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We show how to compute classical wave observables using quantum scattering amplitudes. We discuss
observables both with incoming and with outgoing waves. The required classical limits are naturally
described by coherent states of massless bosons. We recompute the classic gravitational deflection of light,
and also show how to rederive Thomson scattering. We introduce a new class of local observables, which
includes the asymptotic electromagnetic and gravitational Newman-Penrose scalars. As an example, we
compute a simple radiated waveform: the expectation of the electromagnetic field in charged-particle
scattering. At leading order, the waveform is trivially related to the five-point scattering amplitude.
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I. INTRODUCTION

Theoretical waveforms play an important role in the
LIGO/Virgo Collaboration’s observational program of
gravitational-wave events from binary mergers [1,2].
These waveforms provide templates that enable the detec-
tion of events against otherwise overwhelming noise back-
grounds. They also allow observers to extract the masses
and spins of the binaries’ constituents [3]. To date, theorists
have computed waveforms (or equivalently, spectral
functions for decaying binaries) using long-established
effective-one-body methods [4] and numerical-relativity
approaches [5], in addition to methods based on the
“traditional” Arnowitt-Deser-Misner Hamiltonian formal-
ism [6], direct post-Newtonian solutions in harmonic gauge
[7], and computations in the effective-field theory approach
pioneered by Goldberger and Rothstein [8,9].
The start of the gravitational-wave observational era has

spurred theorists to explore new approaches to computing
classical observables for the two-body problem in gravity,
in particular using quantum scattering amplitudes. The
connection between the quantum S-matrix and observables

in classical general relativity (GR) was first explored
nearly 50 years ago by Iwasaki [10]. More recently,
renewed interest has been driven by modern on shell
techniques for computing amplitudes and the double-copy
relation between Yang-Mills and gravitational amplitudes
[11–39], as well as the bounty of observations. Earlier
investigations included extraction of the two-body potential
from amplitudes and the study of quantum corrections to
gravity [40,41].
An important step was taken by Cheung, Solon, and

Rothstein [42], building on earlier work by Neill and
Rothstein [43]. Cheung, Solon, and Rothstein showed
how to match effective field theories (EFTs) efficiently
to scattering amplitudes above threshold in order to extract
a classical potential. The classical potential can then be
used in the effective-one-body or other frameworks to
make predictions for bound-state quantities. Bern, Cheung,
Roiban, Shen, Solon, and Zeng used [44] this approach
to compute the third-order corrections (G3) to the
conservative potential. This milestone computation went
beyond what had been known from direct classical GR
calculations and provided the first concrete fulfillment of
the promise of the scattering-amplitudes class of methods.
It used a two-loop scattering amplitude for massive
particles and was followed by many new calculations using
amplitude methods [45–66]. New EFT-based results
have also emerged [67–94]. In this context, Kälin and
Porto have pointed out an interesting analytic continuation
from scattering to bound-state observables [84,89]. Several
groups have pursued an eikonal approach [95–101] and
connections to it [102]. Another approach which has seen
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recent attention is the worldline formalism [8,103,104]. In
the context of EFT, this worldline approach is particularly
important since it makes immediate sense classically.
Treated as an effective quantum field theory, this means
that it organizes quantum corrections particularly simply.
Finally, two of the present authors have examined light-ray
operators [105] and shock waves [106]. Researchers work-
ing within a traditional GR framework have also continued
to produce new results [107–121].
In a previous paper [122], two of the present authors and

Maybee outlined an observables-based approach to com-
puting classical quantities. It starts with an observable in
the quantum theory, expressing it in terms of scattering
amplitudes; and then uses an efficient and controlled
method for taking the classical limit. In this approach,
rather than trying to compute intermediate quantities such
as the conservative potential, we write down a formal
expression for an observable of interest—for example, the
total change in the momentum of one of two scattered
particles, also known as its impulse—in the quantum
theory. With an appropriate wave function for the initial
state, we can express the chosen observable in terms of
quantum scattering amplitudes. We further restore powers
of ℏ via dimensional analysis. At this stage, the ℏ scaling is
naively bad, as the observable may be seemingly divergent
in the classical, ℏ → 0 limit, and loop corrections appear to
be increasingly divergent with increasing order.
The original paper [122] focused on scattering two

massive particles. Appropriate wave functions were neces-
sary to localize each incoming particle. This localization
will sharpen in the classical limit, when we are focusing on
point particles. The localization will in turn lead us to retain
momenta for the scattering particles in the expression for
the observable, but to use wave numbers for exchanged,
emitted, or virtual massless particles (photons or gravitons).
The change of variables from momenta to wave numbers
for the latter reveals additional powers of ℏ that then yield a
finite classical limit at each perturbative order. Herrmann,
Parra-Martinez, Ruf, and Zeng [48,49], and separately
Bautista and Guevara [62] have applied this approach in
their calculations.
Reference [122] did not discuss massless bosonic par-

ticles, in particular in the initial state. We remedy that in this
article. Furthermore, Ref. [122] focused only on global
observables, which require surrounding an event with a
detector of 4π coverage. We remedy this as well with a
discussion of local observables, such as electromagnetic
and gravitational waveforms. Newman-Penrose [123] sca-
lars provide a natural language for these quantities. We will
introduce these two principal topics of our article in the
remainder of this introduction.
Let us begin with the question of initial-state massless

bosons. In the classical limit, one describes massive
particles as superpositions of single-particle states. They
ultimately appear as pointlike particles or extended bodies.

In contrast, massless bosons appear as waves or wave
packets. It is no longer possible to describe them as
superpositions of single-particle states. Instead, we shall
see that they emerge most naturally from coherent states of
the corresponding quantum fields. Such states are inher-
ently superpositions of multiparticle states.
The significance of coherent states was emphasized

by Glauber from 1963 on. He proved that every quantum
state of radiation—that is, every density matrix—can be
described as a suitable superposition of coherent states
[124,125]. In particular, in the classical limit one can
describe these density matrices using the so-called
Glauber-Sudarshan P representation [125,126]. In this
representation, there is a classical probability distribution
in the space of coherent states. The application of coherent
states to the classical limit of quantum scattering ampli-
tudes started soon afterwards in the work of Frantz, Kibble,
and Brown [127–129], but a systematic analysis of the
question was still lacking [130]. Most calculations were
limited to the solvable model of the linear interactions
of a current (or a stress tensor) with the associated field
[131–133]: in this case the S matrix is solvable to all orders
in perturbation theory, and its structure is exactly equivalent
to a coherent state. Yaffe later showed [134] that coherent
states are very convenient for understanding the emergence
of the classical approximation from quantum physics
quite generally. Concrete applications are nonetheless rare
in the literature, especially outside the case of a single
particle interacting with a fixed coherent background
(see Ref. [135] and references therein).1 Coherent states
have a close connection to soft limits and infrared
divergences, which provide a natural arena for their
emergence in the late-time dynamics of QED and linearized
gravity [137–142].
Let us turn next to the question of local observables. In

Ref. [122], the authors studied time-integrated observables,
in the context of scalar electrodynamics, and validated the
amplitude-based approach through comparisons with direct
calculations in classical electromagnetism. What is of more
direct interest to observers, however, are time-dependent
observables such as radiation waveforms. These are exam-
ples of a class of observables which are local in the sense
that they describe a measurement at one spacetime point
(or in a small region of spacetime). The time-integrated
observables of Ref. [122] in principle require an apparatus
which completely surrounds a scattering event, so that
(for example) the impulse of any incoming particle can be
measured. We describe this class of observables as global
as a result.
In this article, we establish a direct connection between

local observables, such as waveforms, and scattering
amplitudes. We validate our approach with a calculation

1Reference [136] offers a notable exception in the context of
the superradiance problem.
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of a simple waveform, arising from the scattering of two
charged particles in scalar QED. We will see that wave-
forms are effectively amplitudes for detecting massless
particles, or waves in the classical limit. We show how to
write appropriate quantum observables, and how to take
their limits. Finally, we provide a direct connection
between the celebrated Newman-Penrose formalism [123]
and scattering amplitudes.
As our work has progressed, we have become aware of a

parallel line of investigation byBautista, Guevara, Kavanagh,
and Vines [143]. Their work is broadly complementary to
ours, but touches on some of the same themes: the connection
between the Compton amplitude and classical wave scatter-
ing, for example, and the close connection between the
Newman-Penrose scalars and helicity amplitudes.
Our article is organized as follows. We begin in the next

section with a review of the formalism of Ref. [122]. In
Sec. III, we review coherent states for the electromagnetic
field, show how they correspond to classical fields, and give
a simple example of a light beam built from them. In
Sec. IV, we discuss global observables with massless waves
in the initial state, concentrating on the impulse in this
context. As examples, we discuss Thomson scattering and
its relation to the Compton amplitude, and we examine the
calculation of the gravitational deflection of light within our
formalism. We turn to the second major topic of our article
in Sec. V with a discussion of the general form of local
observables far from some event. Section VI follows with
an introduction to spectral aspects of local observables,
leading to the Newman-Penrose projection formalism.
In Sec. VII, we pause the general development to give
example of a local observable: the scattered radiation field
in Thomson scattering. In Sec. VIII, we present the general
form of the emission waveform when two massive particles
scatter, and in Sec. IX we give explicit results for
electromagnetic emission in charged-particle scattering to
leading order. We discuss the connection between the
waveform and the total radiated momentum in Sec. X,
and end with concluding remarks in Sec. XI.

II. REVIEW OF FORMALISM

We use relativistic units, retaining c ¼ 1, even as we
restore ℏ explicitly. This means that we must distinguish
units of energy and length, which we denote by [M] and [L],
respectively. In this article, we will use a different normali-
zation than the conventions of Ref. [122] (which are also the
conventions of Peskin and Schroeder [144]). Here, we
normalize the annihilation and creation operators such that

½ap; a†p0 � ¼ ð2πÞ32Epδ
ð3Þðp − p0Þ: ð2:1Þ

(Bold symbols denote spatial three-vectors.) Accordingly,
n-point scattering amplitudes continue to have dimension
½M�4−n.

We keep ½M�−1 as the dimension of single-particle
states jpi,

jpi≡ a†pj0i; ð2:2Þ

with the vacuum state being dimensionless. We define
n-particle plane-wave states as simply the tensor product of
normalized single-particle states. (The normalization of the
single-particle states is the same as in Ref. [122].) The state
jpi represents a particle of momentum p and positive
energy, while hpj ¼ h0jap is the conjugate state.
We find it convenient to define an n-fold Dirac δ

distribution with normalization absorbing 2πs,

δ̂ðnÞðpÞ≡ ð2πÞnδðnÞðpÞ: ð2:3Þ

The scattering matrix S and the transition matrix T are
both dimensionless. Scattering amplitudes are matrix ele-
ments of the latter between plane-wave states,

hp0
1 � ��p0

mjTjp1 �� �pni¼Aðp1 �� �pn→p0
1 � � �p0

mÞ
× δ̂ð4Þðp1þ���þpn−p0

1− �� �−p0
mÞ:

ð2:4Þ

As our formalism encompasses both QED and gravity, as
well as other theories with massless force carriers, we
denote the coupling by g. In electrodynamics, it corre-
sponds to e, while in gravity to κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

. It is not
dimensionless once we have restored the factors of ℏ;
rather, it is g=

ffiffiffi
ℏ

p
that is the dimensionless coupling.

We start by taking the momenta of all particles as the
primary variables; but as explained in the introduction, for
most massless momenta, wave numbers are the variables of
interest. We introduce a notation for the wave number p̄
associated to the momentum p,

p̄≡ p=ℏ: ð2:5Þ

We use the notation of Ref. [122] for the on shell phase-
space measure,

dΦðpiÞ≡ d̂4pi δ̂
ðþÞðp2

i −m2
i Þ: ð2:6Þ

We will leave the mass implicit, along with the designation
of the integration variable as the first summand when the
argument is a sum. The notation for the measure again
absorbs factors of 2π,

d̂4p≡ d4p
ð2πÞ4 ; ð2:7Þ

and, as usual,
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δðþÞðp2 −m2Þ ¼ ΘðptÞδðp2 −m2Þ; ð2:8Þ

so that

δ̂ðþÞðp2 −m2Þ ¼ 2πΘðptÞδðp2 −m2Þ: ð2:9Þ

(pt is the energy component of the four-vector.)
Given our convention for normalizing single-particle

states, their inner product is

hp0jpi ¼ 2Epδ̂
ð3Þðp − p0Þ: ð2:10Þ

The expression on the right-hand side is the appropriately
normalized delta function for the on shell measure, which is
convenient to express in more compact notation,

δ̂Φðp1 − p0
1Þ≡ 2Ep1

δ̂ð3Þðp1 − p01Þ: ð2:11Þ

We should understand the argument on the left-hand side as
a function of four-vectors. In this notation, Eq. (2.10) is
simply

hp0jpi ¼ δ̂Φðp − p0Þ: ð2:12Þ

With this notation, we can also rewrite the normalization of
creation and annihilation operations (2.1) in a natural form:

½ap; a†p0� ¼ δ̂Φðp − p0Þ: ð2:13Þ

Wewill also employ the notation aðkÞ≡ ak and a†ðkÞ≡ a†k
to allow for additional indices.
Reference [122] exclusively considers the scattering

of two massive pointlike particles. In this article we go
beyond that discussion to consider initial states which may
involve massless radiation. However, when appropriate
we will continue to use the notation of Ref. [122] for
initial states involving only massive particles: we take the
initial momenta to be p1 and p2, initially separated by a
transverse impact parameter b. The latter is transverse in
that p1 · b ¼ 0 ¼ p2 · b.
In the quantum theory, the system of massive particles is

described by wave functions, which we build out of plane
waves. In the classical limit, these wave functions must
localize the two pointlike particles and must separate them
clearly. We describe the incoming particles in the far past
by wave functions ϕiðpiÞ, which we take to have reason-
ably well-defined positions and momenta. We will review
the requirements on the wave packets, discussed in detail in
Sec. 4 of Ref. [122].
We express the initial state in terms of plane waves

jp1p2iin,

jψiin ¼
Z

d̂4p1d̂
4p2δ̂

ðþÞðp2
1 −m2

1Þδ̂ðþÞðp2
2 −m2

2Þ

× ϕ1ðp1Þϕ2ðp2Þeib·p1=ℏjp1p2iin
¼

Z
dΦðp1ÞdΦðp2Þϕ1ðp1Þϕ2ðp2Þeib·p1=ℏjp1p2iin:

ð2:14Þ

We require each wave function ϕi to be normalized to
unity,

Z
dΦðp1Þjϕ1ðp1Þj2 ¼ 1; ð2:15Þ

so that our incoming state is also normalized to unity,

inhψ jψiin ¼
Z

dΦðp1ÞdΦðp2ÞdΦðp0
1ÞdΦðp0

2Þeib·ðp1−p0
1
Þ=ℏ

× ϕ1ðp1Þϕ�
1ðp0

1Þϕ2ðp2Þϕ�
2ðp0

2Þδ̂Φðp1 − p0
1Þ

× δ̂Φðp2 − p0
2Þ

¼
Z

dΦðp1ÞdΦðp2Þjϕ1ðp1Þj2jϕ2ðp2Þj2

¼ 1: ð2:16Þ

Finally, we turn to a review of the classical limit. As
discussed in Ref. [122], there are three scales we must
consider in the context of massive particle scattering: the

Compton wavelengths of the particles, lðiÞ
c ≡ ℏ=mi; the

intrinsic spread of the two particles’ wave packets, given by
lw; and the scattering length, ls. Taking the classical limit
requires that we impose the “Goldilocks” conditions,

lðiÞ
c ≪ lw ≪ ls: ð2:17Þ

The calculation of the scattering reveals that ls ∼
ffiffiffiffiffiffiffiffi
−b2

p
.

In order to expand in the ℏ → 0 limit and extract the
leading, classical, term for any observable, as mentioned
above we must make the powers of ℏ explicit. These arise
from two sources: powers ordinarily hidden inside electro-
magnetic or gravitational couplings and powers arising
from keeping the wave numbers of massless particles fixed
rather than their momenta. This is true both for emitted and
virtual particles, when considering quantities such as the
total emitted radiation.

III. CLASSICAL LIMIT FOR MASSLESS
PARTICLES

We are now ready to address the first major topic of this
article: how to include initial-state massless classical waves
in the formalism of Ref. [122]. A naive extension of the
considerations of Ref. [122] to massless particles is clearly
impossible. A particle’s Compton wavelength diverges
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when its mass goes to zero, making it impossible to satisfy
the required conditions (2.17). It does not make sense to
treat messengers (photons or gravitons) as pointlike par-
ticles. Indeed, Newton and Wigner [145] and Wightman
[146] proved rigorously long ago that a strict localization of
known massless particles in position space is impossible.2

A proper treatment instead relies on coherent states. We
begin such a treatment in the following subsection by
discussing general aspects of coherent states, focusing on
the electromagnetic case. We then describe the kind of
coherent states of interest to us.

A. Coherent states of the electromagnetic field

We can write the electromagnetic field operator as

AμðxÞ ¼
1ffiffiffi
ℏ

p
X
η

Z
dΦðkÞ½aðηÞðkÞεðηÞ�μ ðkÞe−ik·x=ℏ

þ a†ðηÞðkÞεðηÞμ ðkÞeþik·x=ℏ�; ð3:1Þ

where η ¼ � labels the helicity, and the polarization
vectors satisfy

½εðηÞμ ðkÞ�� ¼ εð−ηÞμ ðkÞ: ð3:2Þ

We follow the usual amplitudes convention of representing
an outgoing positive-helicity photon of momentum k by

εðþÞ
μ ðkÞ, which also corresponds to an incoming negative-
helicity photon of the opposite momentum. To understand
the helicity flip for an incoming state, note that we can
analytically continue an incoming momentum k to an
outgoing momentum k0 ¼ −k. The energy component k0t
of the outgoing momentum is now negative. Thus, in an all-
outgoing convention, positive-helicity photons of momen-
tum kwith kt > 0 are represented by the polarization vector

εðþÞ
μ ðkÞ, while positive-helicity photons of momentum k
with kt < 0 are represented by the polarization vector

εð−Þμ ðkÞ.
More generally, a†ðηÞðkÞ creates a single-messenger state

of momentum k and helicity η, while aðηÞðkÞ destroys such a
state. Equivalently, the latter operator creates a conjugate
state of momentum k and helicity η.
The commutation relations are

½aðηÞðkÞ; a†ðη0Þðk0Þ� ¼ δη;η0 δ̂Φðk − k0Þ: ð3:3Þ

For example, a single-particle positive-helicity state is

jkþi≡ a†ðþÞðkÞj0i ¼ ½aðþÞðkÞ�†j0i: ð3:4Þ

The conjugate state is hkþj.

Using the form of the electromagnetic field in Eq. (3.1),
the electromagnetic field strength operator is

FμνðxÞ ¼ −
2i

ℏ3=2

X
η

Z
dΦðkÞ

h
aðηÞðkÞk½μεðηÞ�ν� ðkÞe−ik·x=ℏ

− a†ðηÞðkÞk½μεðηÞν� ðkÞeþik·x=ℏ
i
; ð3:5Þ

where as usual the subscripted brackets denote antisym-
metrization:

A½μBν� ¼
1

2
ðAμBν − AνBμÞ: ð3:6Þ

We introduce the coherent-state operator,

Cα;ðηÞ ≡N α exp

�Z
dΦðkÞαðkÞa†ðηÞðkÞ

�
; ð3:7Þ

where the normalization N α will be given below. We can
build coherent states of the electromagnetic field using this
operator, such as a positive-helicity one,

jαþi ¼ Cα;ðþÞj0i: ð3:8Þ

More generally, we could consider coherent states contain-
ing both helicities. As coherent-state operators for different
helicities commute and every polarization vector can be
decomposed in the helicity basis, there is no loss of
generality in making a specific helicity choice for the
coherent states we consider. The coherent state operators
are unitary,

ðCα;ðηÞÞ† ¼ ðCα;ðηÞÞ−1: ð3:9Þ

The normalization factor N α is determined by the
condition hαþjαþi ¼ 1, that is,

N α ¼ exp
�
−
1

2

Z
dΦðkÞjαðkÞj2

�
; ð3:10Þ

as can be seen by using the Baker-Campbell-Hausdorff
formula.
At this stage, the function αðkÞ is quite general, however

in specific examples, we may take it to be real. We will
see below that it is subject to certain restrictions in the
classical limit. We will also see that its functional form will
determine the physical shape of the corresponding state,
so we will call it the “wave shape” function.
The coherent-state creation operator acting on the

vacuum can be rewritten using the Baker-Campbell-
Hausdorff identity as a displacement operator [127,128]
yielding2The proof holds for vector bosons and gravitons.
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Cα;ðηÞj0i ¼ exp

�Z
dΦðkÞðαðkÞa†ðηÞðkÞ− α�ðkÞaðηÞðkÞÞ

�
j0i:

ð3:11Þ

Its action on creation and annihilation operators is given by

C†
α;ðηÞaðρÞðkÞCα;ðηÞ ¼ aðρÞðkÞ þ δηραðkÞ;

C†
α;ðηÞa

†
ðρÞðkÞCα;ðηÞ ¼ a†ðρÞðkÞ þ δηρα

�ðkÞ: ð3:12Þ

To interpret the state, let us compute hαþjAμðxÞjαþi. It is
useful to note that

aðþÞðkÞjαþi ¼ αðkÞjαþi;
að−ÞðkÞjαþi ¼ 0;

hαþja†ðþÞðkÞ ¼ hαþjα�ðkÞ;
hαþja†ð−ÞðkÞ ¼ 0; ð3:13Þ

which incidentally imply that the dimension of αðkÞ is the
same as the dimension of the annihilation operator: inverse
mass. It is then easy to see that

hαþjAμðxÞjαþi ¼
1ffiffiffi
ℏ

p
Z

dΦðkÞ
h
αðkÞεðþÞ�

μ ðkÞe−ik·x=ℏ þ α�ðkÞεðþÞ
μ ðkÞeþik·x=ℏ

i

¼
Z

dΦðk̄Þ
h
ᾱðk̄ÞεðþÞ�

μ ðk̄Þe−ik̄·x þ ᾱ�ðk̄ÞεðþÞ
μ ðk̄Þeþik̄·x

i

≡ AclμðxÞ; ð3:14Þ

where we define

ᾱðk̄Þ≡ ℏ3=2αðkÞ: ð3:15Þ

Additional constraints on ᾱ will emerge below from the consideration of correlators in the classical limit. Note that the
polarization vector is invariant under the rescaling from a momentum to a wave vector: εðηÞðk̄Þ ¼ εðηÞðkÞ is independent of ℏ.
Now, the most general solution of the classical Maxwell equation in empty space is

X
η

AðηÞμ
cl ðxÞ ¼

X
η

Z
dΦðk̄Þ½Ãηðk̄ÞεðηÞ�μðk̄Þe−ik̄·x þ Ã�

ηðk̄ÞεðηÞμðk̄Þeþik̄·x� ð3:16Þ

in terms of Fourier coefficients Ãηðk̄Þ, which we can
identify as ᾱðk̄Þ. Evidently our state jαþi contributes only
the terms of positive helicity (η ¼ þ). A general coherent
state is created by a product of coherent-state operators,

jαðþÞ; αð−Þi ¼ CαðþÞ;ðþÞCαð−Þ;ð−Þj0i; ð3:17Þ

where the different helicities have different wave shapes
αð�ÞðkÞ. The expectationvalue of this statewill correspond to
any given classical wave as a linear superposition of the two
circular polarizations via suitable choice of αð�ÞðkÞ. In
examples wewill consider, the simpler state jαþiwill suffice.
To further illuminate the meaning of coherent states, we

may consider scattering amplitudes in the presence of a
nontrivial background field AclðxÞ. The scattering matrix in
the presence of this background field depends on it. We
denote this dependence by SðAclÞ. Using the properties of
the coherent state operator it can be shown that

C†
α;ðηÞSðAÞCα;ðηÞ ¼ SðAþ AðηÞ

cl Þ: ð3:18Þ

Here, SðAÞ denotes the S matrix in the presence of a
nontrivial quantum background field A. Coherent states
thus allow us to capture the physics of a specific back-
ground field based on vacuum scattering amplitudes:

C†
α;ðηÞSð0ÞCα;ðηÞ ¼ SðAðηÞ

cl Þ: ð3:19Þ

The formulation of the perturbation theory in a fixed
background is particularly convenient when the Feynman
rules—or the scattering amplitudes—in the background are
known exactly [147].

B. Classical coherent states

The coherence of a state does not suffice for it to behave
classically. We must also require factorization of expect-
ation values,

hαþjAμðxÞAνðyÞjαþi ≃ hαþjAμðxÞjαþihαþjAνðyÞjαþi:
ð3:20Þ
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A straightforward calculation in a light cone gauge defined by a lightlike vector q shows that

hαþjAμðxÞAνðyÞjαþi ¼ hαþjAμðxÞjαþihαþjAνðyÞjαþi þ 1

ℏ

Z
dΦðkÞ

�
ημν −

kμqν þ kνqμ

k · qþ iδ

�
e−ik·ðx−yÞ=ℏ;

¼ hαþjAμðxÞjαþihαþjAνðyÞjαþi þ ℏ
Z

dΦðk̄Þ
�
ημν −

k̄μqν þ k̄νqμ

k̄ · qþ iδ

�
e−ik̄·ðx−yÞ: ð3:21Þ

Similarly for the field strengths, in a gauge independent
way using Eq. (3.5), we obtain

hαþjFμνðxÞFρσðyÞjαþi ¼ hαþjFμνðxÞjαþihαþjFρσðyÞjαþi

þ 4ℏ∂ ½μην�½σ∂ρ�
Z

dΦðk̄Þe−ik̄·ðx−yÞ:

ð3:22Þ
For classical behavior, the second term on the right-hand

side of Eq. (3.22) must be negligible compared to the first
term. Writing Fμν

cl ðxÞ≡ hαþjFμνðxÞjαþi, the right-hand
side becomes

Fμν
cl ðxÞFρσ

cl ðyÞ þ
ℏ
π2

∂ ½μην�½σ∂ρ� 1

ðx − yÞ2 − ðx0 − y0 − iδÞ2 :

ð3:23Þ
The first term has a nontrivial limit as ℏ → 0, whereas the
second term goes to zero in the limit, consistent with our
expectations. For ℏ ≠ 0, it is not possible to satisfy the
inequality in the full spacetime region due to the divergence
on the light cone ðx0 − y0Þ2 ¼ jx − yj2 of the massless
photon propagator: causally connected measurements can-
not be disentangled. We expect these contributions to fade
away in the classical limit of a physical observable [128].
The factorization condition, which is trivial in the classical
limit, has been dubbed the “complete coherence condition”
in the literature,3 a term coined by Glauber [125].
As usual, we define the operator measuring the number

of photons to be

Nγ ¼
X
η

Z
dΦðkÞa†ðηÞðkÞaðηÞðkÞ: ð3:24Þ

A short computation shows that the expectation number Nγ

of photons in our coherent state is

Nγ ¼ hαþjNγjαþi

¼
Z

dΦðkÞjαðkÞj2;

¼ 1

ℏ

Z
dΦðk̄Þjᾱðk̄Þj2: ð3:25Þ

The classical limit ℏ → 0 thus corresponds to the limit of a
large number of photons, which is a limit of a large
occupation number [134]. The desired factorization prop-
erty Eq. (3.20) will thus hold when

Nγ ≫ 1: ð3:26Þ

We must choose the wave shape α such that the integral in
the last line of Eq. (3.25) is not parametrically small as
ℏ → 0. A simple way to do so is to chose ᾱ independent
of ℏ.
Similarly, the momentum carried by the coherent state is

Kμ
⊙ ¼ hαþjKμjαþi;

¼
Z

dΦðkÞjαðkÞj2kμ;

¼
Z

dΦðk̄Þjᾱðk̄Þj2k̄μ: ð3:27Þ

This quantity (“K beam”) is finite in the classical limit, as
expected.
We emphasize that this coherent-state construction and

its connection to classical states generalizes to any massless
particle, including gravitons. Finally, it is worth remarking
on the important and familiar case of geometric optics. This
is a purely classical approximation to wave phenomena,
valid in situations where the wavelength is negligible in
comparison to other physical scales. An important exam-
ple, which we discuss below, is of the gravitational bending
of light.

C. Localized beams of light

In this paper, one of our foci will be on phenomena
associated with scattering light from a pointlike object. For
problems of this type to be well defined, the incoming wave
must be spatially separated from the incoming particle in
the far past. Consequently, we need to understand how to
describe a localized incoming beam of light. We can choose
the beam to be moving in the z direction, localized around
the origin of the x − y plane. To see how to do this, let us
consider some examples.
The simplest option for the wave shape is

αðkÞ ¼ α⊙δ̂Φðk − ℏk̄⊙Þ; ð3:28Þ
3In the quantum optics literature the normal-ordered correlator

of the electric field at different spatial locations can have various
degrees of coherence [148].
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where k̄⊙ (“k-bar beam”) is the overall wave vector of the
wave, and α⊙ (“α beam”) is a constant which scales likeffiffiffi
ℏ

p
. Defining ᾱ⊙ ¼ ℏ−1=2α⊙, this choice implies that

ᾱðk̄Þ ¼ ᾱ⊙δ̂Φðk̄ − k̄⊙Þ; ð3:29Þ

and that the classical field takes the form

Aμ
clðxÞ ¼ 2Re ᾱ⊙ε

�μ
⊙ ðk̄⊙Þe−ik̄⊙·x: ð3:30Þ

It is worth pointing out here that the expectation value
of the gauge potential between coherent states is always a
real quantity: a physical field which can be measured.
We can choose

k̄μ⊙ ¼ ðω; 0; 0;ωÞ;

εμ⊙ ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; ð3:31Þ

to provide an explicit example. If we pick the normalization
of ᾱ to be given by ᾱ⊙ ¼ A⊙=

ffiffiffi
2

p
with A⊙ real, then the

classical field for this example is

Aμ
clðxÞ ¼ A⊙ð0; cosωðt − zÞ;− sinωðt − zÞ; 0Þ; ð3:32Þ

which is a plane wave of circular polarization4 moving
in the z direction with angular frequency ω. This wave is
completely delocalized, which is a disadvantage for our
purposes: we wish to have a clean separation between the
incoming wave and pointlike particle states.
To localize the wave, we may “broaden” the delta

function in Eq. (3.28). We define

δσðk̄Þ≡ 1

σ
ffiffiffi
π

p exp

�
−
k̄2

σ2

�
; ð3:33Þ

which is normalized so that

Z
∞

−∞
dk̄δσðk̄Þ ¼ 1: ð3:34Þ

The peak width is controlled by the parameter σ. As k̄ is a
wave number, σ has dimensions of inverse length. We may
choose our incoming wave, moving along the z axis, to be
symmetric under a rotation about that axis. Consider the
choice,

αðkÞ ¼ 1

ℏ3
jkjð2πÞ3A⊙

ffiffiffiffiffiffi
2ℏ

p
δσkðω − kz=ℏÞ

× δσ⊥ðkx=ℏÞδσ⊥ðky=ℏÞ; ð3:35Þ

or equivalently,

ᾱðk̄Þ ¼
ffiffiffi
2

p
jk̄jð2πÞ3A⊙δσkðω − k̄zÞδσ⊥ðk̄xÞδσ⊥ðk̄yÞ; ð3:36Þ

with A⊙ being real. (We use the superscripts t, x, y, and z to
denote the corresponding components of k̄.) We have
introduced two measures of beam spread, σk and σ⊥, along
and transverse to the wave direction, respectively. The
corresponding classical field is

Aμ
clðxÞ¼

ffiffiffi
2

p
A⊙Re

Z
d3k̄ε�μ⊙ ðk̄Þδσk ðω− k̄zÞ

×δσ⊥ðk̄xÞδσ⊥ðk̄yÞe−ik̄·x
����
k̄t¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk̄xÞ2þðk̄yÞ2þðk̄zÞ2

p : ð3:37Þ

We emphasize that other choices of wave shape are
available in the classical theory: the only constraint is that
Nγ must be large.
Let us further refine our example by taking σk to be very

small compared to the other two scales, σ⊥ and ω ¼ k̄t⊙.
We are thus considering a monochromatic beam, for
which we can replace δσk by a Dirac delta distribution.
Doing so, we obtain

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re

Z
d2k̄⊥ε�μ⊙ ðk̄Þδσ⊥ðk̄xÞ

× δσ⊥ðk̄yÞe−it
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þðk̄xÞ2þðk̄yÞ2

p
eiωzeik̄

xxeik̄
yy: ð3:38Þ

We can simplify this expression with the following con-
siderations. For the beam to be moving in the z direction,
the photons in the beam should dominantly have their
momenta, or equivalently their wave numbers, aligned in
the z direction. However, the broadened distribution δσ⊥
does allow small components of momentum in the x and y
directions. These components should be subdominant. The
corresponding x and ywave numbers are of order σ⊥, while
the wave number in the z direction is of order ω. Let us
define the (reduced) wavelength λ≡ ω−1. We must thus
require

λ−1 ≫ σ⊥: ð3:39Þ

We can also define a transverse size of the beam,

l⊥ ¼ σ−1⊥ ; ð3:40Þ

along with a “pulse length,”

lk ¼ σ−1k : ð3:41Þ

We see that we must require

λ ≪ l⊥: ð3:42Þ
4The wave hα−jAμjα−i is circularly polarized in the opposite

sense.
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In other words, a collimated monochromatic beam must
have a transverse size which is large in units of the beam’s
wavelength. The requirement (3.42) is in some respects
analogous to the first part of the “Goldilocks” condition
(2.17). However, we emphasize that Eq. (3.42) arises from
our desire to localize the wave in the far past. In particular,
waves violating the requirement (3.42) may still be
classical.
Turning back to Eq. (3.38), we may now simplify the

time-dependent exponential factor. The broadened delta
distribution δσ⊥ forces

ðk̄xÞ2 þ ðk̄yÞ2 ≲ σ2⊥ ¼ l−2⊥ ; ð3:43Þ

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðk̄xÞ2 þ ðk̄yÞ2

q
≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ l−2⊥

q
≃ωþOðl−2⊥ ω−2Þ≃ω:

ð3:44Þ

For the wave’s field, we obtain, in this approximation,

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re

�
e−iωðt−zÞ

Z
d2k̄⊥ε�μ⊙ ðk̄Þδσ⊥ðk̄xÞδσ⊥ðk̄yÞeik̄

xxeik̄
yy

�

¼
ffiffiffi
2

p
A⊙Re

�
e−iωðt−zÞε�μ⊙ ðk̄⊙Þ

Z
d2k̄⊥δσ⊥ðk̄xÞδσ⊥ðk̄yÞeik̄

xxeik̄
yy

�
; ð3:45Þ

where we can replace εμ⊙ðk̄Þ by εμ⊙ðk̄⊙Þ because of the
smallness of the transverse components of k̄. [Recall that
k̄μ⊙ ¼ ðω; 0; 0;ωÞ.] To continue, we may note that the
integral

Z
∞

−∞
dq̄eiq̄xδσðq̄Þ ¼ e−x

2σ2=4; ð3:46Þ

so that we finally obtain

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re½e−iωðt−zÞε�μ⊙ ðk̄⊙Þe−ðx2þy2Þ=ð4l2⊥Þ�: ð3:47Þ

This is indeed a wave of circular polarization along the z
axis, with finite size in the x − y plane.

Our approximation that σk is negligible gives us a beam
of infinite spatial extent along the direction of propagation
(here, the z axis). Were we to stop short of the σk → 0 limit,
we would find a finite size in this direction too.
The occupation number, which is divergent for infinite
extent in the z direction, would also become finite for
nonvanishing σk.
The classical field in Eq. (3.47) describes a beam of light

that does not spread in the transverse direction, in apparent
contradiction to the nonzero transverse momenta the
integral contains. This seeming contradiction is lifted when
we compute the field of Eq. (3.38) to the next order in
1=ðωl⊥Þ and t=l⊥, as described in Appendix A. The result
for short enough times is

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re

�
exp½−iωðt − zÞ�

1þ i t
2ωl2⊥

ε�μ⊙ ðk̄⊙Þ exp
�
−

ðx2 þ y2Þ
4l2⊥½1þ it=ð2ωl2⊥Þ�

��

þ A⊙ffiffiffi
2

p Re

�
exp½−iωðt − zÞ�

�
i
x
l2⊥

∂ k̄xε
�μ
⊙ ðk̄Þ

����
k̄¼k̄⊙

þ i
y
l2⊥

∂ k̄yε
�μ
⊙ ðk̄Þ

����
k̄¼k̄⊙

�
exp

�
−
ðx2 þ y2Þ

4l2⊥

��
þ � � � : ð3:48Þ

IV. GLOBAL OBSERVABLES WITH INCOMING
RADIATION

In the previous section, we examined the use of coherent
states to describe waves built up of massless messengers
(photons or gravitons), and understood that the classical
limit emerges in the limit of large occupation number. In
this section, we turn to dynamics: we will consider the
scattering of a messenger wave and a scalar point particle.
Real-life examples are the classical scattering of a light
beam off a charged point particle, a light beam scattering

gravitationally off a point particle, or a gravitational wave
scattering off a point particle.
Our focus in this section will be on global observables,

obtained by surrounding the scattering event with a distant
sphere of detectors. These detectors can register the total
change in momentum (or impulse) of the particle, or of the
wave, during scattering. These are the same kinds of
observables considered in Ref. [122]. The main novelty
in this section will be the computation of global observ-
ables for scattering with incoming classical radiation,
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which we will describe using the coherent states discussed
in the previous section. In the following sections we will
discuss local observables.
Two examples will allow us to explore different aspects

of the dynamics: the electromagnetic impulse on a charge
in a spatially localized beam of light (Thomson scattering);
and the general-relativistic deflection of light in the geo-
metric-optics limit. We begin by discussing the details of
the requirements imposed by the dynamics in the classical
limit and the nature of the initial state.

A. Setup

In the classical limit, the Compton wavelength lc of a
pointlike particle must be unobservably small. However,
there is (in general) no need for the wavelength of
massless waves to be small. On the contrary, finite-
wavelength classical waves are quotidian phenomena,
and propagate along the pages of many classical-physics
textbooks.
In the scattering of two pointlike particles, this require-

ment on lc would be violated if the particles approach at
distances smaller than (or of order of) their Compton
wavelength, because then the underlying wave nature of
the particles becomes important. Thus we arrive at the
conclusion that classical scattering of two particles obtains
only when the impact parameter b ≠ 0.
In contrast, for a wave of wavelength λ interacting

with a particle, we simply require that λ be much larger
than the Compton wavelength lc of the particle. When this
is the case, the messengers comprising the wave cannot
resolve the quantum structure of the particle. For the
classical point-particle approximation to be valid, we
further require that λ should be large compared to the
finite size lw of the particle’s wave packet. We thus have
the requirement

lc ≪ lw ≪ λ ð4:1Þ

for classical interactions of a wave with a particle of
Compton wavelength lc. There is no a priori constraint
on the impact parameter b.

As exemplified in Fig. 1, in the electromagnetic scatter-
ing of a photon off a charged particle, there is no t-channel
contribution. Correspondingly we are primarily interested
in the b ≃ 0 case. (More precisely, we are interested in b
smaller than the transverse size of the beam.) We will
explore this in more detail below. In contrast, in the
gravitational scattering of a photon off a neutral particle,
there are both s- and t-channel contributions. In this case,
we are interested in general b.
The interaction between our particle and our wave

introduces another length scale to consider, namely the
scattering length ls. Let q ¼ ℏq̄ be a characteristic
momentum exchange associated with the interaction; then
the scattering length is defined to be

ls ¼
1ffiffiffiffiffiffiffiffi
jq̄2j

p : ð4:2Þ

The value of the scattering length depends on the details
of the scattering process. In the case where two pointlike
particles scatter, for instance, one finds that ls ∼ b. In the
case at hand where a particle interacts with a wave this need
not be the case. Indeed for an s channel processes it is more
natural to expect ls to be determined by the off-shellness of
intermediate propagators such as s −m2. For definiteness
let us take the momentum of the incoming particle to be
p1 ¼ m1u1 while the incoming wave has a characteristic
wave number k̄⊙. Then s −m2

1 ¼ 2ℏk̄⊙ · p1, so that the
scattering length should be

ls ∼
1

k̄⊙ · u1
: ð4:3Þ

This is simply of the order of the wavelength of the
incoming wave.
We turn next to the construction of the incoming state.

As in Ref. [122] and in Eq. (2.14), we write the point
particle as a superposition of plane-wave states weighted
by a wave function ϕðpÞ. Following the discussion in
the previous section, we write the messenger wave as a
coherent state of helicity η characterized by the wave shape
αðkÞ. We start with a basis of states constructed out of
coherent states (3.8) of definite helicity jαηi for the
messenger and plane-wave states for the massive particle

jp1α
η
2iin ¼ jp1ijαη2i: ð4:4Þ

Our initial state then takes the form

jψwiin ¼
Z

dΦðp1Þϕ1ðp1Þeib·p1=ℏjp1α
η
2iin: ð4:5Þ

The impact parameter b now separates the particle from
the center of the beam in the far past. As in the
earlier discussion, the state is normalized to unity,

FIG. 1. While the t-channel graviton exchange contribution
exists for a photon interacting gravitationally with a scalar, this is
not true in electromagnetic case.
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inhψwjψwiin ¼ 1. (We will leave the “in” subscript implicit
going forward.)
Information about the classical four-velocity of the point

particle is hidden inside ϕðpÞ. The explicit example studied
in Ref. [122] made use of a linear exponential (which
slightly counterintuitively reduces to a Gaussian in the
nonrelativistic limit). In the same way, the information
about the overall momentum K⊙ of the messenger wave is
hidden inside αðkÞ.
In the following, we will make use of the coherent wave

shape αðkÞ chosen in Eq. (3.35) corresponding to the
choice of ᾱðkÞ of Eq. (3.36), independent of ℏ as desired.
We will elucidate inequalities between the various param-
eters defining the beam below, where relevant.

B. General expression for the impulse

Before we discuss the details of specific examples, let us
investigate the general structure of the impulse, hΔp1i, on a
massive particle during a scattering event with a classical
wave. We can carry over the expression from Ref. [122],

hΔpμ
1i ¼ hψwji½Pμ

1; T�jψwi þ hψwjT†½Pμ
1; T�jψwi

¼ Iμwð1Þ þ Iμwð2Þ: ð4:6Þ

Compared to Ref. [122], only the initial state is different.
Before studying the expansion of this expression, we

remark that there is an equivalent formulation in terms of
the background field,

hΔpμ
1i ¼

Z
dΦðp1ÞdΦðp0

1Þϕ1ðp1Þϕ�
1ðp0

1Þe−ib·ðp
0
1
−p1Þ=ℏhp0

1jC†
α;ðηÞi½Pμ

1; T�Cα;ðηÞjp1i

þ
Z

dΦðp1ÞdΦðp0
1Þϕ1ðp1Þϕ�

1ðp0
1Þe−ib·ðp

0
1
−p1Þ=ℏhp0

1jC†
α;ðηÞT

†½Pμ
1; T�Cα;ðηÞjp1i

¼
Z

dΦðp1ÞdΦðp0
1Þϕ1ðp1Þϕ�

1ðp0
1Þe−ib·ðp

0
1
−p1Þ=ℏhp0

1ji½Pμ
1; TðAðηÞ

cl Þ�jp1i

þ
Z

dΦðp1ÞdΦðp0
1Þϕ1ðp1Þϕ�

1ðp0
1Þe−ib·ðp

0
1
−p1Þ=ℏhp0

1jT†ðAðηÞ
cl Þ½Pμ

1; TðAðηÞ
cl Þ�jp1i; ð4:7Þ

where the scattering matrix computed from the background

AðηÞ
cl is denoted by TðAðηÞ

cl Þ, and we have used the relation
C†
α;ðηÞCα;ðηÞ ¼ 1. While we will focus on the formulation

(4.6), it is intriguing to notice the linear term of the impulse
Iμwð1Þ is closely related to the two-point function of the

massive scalar field in the coherent state background. As a
consequence, we should expect a resummation of all
higher-order results.

Returning to Eq. (4.6), we note that—just as in the
scattering of two massive particles—only the first
term contributes at leading order (LO) in the generic
coupling g. This LO contribution arises at Oðg2Þ; the
second term only contributes starting at Oðg4Þ. Let us
focus on the Iμwð1Þ term and write out the details of the

wave function (4.5),

Iμwð1Þ ¼
Z

dΦðp1ÞdΦðp0
1Þe−ib·ðp

0
1
−p1Þ=ℏϕ1ðp1Þϕ�

1ðp0
1Þiðp0

1 − p1Þμhp0
1α

η
2jTjp1α

η
2i: ð4:8Þ

The matrix elements of coherent states are not of definite order in perturbation theory. In order to isolate the contributions
at each order, one would ordinarily introduce a complete set of states of definite particle number on each side of the T
matrix,

Iμwð1Þ ¼
X
X;X0

X
ζ;ζ0¼�

Z
dΦðp1ÞdΦðp0

1ÞdΦðr1ÞdΦðr01ÞdΦðk2ÞdΦðk02Þe−ib·ðp
0
1
−p1Þ=ℏϕ1ðp1Þϕ�

1ðp0
1Þiðp0

1 − p1Þμ

× hp0
1α

η
2jr01k0ζ

0
2 X0ihr01k0ζ

0
2 X0jTjr1kζ2Xihr1kζ2Xjp1α

η
2i: ð4:9Þ

The sums over X and X0 are over different numbers of messengers, including none, and include the phase-space integrals
over their momenta. Charge conservation implies that each intermediate state must contain one net massive-particle
number; we drop additional particle-antiparticle pairs as their effects will disappear in the classical limit, and we denote the
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massive-particle momenta by r1 and r01. Moreover, in order
to satisfy on shell conditions of the T matrix element, each
intermediate state must contain at least one messenger,
whose momenta are denoted by k2 and k02.
The LO contribution to Iμwð1Þ is the simplest. One may

be tempted to believe that it arises from terms with
X ¼ X0 ¼ ∅, but this is not quite right: that would omit
relevant disconnected parts of the S matrix, depicted in
Fig. 2. In the situation at hand, a great many messengers are
present in the initial state; the dominant contribution to the
interaction occurs when most messengers connect directly
from the ket state to the bra state. Thus rather than taking
X ¼ X0 ¼ ∅, we instead need to sum over additional
messengers in the coherent states. These sums over non-
interacting messengers, contributing disconnected S-matrix
terms, are necessary to recover the correct normalization.
Disconnected parts containing interaction vertices are
higher-order in perturbation theory.
One can carry out these sums explicitly, but it is

convenient instead to introduce an alternate representation

for the T matrix in terms of creation and annihilation
operators. As the incoming state jψwi given in Eq. (4.5)
contains one massive particle and an arbitrary number of
messengers, we must consider terms with a pair of massive-
particle annihilation and creation operators, and an arbitrary
nonzero number of messenger annihilation and creation
operators (not necessarily paired). That representation
[following from Eq. (4.2.8) in the first volume of
Weinberg’s quantum field theory textbook [149] ] has
the form

T ¼
X
η̃;η̃0

Z
dΦðr̃1; r̃01; k̃2; k̃02Þhr̃01k̃0η̃

0
2 jTjr̃1k̃η̃2i

× a†ðη̃0Þðk̃02Þa†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þ þ � � � ; ð4:10Þ

where the ellipsis indicates higher order terms in the
coupling g as well as amplitudes which do not contribute
in the classical limit. We will summarily drop all these
terms in the following, retaining only the explicit Oðg2Þ
term. The measure here is a shorthand

dΦðr̃1; r̃01; k̃2; k̃02Þ ¼ dΦðr̃1ÞdΦðr̃01ÞdΦðk̃2ÞdΦðk̃02Þ: ð4:11Þ

The advantage of the representation (4.10) is that the
creation and annihilation operators act simply on coherent
states, yielding factors of αðk2Þ and α�ðk02Þ, and taking care
of the normalization for us. Each term within this repre-
sentation contains an ordinary (connected) amplitude with a
definite number of external messengers. We have carried
out the expansions and sums explicitly in the standard
representation, and find that they reproduce the results from
this alternate representation in a far more laborious way.
One encounters no extra divergences when doing so.
The required matrix element for the integrand term in

Eq. (4.10) can be computed easily,

hp0
1α

η
2jTjp1α

η
2i ¼ hr̃01k̃0η̃

0
2 jTjr̃1k̃η̃2ihp0

1α
η
2ja†ðη̃0Þðk̃02Þa†ðp0

1Þaðη̃Þðk̃2Þaðp1Þjp1α
η
2i

¼ δ̂Φðr̃1 − p1Þδ̂Φðr̃01 − p0
1Þδη̃;ηδη̃0;ηα2ðk̃2Þα�2ðk̃02Þhr̃01k̃02η̃

0 jTjr̃1k̃η̃2i; ð4:12Þ

where we neglected all the terms in the ellipsis of
Eq. (4.10). Notice that we encountered the matrix element
hαη2jαη2i ¼ 1: this conveniently takes care of all the dis-
connected diagrams. The remaining matrix element intro-
duces the desired scattering amplitude,

hr̃01k̃0η
0

2 jTjr̃1k̃η̃2i ¼ Aðr̃1k̃η̃2 → r̃01k
0η̃0
2 Þδ̂ð4Þðr̃1 þ k̃2 − r̃01 − k̃02Þ:

ð4:13Þ

As usual, the superscripts on the messenger
momenta denote the corresponding physical helicity.
To write it in the usual amplitudes convention,
Að0 → p1; p2;…Þ, we must cross the momenta to the
other side. This flips the helicity of incoming
messengers.
Using the results of Eqs. (4.12) and (4.13) in

Eq. (4.8) and carrying out the sums over η̃; η̃0,
we obtain

FIG. 2. S-matrix elements relevant to the scattering of a
pointlike particle and a coherent state of radiation. It is
important to include disconnected diagrams containing mes-
sengers trivially connected from the ket state on the left to the
bra state on the right.
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Iμwð1Þ ¼
Z

dΦðp1ÞdΦðp0
1ÞdΦðk2ÞdΦðk02Þϕ1ðp1Þϕ�

1ðp0
1Þα2ðk2Þα�2ðk02Þ

× e−ib·ðp0
1
−p1Þ=ℏiðp0

1 − p1ÞμAðp1k
η
2 → p0

1k
0η
2 Þδ̂ð4Þðp1 þ k2 − p0

1 − k02Þ; ð4:14Þ

where we have dropped the tildes on k2 and k02.
We make the usual change of variables to the momentum mismatches q1;2,

q1 ¼ p0
1 − p1;

q2 ¼ k02 − k2; ð4:15Þ

then we use the delta function to integrate over q2; and, dropping the subscript on q1, we find

Iμwð1Þ ¼
Z

dΦðp1ÞdΦðk2Þd̂4qδ̂ð2q · p1 þ q2Þδ̂ð2q · k2 − q2ÞΘðpt
1 þ qtÞΘðkt2 − qtÞ

× ϕ1ðp1Þϕ�
1ðp1 þ qÞα�2ðk2 − qÞα2ðk2Þe−ib·q=ℏiqμAðp1k

η
2 → p1 þ q; ðk2 − qÞηÞ: ð4:16Þ

The analysis of the classical limit as far as the
ϕ1ðp1Þϕ�

1ðp1 þ qÞ factor is concerned is the same as in
Ref. [122]. It requires us to take the wave number mismatch
as our integration variable in lieu of the momentum
mismatch. At leading order, we do not have to worry
about terms singular in ℏ, so the evaluation as far as the
massive particle is concerned will take

δ̂ð2q · p1 þ q2Þ → ℏ−1δ̂ð2q̄ · p1Þ;
ϕðp1 þ qÞ → ϕðp1Þ: ð4:17Þ

Removing the coupling from inside the scattering ampli-
tude (as in Ref. [122], the reduced amplitude is denoted
by Ā), we find for the classical limit,

Iμ;clwð1Þ ¼ g2 ⟪
Z

dΦðk̄2Þd̂4q̄ δ̂ð2q̄ · p1Þδ̂ð2q̄ · k̄2 − q̄2Þ

× Θðk̄t2 − q̄tÞᾱ�2ðk̄2 − q̄Þᾱ2ðk̄2Þ

× e−ib·q̄iq̄μĀðp1ℏk̄
η
2 → p1 þ ℏq̄;ℏðk̄2 − q̄ÞηÞ⟫:

ð4:18Þ

As in Ref. [122], the double-angle brackets indicate an
average over the wave function of the pointlike particle.
Classically, this is a function of the momentum p1 with a
very sharp peak at p1 ¼ m1u1, where u1 is the classical
(proper) velocity and m1 is the particle’s mass.
We can now apply this general result in a variety of

specific cases. We shall describe two examples in detail:
Thomson scattering of a charge by a wave, with b ≃ 0, and
gravitational scattering of light by a mass in the geometric-
optics limit.

C. Impulse in Thomson scattering

Our first application is to Thomson scattering, of a
particle of charge Qe and mass m, by a collimated beam of
light as shown in Fig. 3. We take the light beam to have
positive helicity, corresponding to the coherent state jαþi.
We need the four-point tree Compton amplitude in scalar
QED,

Āðp1; k
η
2 → p0

1; k
0
2
η0 Þ ¼ 2Q2εðηÞ�ðk2Þ · εðη0Þðk02Þ

¼ 2Q2εð−ηÞðk2Þ · εðη0Þðk02Þ; ð4:19Þ

where we have chosen the gauge,

FIG. 3. Impulse in scattering of a massive object off a coherent
state background.
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εðηÞ · p1 ¼ 0; ð4:20Þ

for both photons. Alternatively, in spinor variables, we have
a gauge-invariant expression for the helicity amplitude,
namely

Āðp1; k
þ
2 → p0

1; k
0
2
þÞ ¼ −

Q2

2

hk2jp1jk02�2
k2 · p1k02 · p1

: ð4:21Þ

This form of the amplitude is manifestly gauge indepen-
dent, but it depends explicitly on spinors jk02i and jk2�
associated with photon momenta. As usual, in the classical
limit we prefer to work with photon wave numbers. We
therefore introduce rescaled spinors,

jk̄02i≡ ℏ−1=2jk02i;
jk̄2�≡ ℏ−1=2jk2�; ð4:22Þ

which are directly associated with the photon wave
numbers. The amplitude then has the expression

Āðp1; k
þ
2 → p0

1; k
0
2
þÞ ¼ −

Q2

2

hk̄2jp1jk̄02�2
k̄2 · p1k̄02 · p1

: ð4:23Þ

Choosing b ¼ 0, and for a more symmetric presentation,
writing k ¼ k2 and k0 ¼ k2 − q, the impulse Eq. (4.18)
takes the form

hΔpμi ¼ Q2e2

2

Z
dΦðk̄ÞdΦðk̄0Þδ̂ð2p · ðk̄ − k̄0ÞÞᾱ�ðk̄0Þ

× ᾱðk̄Þ iðk̄0 − k̄Þμ hk̄jpjk̄
0�2

ðk̄ · pÞ2 : ð4:24Þ

This expression may be compared with the classical
electromagnetic result, obtained by iterating the classical
Lorentz force twice. Thus we see in an explicit example that
a vanishing impact parameter is perfectly acceptable in the
classical scattering of waves off matter, in contrast to the
situation for two massive particles scattering.
It is interesting that the Compton amplitude appears at

tree level in the classical physics of wave scattering off
massive particles. This amplitude is also relevant [150] for
purely massive particle scattering, though at one loop order.
While the amplitude is very simple for spinless particles, it
is considerably more complicated [151] for particles with
large spins. Currently we do not have a clear understanding
of the appropriate Compton amplitude for the Kerr black
hole, or of what principle we could use to determine it. This
is an important area for further research. Our work suggests
one angle of attack: information about the classical part
of the Compton amplitude could be extracted by a purely
classical analysis of the impulse on a massive spinning
object in scattering off a messenger wave. This is one topic
under independent study in Ref. [143].

D. Light deflection in gravitational scattering

A second interesting application of the formulas derived
in the previous section is to the gravitational deflection of
light by a massive object. We may access this observable by
computing the change in momentum of a narrow (small l⊥)
beam of light passing with nonzero impact parameter b past
a massive pointlike particle. At leading order, there is no
radiation of momentum, so the change in momentum of the
wave is simply the negative of the change in momentum
of the massive point source: our starting point is once
again Eq. (4.18).
Before we discuss the details of the calculation, it is

worth dwelling for a moment on our setup. Eddington’s
famous observations demonstrated that starlight is
deflected by the sun in accordance with general relativity.
Near the sun, light emitted by a distant star is essentially a
spherical wave, and so the incoming wave is extremely
delocalized. In contrast, we have chosen to study a
collimated, narrow beam of light. Nevertheless, the differ-
ence between our setup and Eddington’s case is immaterial.
Wework in the situation where the wavelength λ of the light
is very small compared to the impact parameter: this is the
domain of geometric optics and also applies to Eddington’s
case. It is in the context of geometric optics that the bending
is well defined; the geometric bending does not depend on
the details of the wave.
For our purposes the setup of a narrow beam in the far

past is just a simpler place to start. The reason is that we
can then determine the bending of light by computing the
impulse on the beam: this impulse is directly the change in
direction of the wave. By contrast the impulse on starlight
due to the sun involves integrating over the whole incoming
spherical wave front: this is not related in a simple manner
to the bending of light.
In the geometric-optics regime, we need the wavelength

of the light λ to be small. At the same time we must
suppress all quantum effects, so we choose λ to be large
compared to the Compton wavelength lc of our point
source. To keep our beam collimated, Eq. (3.42) requires
that l⊥ ≫ λ. The requirement that our beam is narrow is
l⊥ ≪ b. Thus there is a series of inequalities:

lc ≪ λ ≪ l⊥ ≪ ls ∼ b: ð4:25Þ

Note that the scattering length ls is expected to be of order
of the impact parameter in this case, as we are considering a
t channel process. For simplicity, we consider a mono-
chromatic beam with σk → 0. The final length scale to
consider is the size lw of the point-particle’s wave packet.
As usual we require lc ≪ lw ≪ ls. Once these conditions
are met, there will be little overlap between the beam and
the wave packet, so we do not anticipate that the values of
the ratios λ=lw or l⊥=lw will be important.
The impulse given in Eq. (4.18) simplifies due to

the constraints of Eq. (4.25). Note that the quantity
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jq̄ · k̄2j ≫ jq̄2j in the second delta function, as k̄2 ∼ 1=λ
while q̄ ∼ 1=ls. The wave number q̄ is then dominantly in
the plane of scattering. In this plane, the coherent wave
shape ᾱ2 is of width 1=l⊥ so that we may approximate
ᾱ�2ðk̄2 − q̄Þ ≃ ᾱ�2ðk̄2Þ. For the same reason, the explicit theta
function in the impulse simplifies: Θðk̄t2 − q̄tÞ ¼ 1. Taking
into account the sign demanded by momentum balance, the
impulse on the wave is

hΔpμ
2i¼−g2⟪

Z
dΦðk̄2Þd̂4q̄ δ̂ð2q̄ ·p1Þδ̂ð2q̄ · k̄2Þjᾱ2ðk̄2Þj2

×e−ib·q̄ iq̄μĀðp1ℏk̄
η
2→p1þℏq̄;ℏðk̄2− q̄ÞηÞ⟫:

ð4:26Þ
The integral over k̄2 is now in a great many respects

analogous to the integral over the massive particle wave
function which is hidden in our double-angle brackets.
In the geometric optics limit, ᾱ2ðk̄2Þ is a steeply-peaked
function of the wave number peaked at k̄2 ¼ k̄⊙; in view of
Eq. (3.25), its normalization is related to the number of
photons in the beam. The amplitude, meanwhile, is a smooth
function in this region. The k̄2 integral then has the structureZ

dΦðk̄2Þδ̂ð2q̄ · k̄2Þjᾱ2ðk̄2Þj2fðk̄2Þ

≃ fðk̄⊙Þ
Z

dΦðk̄2Þδ̂ð2q̄ · k̄2Þjᾱ2ðk̄2Þj2; ð4:27Þ

where f is a slowly varying function. We thus encounter
the convolution of a delta function and the sharply peaked
jα2ðkÞj2. The result of the convolution is a broadened delta
function centered at k̄2 ¼ k̄⊙. Neglecting the width (of order
σ⊥) of this function we have

Z
dΦðk̄2Þδ̂ð2q̄ · k̄2Þjᾱ2ðk̄2Þj2fðk̄2Þ ≃ fðk̄⊙ÞNγℏδ̂ð2q̄ · k̄⊙Þ:

ð4:28Þ

Notice the appearance of the number of photons Nγ in the
beam: this normalization constant emerges from the integral
over jα2ðkÞj2. The classical geometric optics approximation
does not have access to this number of photons, and
correspondingly it will cancel in our expression for the
deflection angle below. Certain other physical quantities do
involve this number of photons: for example, the total
momentum of the beam is

Kμ
⊙ ¼

Z
dΦðk̄Þjᾱðk̄Þj2k̄μ;

≃ Nγℏk̄
μ
⊙: ð4:29Þ

Returning to the impulse on the beam, use of Eq. (4.28) leads
to the expression

hΔpμ
geomi ¼−Nγℏg2⟪

Z
d̂4q̄ δ̂ð2q̄ ·p1Þδ̂ð2q̄ · k̄⊙Þ

× e−ib·q̄ iq̄μĀðp1ℏk̄
η
⊙ → p1þℏq̄;ℏðk̄⊙ − q̄ÞηÞ⟫:

ð4:30Þ
The subscript reminds us that the approximation is valid in
the geometric-optics limit.
At leading order, we only need the four-point tree-level

amplitude. As there are no contributions singular in ℏ at this
order, we can simply retain only the terms that survive in
the classical limit:

Āðp1k
η
2 → p0

1;k
0
2
ηÞ ¼ p1 · k2p1 · k02

q2
εðηÞ�ðk2Þ · εðηÞðk02Þþ � � �

¼ p1 · k̄2p1 · k̄02
q̄2

εðηÞ�ðk̄2Þ · εðηÞðk̄02Þþ � � � ;

ð4:31Þ
where we have chosen the gauge p1 · εðηÞðkÞ ¼ 0 for each
polarization vector, and the ellipsis indicates terms which
are suppressed by powers of ℏ.
This amplitude simplifies further in the geometric-optics

limit. The inequalities Eq. (4.25) require in particular that
the wave number q̄ ∼ 1=b ≪ k̄2. We may therefore replace
the scalar product p · k̄02 with p · k̄2 in Eq. (4.31), up to
terms which are neglected in the geometric-optics limit.
At the same time, we may replace the polarization vector
εðηÞðk̄02Þ with εðηÞðk̄2Þ to the same order of approximation.
The amplitude is then simply

Āðp1k
η
2 → p0

1; k
0
2
ηÞ ¼ −

ðp1 · k̄2Þ2
q̄2

þ � � � : ð4:32Þ

We note that the geometric-optics limit of the amplitude for
the scattering of a photon off a massive scalar is helicity
independent.Up to constant factors, it reduces to the amplitude
between one massless and one massive scalar.5 This is as
expected from the equivalence principle: if the classical
limit were not universal, then the impulse and hence the
scattering angle would have helicity-dependent contributions.
In order to the evaluate the impulse,we insert thegeometric-

optics amplitude (4.32) into the expression (4.30) for the
impulse in the geometric-optics limit. We obtain

hΔpμ
geomi

¼ iκ2Nγℏðp1 · k̄⊙Þ2
Z

d̂4q̄ δ̂ð2q̄ ·p1Þδ̂ð2q̄ · k̄⊙Þe−ib·q̄
q̄μ

q̄2

¼ iκ2ðp1 ·K⊙Þ2
Z

d̂4q̄ δ̂ð2q̄ ·p1Þδ̂ð2q̄ ·K⊙Þe−ib·q̄
q̄μ

q̄2
:

ð4:33Þ

5See the beautiful and pedagogical discussion in Ref. [152] for
more details.
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Here, we have replaced the general coupling g by the
appropriate gravitational coupling κ, and the wave number
k̄⊙ by the total beam momentum K⊙. The second line of this
equation is strikingly similar to the impulse in a scattering
process between two massive classical objects. Indeed, the
integral remaining in Eq. (4.33) is essentially the same as the
integral appearing in theLO impulse inRef. [122]. It can easily
be performed by taking the light beam in the z direction,
Kμ

⊙ ¼ ðE; 0; 0; EÞ. The result is

hΔpμ
geomi ¼ −κ2

p1 · K⊙

8πb2
bμ: ð4:34Þ

The impact parameter bμ is directed from the massive particle
towards the wave, so the sign above indicates that the
interaction is attractive.
The scattering angle θ is then determined geometrically

in terms of the impulse,

sin θ ¼ jb · Δpj
jbjE ; ð4:35Þ

once we have fixed a frame. We have taken the absolute
value to drop the sign of the angle, understanding that the
bending is towards the scatterer. Working in the rest frame
of the massive scalar, and using κ2 ¼ 32πGN , we reproduce
the well-known value for the gravitational bending of light,

θ ¼ 4GNm
jbj þ � � � : ð4:36Þ

As a final comment, it is satisfying that the impulse
we have obtained in Eq. (4.33) is essentially the same as
the impulse on massive point particles as discussed in
Ref. [122]. This occurred as the inequalities Eq. (4.25)
greatly simplified the impulse. These inequalities them-
selves are very similar to the Goldilocks conditions
Eq. (2.17) for classical pointlike particles. The fact that
the dynamics of massive particles is so similar to the
behavior of waves in the geometric-optics regime was a
celebrated aspect of 19th- and early 20th-century physics,
known as the Hamiltonian analogy. This analogy was
highlighted by Schrödinger [153] and others as an impor-
tant consideration in the early days of quantum mechanics.

E. Higher orders

Although in Secs. IV C and IV D we focused on leading-
order applications, our formalism is completely general and
Eq. (4.6) holds to all perturbative orders. As we have seen,
the leading-order contribution arises at Oðg2Þ. The second
term, Iμwð2Þ, in the impulse of Eq. (4.6) involves one-loop

amplitudes, and therefore contributes only starting at
Oðg4Þ. Consequently, we can identify a further contribu-
tion, at Oðg3Þ, which receives no contribution from Iμwð2Þ
but only from Iμwð1Þ. It arises from the leading corrections to

Eq. (4.10),

δT3 ≡
X
η̃;η̃0;η̃00

Z
dΦðr̃1; r̃01; k̃2; k̃02; k̃3Þ½hr̃01k̃0η̃

0
2 jTjr̃1k̃η̃2k̃η̃

00
3 ia†ðη̃0Þðk̃02Þa†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þaðη̃00Þðk̃3Þ

þ hr̃01k̃0η̃
0

2 k̃η̃
00
3 jTjr̃1k̃η̃2ia†ðη̃00Þðk̃3Þa†ðη̃0Þðk̃02Þa†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þ�; ð4:37Þ

where the additional argument in the measure corresponds to a factor of dΦðk̃3Þ.
Inserting the integrand of δT3 into the matrix element in Eq. (4.8), we obtain [analogously to Eq. (4.12)],

hp0
1α

η
2jδT3jp1α

η
2i ¼ ½hr̃01k̃0η̃

0
2 jTjr̃1k̃η̃2k̃η̃

00
3 ihp0

1α
η
2ja†ðη̃0Þðk̃02Þa†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þaðη̃00Þðk̃3Þjp1α

η
2i

þ hr̃01k̃0η̃
0

2 k̃η̃
00
3 jTjr̃1k̃η̃2ihp0

1α
η
2ja†ðη̃00Þðk̃3Þa†ðη̃0Þðk̃02Þa†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þjp1α

η
2i�

¼ δ̂Φðr̃1 − p1Þδ̂Φðr̃01 − p0
1Þδη̃;ηδη̃0;ηα2ðk̃2Þα�2ðk̃02Þ

× ½δη̃00;ηα2ðk3Þhr̃01k̃0η̃
0

2 jTjr̃1k̃η̃2k̃η̃
00
3 i þ δη̃00;ηα

�
2ðk3Þhr̃01k̃0η̃

0
2 k̃η̃

00
3 jTjr̃1k̃η̃2i�: ð4:38Þ

The scattering matrix elements in this expression introduce five-point amplitudes,

hr̃01k̃0η̃
0

2 jTjr̃1k̃η̃2k̃η̃
00
3 i ¼ Aðr̃1k̃η̃2k̃η̃

00
3 → r̃01k̃

0η̃0
2 Þδ̂ð4Þðr̃1 þ k̃2 þ k̃3 − r̃01 − k̃02Þ;

hr̃01k̃0η̃
0

2 k̃η̃
00
3 jTjr̃1k̃η̃2i ¼ Aðr̃1kη̃2 → r̃01k̃

0η̃0
2 k̃η̃

00
3 Þδ̂ð4Þðr̃1 þ k̃2 − r̃01 − k̃02 − k̃3Þ: ð4:39Þ

By crossing, we could choose to identify
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Aðr̃1k̃η̃2k̃η̃
00
3 → r̃01k̃

0η̃0
2 Þ ¼ Aðr̃1k̃η̃2 → r̃01; k̃

0η̃0
2 ; ð−k̃3Þ−η̃00 Þ: ð4:40Þ

Substituting these expressions into Eq. (4.8) and dropping tildes, we obtain

Iμwð1Þjg3 ¼
Z

dΦðp1ÞdΦðp0
1ÞdΦðk2ÞdΦðk02ÞdΦðk3Þ α�2ðk02Þα2ðk2Þe−ib·ðp

0
1
−p1Þ=ℏϕ1ðp1Þϕ�

1ðp0
1Þiðp0

1 − p1Þμ

× ½α2ðk3ÞAðp1k
η
2k

η
3 → p0

1k
0η
2 Þδ̂ð4Þðp1 þ k2 þ k3 − p0

1 − k02Þ
þ α�2ðk3ÞAðp1k

η
2 → p0

1k
0η
2 k

η
3Þδ̂ð4Þðp1 þ k2 − p0

1 − k02 − k3Þ�: ð4:41Þ

This Oðg3Þ term is interesting as it differs in structure
from contributions to the impulse for massive-particle
scattering studied in Ref. [122]. In that case, the first
corrections arise atOðg4Þ, from one-loop amplitudes in Iμð1Þ
and cut one-loop amplitudes in Iμð2Þ. We leave an inves-

tigation of the new contributions (4.41) to future work.
Another difference between purely massive scattering

and particle-on-wave scattering relates to the radiation
reaction. In the massive case [122], radiation reaction first
occurs at next-to-next-to-leading order, that is at Oðg6Þ. In
contrast, radiation reaction arises at Oðg4Þ in wave-particle
scattering. This radiation reaction must contain contribu-
tions from the second term in the impulse, Iμwð2Þ, which
contributes at that order.

V. POINTLIKE OBSERVABLES

In the previous section, we built on Ref. [122] to analyze
what we may call global observables, requiring an array of
detectors covering the celestial sphere at infinity in order to
measure the quantity. This is most manifest for the total
radiated momentum, defined by Eq. (3.33) of Ref. [122],

Rμ ≡ hkμi ¼ inhψ jS†KμSjψiin ¼ inhψ jT†KμTjψiin: ð5:1Þ

Even in electromagnetic scattering, achieving 4π cover-
age would make this a challenging measurement. In the
gravitational context, where we would be looking to detect
emission from scattering of distant black holes, such a
measurement would be hopelessly impractical. Instead, for
the remainder of this article, we turn to what we may call
local observables, which can be measured with a localized
detector, albeit still sitting somewhere on the celestial
sphere, say at x. The paradigm for such a measurement
is that of the waveform Wðt; n̂; xÞ of radiation emitted
during a scattering event in direction n̂ from an event at the
coordinate origin. (That is, we adopt the convention that −n̂
points back from the observer towards the scattering event.)
We will focus on electromagnetic radiation here, but much
of the formalism will carry over to the gravitational case.
Let us keep in mind that we will be interested in several
detectors, all nearby x, though with separations that are

completely negligible compared to the distance from
the origin.
Local observables have a general structure which, as we

will see, is determined by some source (the scattering
event) and the propagation of messengers over very large
distances. In fact it is convenient to break up our discussion
of these observables along these lines. In the present section
we will discuss this overall structure in more detail, with a
focus on the crucial aspect of propagation. In the following
sections, we will extract general expressions for local
observables from quantum field theory, and connect to
the Newman-Penrose formalism. Then we will examine
global observables in cases where a classical wave scatters
off a massive particle before turning to the physically
important case where two massive particles scatter and
radiate.
It will be easier to discuss and manipulate the Fourier

transform of the waveform with respect to time. We will
refer to this as the spectral waveform fðω; n̂; xÞ:

fðω; n̂; xÞ ¼
Z þ∞

−∞
dtWðt; n̂; xÞeiωt: ð5:2Þ

Given a result for the spectral waveform, we can of course
recover the time-dependent waveform via an inverse
Fourier transform. Because we are interested in radiation
produced by long-range forces, the idealized waveforms for
the scattering processes we will consider stretch infinitely
far back and forward in time. The idealization is implicit in
the infinite limits for the integral in Eq. (5.2). In an actual
measurement, however, the waveform would be below the
noise floor of the detector for all times before a “signal start
time” preceding the moment of closest approach, and
likewise for all times after a “signal end time” following
that moment. We can then take the theoretical waveforms to
be approximations to actual ones cut off at the start and end
times. Label the interval between the two by Δts.
Let us imagine that the point of closest approach

during the scattering event is at the coordinate origin,
ðt;xÞ ¼ ð0; 0Þ. When a massless wave scatters off a point
particle, the wave may overlap the particle; we take a
suitable event of maximum overlap as the origin. We can
treat the scattering as occurring in a box of temporal length
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Δts, and of spatial size Δxs. Radiation is emitted inside the
box during the scattering event, and then spreads out. We
will take an (idealized) measurement of the radiation in
some direction n̂, at a much later time and at a point very far
away in that direction. The details of the scattering—the
particles’ interaction and spins—will determine the radia-
tion emitted inside the box. Modifying those details could
radically change the emission. Those details, however, will
have no effect on the propagation of the radiation out to the
distant measuring apparatus. Only the spin of the radiated
field can have any effect. We thus expect the form of the
result to be a Green’s function convoluted with a source.
More precisely, given that we have only outgoing radiation,
we expect a retarded Green’s function Gret. We can then
expand the Green’s function in the large-distance limit to
obtain the connection between the observable and the
emitted radiation inside the box.
The details of the scattering inside the box around ð0; 0Þ

define a current for our radiation. In a real-world context,
we are interested in electromagnetic or gravitational radi-
ation, but we can equally well treat the case of (massless)
scalar radiation as well. The details of the scattering inside
the box give rise to a wave-number-space field-strength
current, J̃μ⃗ðk̄Þ, where the notation μ⃗ denotes a number of
indices appropriate to the radiated messenger: none for a
scalar, two for a photon, and four for a graviton,

J̃ðk̄Þ∶ scalar;

J̃μνðk̄Þ∶ electromagnetism;

J̃μνρσðk̄Þ∶ gravity: ð5:3Þ

In a slight abuse of language, we will refer to these
quantities simply as currents. They will satisfy appropriate
conservation conditions. We will later obtain an expression
for such a current in terms of scattering amplitudes.
Given this current, the usual position-space current can

of course be obtained by taking a Fourier transform,

Jμ⃗ðxÞ ¼
Z

d̂4k̄J̃μ⃗ðk̄Þe−ik̄·x: ð5:4Þ

Clearly we can also write J̃μ⃗ðk̄Þ in terms of Jμ⃗ðxÞ via an
inverse transform,

J̃μ⃗ðk̄Þ ¼
Z

d4xJμ⃗ðxÞeik̄·x: ð5:5Þ

Both of these forms of the current will be helpful for
us below.
As we will show in detail in the next section, we obtain

an x-dependent radiation observable in the general form,

Rμ⃗ðxÞ ¼ i
Z

dΦðk̄Þ½J̃μ⃗ðk̄Þe−ik̄·x − J̃�μ⃗ðk̄Þeþik̄·x�; ð5:6Þ

that is, as an integral of the source J̃μ⃗ðk̄Þ over the on shell
massless phase space for the radiated messenger. Examples
will include expectations of Hermitian operators, such as
the field-strength operator in electromagnetism or the
Riemann tensor in gravity.
The Hermiticity properties of our radiation observables

is manifest in Eq. (5.6). But notice that the observables are
defined as integrals over positive frequencies k̄t ≥ 0. Yet in
writing the innocuous-seeming Fourier transform in
Eq. (5.4), we have assumed knowledge of the current
for both positive and negative frequency. So we must fill
a gap: what do we mean by the current for negative
frequency? In fact, the reality condition provides the
necessary information. Our currents are real in position
space, and we may note that

Jμ⃗ðxÞ ¼
Z

d̂4k̄θðk̄tÞ½J̃μ⃗ðk̄Þe−ik̄·x þ J̃μ⃗ð−k̄Þeik̄·x�: ð5:7Þ

The reality condition then leads to the relation

J̃μ⃗ð−k̄Þ ¼ J̃�μ⃗ðk̄Þ: ð5:8Þ

We use this relation to define the current for negative
frequency.
A key simplification arises because the source event,

occurring in our box, is sourced in a comparatively
localized region compared to the very large propagation
distance of the outgoing radiation. To access this simpli-
fication, we follow a well-trodden path [154] by rewriting
our radiation observables as integrals over the spatial extent
of the source. Thus, we express the observable of Eq. (5.6)
in terms of the spatial current Jμ⃗ðxÞ, yielding

Rμ⃗ðxÞ ¼ i
Z

dΦðk̄Þd4yJμ⃗ðyÞ½e−ik̄·ðx−yÞ − eþik̄·ðx−yÞ�: ð5:9Þ

Next, we interchange orders of integration. Judicious
forethought reveals the combination of phase space inte-
grals to be a difference of retarded and advanced Green’s
functions,

Rμ⃗ðxÞ ¼
Z

d4yJμ⃗ðyÞ½Gretðx − yÞ −Gadvðx − yÞ�: ð5:10Þ

In the far future, where the observer measures the wave
train emitted from the scattering event, Gadv will vanish.
Put in an explicit form for Gret, and switch back to the
wave-number-space current in order to make the
complete dependence of the integrand on x and y manifest.
The result is
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Rμ⃗ðxÞ ¼
Z

d̂ωd̂3k̄d4y J̃μ⃗ðk̄Þe−ik̄·y
δðx0 − y0 − jx − yjÞ

4πjx − yj

¼
Z

d̂ωd̂3k̄d3y J̃μ⃗ðk̄Þ
e−iωx

0

eþiωjx−yjeþik̄·y

4πjx − yj : ð5:11Þ

Notice that the integral is now over all wave numbers. We
have split the four-dimensional momentum integration into
integrals over spatial and frequency components for later
convenience.
From the earlier discussion, we know that Jμ⃗ðyÞ is

concentrated around y ≃ 0, whereas x is far away
(x ≫ y). Accordingly we can expand the integrand there,
using

jx − yj ∼ ½x2 − 2x · y�1=2

∼ jxj
�
1 −

n̂ · y
jxj

	
: ð5:12Þ

Wemust be careful in performing this expansion: while it is
sufficient to retain the leading term in the denominator, we
must retain formally subleading terms that contribute to
nontrivial phases. Even in those exponents, we can of
course still drop terms beyond the subleading, as they give
rise to no nontrivial phases.
Substituting the expansion (5.12) into Eq. (5.11),

we obtain

Rμ⃗ðxÞ ¼
Z

d̂ωd̂3k̄d3y J̃μ⃗ðk̄Þ
e−iωx

0

eþiωjxje−iωn̂·yeþik̄·y

4πjxj ;

ð5:13Þ

performing in turn the y and k̄ integrals, we finally obtain

Rμ⃗ðxÞ ¼
ð2πÞ3
4πjxj

Z
d̂ωd̂3k̄ J̃μ⃗ðk̄Þe−iωx0eþiωjxjδ3ðk̄ − ωn̂Þ

¼ 1

4πjxj
Z

d̂ω J̃μ⃗ðω;ωn̂Þe−iωðx0−jxjÞ: ð5:14Þ

We can thus identify the waveform with the coefficient of
the leading-power term jxj−1,

Wμ⃗ðt; n̂; xÞ ¼
1

4π

Z
d̂ωJ̃μ⃗ðω;ωn̂Þe−iωðx0−jxjÞ: ð5:15Þ

In this equation, t represents the observer’s clock time. We
could take it to be x0, or x0 − jxj, or some other convenient
time. We must nonetheless retain the separate dependence
on x0 and jxj, because these quantities will differ between
the cluster of nearby observers in which we are interested.
The relative phases between nearby observers are
measurable.
Choosing t ¼ x0 − jxj, the corresponding spectral wave-

form is then simply

fμ⃗ðω; n̂Þ ¼
1

4π
J̃μ⃗ðω;ωn̂Þ: ð5:16Þ

More precisely, Eq. (5.16) is the waveform for positive
frequencies. For negative frequencies, the waveform fol-
lows from Eq. (5.8),

fμ⃗ðω; n̂Þ ¼
1

4π
J̃�μ⃗ð−ω;−ωn̂Þ: ð5:17Þ

We notice that −ω is now positive. In both cases, once we
know the current J̃μ⃗ðk̄Þ, we can immediately write down the
spectral waveform.

VI. SPECTRAL WAVEFORMS

As we have seen, the waveform is directly related to the
current J̃μ⃗ðk̄Þ generated by the scattering event. We must
choose a specific local radiation observable to determine
this current using its definition, Eq. (5.6). In this section
we will study examples in both electrodynamics and
gravity. Let us begin with a simple case: the field-strength
tensor (3.5) in electrodynamics.
We choose an observer at x, in the far future of the event,

equipped to measure the expectation value of the electric
and magnetic field at the point x. The observable is
therefore

hFout
μν ðxÞi≡ outhψ jFμνðxÞjψiout: ð6:1Þ

We can rewrite the outgoing state in terms of the incoming
state using the time-evolution operator or S matrix,

hFout
μν ðxÞi ¼ inhψ jS†FμνðxÞSjψiin; ð6:2Þ

where (as usual) jψiin is the incoming state in the far past.
This state could contain, for example, two isolated massive
pointlike particles, or a single isolated massive particle and
a coherent state describing incoming radiation. A state of
the former type would be appropriate to study radiation
emitted as two particles scatter, while a state of the latter
type can be used to study the scattered radiation field in a
Thomson scattering process. We will study both of these
examples in detail later in this article.
Inserting the expression for the field-strength tensor (3.5)

into this expectation value, and converting to integrals over
wave numbers, we learn that

hFout
μν ðxÞi

¼−2iℏ3=2
X
η

Z
dΦðk̄Þ½hψ jS†aðηÞðk̄ÞSjψik̄½μεðηÞ�ν� ðk̄Þe−ik̄·x

− hψ jS†a†ðηÞðk̄ÞSjψik̄½μεðηÞν� ðk̄Þeþik̄·x�;
ð6:3Þ

where we have again dropped the “in” subscript, leaving it
implicit in the rest of our discussion. (Recall that k is just a
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label for the creation and annihilation operators, and we can
use k̄ interchangeably for this purpose.)
We now see the virtue of our definition of the general

class of radiation observables in Eq. (5.6). Evidently the
expectation value hFout

μν ðxÞi is of precisely this form, and we
can read off the current J̃μ⃗ðk̄Þ as

J̃μνðk̄Þ ¼ −2ℏ3=2
X
η

hψ jS†aðηÞðk̄ÞSjψik̄½μεðηÞ�ν� ðk̄Þ: ð6:4Þ

The discussion of the previous section therefore applies,
and we see from Eq. (5.16) that the corresponding spectral
waveform is

fμνðω; n̂Þ

¼ −
1

2π
ℏ3=2

X
η

hψ jS†aðηÞðk̄ÞSjψik̄½μεðηÞ�ν� ðk̄Þ
����
k̄¼ðω;ωn̂Þ

;

ð6:5Þ

for positive frequency (ω > 0). For negative frequency
(ω < 0) the waveform is

fμνðω; n̂Þ

¼ −
1

2π
ℏ3=2

X
η

hψ jS†a†ðηÞðk̄ÞSjψik̄½μεðηÞν� ðk̄Þ
����
k̄¼−ðω;ωn̂Þ

:

ð6:6Þ

This result holds to all orders in perturbation theory.
It is straightforward to extend this result to gravity.

We work in Einstein gravity, and assume that the
spacetime is asymptotically Minkowskian. In this case
our observer at x is very far from the source of gravitational
waves, and is equipped to measure the expectation value
of the local spacetime curvature hRout

μνρσðxÞi. The corre-
sponding spectral waveform is nothing but the double copy
of Eq. (6.5),

fμνρσðω; n̂Þ ¼
iκ
2π

ℏ3=2
X
η

hψ jS†aðηÞðk̄ÞSjψik̄½μεðηÞ�ν� ðk̄Þk̄½ρεðηÞ�σ� ðk̄Þ
����
k̄¼ðω;ωn̂Þ

; ð6:7Þ

for ω > 0. In this equation, the operator aðηÞðkÞ annihilates perturbative gravitational states. We have included a factor κ=2
so that the Riemann tensor has the conventional normalization. Noting that the metric perturbation falls off as inverse
distance, it follows that nonlinear terms in the Riemann tensor produce corrections which fall off faster than inverse
distance. Consequently, we have neglected them. Notice that all possible traces of Eq. (6.7) vanish, consistent with the fact
that the Riemann tensor in vacuum equals the Weyl tensor. The waveform for negative frequency is

fμνρσðω; n̂Þ ¼ −
iκ
2π

ℏ3=2
X
η

hψ jS†a†ðηÞðk̄ÞSjψik̄½μεðηÞν� ðk̄Þk̄½ρεðηÞσ� ðk̄Þ
����
k̄¼−ðω;ωn̂Þ

: ð6:8Þ

The Lorentz indices on these observables reflects the
tensor structure of electrodynamics and gravity. In both
cases, however, there are only two possible polarizations of
the outgoing radiation. It is helpful to project the waveform
onto one of these polarizations. Classically, a convenient
way to do so is to use the Newman-Penrose (NP) [123]
formalism, which is intimately connected to the spinor-
helicity method of scattering amplitudes [38,39,143]. We
can adopt the same idea in the present context. For us, a
simple route to the NP formalism is to pick a complex basis
of vectors which is aligned with our setup. We choose the
vectors6

Lμ ¼ k̄μ=ω ¼ ð1; n̂Þμ; Nμ ¼ ζμ;

Mμ ¼ εðþÞμ; M�μ ¼ εð−Þμ: ð6:9Þ

The null vector ζ is simply a gauge choice, satisfying
ζ · εð�Þ ¼ 0 and L · N ¼ L · ζ ¼ 1. Furthermore note that
M ·M� ¼ −1. The scaling of the NP vector L ensures that
it does not depend on frequency ω, and is dimensionless.
Indeed the polarization vectors εð�Þ do not depend on the
scaling of k̄ so they are also independent of frequency.
These vectors therefore make sense as a spacetime basis,
not merely as a basis in Fourier space.
It is easy to check that the only nonzero components of

fμν in the NP basis are fμνM�μNν and fμνMμNν. These are
the leading radiative NP scalar, traditionally [155] denoted
Φ0

2, and its conjugate. We can write these NP scalars as
Fourier transforms:

Φ0
2ðt; n̂Þ ¼

Z
d̂ω e−iωtΦ̃0

2ðω; n̂Þ: ð6:10Þ

Notice that we commuted the NP basis vectors through the
frequency integration sign. This is permissible as the basis

6We use capital letters to denote the elements of our NP basis
rather than the more traditional lowercase symbols in order to
distinguish the vectors from loop momenta, masses, et cetera.
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vectors are independent of frequency. For positive fre-
quency ω, we find

Φ̃0
2ðω; n̂Þ ¼ −

ω

4π
ℏ3=2hψ jS†að−Þðk̄ÞSjψi

����
k̄¼ðω;ωn̂Þ

; ð6:11Þ

while for negative frequency, the corresponding expression
reads

Φ̃0
2ðω; n̂Þ ¼ þ ω

4π
ℏ3=2hψ jS†a†ðþÞðk̄ÞSjψi

����
k̄¼−ðω;ωn̂Þ

: ð6:12Þ

Combining these results, we find that the time-domain NP
scalar is

Φ0
2ðt; n̂Þ ¼ −

ℏ3=2

4π

Z
d̂ωΘðωÞ

× ω½e−iωthψ jS†að−Þðk̄ÞSjψi

þ eþiωthψ jS†a†ðþÞð−k̄ÞSjψi�
����
k̄¼ðω;ωn̂Þ

:

ð6:13Þ
In gravity, the corresponding radiative NP scalar is

defined by

Ψ4ðxÞ ¼ −NμM�
νNρM�

σhWμνρσðxÞi; ð6:14Þ
where WμνρσðxÞ is the Weyl tensor, equal to the Riemann
tensor in our case. Expanded at large distances, the leading
term in the NP scalar is Ψ0

4:

Ψ4ðxÞ ¼
1

jxjΨ
0
4 þ � � � : ð6:15Þ

This object is directly relevant to gravitational waveforms
[5,156]. We find that the spectral version of the NP scalar is

Ψ̃0
4ðω; n̂Þ ¼ −i

κω2

8π
ℏ3=2hψ jS†að−−Þðk̄ÞSjψi

����
k̄¼ðω;ωn̂Þ

ð6:16Þ

for positive ω. Let us emphasize once again that these
results hold to all orders of perturbation theory.
NP scalars are particularly well-suited for comparison

with helicity amplitudes in quantum field theory. However,
they may be slightly less familiar than the more elementary
field strengths; field strengths also have the virtue of being
Hermitian quantities. Therefore, in the remainder of this
article, we will also study the expectation of the radiative
field-strength tensor in perturbation theory. This entails
rewriting the scattering matrix in terms of the transition
matrix T, S ¼ 1þ iT,

hFout
μν ðxÞi ¼ hψ jð1 − iT†ÞFμνðxÞð1þ iTÞjψi

¼ hψ jFμνðxÞjψi þ 2Reihψ jFμνðxÞTjψi
þ hψ jT†FμνðxÞTjψi: ð6:17Þ

The first term in Eq. (6.17) is the expectation value of the
field strength due to any incoming radiation which may be
present in jψiin; the following term is linear in amplitudes,
and thus of Oðg3Þ (or higher); the last term is quadratic in
amplitudes (or equivalently, linear in a cut amplitude), and
contains terms of Oðg5Þ and higher.
Using unitarity, we can rewrite Eq. (6.17),

hFout
μν ðxÞiðxÞ ¼ hψ jFμνðxÞjψi þ ihψ j½FμνðxÞ; T�jψi

þ hψ jT†½FμνðxÞ; T�jψi: ð6:18Þ

The commutator in the second term of this expression is
reminiscent of the form of the impulse Δp (although in case
of the field strength, the first term above need not vanish).
This second form of the field strength can be both instructive
and useful, but it has a slight disadvantage that reality
properties are somewhat obscured compared to Eq. (6.17).
When taking the classical limit, we are interested in the
leading term in the large-distance expansion as well; for
such radiation observables, we will understand the ⟪ � � �⟫
notation to impose that expansion as well.
We will use this observable to analyze emitted radiation

in the scattering of two charged particles in Sec. VIII. We
first continue our analysis of Thomson scattering in the
next section.

VII. FROM COMPTON SCATTERS
TO THOMSON SCATTERING

In Sec. IV C, we considered the Thomson scattering
process: electromagnetic scattering of a classical beam off
of a massive point charge. In our earlier discussion we
studied the impulse suffered by the massive particle during
the process. We are now equipped to deepen our analysis by
determining the scattered light generated during Thomson
scattering as shown schematically in Fig. 4. We will do so
by using the results of the previous section to compute
the NP scalar Φ0

2, which describes that scattered light at
very large distances.
In this situation, our initial state Eq. (4.5) describes

an isolated massive particle, and a localized beam of
incoming classical radiation described as in Sec. III C by
a coherent state with an appropriate wave shape function.
Correspondingly, the incoming state generates a nonvan-
ishing expectation value for the electromagnetic field
strength tensor. This is the incoming classical radiation
hFin

μνðxÞi:

hFin
μνðxÞi ¼ hψwjFμνjψwi: ð7:1Þ

In particular, there is a nonvanishing NP scalar Φ0
2 in the

far past.
To focus attention on the scattered light, it is convenient

to study the overall change in the NP scalar during the
process,
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ΔΦ0
2ðω; n̂Þ ¼ −

ω

4π
ℏ3=2½hψwjS†að−Þðk̄ÞSjψwi

− hψwjað−Þðk̄Þjψwi�
���
k̄¼ðω;ωn̂Þ

: ð7:2Þ

This simply subtracts the contribution of the incoming
beam to the radiation field in the future. We will compute

this quantity at leading order, focusing on the positive-
frequency part throughout.
Using unitarity of the S matrix, we may write ΔΦ0

2 in
terms of a commutator,

ΔΦ0
2ðω; n̂Þ ¼ −

i
4π

ωℏ3=2hψwj½að−Þðk̄02Þ; T�jψwi
����
k̄0
2
¼ðω;ωn̂Þ

:

ð7:3Þ

We relabeled the quantity k̄ appearing in Eq. (7.2) as k̄02
because, as wewill see below, it has the interpretation of the
wave vector associated with the outgoing wave which was
denoted k̄02 in Sec. IV.
To compute the commutator ½að−Þðk02Þ; T�, we make use of

Eq. (4.10) to expand the T matrix in terms of creation and
annihilation operators. Dropping the terms in the ellipsis of
Eq. (4.10), the commutator is easily computed to be

½að−Þðk02Þ; T� ¼
X
η̃

Z
dΦðr̃1; r̃01; k̃2Þhr̃01k0−2 jTjr̃1k̃η̃2i

× a†ðr̃01Þaðr̃1Þaðη̃Þðk̃2Þ: ð7:4Þ

Inserting this result in Eq. (7.3), and expanding the state jψwi
using its definition (4.5) specialized to the case b ¼ 0 we
easily find that

ΔΦ0
2ðω; n̂Þ ¼ −

i
4π

ωℏ3=2
X
η

Z
dΦðp1; p0

1; k2Þϕ�ðp0
1Þϕðp1Þhp0

1k
0−
2 jTjp1k

η
2ihαþjaðηÞðk2Þjαþi

¼ −
i
4π

ωℏ3=2

Z
dΦðp1; p0

1; k2Þϕ�ðp0
1Þϕðp1Þhp0

1k
0−
2 jTjp1k

þ
2 iαðk2Þ: ð7:5Þ

The matrix element of the transition operator yields the Compton amplitude, as well as the usual delta function enforcing
overall momentum conservation. We may perform the p0

1 integral using this delta function to find that

ΔΦ0
2ðω; n̂Þ ¼ −

i
4π

ωℏ3=2

Z
dΦðp1; k2Þ δ̂ð2p1 · ðk02 − k2ÞÞjϕðp1Þj2αðk2ÞAðp1k

þ
2 → p0

1k
0−
2 Þ: ð7:6Þ

We replaced the (conjugated) wave function ϕ�ðp0
1 þ k2 − k02Þ by ϕ�ðp0

1Þ because the difference ðk2 − k02Þ=ℏ ¼ k̄2 − k̄02 is
small (of order 1=λ) compared to the width of the wave function (which is of order 1=lw). The integral over the wave function
is now precisely of the form required for the double-angle-bracket notation of Ref. [122] so that we arrive at

ΔΦ0
2ðω; n̂Þ ¼ −

i
4π

⟪ωℏ3=2

Z
dΦðk2Þ δ̂ð2p1 · ðk02 − k2ÞÞαðk2ÞAðp1k

þ
2 → p0

1k
0−
2 Þ⟫: ð7:7Þ

Finally, we insert the explicit Compton amplitude of Eq. (4.19), and replace the remaining integral over k2 with an integral
over the associated wave number k̄2 to learn that the LO NP scalar due to the scattering process is

FIG. 4. The observer measures the field strength of the out-
going wave.
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ΔΦ0
2ðω; n̂Þ ¼ i

Q2e2

16π
⟪ω

Z
dΦðk̄2Þ δ̂ð2p1 · ðk̄02 − k̄2ÞÞᾱðk̄2Þm2

hk̄2k̄02i
½k̄2k̄02�k̄2 · p1

⟫: ð7:8Þ

The same result would also be obtained from a classical analysis of the leading order radiation field of a point charge moving
under the influence of an incoming classical wave.
Alternatively, it is possible to compute the expectation value of the field strength in the very far future. Focusing again on

the change in the field strength,

hΔFμνðxÞi≡ hFout
μν ðxÞi − hFin

μνðxÞi; ð7:9Þ

it is straightforward to use Eq. (6.17) and find that

hΔFμνðxÞi ¼ ihψwj½FμνðxÞ; T�jψwi þ � � � : ð7:10Þ

We have indicated higher order terms are present in the ellipsis. It may be worth emphasizing once again that this result is
the same as one would find to be a direct computation using background field methods:

hΔFμνðxÞi ¼ hψwjS†FμνðxÞSjψwi − hψwjFμνðxÞjψwi

¼
Z

dΦðp1ÞdΦðp1Þϕðp1Þϕ�ðp0
1Þe−ib·ðp

0
1
−p1Þ=ℏfihp0

1j½FμνðxÞ; TðAðηÞ
cl Þ�jp1i þ hp0

1jT†ðAðηÞ
cl ÞFμνðxÞTðAðηÞ

cl Þjp1ig;

ð7:11Þ

where AðηÞ
cl ðxÞ denotes the classical background field corresponding to our coherent state, and we once again used the

relation C†
α;ðηÞCα;ðηÞ ¼ 1.

Returning to the LO computation of the scattered field strength, by inserting the definition of the field strength operator,
we now encounter two commutators:

hΔFμνðxÞi ¼
2

ℏ3=2

X
η0

Z
dΦðk0Þ½hψwj½aðη0Þðk̄0Þ; T�jψwik̄0½μεðη

0Þ�
ν� ðk0Þe−ik0·x=ℏ − hψwj½a†ðη0Þðk̄0Þ; T�jψwik̄0½μεðη

0Þ
ν� ðk0Þeþik0·x=ℏ�:

ð7:12Þ

The first of these was computed explicitly above; the second is very similar. After a short computation, the field strength can
be expressed as

hΔFμνðxÞi ¼ Re⟪4g2X
η0

Z
dΦðk̄2; k̄02Þ δ̂ð2p1 · ðk̄02 − k̄2ÞÞᾱðk̄2ÞĀðp1k

þ
2 → p0

1k
0η0 Þk̄0

2½με
ðη0Þ�
ν� ðk̄02Þe−ik̄

0
2
·x⟫: ð7:13Þ

Comparison with the NP scalar is facilitated by performing the k̄02 integral using the methods of Sec. V. Indeed, the field
strength change of Eq. (7.13) is of the general form of the radiation observable Eq. (5.6). The corresponding current is

J̃μνðk̄2Þ ¼ −4i⟪X
η0

Z
dΦðk̄02Þ δ̂ð2p1 · ðk̄02 − k̄2ÞÞᾱðk̄2ÞĀðp1k

þ
2 → p0

1k
0
2
η0 Þk̄0

2½με
ðη0Þ�
ν� ðk̄02Þ⟫: ð7:14Þ

The NP scalar can be obtained directly from this current as

ΔΦ0
2ðω; n̂Þ ¼

1

4π
J̃μνðk̄ÞM�μNν: ð7:15Þ

Performing the dot products, we recover our earlier result, Eq. (7.8).
Earlier, we identified incoming classical radiation with coherent states. The reader may wonder then about the nature of

outgoing radiation. A necessary condition for the outgoing radiation to be represented by a coherent state is that expectation
values of observables, such as the field strength, should factorize. We have proved this explicitly earlier, see Eq. (3.22).
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Perhaps surprisingly, it turns out that this is also a sufficient
condition. Indeed, one can work out the constraints on the
probability density of the outgoing (pure) radiation: in the
coherent state space (also called the Glauber-Sudarshan
representation), the classical factorization of observables
implies that the distribution has zero variance. In turn, this
makes the distribution degenerate, i.e., supported on iso-
lated points. But as shown by Hillery [157], the normali-
zation condition together with the purity constraint suffices
to reduce the sum of delta functions in the coherent state
space to just a single delta function. That is, we have only a
single outgoing coherent state in the classical limit. In
Appendix B, we prove that the factorization condition
holds at the lowest order in the coupling constant, which

makes the outgoing radiation state of the Thomson scatter-
ing coherent up to order g2. A more detailed discussion on
this point will appear in forthcoming work [158].

VIII. EMISSION WAVEFORM

We turn now to photon emission in the scattering of two
charged point particles. At leading order in perturbation
theory, only the second term in Eq. (6.17) [or similarly, in
Eq. (6.18)] contributes. It will be of order Oðg3Þ, whereas
the second term will be of Oðg5Þ.
If we now substitute the expression (3.5), along with that

(2.14) for the initial-state wave function for the scattering
particles into the first term of Eq. (6.17), then we obtain

hFμνðxÞi1 ¼
4

ℏ3=2 Re
X
η

Z
dΦðp1ÞdΦðp2ÞdΦðp0

1ÞdΦðp0
2ÞdΦðkÞ

× e−ib·ðp0
1
−p1Þ=ℏϕðp1Þϕ�ðp0

1Þϕðp2Þϕ�ðp0
2Þk½μεðηÞν��e−ik·x=ℏhp0

1p
0
2jaðηÞðkÞTjp1p2i

¼ 4

ℏ3=2 Re
X
η

Z
dΦðp1ÞdΦðp2ÞdΦðp0

1ÞdΦðp0
2ÞdΦðkÞ

× e−ib·ðp0
1
−p1Þ=ℏϕðp1Þϕ�ðp0

1Þϕðp2Þϕ�ðp0
2Þk½μεðηÞν��e−ik·x=ℏhp0

1p
0
2k

ηjTjp1p2i: ð8:1Þ

We can identify the matrix element as a five-point amplitude,

hp0
1p

0
2k

ηjTjp1p2i ¼ Aðp1; p2 → p0
1; p

0
2; k

ηÞδ̂ð4Þðp1 þ p2 − p0
1 − p0

2 − kÞ: ð8:2Þ

At leading order, we replace the amplitude by its LO contribution, given by a tree-level expression. To compute the
required waveform, we must identify the expectation of FμνðxÞ as the spatial current Jμ⃗ðxÞ in Eqs. (5.4) and (5.5), and via
Eq. (5.5) in Eq. (5.15).
Beyond leading order, the expectation of FμνðxÞ will receive higher-order contributions to the amplitudes in Eq. (8.2),

alongside contributions from the last term in Eq. (6.18),

hFμνðxÞi2 ¼ −
2i

ℏ3=2

X
η

Z
dΦðp1ÞdΦðp2ÞdΦðp0

1ÞdΦðp0
2ÞdΦðkÞ e−ib·ðp0

1
−p1Þ=ℏϕðp1Þϕ�ðp0

1Þϕðp2Þϕ�ðp0
2Þ

× ½k½μεðηÞν��e−ik·x=ℏhp0
1p

0
2jT†aðηÞðkÞTjp1p2i − k½μεðηÞν�eþik·x=ℏhp0

1p
0
2jT†a†ðηÞðkÞTjp1p2i�: ð8:3Þ

We insert a complete set of states to the right of each T†,

hψ jT†FμνTjψi ¼
X
X

Z
dΦðr1ÞdΦðr2Þhψ jT†jr1r2Xihr1r2XjFμνTjψi; ð8:4Þ

where the sum over X is over all states, including no
additional particles, and includes an implicit integral over
momenta of any particles in X and a sum over any other
quantum numbers. As in Ref. [122], we assume that each of
the incoming massive particles carries a separately con-
served global charge, so that each intermediate state has
one net particle of each type. We can ignore additional

particle-antiparticle pairs of the massive particles, as these
contributions will disappear in the classical limit. As there
are no messengers in the initial state, and hence no coherent
states, there is no need to sum over arbitrary numbers of
messengers. Accordingly, we do not need to switch to a
coherent-friendly representation (4.10) of the T matrix. We
obtain
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hFμνðxÞi2 ¼ −
2i

ℏ3=2

X
X

X
η

Z
dΦðr1ÞdΦðr2ÞdΦðp1ÞdΦðp2ÞdΦðp0

1ÞdΦðp0
2ÞdΦðkÞe−ib·ðp0

1
−p1Þ=ℏϕðp1Þϕ�ðp0

1Þϕðp2Þϕ�ðp0
2Þ

× ½k½μεðηÞν��e−ik·x=ℏhp0
1; p

0
2jT†jr1r2Xihr1r2XjaðηÞðkÞTjp1p2i

− k½μεðηÞν�eþik·x=ℏhp0
1; p

0
2jT†jr1r2Xihr1r2Xja†ðηÞðkÞTjp1p2i�

¼ −
2i

ℏ3=2

X
X

X
η

Z
dΦðr1ÞdΦðr2ÞdΦðp1ÞdΦðp2ÞdΦðp0

1ÞdΦðp0
2ÞdΦðkÞe−ib·ðp0

1
−p1Þ=ℏϕðp1Þϕ�ðp0

1Þϕðp2Þϕ�ðp0
2Þ

× ½k½μεðηÞν��e−ik·x=ℏhp0
1; p

0
2jT†jr1r2Xihr1r2kηXjTjp1p2i

− k½μεðηÞν�eþik·x=ℏhp0
1p

0
2jT†jr1r2kηXihr1r2XjTjp1p2i�: ð8:5Þ

In the second term within brackets, the creation operator requires a photon in the intermediate state and eliminates it
from the bra. We then relabeled X to exclude it. Note as well that at next-to-next-leading order and beyond, we necessarily
require amplitudes with three incoming particles. These can just as easily be obtained by crossing. The term (8.5) has the
interpretation of a cut of an amplitude, just as for the second term in the impulse in Ref. [122], as seen in Eqs. (3.26)–(3.31)
therein.
The contribution of Eq. (8.5) first appears at next-to-leading order. At this order, we are interested in contributions with

X ¼ ∅, and we can identify the required matrix elements as a combination of four- and five-point amplitudes:

hr1r2jTjp1p2i ¼ Aðp1p2 → r1r2Þδ̂ð4Þðp1 þ p2 − r1 − r2Þ;
hp0

1; p
0
2jT†jr1r2i ¼ A�ðp0

1; p
0
2 → r1; r2Þδ̂ð4Þðp0

1 þ p0
2 − r1 − r2Þ;

hr1r2kηjTjp1p2i ¼ Aðp1; p2 → r1; r2; kηÞδ̂ð4Þðp1 þ p2 − r1 − r2 − kÞ;
hp0

1p
0
2jT†jr1r2kηi ¼ A�ðp0

1; p
0
2 → r1; r2; kηÞδ̂ð4Þðp0

1 þ p0
2 − r1 − r2 − kÞ: ð8:6Þ

For the next-to-leading order contribution to hFμνðxÞi, we use tree-level amplitudes in Eq. (8.6).

IX. THE DETECTED WAVE AT LEADING ORDER

The leading-order contribution to the waveform will arise at Oðg3Þ, as described in the previous section. We apply the
approach of Ref. [122] to Eq. (8.1). Similar to that reference, and to Sec. IV, we define the momentum mismatches

q1 ¼ p0
1 − p1;

q2 ¼ p0
2 − p2; ð9:1Þ

and trade the integrals over the p0
i for integrals over the qi,

hFμνðxÞi1 ¼
4

ℏ3=2 Re
X
η

Z
dΦðp1ÞdΦðp2Þd̂4q1d̂4q2dΦðkÞ δ̂ð2p1 · q1 þ q21Þ δ̂ð2p2 · q2 þ q22Þ

× e−ib·q1=ℏΘðpt
1 þ qt1ÞΘðpt

2 þ qt2Þϕðp1Þϕ�ðp1 þ q1Þϕðp2Þϕ�ðp2 þ q2Þ
× k½μεðηÞν��e−ik·x=ℏAðp1; p2 → p1 þ q1; p2 þ q2; kηÞδ̂ð4Þðq1 þ q2 þ kÞ: ð9:2Þ

We can take the classical limit, and change to the required wave number variables for the qi and k,

hFμνðxÞi1;cl ¼ g3⟪ℏ2Re
X
η

Z
dΦðk̄Þk̄½μεðηÞν��e−ik̄·x

×
Z Y

i¼1;2

d̂4q̄iδ̂ðpi · q̄iÞe−ib·q̄1 δ̂ð4Þðq̄1 þ q̄2 þ k̄ÞĀðp1; p2 → p1 þ ℏq̄1; p2 þ ℏq̄2;ℏk̄ηÞ⟫: ð9:3Þ

We have also extracted powers of ℏ from the coupling, and dropped the ℏ-suppressed terms inside the on shell delta
functions as well as the positive-energy theta functions. We recognize the inner integral in the second term as the radiation
kernel defined in Eq. (4.42) of Ref. [122] (after changing variables there pi → pi − ℏw̄i and w̄i → −q̄i),
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Rð0Þðk̄η; bÞ≡ ℏ2

Z Y
i¼1;2

d̂4q̄i δ̂ðpi · q̄iÞe−ib·q̄1 δ̂ð4Þðq̄1 þ q̄2 þ k̄ÞĀðp1; p2 → p1 þ ℏq̄1; p2 þ ℏq̄2;ℏk̄ηÞ: ð9:4Þ

We have made the impact parameter an explicit argument here. At LO, we can then write

hFμνðxÞi1;cl ¼ g3⟪ReX
η

Z
dΦðk̄Þk̄½μεðηÞν��e−ik̄·xRð0Þðk̄η; bÞ⟫: ð9:5Þ

The integrand has the form of the radiation observables introduced in Sec. VI. The spectral waveform is then

fμνðω; n̂Þ ¼ −
ig3

8π

X
η

½ΘðωÞk̄½μεðηÞν��Rð0Þðk̄η;bÞjk̄¼ωð1;n̂Þ − Θð−ωÞk̄½μεðηÞν�Rð0Þ�ðk̄η; bÞjk̄¼−ωð1;n̂Þ�: ð9:6Þ

The corresponding result for the Fourier-space NP scalar is

Φ̃0
2ðω; n̂Þ ¼ −

ig3ω
16π

⟪ΘðωÞRð0Þðωð1; n̂Þ−; bÞ þ Θð−ωÞRð0Þ�ð−ωð1; n̂Þþ; bÞ⟫: ð9:7Þ

Equivalently, we may write

Φ0
2ðt; n̂Þ ¼ −

ig3

16π
⟪
Z

d̂ωΘðωÞω½e−iω·tRð0Þðωð1; n̂Þ−; bÞ − eþiω·tRð0Þ�ðωð1; n̂Þþ; bÞ�⟫: ð9:8Þ

As the LO radiation kernelRð0Þ is given by a five-point amplitude, the waveform as a function of frequency ω, is simply the
five-point amplitude up to the additional factor of ω.
The explicit form of Eq. (9.4) for electromagnetic scattering is given in Eq. (5.46) of Ref. [122] and reproduced as

Eq. (C1). We evaluate it in Appendix C to obtain

Rð0Þðk̄; bÞ ¼ Q2
1Q2

m1u1 · k̄
½u2 · k̄u1 · ε − u1 · k̄u2 · ε�I3 −

Q2
1Q2γ

m1u1 · k̄ðγ2 − 1Þ ½u1 · k̄ðu1 − γu2Þ · ε − ðu1 − γu2Þ · k̄u1 · ε�I3

þQ2
1Q2γeib·k̄

m1u1 · k̄
½u1 · k̄ b̃ ·ε − b̃ · k̄u1 · ε�

i
2πðγ2 − 1ÞK1


 ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q �
þ ð1 ↔ 2 modulo phasesÞ;

¼ Q2
1Q2eib·k̄

m1u1 · k̄
½u2 · k̄u1 · ε − u1 · k̄u2 · ε�

1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p K0


 ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q �

þQ2
1Q2γeib·k̄

m1u1 · k̄
½u1 · k̄ b̃ ·ε − b̃ · k̄u1 · ε�

i
2πðγ2 − 1ÞK1


 ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q �
þ ð1 ↔ 2 modulo phasesÞ:

ð9:9Þ

In this expression,

b̃μ ¼ bμ=
ffiffiffiffiffiffiffiffi
−b2

p
: ð9:10Þ

A side calculation shows that (with ζ a null reference momentum),

u2 · k̄u1 · ε − u1 · k̄u2 · ε ¼
1ffiffiffi
2

p hζk̄i ½hk̄ju2jk̄�hζju1jk̄� − hk̄ju1jk̄�hζju2jk̄��;

¼ 1ffiffiffi
2

p ½k̄ju2u1jk̄� ð9:11Þ
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for positive-helicity emission, and

1ffiffiffi
2

p hk̄ju2u1jk̄i ð9:12Þ

for negative-helicity emission.
Then,

Rð0Þðk̄þ;bÞ¼ Q2
1Q2eib·k̄

2
ffiffiffi
2

p
πm1u1 · k̄

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p
�
½k̄ju2u1jk̄�K0

� ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄

� ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q 	
þ i½k̄jbu1jk̄�ffiffiffiffiffiffiffiffiffiffiffi

γ2−1
p ffiffiffiffiffiffiffiffi

−b2
p K1

� ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q 	�

þ Q1Q2
2

2
ffiffiffi
2

p
πm2u2 · k̄

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p
�
½k̄ju1u2jk̄�K0

� ffiffiffiffiffiffiffiffi
−b2

p
u2 · k̄=

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q 	
þ i½k̄jbu2jk̄�ffiffiffiffiffiffiffiffiffiffiffi

γ2−1
p ffiffiffiffiffiffiffiffi

−b2
p K1

� ffiffiffiffiffiffiffiffi
−b2

p
u2 · k̄=

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q 	�
:

ð9:13Þ

There is a similar result for the other photon helicity.
Using the integrals,

Z
∞

0

dωωe−iωðtþa0ÞK0ðωa1Þ ¼
1

a21 þ ða0 þ tÞ2 −
ðtþ a0Þ

½a21 þ ða0 þ tÞ2�3=2 arcsinh
�
1

a1
ðtþ a0Þ

	
−
iπ
2

ðtþ a0Þ
½a21 þ ða0 þ tÞ2�3=2 ;Z

∞

0

dωωe−iωðtþa0ÞK1ðωa1Þ ¼
πa1

2½a21 þ ða0 þ tÞ2�3=2 − i
ða0 þ tÞ

a1½a21 þ ða0 þ tÞ2� − i
a1

½a21 þ ða0 þ tÞ2�3=2 arcsinh
�
1

a1
ðtþ a0Þ

	
;

ð9:14Þ

and defining

ui;n̂ ≡ ui · k̄=ω ¼ ui · ð1; n̂Þ;
ρ1ðtÞ≡ −b2u21;n̂ þ ðγ2 − 1Þðtþ b · n̂Þ2;
ρ2ðtÞ≡ −b2u22;n̂ þ ðγ2 − 1Þt2; ð9:15Þ

along with

Ξζ
iaðt; n̂; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ρ1ðtÞ

− ζ
ðγ2 − 1Þðtþ v · n̂Þ

ρ3=21 ðtÞ
arcsinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ffiffiffiffiffiffiffiffi
−b2

p
u1;n̂

ðtþ v · n̂Þ
	
−
iπ
2

ðγ2 − 1Þðtþ v · n̂Þ
ρ3=21 ðtÞ

;

Ξibðt; n̂; vÞ ¼
πu1;n̂
ρ3=21 ðtÞ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ðtþ v · n̂Þ

b2u1;n̂ρ1ðtÞ
− i

u1;n̂
ρ3=21 ðtÞ

arcsinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ffiffiffiffiffiffiffiffi
−b2

p
u1;n̂

ðtþ v · n̂Þ
	
; ð9:16Þ

we can write

Φ0
2ðt; n̂Þ ¼ −

ig3Q2
1Q2

ð4πÞ3 ffiffiffi
2

p
m1u1;n̂

½hn̂ju2u1jn̂iΞþ
1aðt; n̂;bÞ − ½n̂ju2u1jn̂�Ξ−

1aðt; n̂;bÞ þ iðhn̂jbu1jn̂i − ½n̂jbu1jn̂�ÞΞ1bðt; n̂;bÞ�

−
ig3Q1Q2

2

ð4πÞ3 ffiffiffi
2

p
m2u2;n̂

½hn̂ju1u2jn̂iΞþ
2aðt; n̂; 0Þ − ½n̂ju1u2jn̂�Ξ−

2aðt; n̂; 0Þ þ iðhn̂jbu2jn̂i − ½n̂jbu2jn̂�ÞΞ2bðt; n̂; 0Þ�:

ð9:17Þ

Here, jn̂i and jn̂� are spinors built out of the null vector ð1; n̂Þ.
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X. CONNECTION TO RADIATED MOMENTUM

In Sec. VI, we presented the general form for the
waveform observable. We worked out the leading-order
form in two-particle scattering in Sec. VIII, and computed
the explicit form for electromagnetic scattering in the
previous section. The appearance of the radiation kernel
suggests a connection to the radiated momentum previ-
ously computed in Ref. [122]. Let us elucidate that
connection in this section.
In Eq. (3.33) of Ref. [122], we find an expression for

time-averaged radiated momentum,

Rμ ≡ hkμi ¼ inhψ jS†KμSjψiin ¼ inhψ jT†KμTjψiin: ð10:1Þ

This quantity is also integrated over the entire celestial
sphere; we need a more differential observable. Furthermore,
this expression is related to the energy emitted, rather than
the amplitude of the emitted wave.
We can use Mellin transforms to extract a more restricted

observable, passing through the spectral waveform to relate
the emitted power to the amplitude. Write the expectation
of the observable hðktÞz−1i,

RðzÞ≡ hðktÞz−1i ¼ inhψ jT†ðKtÞz−1Tjψiin: ð10:2Þ

The inverse Mellin transform is related to the unpolarized
energy density function,

fϵðEÞ ¼ −iE
Z

cþi∞

c−i∞
dzE−zRðzÞ; ð10:3Þ

where the integral is taken along a line parallel to the
imaginary axis, with c ∈ ð0; 1Þ (or a deformation of that
contour that does not cross any poles or branch points).7

The total energy is given by the integral

Etot ¼
Z

∞

0

dE fϵðEÞ: ð10:4Þ

Using the form in Eq. (3.38) of Ref. [122], we can write

RðzÞ ¼
X
X

Z
dΦðkÞdΦðr1ÞdΦðr2ÞðktXÞz−1

X
η

jR̂ðkη; rXÞj2;

ð10:5Þ

for the expression in the quantum theory. In this equation,
R̂ represents the quantum radiation kernel, given by the
integral over wave functions inside the absolute square in
Eq. (3.38). The quantum radiation kernel is expressed
directly in terms of a scattering amplitude.

In the classical limit, the density function is more
naturally a function of frequency rather than of energy

fϵ;clðωÞ ¼ −iω
Z

cþi∞

c−i∞
dzω−zRclðzÞ; ð10:6Þ

so that RclðzÞ ¼ ℏ−z−1RðzÞ. We can use Eqs. (4.40)–(4.41)
of Ref. [122] to write

RclðzÞ ¼
X
X

ℏ−z−1⟪
Z

dΦðkÞðktXÞz−1
X
η

jRðkη; rXÞj2⟫:
ð10:7Þ

The radiation kernel here is expressed in terms of the
appropriate limit of a quantum scattering amplitude.
We next need to restrict the measured radiation from the

entire celestial sphere to a narrow cone in a given direction.
We take the limit of the cone, and measure only the
radiation in a given direction from the scattering event. We
implicitly assume that the measurement distance is much
larger than the impact parameter so that there is a unique
and well-defined direction. It is not clear exactly what a
formal expression for the operator would be, but what we
want is

Kμδð2ÞðK̂ − n̂Þ ð10:8Þ

for radiation in the n̂ direction. This operator is to be
understood as inserting

X
i∈messengers

kμi δ
ð2Þðk̂i − n̂Þ; ð10:9Þ

into a sum over states or equivalently the phase-space
integral. Focusing on the energy component, this can be
understood as a light ray operator [105,159–162] given by

Eðn̂Þ ¼
Z þ∞

−∞
du lim

r→∞
r2Tuuðu; r; n̂Þ; ð10:10Þ

where u denotes the light cone time u ¼ t − r and
Tuuðu; r; n̂Þ is the (light cone) time-time component of
the stress-energy tensor (in gravity, this will be replaced by
the Bondi news squared operator [105]). By applying the
saddle point approximation for the fields in the energy
momentum tensor, the plane wave expansion will localize
to the point on the sphere in the direction of propagation.
Schematically we will have (see Refs. [163,164] for further
details)

eix·k=ℏ ¼ eiωuþiωrð1−n̂·k̂Þ ∼r→∞ 1

iωr
eiωuδð2Þðn̂ − k̂Þ; ð10:11Þ

where ω ¼ k̄t. Then one finds
7With our conventions, the expected power of ð2πÞ−1 is in the

forward rather than the inverse Mellin transform.
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Eðn̂Þ¼
X
η

Z
dΦðkÞktδð2Þðn̂− k̂Þ½a†ðηÞðkÞaðηÞðkÞ�; ð10:12Þ

where the action on on-shell particle states is equivalent to
the time component of Eq. (10.9). The analogous Mellin
kernel for ðKtÞz−1 is presumably

ðKtÞz−1δð2ÞðK̂ − n̂Þ; ð10:13Þ

which is to be understood as inserting

X
i∈ distinct

messengers

� X
jki

j∈messengers

ktj

	
z−1

δð2Þðk̂i − n̂Þ ð10:14Þ

into a sum over states or the phase-space integral. The sum
over distinct messengers is a sum over messengers which

are not collinear; the sum over the collinear messengers is
taken in the inner sum. The inner sum includes i itself.
This form is motivated by a subtlety about overlapping

directions: if k̂j ¼ k̂l with the remaining directions distinct
we want, then

X
i∈messengers

i≠j;l

ðktiÞz−1δð2Þðk̂i − n̂Þ þ ðktj þ ktlÞz−1δð2Þðk̂j − n̂Þ;

ð10:15Þ

which is what Eq. (10.14) is designed to give. That is, we
want collinear messengers to give a result indistinguish-
able from a lone messenger. This would be essential if we
faced collinear divergences, absent in massive electro-
dynamics and in gravity. At leading order this subtlety is
irrelevant.

The analog to Eq. (10.5) is

Rðz; n̂Þ ¼
X

i∈ distinct
messengers

X
X

Z
dΦðkiÞdΦðr1ÞdΦðr2Þ

� X
jki

j∈messengers

ktj

	
z−1

δð2Þðk̂i − n̂Þ
X
η

jR̂ðkηi ; rXÞj2; ð10:16Þ

and to Eq. (10.7),

Rclðz; n̂Þ ¼
X

i∈ distinct
messengers

ℏ−z−1⟪
Z

dΦðkiÞ
� X

jki
j∈messengers

ktj

	
z−1

δð2Þðk̂i − n̂Þ
X
η

jRðkηi ; rXÞj2⟫: ð10:17Þ

At LO, Eq. (10.17) simplifies to just

Rð0Þ
cl ðz; n̂Þ ¼ g6⟪

Z
dΦðk̄Þðk̄tÞz−1δð2Þðk̂ − n̂Þ

X
η

jRð0Þðk̄η; bÞj2⟫: ð10:18Þ

The corresponding result for the spectral density in the n̂ direction is

fϵ;clðω; n̂Þ ¼ g6ω⟪
Z

dΦðk̄Þ δ̂ðln k̄
t − lnωÞ
k̄t

δð2Þðk̂ − n̂Þ
X
η

jRð0Þðk̄η; bÞj2⟫: ð10:19Þ

Writing out

dΦðk̄Þ ¼ d3k̄
2ð2πÞ3jk̄j

¼ jk̄jdjk̄jdΩk̄

2ð2πÞ3 ; ð10:20Þ

we can perform the integrals in Eq. (10.19) to obtain

fϵ;clðω; n̂Þ ¼
g6ω2

8π2
X
η

⟪jRð0Þðωð1; n̂Þη; bÞj2⟫: ð10:21Þ

We can now compare this with the amplitude of each component of the waveform, expanded at the leading order order in
the coupling: for jfμνM�μNνj and jfμνMμNνj we have, respectively,
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jfμνðωð1; n̂ÞÞM�μNνj ¼ ω

16π
g3j⟪Rð0Þðωð1; n̂Þ−; bÞ⟫j;

jfμνðωð1; n̂ÞÞMμNνj ¼ ω

16π
g3j⟪Rð0Þðωð1; n̂Þþ; bÞ⟫j:

ð10:22Þ

At LO, we can also write

⟪jRð0Þðωð1; n̂Þη; bÞj2⟫ ¼ j⟪Rð0Þðωð1; n̂Þη; bÞ⟫j2; ð10:23Þ

and therefore we can express the spectral density of
emission from Eq. (10.21) in terms of the amplitudes of
the two helicity components of the waveform,

fϵ;clðω; n̂Þ ¼ 32½jfμνðωð1; n̂ÞÞM�μNνj2
þ jfμνðωð1; n̂ÞÞMμNνj2�: ð10:24Þ

This relation is the avatar of the relation between the energy
of the wave and the squared amplitude of the wave, the only
difference being that here we are measuring the momentum
emitted in a given direction at a large distance r from the
source. The emitted radiation observable provides infor-
mation about the magnitude of the observed messenger
wave but not about its phase. The direct derivation in
previous sections adds that information.
A recently proposed generalization of a standard

event shape is sensitive to amplitude phases [165]. It
would be interesting to explore a possible connection to
the waveform.

XI. CONCLUSIONS

In this paper, we have developed an observables-based
formalism for computing classical waves from quantum
scattering amplitudes. We have shown how to incorporate
both outgoing and incoming narrowly sampled waves, via
the “local” observables needed for the former, and scatter-
ing of waves needed for the latter.
Waveforms measured at gravitational wave observatories

are “local” measurements, in the sense that the passing
gravitational wave train is sampled only at the (small)
spatial location of the observatory relative to the (very
large) spatial extent of the gravitational wave. In this paper,
our first major focus was on developing a quantum-field
theoretic formalism to describe this kind of classical, local
measurement. This is in contrast to previous work [59,122]
on classical observables in quantum field theory, which
discussed “global” observables, such as the total amount
of energy-momentum radiated in a scattering event. Our
formalism is very general, though in our explicit discus-
sions we focused on the case of electromagnetic radiation,
which has the pedagogical benefit of being slightly easier
to work with. We look forward to applications of our
formalism in gravity.

Scattering amplitudes are remarkably simple objectswhich
can be computed efficiently. For this reason, it seems very
promising that waveforms can be computed so directly in
terms of amplitudes. In particular, it is clear from our work
that there is no obstacle to using the double copy to compute
gravitationalwaveforms (sourcedby a scattering event) to any
order of perturbation theory. Itmaybeworth emphasizing that
we do not need the Bern–Carrasco–Johansson (BCJ) formu-
lation [11] of the double copy at loop level, which remains
conjectural, to perform such a computation. The gravitational
waveform at higher orders could be computed using the
unitarity method, with only tree-level gravitational ampli-
tudes required as inputs. For those amplitudes, the BCJ
relations are proven. The insensitivity of the classical wave-
form to delta-function contributions localized on the world-
lines of the particles offers another, potentially significant
simplification: only a subset of all possible quantum factori-
zation channels needs to be computed. The possibility of
computing leading-order gravitational radiation using ampli-
tudes and the double copy was previously discussed by Luna
et al. [22], building on a leading-order worldline treatment by
Goldberger and Ridgway [12]. The formalism presented here
makes this computation possible to any order. Shen [13] has
already computed the next-to-leading order waveform; it will
be interesting to compare the efficiency of ourmethods, using
the conventional double copy of amplitudes, with Shen’s
ingenious worldline implementation of the double copy.
One important theme in the calculation and exploration

of scattering amplitudes is the search for the simplest forms
in which to cast them. An early realization came through
the focus on helicity amplitudes rather than covariant forms
(in terms of polarization vectors and momenta). The former
contain all physical information, and are simpler. This is
especially true when they are expressed in terms of
spinorial variables. The translation comes through a
spinor-helicity formalism; historically, that of Xu, Zhang,
and Chang [166] played an important role.
Remarkably, the same phenomenon occurs in classical

field theory. NP scalars [123] are classical analogs of
helicity amplitudes; indeed, as we have seen, the NP scalar
Φ2 is an integral over a helicity amplitude. The NP scalars
can be defined by contracting tensorial quantities, such as
the electromagnetic field strength Fμν, with a basis of four
null vectors. This basis is a direct analog of the momentum
of a particle, along with its two possible polarization
vectors, and a gauge choice. Alternatively, the NP scalars
can be constructed directly by passing from the tensorial
field strength to its spinorial equivalent. In this formulation,
a natural basis of spinors occurs classically in an exact
analog of the spinor-helicity method in scattering ampli-
tudes. It seems likely that further study will reveal more
close connections between sophisticated approaches to
classical physics and the methods of scattering amplitudes.
As a concrete application of our formalism, we com-

puted a simple waveform: the electromagnetic radiation
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emitted as two charges scatter. We extracted the asymptotic
spectral functions, as well as the relevant asymptotic
Newman-Penrose scalar. At leading order, these quantities
are closely related to five-point amplitudes. In the Fourier
domain, they are built out of modified Bessel functions. At
higher orders, the connection to five-point amplitudes will
persist. We expect that an interesting class of functions,
generalizing Bessel functions, will appear. In the time
domain, the functions were simpler; we suspect that this
may be an accident of low orders.
Our second major focus in this paper has been devel-

oping a quantum field-theoretic description of massless
classical waves readily amenable to calculations using
scattering amplitudes. Coherent states are key tools in
extracting classical behavior from quantum field theory
[134], so it is no surprise that we found them to be very
helpful. Indeed, they mesh very naturally with amplitudes,
and especially with the transition operator T whose matrix
elements are the amplitudes. The reason is that the T matrix
can be written out in terms of amplitudes and of creation
and annihilation operators. These operators, in turn, act
very simply on coherent states.
As an application of massless waves, we studied the

scattering of a massless electromagnetic wave off a
classical charge. We showed that the resulting outgoing
wave is determined, at leading order, by the classical limit
of the Compton four-point amplitude. We expect this final
state to also be coherent. In Appendix B we provide
evidence in favor of the coherence of this radiation.
Throughout our paper, the focus has been on scattering

events. These are very naturally described using ampli-
tudes. Scattering events in general relativity are interesting
in themselves given the possibility that the tightly bound
compact binaries observed by the LIGO and Virgo collab-
orations are created after a scattering event with a third
object [3]. Of course, a major goal for the future will be to
understand how gravitational waveforms from classically
bound objects can also be computed using amplitudes.
This will need a new understanding, perhaps building on
the work [84,89] of Kälin and Porto in the context of
conservative classical dynamics. Yet even without such a
direct connection, it seems clear that our work can be used
in the context of bound state physics by developing an
effective action to enable the transfer of know-how from
unbound to bound cases. The reader may also be interested
in forthcoming work by Bautista, Guevara, Kavanagh, and
Vines [143] on related subjects.
The future for gravitational wave physics is data-rich and

high precision. We will need every good idea we can find to
calculate waveform templates at the necessary precision.
By now it is clear that amplitudes and the double copy will
be a useful tool. The double copy, at least in its BCJ form,
was a theoretical discovery which was a by-product of
the drive for precision theory for LHC physics. New
theoretical discoveries may well await us as we develop

our understanding of gravitational amplitudes in the drive
for precision gravitational-wave physics.
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APPENDIX A: BEAM SPREADING

Let us obtain a more refined picture of the time
dependence of the classical wave in Eq. (3.38). Expand
the square root in the exponent in that expression, keeping
the next-to-leading term in the expansion,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðk̄xÞ2 þ ðk̄yÞ2

q
¼ ωþ ðk̄xÞ2 þ ðk̄yÞ2

2ω
þ � � � : ðA1Þ

Substituting this into Eq. (3.38), we obtain

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re ε

μ
⊙ðk̄⊙Þe−iωðt−zÞIðω;l⊥Þ; ðA2Þ

where we have introduced the following scalar integral
(recall that σ⊥ ¼ l−1⊥ ):

Iðω;l⊥Þ

¼
Z

d2k̄⊥ δσ⊥ðk̄xÞδσ⊥ðk̄yÞeik̄
xxeik̄

yye−itk̄
2
x=ð2ωÞe−itk̄2y=ð2ωÞ:

ðA3Þ

Integrating over the angular variable, we find

Iðω;l⊥Þ ¼ 2l2⊥
Z

∞

0

dk kJ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
k

	
e−k

2½l2⊥þit=ð2ωÞ�:

ðA4Þ

Performing the integral, we obtain

Iðω; l⊥Þ ¼
e
−ðx2þy2Þ

4l2⊥

h
1þi t

2ωl2⊥

i−1

1þ it
2ωl2⊥

: ðA5Þ
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Yet higher-order contributions may be computed by notic-
ing that the electromagnetic field can be expressed—
without expanding the square root in Eq. (A1)—as

Aμ
clðxÞ ¼

ffiffiffi
2

p
A⊙Re ε

μ
⊙ðk̄⊙Þeiωz−itĤðωÞ

�
e
−ðx2þy2Þ

4l2⊥

�
; ðA6Þ

where we have introduced the operator ĤðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −∇2

ðx;yÞ
q

. In this reformulation, the problem is now

equivalent to computing the time evolution—for a relativ-
istic Hamiltonian with effective mass ω—of a Gaussian
wave packet. Restricting the time evolution to the non-
relativistic limit, we obtain the well-known result for the
spread of a Gaussian wave packet in two dimensions, in
agreement with Eq. (A5). In a similar way, we can easily
generalize the computation by adding contributions from
the expansion of the polarization vectors in the integrand as
in Eq. (3.48).

APPENDIX B: FACTORIZATION AND
UNITARITY IN THE CLASSICAL LIMIT

Our framework allows the computation of classical
phenomena such as the electromagnetic field generated
by the scattering of an incoming beam of light with a
massive particle. In this Appendix, we address the question
of whether the final state is coherent, in the context of a
perturbative calculation. For coherence to hold, we must
show that the mean value of the electromagnetic field
operator on the final state factorizes. The final state is given
by the evolution of the initial state,

jψiout ¼
Z

dΦðpÞϕðpÞeib·p=ℏSjpαþiin: ðB1Þ

We say that the final state is coherent if the following
correlation function vanishes in the classical limit,

Δ ¼ outhψ jFμνðxÞFαβðyÞjψiout − outhψ jFμνðxÞjψiout outhψ jFαβðyÞjψiout; ðB2Þ

where the electromagnetic field operator is given by Eq. (3.5). Let us prove that the previous correlation function vanishes
at the first nontrivial order in the coupling g. The second term in Eq. (B2) is already known to this order as it matches the
value of the electromagnetic field in Thomson scattering times its free counterpart. What is left is to compute is the first
term. We can safely disregard contributions quadratic in the transfer matrix, leaving us to compute the classical limit of

outhψ jFμνðxÞFαβðyÞjψiout ¼ Fμν;ð0ÞðxÞFαβ;ð0ÞðyÞ þ i inhψ j½FμνðxÞFαβðyÞ; T�jψiin; ðB3Þ

where Fð0Þ
μν ðxÞ denotes the free field. Expanding the electromagnetic field operator in terms of annihilation and creation

operators,

FμνðxÞFαβðyÞ ¼ −
4

ℏ3

X
η1;η2

Z
dΦðk1ÞdΦðk2Þ½aðη1Þðk1Þaðη2Þðk2Þk½μ1 εðη1Þν��k½α2 εðη2Þβ��e−iðk1·xþk2·yÞ=ℏ

þ a†ðη1Þðk1Þa
†
ðη2Þðk2Þk

½μ
1 ε

ðη1Þν�k½α2 ε
ðη2Þβ�eiðk1·xþk2·yÞ=ℏ − a†ðη2Þðk2Þaðη1Þðk1Þk

½μ
1 ε

ðη1Þν��k½α2 ε
ðη2Þβ�e−iðk1·x−k2·yÞ=ℏ

− a†ðη1Þðk1Þaðη2Þðk2Þk
½μ
1 ε

ðη1Þν�k½α2 ε
ðη2Þβ��eiðk1·x−k2·yÞ=ℏ − δΦðk1 − k2Þk½μ1 εðη1Þν��k½α2 εðη2Þβ�eiðk1·x−k2·yÞ=ℏ�: ðB4Þ

At leading order in the coupling, the T matrix reads

T ¼
X
η;η0

Z
dΦðk̃0; k̃; p̃0; p̃Þhk̃0η0p̃0jTjk̃ηp̃ia†ðη0Þðk̃0Þa†ðp̃0ÞaðηÞðk̃Þaðp̃Þ þ � � � : ðB5Þ

We can now evaluate the correlation function. The first two terms inside the bracket in Eq. (B4) can contribute only at higher
order in the coupling, and can be safely neglected in the evaluation of the correlation function. As for the last term in
Eq. (B4), we can see it is similar to (3.22), providing a quantum contribution at leading order in the coupling which will
disappear in the classical limit. We are left with the following:
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½a†ðη1Þðk1Þaðη2Þðk2Þ; T� ¼
X
η

Z
dΦðp̃; p̃0; k̃Þhkη22 p̃0jTjk̃ηp̃ia†ðη1Þðk1Þa†ðp̃0ÞaðηÞðk̃Þaðp̃Þ

−
X
η0

Z
dΦðp̃; p̃0; k̃0Þhk̃0η0 p̃0jTjkη11 p̃ia†ðη0Þðk̃0Þa†ðp̃0Þaðη2Þðk2Þaðp̃Þ;

½a†ðη2Þðk2Þaðη1Þðk1Þ; T� ¼
X
η

Z
dΦðp̃; p̃0; k̃Þhkη11 p̃0jTjk̃ηp̃ia†ðη2Þðk2Þa†ðp̃0ÞaðηÞðk̃Þaðp̃Þ

−
X
η0

Z
dΦðp̃; p̃0; k̃0Þhk̃0η0 p̃0jTjkη22 p̃ia†ðη0Þðk̃0Þa†ðp̃0Þaðη1Þðk1Þaðp̃Þ: ðB6Þ

These results imply that

outhψ jFμνðxÞFαβðyÞjψiout ¼ Fμν;ð0ÞðxÞFαβ;ð0ÞðyÞ þ 8

ℏ3
Re

X
η;η1;η2

Z
dΦðk1; k2; k̃; p; p0ÞϕðpÞϕ�ðp0Þ

× ½ihkη11 p0jTjk̃ηpihαþja†ðη2Þðk2ÞaðηÞðk̃Þjαþik
½μ
1 ε

ðη1Þν��k½α2 ε
ðη2Þβ�e−iðk1·x−k2·yÞ=ℏ�

þ 8

ℏ3
Re

X
η;η1;η2

Z
dΦðk1; k2; k̃; p; p0ÞϕðpÞϕ�ðp0Þ

× ½ihkη22 p0jTjk̃ηpihαþja†ðη1Þðk1ÞaðηÞðk̃Þjαþik
½μ
1 ε

ðη1Þν�k½α2 ε
ðη2Þβ��eiðk1·x−k2·yÞ=ℏ�: ðB7Þ

After some simple algebra, we find

outhψ jFμνðxÞFαβðyÞjψiout ¼ Fμν;ð0ÞðxÞFαβ;ð0ÞðyÞ þ 8

ℏ3
Re

X
η1;η2

Z
dΦðk1; k̃; p; p0ÞϕðpÞϕ�ðp0Þ

×

�
ihkη11 p0jTjk̃ηpiαðk̃Þk½μ1 εðη1Þν��e−ik1·x=ℏ

Z
dΦðk2Þα�ðk2Þk½α2 εðη2Þβ�eik2·y=ℏ

�

þ 8

ℏ3
Re

X
η1;η2

Z
dΦðk1; k2; k̃; p; p0ÞϕðpÞϕ�ðp0Þ

×

�
ihkη22 p0jTjk̃ηpiαðk̃Þk½α2 εðη2Þβ��e−ik2·y=ℏ

Z
dΦðk1Þα�ðk1Þk½μ1 εðη1Þν�eik1·x=ℏ

�
; ðB8Þ

reorganizing the terms we then obtain, as expected,

outhψ jFμνðxÞFαβðyÞjψiout ¼ Fμν;ð0ÞðxÞFαβ;ð0ÞðyÞ

þ Fαβ;ð0ÞðyÞ 4

ℏ3=2 Re
X
η1

Z
dΦðk1; k̃; p; p0ÞϕðpÞϕ�ðp0Þ½ihkη11 p0jTjk̃ηpiαðk̃Þk½μ1 εðη1Þν��e−ik1·x=ℏ�

þ Fμν;ð0ÞðxÞ 4

ℏ3=2 Re
X
η2

Z
dΦðk2; k̃; p; p0ÞϕðpÞϕ�ðp0Þ½ihkη22 p0jTjk̃ηpiαðk̃Þk½μ2 εðη2Þν��e−ik2·y=ℏ�:

ðB9Þ

From this result we conclude that

Δjg2 ¼ 0: ðB10Þ

This demonstrates that the semiclassical state generated in Thomson scattering is a coherent state to this nontrivial order in
the coupling.
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APPENDIX C: INTEGRALS

We require explicit expressions for the integrals appearing in the leading-order radiation kernel, Eq. (5.46) of Ref. [122].
The integral is

Rð0Þðk̄; bÞ ¼ 4

Z
d̂4w̄1d̂

4w̄2δ̂ð2p1 · w̄1Þδ̂ð2p2 · w̄2Þδ̂ð4Þðk̄ − w̄1 − w̄2Þeiw̄1·b

×

�
Q2

1Q2

w̄2
2

�
−p2 · εþ

ðp1 · p2Þðw̄2 · εÞ
p1 · k̄

þ ðp2 · k̄Þðp1 · εÞ
p1 · k̄

−
ðk̄ · w̄2Þðp1 · p2Þðp1 · εÞ

ðp1 · k̄Þ2
�
þ ð1 ↔ 2Þ

�
: ðC1Þ

We replace pμ
i bymiu

μ
i , and introduce a fourth basis vector,

vμ ¼ 4ϵμνλρuν1u
λ
2b

ρ: ðC2Þ

Its square is given by

v2 ¼ −2Gðu1; u2; bÞ; ðC3Þ

where G is the Gram determinant

GðfpigÞ ¼ detð2pi · pjÞ: ðC4Þ

The only nontrivial Lorentz invariants that can be built
out of the uμi , b

μ, and vμ are

γ ¼ u1 · u2; ðC5Þ

and b2, as u2i ¼ 1.
We note that

v2 ¼ 16b2ðγ2 − 1Þ: ðC6Þ

It is convenient to introduce two rescaled four-vectors,

b̃μ ¼ bμ=
ffiffiffiffiffiffiffiffi
−b2

p
;

ṽμ ¼ vμ=
ffiffiffiffiffiffiffiffi
−v2

p
¼ vμ=

�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b2ðγ2 − 1Þ

q 	
: ðC7Þ

Let us also introduce as well new coordinates z½i�1;2;b;v,

w̄μ
i ¼ z½i�1 u

μ
1 þ z½i�2 u

μ
2 þ z½i�b b̃

μ þ z½i�v ṽμ: ðC8Þ

The Jacobian from the change of variables in each w̄i is

jϵμνλρṽμuν1uλ2b̃ρj ¼ −
v2

4
ffiffiffiffiffiffiffiffi
−v2

p ffiffiffiffiffiffiffiffi
−b2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
: ðC9Þ

We also have the following expression for each square,

w̄2
i ¼ðz½i�1 Þ2þ2γz½i�1 z

½i�
2 þðz½i�2 Þ2−ðz½i�b Þ2−ðz½i�v Þ2: ðC10Þ

There are four elementary integrals we need to evaluate,

I1 ¼
Z

d̂4w̄1d̂
4w̄2δ̂ðu1 · w̄1Þδ̂ðu2 · w̄2Þδ̂ð4Þðk̄ − w̄1 − w̄2Þ

eiw̄1·b

w̄2
1

;

Iμ2 ¼
Z

d̂4w̄1d̂
4w̄2δ̂ðu1 · w̄1Þδ̂ðu2 · w̄2Þδ̂ð4Þðk̄ − w̄1 − w̄2Þ

eiw̄1·bw̄μ
1

w̄2
1

;

I3 ¼
Z

d̂4w̄1d̂
4w̄2δ̂ðu1 · w̄1Þδ̂ðu2 · w̄2Þδ̂ð4Þðk̄ − w̄1 − w̄2Þ

eiw̄1·b

w̄2
2

;

Iμ4 ¼
Z

d̂4w̄1d̂
4w̄2δ̂ðu1 · w̄1Þδ̂ðu2 · w̄2Þδ̂ð4Þðk̄ − w̄1 − w̄2Þ

eiw̄1·bw̄μ
2

w̄2
2

: ðC11Þ

Start evaluating I1 by using the fourfold delta function to evaluate the w̄2 integral,

I1 ¼
Z

d̂4w̄1δ̂ðu1 · w̄1Þδ̂ðu2 · w̄1 − u2 · k̄Þ
eiw̄1·b

w̄2
1

; ðC12Þ

and then make the change of variables (C8),
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ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ð2πÞ2

Z
dz½1�1 dz½1�2 dz½1�b dz½1�v δðz½1�1 þ γz½1�2 Þδðγz½1�1 þ z½1�2 − u2 · k̄Þ

e−iz
½1�
b

ffiffiffiffiffiffi
−b2

p

ðz½1�1 Þ2 þ 2γz½1�1 z½1�2 þ ðz½1�2 Þ2 − ðz½1�b Þ2 − ðz½1�v Þ2
: ðC13Þ

Use the delta functions to perform the z½1�1;2 integrals,

1

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Z

dz½1�b dz½1�v
e−iz

½1�
b

ffiffiffiffiffiffi
−b2

p

−ðu2 · k̄Þ2=ðγ2 − 1Þ − ðz½1�b Þ2 − ðz½1�v Þ2
: ðC14Þ

Perform the z½1�v integral to obtain

−
1

4π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Z

dz½1�b
e−iz

½1�
b

ffiffiffiffiffiffi
−b2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz½1�b Þ2 þ ðu2 · k̄Þ2=ðγ2 − 1Þ

q : ðC15Þ

This can be evaluated as a Fourier transform,

I1 ¼ −
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p K0

� ffiffiffiffiffiffiffiffi
−b2

p
u2 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
; ðC16Þ

where K0 is a modified Bessel function of the second kind.
The first two steps are the same for Iμ2,

Iμ2 ¼
Z

d̂4w̄1δ̂ðu1 · w̄1Þδ̂ðu2 · w̄1 − u2 · k̄Þ
eiw̄1·bw̄μ

1

w̄2
1

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ð2πÞ2

Z
dz½1�1 dz½1�2 dz½1�b dz½1�v δðz½1�1 þ γz½1�2 Þδðγz½1�1 þ z½1�2 − u2 · k̄Þ

e−iz
½1�
b

ffiffiffiffiffiffi
−b2

p
ðz½1�1 uμ1 þ z½1�2 uμ2 þ z½1�b b̃μ þ z½1�v ṽμÞ

ðz½1�1 Þ2 þ 2γz½1�1 z½1�2 þ ðz½1�2 Þ2 − ðz½1�b Þ2 − ðz½1�v Þ2
:

ðC17Þ

The ṽμ term will vanish because of the antisymmetry in z½1�v ; the uμ1;2 terms will yield a result proportional to I1,

Iμ2a ¼
u2 · k̄
γ2 − 1

ðγuμ1 − uμ2ÞI1

¼ −
u2 · k̄

2πðγ2 − 1Þ3=2 ðγu
μ
1 − uμ2ÞK0

� ffiffiffiffiffiffiffiffi
−b2

p
u2 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
: ðC18Þ

The remaining (b̃μ) term is

Iμ2b ¼ −
b̃μ

4π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Z

dz½1�b
e−iz

½1�
b

ffiffiffiffiffiffi
−b2

p
z½1�bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz½1�b Þ2 þ ðu2 · k̄Þ2=ðγ2 − 1Þ
q

¼ iu2 · k̄b̃
μ

2πðγ2 − 1ÞK1

� ffiffiffiffiffiffiffiffi
−b2

p
u2 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
; ðC19Þ

where we have dropped a delta-function contribution. The total is

Iμ2 ¼ Iμ2a þ Iμ2b: ðC20Þ
In I3, start by using the fourfold delta function to integrate out w̄1,

I3 ¼ eib·k̄
Z

d̂4w̄2δ̂ðu1 · w̄2 − u1 · k̄Þδ̂ðu2 · w̄2Þ
eiw̄2·b

w̄2
2

: ðC21Þ
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This is proportional to I1, with the exchange u1 ↔ u2,

I3 ¼ −
eib·k̄

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p K0

� ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
: ðC22Þ

Similarly for Iμ4,

Iμ4 ¼ Iμ4a þ Iμ4b; ðC23Þ

with

Iμ4a ¼ −
u1 · k̄
γ2 − 1

ðuμ1 − γuμ2ÞI3

¼ u1 · k̄eib·k̄

2πðγ2 − 1Þ3=2 ðu
μ
1 − γuμ2ÞK0

� ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
;

Iμ4b ¼
iu1 · k̄eib·k̄b̃

μ

2πðγ2 − 1Þ K1

� ffiffiffiffiffiffiffiffi
−b2

p
u1 · k̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	
: ðC24Þ
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