mass,
energy correlation functions [44], and angularities [45,46],
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TABLE I. Labels and names of the twelve observable relations used in our EFP case study. The third column indicates possible
restrictions on their range of applicability, where M is the number of particles in the jet and n is the number of spatial dimensions. The
fourth column gives the corresponding multigraph representations of the linear EFP relations and represents Eqs. (1) and (2), where ys
corresponds to the observable on the left-hand side, ha corresponds to the EFPs on the right-hand side, and ca corresponds to the
coefficients to be determined.

Label Name of observable Restriction Multigraph representation of linear EFP relation

(a) Angularity α ¼ 2 None

(b) Angularity α ¼ 4 None

(c) Angularity α ¼ 6 None

(d) Determinant C None

(e) Triple dumbbell M ≤ 2

(f) Triple dumbbell (approximate) None

(g) Lollipop M ≤ 2

(h) Lollipop (approximate) None

(i) Five dots M ≤ 3

(j) Five dots (approximate) None

(k) Planar event n ≤ 2

(l) Planar event (approximate) None
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are exact finite linear combinations of EFPs. This makes
them useful targets for our annealing studies since there
is a ground truth definition of successful regularized
regression. We consider twelve different linear relations
between collider observables and EFPs, which have
been extensively studied in Refs. [21,26]. These twelve
relations, summarized in Table I, will serve as benchmarks
for testing our QUBO formulation of l0-norm regression.
In Table I, the fourth column represents Eqs. (1) and (2),
where ys corresponds to the observable on the left-hand
side, ha corresponds to the EFPs on the right-hand side, and
ca corresponds to the coefficients to be determined, which
optimally match the numbers given in the table.
The first set of observables is given by the infrared- and

collinear-safe jet angularities [45,46] defined as

λðαÞ ¼
XM
i¼1

ziθαi ; ð23Þ

where α > 0 is an angular exponent and θi denotes the
distance of particle i to the pT-weighted centroid axis
ðyJ;ϕJÞ of the jet located at

yJ ¼
XM
j¼1

zjyj; ϕJ ¼
XM
j¼1

zjϕj: ð24Þ

Using Eq. (24), the angularities in Eq. (23) can be
expressed in terms of pairwise distances as

λðαÞ ¼
XM
i1¼1

zi1

�XM
i2¼1

zi2θ
2
i1i2

−
1

2

XM
i2¼1

XM
i3¼1

zi2zi3θ
2
i2i3

�α=2

; ð25Þ

where θij ¼ ðΔy2ij þ Δϕ2
ijÞ1=2.

For even α, the parenthetical in Eq. (25) can be expanded
and identified to be a linear combination of EFPs with
N ¼ α and d ¼ α [47]. Focusing on the cases α ∈ f2; 4; 6g
and using the multigraph representation of Eq. (21), we
can write down the following linear relations for the jet
angularities:

ð26Þ

ð27Þ

ð28Þ

In these three multigraph representations, each edge ðk; lÞ
corresponds to a term θikil in Eq. (25), and each vertex j
corresponds to a summation

P
M
ij¼1 zij .

Next, we consider a jet observable based on the two-
dimensional geometric moment tensor of the energy dis-
tribution in the ðy;ϕÞ plane [47,48]:

C ¼
XM
i¼1

zi

� ðyi − yJÞ2 ðϕi − ϕJÞðyi − yJÞ
ðϕi − ϕJÞðyi − yJÞ ðϕi − ϕJÞ2

�
;

ð29Þ

where the distances are measured with respect to the
pT-weighted centroid axis ðyJ;ϕJÞ of the jet in Eq. (24).
Both the trace and the determinant of this matrix can be
expressed as a linear combination of EFPs. The trace is
related to the α ¼ 2 angularity, while the determinant
satisfies [21]

ð30Þ

In Ref. [26], a variety of relations were derived from cutting
the graph nodes. These relations only hold for a limited
number of particles, and they can be derived from the fact
that antisymmetrizing L indices of a tensor in M dimen-
sions yields zero for L > M. A useful organizational
scheme for the EFPs is by the number of edges d in the
associated multigraph. We consider two linear relations at
d ¼ 3, called “triple dumbbell” and “lollipop,” which are
valid only for events containing M ≤ 2 particles [26]:

ð31Þ

ð32Þ

We consider one example at d ¼ 4, called “five dots,” for
events containing M ≤ 3 particles [26]:
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ð33Þ

As the last example, we consider a linear relation called
“planar event,” which is subject to a spatial constraint on
the event. In particular, this relation is only applicable
to planar events with two (or fewer) spatial degrees of
freedom [26]:

ð34Þ

A summary of these linear relations is given in Table I,
along with the restrictions that constrain their range of
applicability. Additionally, we list “approximate” linear
relations, where we consider exact linear relations outside
of their range of applicability. This allows us to test the
performance of sparse linear regression in regimes where
we expect to find good, but not perfect, solutions. In total,
we have four exact relations that always hold, four exact
relations that hold only with restrictions, and four approxi-
mate relations, which yields twelve linear relations that are
tested in our numerical study.

C. Data sets

For our numerical study, we use a data set from the
CMS Open Data Portal [49,50] in the MOD HDF5
Format [51], which was created for jet-based studies.
These dijet events are generated in PYTHIA 6.4.25 [52],
and we do not consider any detector simulation effects. In
our study, we use 100,000 shower-generated events with
pT ∈ ½475; 525� GeV and absolute values of the rapidity
jyj < 1.9. Even though the event samples are weighted, for
simplicity we treat the events as having equal weights.2

For most of the observables in Sec. V B, we can use
generic events to test the given functional relations. In
specific cases, however, we need to constrain the data to
incorporate the specific conditions listed in Table I.
For example, some of the linear relations are only appli-
cable to planar events or to events with a specific number
of particles. To generate planar events, we constrain
the particle motion to two spatial dimensions, which is

accomplished by setting the azimuthal angles of all
particles to zero, ϕi ¼ 0. To generate events with a fixed
particle number, we consider events with larger particle
numbers and sequentially delete random particles until
reaching the required number. In this process, we preserve
the total transverse momentum pT of the jet by rescaling the
transverse momenta of the remaining particles.
As mentioned above, we only apply this preprocessing

when testing the “exact” linear relations that are subject to
constraints. When testing the “approximate” versions of
these linear relations, we leave the data unmodified.

VI. NUMERICAL RESULTS

We now present the results of our numerical study, in
which we apply sparse regression to test the twelve linear
EFP relations in Table I. Since we have two different
annealing encoding schemes, five different optimization
strategies, and twelve observable relations to test, we only
present selected results to highlight the main points of our
study; we present some additional results in Appendix B.
First, we demonstrate the advantage of degeneracy

engineering by comparing the baseline encoding from
Sec. II D to the degeneracy-engineered encoding in
Sec. III B. Second, we demonstrate the advantage of the
refinement approach introduced in Sec. IV C, showing that
refined l0-norm regression performs better than its unre-
fined version. Third, we demonstrate the advantage of
l0-norm regularization, by showing that it yields a better
sparsity/performance trade-off than l1- or l2-norm regu-
larization. Finally, we assess the potential gains from
quantum computing by comparing classical annealing to
PIMC, finding no dramatic difference in performance.

A. Advantage of degeneracy engineering

To evaluate the performance of degeneracy engineering
from Sec. III, we compare the performance of the single
ABE in Eq. (14) versus the double ABE in Eq. (18). For
both encodings, we use the same classical annealing
algorithm with the same training parameters for each
observable. As described in Sec. IVA, this optimization
algorithm is based on classical population annealing with a
geometric annealing schedule, with inverse temperature at
annealing step i given by

βi ¼ β0

�
βl
β0

� i
l

: ð35Þ

The population is initialized at the temperature β0 ¼
1=T0 ¼ 10 and then cooled to the temperature βl ¼
1=Tl ¼ 1010 by an annealing schedule of l ¼ 214 steps.
For the l0-norm coefficient λ, we study a range that spans 4
orders of magnitude, λ ∈ ½10−3; 10�.
In Fig. 2, we show the number of nonzero fit coefficients

as a function of λ, comparing the single ABE (light blue) to
2Event weights could be straightforwardly incorporated by

generalizing the MSE loss function.
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FIG. 2. Number of nonzero fit coefficients as a function of the l0-norm coefficient λ, comparing single ABE (light blue) with double
ABE (dark blue) on classical annealing. The twelve observable relations and their (a)–(l) labels are given in Table I.
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the double ABE (dark blue). The twelve plots in this figure
correspond to the twelve different relations in Table I. The
results are averaged over ten independent runs, with the
standard deviation shown as error bars. For all observables,
we find that the degeneracy-engineered version with double
ABE performs either equally well or better in terms of
the number of identified nonzero fit coefficients. In Fig. 6
of Appendix B, we plot the loss function versus λ as an
alternative way to highlight the improved behavior of the
double ABE.
For all nonapproximate relations in Table I, we can

analytically compute the best-case theoretical expectation
by considering all possible combinations of nonzero
coefficients given by a particular analytical relation. In
Fig. 2, this analytical result is displayed as the black-dashed
“Expected” line. Interestingly, for the lollipop observable in
Fig. 2(g), our original theoretical expectation from Eq. (32)
was outperformed by the double ABE algorithm. Indeed,
the corresponding black-dashed line (“Expected before”)
has more nonzero coefficients than we found numerically.
This inspired us to find a different analytic relation for the
lollipop observable, which yielded an improved black-
dotted line (“Expected after”) with a smaller loss function:

ð36Þ

Amusingly, this is just the reversed triple dumbbell relation
from Eq. (31).

B. Advantage of refinement

We now evaluate the refinement approach given by the
two novel heuristics introduced in Sec. IV C. For this, we
use the degeneracy-engineered classical annealing with
double ABE, employing the same annealing parameters,
annealing schedule, and observables as in Sec. VI A.
When studying the performance of the two novel

heuristics, we have to account for the fact that l0-norm
and l1-norm regression have different loss functions; see
Eq. (3). This requires us to choose an alternative presen-
tation compared to Fig. 2 since the meaning of λ differs. We
choose to plot the median of the unregularized MSE loss
function in Eq. (1) as a function of the mean number of
nonzero fit coefficients since both of these quantities have
meaning for any regularization scheme. To compute the
error bars for the MSE, we take the 25% and 75% quantiles
from ten distinct runs. To compute the mean number and
the corresponding error bars of the nonzero fit coefficients,
we average over these ten distinct runs.

In Fig. 3, we compare the standard l0-norm regression
(blue) to the two novel heuristics: refined l0-norm regres-
sion (red) and refined l1-norm regression (orange). As
explained in Sec. IV C, we use unregularized regression to
refine the nonzero coefficient values while clamping
coefficients that were set to zero in the original regularized
regression. Refinement improves the MSE performance of
standard l0- and l1-norm regression with only moderate
computational overhead.
The large fluctuations in themedianMSE in Fig. 3 are due

to the fact that even after refinement, single bit flips in the
solution can yield large changes in the model. This makes
it somewhat difficult to interpret these plots, but we can
draw two general lessons. First, there is a tradeoff between
lowering the number of relevant nonzero fit coefficients—
implicitly via making λ larger—and increasing the MSE. As
the number of nonzero coefficients decreases, the accuracy of
the regression solution worsens as expected. Second, the
refined l0-norm regression and the refined l1-norm regres-
sion perform similarly well for all twelve observables we
studied. For a fixed number of nonzero coefficients, both
refined heuristics yield substantially lowerMSE compared to
unrefined l0-norm regression.

C. Advantage of l0-norm regularization

The key premise of our analysis is that l0-norm
regularization should yield sparser solutions to EFP regres-
sion problems than l1- and l2-norm regularization. To test
this, we compare the refined version of l0-norm regulari-
zation to the standard versions of l1- and l2-norm
regression. As in Sec. VI B, we plot the median MSE
loss as a function of the mean number of nonzero fit
coefficients.
Results are shown in Fig. 4, for refined l0-norm

regression (red), l1-norm regression (orange), and l2-norm
regression (green). Because l2-norm regression does not
yield a sparse solution for any value of λ, the green line is
vertical on these plots. For specific observables, including
the lollipop observable in Fig. 4(g), only refined l0-norm
regression manages to consistently find the exact solution,
independently of the number of nonzero coefficients. This
can be seen from comparing the very small MSE values
for the l0-norm case to the large MSE values obtained for
l1- and l2-norm regression. Thus, the heuristic of refined
l0-norm regression manages to minimize the number of
nonzero coefficients as effectively as l1-norm regression,
while also finding an exact solution. For all observables,
only refined l0-norm regression manages to consistently
find a nearly exact solution (as measured by MSE), when
the number of nonzero coefficients is large.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 3. Median MSE loss function in Eq. (1) as a function of the mean number of nonzero coefficients, comparing l0-norm regression
(blue) with refined l0-norm (red) and l1-norm (orange) regression. The same twelve observables from Table I with (a)–(l) labels
are shown.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Same as Fig. 3, but now comparing refined l0-norm regression (red) to standard l1-norm (orange) and l2-norm (green)
regression. The (a)–(l) are defined in Table I.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 5. Same as Fig. 2, but comparing classical annealing (solid blue) to PIMC (dashed blue) as a proxy for quantum annealing, using
the double ABE. As discussed in footnote, panel (l) has been replaced by a burnt charger. The (a)–(l) are defined in Table I.
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D. Challenges for quantum annealing

As our final numerical study, we assess the potential
gains from quantum computing by comparing classical
annealing to PIMC. Recall from Sec. IV B that PIMC
serves as a proxy for quantum annealing. We use the same
observables as Sec. VI A, but a different annealing schedule
to attempt an apples-to-apples comparison. For classical
annealing, the distributions are initialized at the inverse
temperature β0 ¼ 1=T0 ¼ 10 and then cooled to the inverse
temperature βl ¼ 1=Tl ¼ 108 by a geometric annealing
schedule of l ¼ 2048 steps. For PIMC, JðsÞ increases
geometrically from 10 to 108, while ΓðsÞ decreases
geometrically from Γ ¼ 1 to Γ ¼ 0, once again over
l ¼ 2048 annealing steps. We use double ABE for both
methods.
In Fig. 5, we plot the number of nonzero coefficients as a

function of the l0-norm coefficient λ. We compare the
performance of classical annealing (solid blue) with PIMC
(dashed blue). As in Fig. 2, the error bars are computed
by averaging the results over ten distinct runs, and we plot
the best-case analytical expectation (black dashed) for all
nonapproximate relations. In Fig. 7 of Appendix B, we plot
the loss as a function of λ as an alternative way to assess the
potential gains from quantum computing.
For the lollipop observable in Fig. 5(g), we again observe

that our original theoretical expectation was outperformed
by both classical annealing and PIMC. PIMC is actually
able to do a better job in the vicinity of λ ≃ 0.1, though
classical annealing does slightly better at smaller λ. For all
observables, we find that the performance of classical
annealing and PIMC are similar, both with respect to the
number of nonzero coefficients and with respect to the
loss function; see Fig. 7. The main difference between
classical annealing and PIMC is the significantly higher
(classical) computation cost of the latter.3

These results demonstrate the robustness of the regres-
sion performance with respect to changing the annealing
method. On the other hand, these findings suggest that true
quantum annealing may not yield performance gains for
this particular optimization problem.

VII. CONCLUSIONS

In this paper, we introduced the technique of degeneracy
engineering, which is a strategy to improve the perfor-
mance of both classical and quantum annealing algorithms
by increasing the relative degeneracy of the ground state by
manipulating a subset of terms in the problem Hamiltonian.
We applied this new concept to the NP-hard problem of

l0-norm regularization for sparse linear regression, focus-
ing on a case study in high-energy collider physics.
The key theoretical insights of this paper are twofold.

First, we discovered an efficient representation of l0-norm
regularization as a QUBO problem, which opens up the
possibility to study this problem with quantum annealing
without relying on potentially inefficient gadgetization
[32]. Second, we found that the relative degeneracy of
the ground state of the l0 regularizer can be increased by
increasing the degree of redundancy in the qubit encoding
scheme for the linear fit coefficients. In practice, our
numerical simulations suggest that this changes the spec-
trum of the total problem Hamiltonian to a spectrum that is
more amenable to annealing strategies.
In detailed numerical experiments, we demonstrated the

advantages of using l0-norm regularization for sparse
linear regression and of employing degeneracy engineer-
ing. In a case study on EFPs in collider physics, we
compared five different regularization methods, including
the standard l2-, l1-, and l0-norm regularization, as well as
two novel heuristics that refine l0-norm regularization. We
found an advantage of l0-norm regularization compared to
l1- and l2-norm regularization, with the best performance
obtained using the two refinement heuristics. We also
compared standard simulated annealing to the PIMC as
a proxy for quantum annealing, where we found similar
performances for both approaches. Most importantly, we
compared different encoding schemes with different
degrees of redundancy, finding significantly better perfor-
mance from the degeneracy-engineered QUBO implemen-
tation with a higher degree of redundancy.
What are the prospects, limitations, and requirements of

degeneracy engineering? The concept of degeneracy engi-
neering potentially has wide-range applicability, in par-
ticular, for Hamiltonians containing a penalty term that is
easy to study analytically. Penalty terms are ubiquitous in
optimization problems and beyond, ranging from l0-norm
regularization terms to penalty terms enforcing physical
constraints or symmetries (see Ref. [53] for an example
of penalty terms in particle track reconstruction). While
ground-state energies of generic Hamiltonians can be
negative, penalty terms employ absolute values and thus
vanish under minimization. This feature makes penalty
terms the ideal candidates for degeneracy engineering, as
one can potentially engineer multiple zero values for the
ground-state energy of a penalty term. As we exemplified
in Eq. (18), this can be achieved by exploiting cancellations
of positive and negative contributions to the ground-state
energy. Quantum annealing platforms could substantially
benefit from this concept but would require a large degree
of connectivity for the ancilla qubit(s), as illustrated
in Fig. 1.
Our results motivate studies of degeneracy engineering

for optimization problems beyond sparse linear regression.
We also expect degeneracy engineering to be applicable to

3When trying to perform PIMC on the twelfth observable
“Planar event (approximate),” we burnt out a laptop power
supply, as illustrated in Fig. 5(l). We decided against tempting
fate to test this observable on a high-performance computer.
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optimization methods beyond classical and quantum
annealing, including variational quantum simulations on
digital quantum computers [54,55] and classical optimiza-
tion methods like tensor-network methods [56]. If a task is
aimed at finding the ground-state energy of a Hamiltonian,
then it will likely benefit from engineering more ground-
state configurations.
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APPENDIX A: TECHNICAL DETAILS
OF PATH INTEGRAL MONTE CARLO

In this appendix, we review some technical details [57]
of deriving the path-integral representation of the Ising
model used to simulate quantum annealing. We start with
the transverse Ising Hamiltonian in Eq. (20),

H ¼
X
hiji

Jijσ
z
iσ

z
j þ Γ

X
i¼1

σxi ; ðA1Þ

where Jij are couplings between nearest-neighbor sites and
Γ is the transverse field. The latter does not commute with
the classical Ising term and therefore turns the Ising model
from classical to quantum.
To derive the path-integral representation of the quantum

Hamiltonian in Eq. (A1), we first split this Hamiltonian into
its kinetic energy term K and its potential energy term U
given by

K ¼ Γ
X
i¼1

σxi ; U ¼
X
hiji

Jijσ
z
iσ

z
j; ðA2Þ

such that H ¼ K þ U and ½K;U� ≠ 0.
Then, we write down the partition function Z at the

temperature T ¼ 1=β as

Z ¼ Tre−βH

¼ Trðe−βðKþUÞ=PÞP

¼
X
s1

…
X
sP

hs1je−βðKþUÞ=Pjs2i

× hs2je−βðKþUÞ=P…jsPihsPje−βðKþUÞ=Pjs1i; ðA3Þ

where we inserted the identity operator 1 ¼ P
sm jsmihsmj

in the last equality and denoted sm ¼ fsmi g as a configu-
ration of all spins in the mth Trotter slice.
Next, we turn the exact expression for the partition

function in Eq. (A3) into an approximate expression,

Z≈ZP¼
X
s1

…
X
sP

hs1je−βK=Pe−βU=Pjs2i

×hs2je−βK=Pe−βU=P…jsPihsPje−βK=Pe−βU=Pjs1i; ðA4Þ

by using the Trotter breakup formula,

e−βðKþUÞ=P ≈ e−βK=Pe−βU=P; ðA5Þ

which neglects nonzero commutators of K and U. The
expression for ZP in Eq. (A4) approximates the original
partition function Z in Eq. (A3) with an error that is
proportional to ðΔtÞ2, where Δt ¼ β=P is the so-called
Trotter breakup time.
As a next step, we observe that the potential energy U is

diagonal in the chosen spin basis. Thus, the only nontrivial
term in Eq. (A4) is the average of the kinetic term K
between two Trotter slices,

hsmje−βK=Pe−βU=Pjsmþ1i
¼ hsmje−βK=Pjsmþ1ie−βUðsmþ1Þ=P: ðA6Þ

The kinetic part of this equation contains a sum over the
spin sites in the exponential, which can be expressed as a
product of expectation values,
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hsmje−βK=Pjsmþ1i ¼ hsmj exp
�
−
βΓ
P

XN
i¼1

σxi

�
jsmþ1i

¼
YN
i¼1

hsmj exp
�
−
βΓ
P

σxi

�
jsmþ1i ðA7Þ

because spin operators at different sites k and kþ 1
commute. Here, N is the number of lattice sites.
The most crucial step of the derivation, which turns the

model from quantum into classical, is the following. In the
case of spin-1=2, one can show that

h↑jeασx j↑i ¼ h↓jeασx j↓i ¼ coshðαÞ;
h↑jeασx j↓i ¼ h↓jeασx j↑i ¼ sinhðαÞ; ðA8Þ

which implies that one can rewrite the transversal-field
(quantum) term as an Ising-like (classical) interaction
between different spins s and s0 with ss0 ¼ �1,

hsjeασx js0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ sinhð2αÞ

p
e−ð1=2Þ ln tanhðαÞss0

≡ CeBss
0
: ðA9Þ

Combining Eqs. (A6), (A7), and (A9), we find

hsmje−βK=Pe−βU=Pjsmþ1i

¼ CN exp

�
J⊥
PT

X
i

smi s
mþ1
i

�
exp

�
1

PT

X
hiji

Jijsmi s
m
j

�
;

ðA10Þ
where we have defined

J⊥ ¼ PT
2

ln tanh

�
Γ
PT

�
> 0;

C2 ¼ 1

2
sinh

�
2Γ
PT

�
: ðA11Þ

Thus, the J⊥ term in Eq. (A10) yields a ferromagnetic
Ising-like coupling between the spins smi and smþ1

i , which
are nearest neighbors along the Trotter dimension.

Finally, we can express the partition function of the
d-dimensional quantum system in Eq. (A4) as a partition
function of a (dþ 1)-dimensional classical system,

Z ≈ ZP ¼ CNP
X
s1

…
X
sP

e−Hdþ1=PT; ðA12Þ

where the (dþ 1)-dimensional classical Hamiltonian is
given by

Hdþ1 ¼ −
XP
m¼1

�X
hiji

JðsÞsmi smj þ JT
X
i

smi s
mþ1
i

�
: ðA13Þ

Here, sm ¼ fsmi g denotes a configuration of all the spins in
the mth Trotter slice, whereM þ 1 is identified with m and
JT is the uniform coupling along the extra (imaginary time)
direction.

APPENDIX B: ADDITIONAL PLOTS

In this appendix, we present additional plots to comple-
ment the discussion in Sec. VI.
In Fig. 6, we give an alternative comparison of double

ABE versus single ABE. The advantage of using double
ABE was already shown in Fig. 2 in terms of the number
of identified nonzero fit coefficients as a function of the
l0-norm coefficient λ. Here, we plot the l0-norm regular-
ized loss from Eq. (3) as a function of λ, comparing the
single ABE (light blue) to the double ABE (dark blue). For
all observables, we find that the degeneracy-engineered
version with double ABE performs equally well or better in
terms of lowering the loss function.
In Fig. 7, we give an alternative comparison of classical

annealing and PIMC. Like for Fig. 5, we use the degen-
eracy-engineered encoding with double ABE, but now
plotting the l0-norm regularized loss as a function of λ.
Comparing classical annealing (solid blue) to PIMC
(dashed blue), we find similar performance across the
twelve relations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 6. Same as Fig. 2, but plotting the l0-norm regularized loss function in Eq. (3) as a function of the l0-norm coefficient λ. The
(a)–(l) are defined in Table I.
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FIG. 7. Same as Fig. 5, but plotting the l0-norm regularized loss function in Eq. (3) as a function of the l0-norm coefficient λ. Panel (l)
is identical to Fig. 5(l). The (a)–(l) are defined in Table I.

ERIC R. ANSCHUETZ et al. PHYS. REV. D 106, 056008 (2022)

056008-20



[1] T. Kadowaki and H. Nishimori, Quantum annealing in the
transverse Ising model, Phys. Rev. E 58, 5355 (1998).

[2] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computationby adiabatic evolution, arXiv:quant-ph/0001106.

[3] T. Kadowaki, Study of optimization problems by quantum
annealing, arXiv:quant-ph/0205020.

[4] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,
and D. Preda, A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem,
Science 292, 472 (2001).

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
arXiv:1307.0411.

[6] R. Babbush, P. J. Love, and A. Aspuru-Guzik, Adiabatic
quantum simulation of quantum chemistry, Sci. Rep. 4,
6603 (2014).

[7] A. Perdomo-Ortiz, N. Dickson,M.Drew-Brook, G. Rose, and
A.Aspuru-Guzik,Finding low-energyconformations of lattice
protein models by quantum annealing, arXiv:1204.5485.

[8] A. Lucas, Ising formulations of many NP problems, Front.
Phys. 2, 5 (2014).

[9] K. Binder and A. P. Young, Spin glasses: Experimental
facts, theoretical concepts, and open questions, Rev. Mod.
Phys. 58, 801 (1986).

[10] H. Nishimori, Statistical Physics of Spin Glasses and
Information Processing: An Introduction (Clarendon Press,
Oxford, UK, 2001).
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