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We study the allowed parameter space of the scalar sector in the superweak extension of the standard
model (SM). The allowed region is defined by the following conditions: (i) stability of the vacuum,
(ii) perturbativity up to the Planck scale, and (iii) the pole mass of the Higgs boson falling into its
experimentally measured range. We employ renormalization group equations and quantum corrections at
two-loop accuracy. We study the dependence on the Yukawa couplings of the sterile neutrinos at selected
values. We also check the exclusion limit set by the precise measurement of the mass of theW boson. Our
method for constraining the parameter space using two-loop predictions can also be applied to simpler
models such as the singlet scalar extension of the SM in a straightforward way.
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I. INTRODUCTION

Currently, particle physics is in a similar situation as
physics was about 120 years ago. Its standard model (SM)
can successfully explain most of the low and high energy
phenomena and provide predictions that are in agreement
with measurements at high precision. Nevertheless, there
are also a handful of outstanding observations that cannot
be predicted by the standard model and that point towards
beyond the standard model (BSM) physics. These unex-
plained facts are (i) the nonvanishing neutrino masses and
mixing matrix elements [1,2], (ii) the metastable vacuum of
the standard model [3–6], (iii) the need for leptogenesis
and/or baryogenesis to explain baryon asymmetry, i.e., our
obvious existence, (iv) the existence of dark matter in the
Universe [7–11], and also (v) the existence of dark energy
in the Universe [7]. In addition, there is general consensus
about the occurrence of cosmic inflation in the early
Universe, which also calls for an explanation. There are

other observations in particle physics that have almost
reached discovery status. Most prominently, the prediction
of the standard model for the anomalous magnetic moment
aμ of the muon [12] is smaller than the result of the
measurement [13,14] by 4.2 standard deviations. In this
case, however, the status of the theory is controversial
because the evaluation of the hadronic contribution to aμ
requires a nonperturbative approach, and the result depends
on the method [12,15]. The resolution of this discrepancy
calls for an independent evaluation of this hadronic vacuum
polarization contribution before discovery can be claimed.
Some of the observations (i)–(v) should find under-

standing in particle physics models, while others may have
cosmological origins. Nevertheless, the intimate relation
between particle physics and the early Universe, originating
from the universal expansion of space-time, gives strong
support for searching for answers within particle physics by
extending the SM. Such extensions can be put into three
categories: (a) ultraviolet complete models from theoretical
motivations, such as supersymmetric models; (b) effective
field theories like the standard model effective field theory
(SMEFT); and (c) simplified models that focus on a subset
of open questions. This third category includes the dark
photon models (gauge extension; see, e.g., Refs. [16,17]),
the singlet scalar extensions (see, e.g., Refs. [18–20]), and
the introduction of neutrino mass matrices with some
variant of the seesaw mechanism, such as in Ref. [21].
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The UV complete supersymmetric extensions of the SM
are very attractive for solving theoretical issues, but they are
becoming less favored by the results of the LHC experi-
ments [22,23]. Effective field theories have proven to be
very useful in the past. However, the SMEFT contains
2499 dimension-six operators [24], which makes it rather
difficult to study experimentally. The simplified models
on the other end contain only a few new parameters and
hence are very attractive from the experimental point of
view. However, being simplified models, they cannot give
answers to all observations pointing towards BSM physics
simultaneously.
In this paper we study a simple UV complete BSM

extension along the principles of the SM itself: a renorma-
lizable gauge theory that adds one layer of interactions
below the hierarchic layers of the strong, electromagnetic,
and weak forces—which is called the superweak (SW)
force [25]—mediated by a new U(1) gauge boson Z0; see
Fig. 1. In order to explain the origin of neutrino masses, the
field content is enhanced by three generations of right-
handed neutrinos. The new gauge symmetry is broken
spontaneously by the vacuum expectation value of a new
complex scalar singlet. According to exploratory studies,
the superweak extension of the standard model (SWSM)
has the potential to explain the origin of (i) neutrino masses
and mixing matrix elements [26], (ii) dark matter [27],
(iii) cosmic inflation [28], (iv) stabilization of the electro-
weak vacuum [28], and possibly (v) leptogenesis (under
investigation).
While these findings are promising, more refined analy-

ses are needed in order to explore the viability of the model.
The main motivation of our work is not to prove that the
SWSM is the correct description of the fundamental
interactions but rather to check if questions (i)–(v) listed
above can be answered within a single model with as few

new parameters as possible. In this paper we revisit the
study of the parameter space of the scalar sector of
the SWSM as allowed by the requirement of the stability
of the vacuum. We improve significantly on our previous
analysis [28] in two respects. First, we use renormalization
group equations (RGEs) containing the beta functions at
two-loop order. More importantly, we take into account
both the radiative corrections up to two-loop accuracy and
the measured physical values and uncertainties of the
parameters of the scalar sector as constraints. A similar
study has been performed earlier in the simplified model of
a single real scalar extension of the SM in Ref. [20]. The
important difference between the present work and that
analysis is that we include the effect of the right-handed
neutrinos in the running of the couplings, which constrains
the parameter space further. For the first time, the inclusion
of the two-loop effects is also given in the present work.

II. SUPERWEAK MODEL

The SWSM is a gauged U(1) extension of the standard
model with an additional complex scalar field χ and three
families of sterile neutrinos νR;i. The model was defined in
Ref. [25], and further details on the new sectors were
presented in Refs. [26,28]. Here we recall some details
relevant to the present analysis.
The anomaly-free charge assignment is shown in Table I.

In particular, the χ field does not couple directly to any
fields of the SM.
After spontaneous symmetry breaking (SSB), we para-

metrize the SM scalar doublet ϕ and the new scalar field as

ϕ¼ 1ffiffiffi
2

p
�

−i
ffiffiffi
2

p
σþ

vþHþ iσϕ

�
and χ¼ 1ffiffiffi

2
p ðwþSþ iσχÞ; ð1Þ

where v and w are the two vacuum expectation values
(VEVs),H and S are two real scalar fields, and σþ and σϕ=χ
are charged and neutral Goldstone bosons. In terms of these
fields the scalar potential in the SWSM is given by

FIG. 1. Standard model particle sheet with the superweak
extension. The forces act on all particles within the respective box.

TABLE I. Group representations and charges of the fermions
and scalars in the SWSM.

Field SUð3Þc SUð2ÞL Uð1ÞY Uð1Þz
QL 3 2 1

6
1
6

uR 3 1 2
3

7
6

dR 3 1 − 1
3

− 5
6

LL 1 2 − 1
2

− 1
2

lR 1 1 −1 − 3
2

NR 1 1 0 1
2

ϕ 1 2 1
2

1
χ 1 1 0 −1
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Vðϕ;χÞ¼V0−μ2ϕjϕj2−μ2χ jχj2þλϕjϕj4þλχ jχj4þλjϕj2jχj2:
ð2Þ

The constant V0 is irrelevant in our considerations, so we
set it to zero in the rest of the paper. Substituting the
parametrization (1) into (2), we obtain the tree-level
(effective) potential

VðH;SÞ¼−
1

2
ðμ2ϕH2þμ2χS2Þþ

1

4
ðλϕH4þλχS4þ λH2S2Þ

ð3Þ

of the real scalar fields. The VEVs are determined by the
tadpole equations:

∂V
∂H

����
H¼v;S¼w

¼ 0 ¼ v

�
−μ2ϕ þ

1

2
λw2 þ λϕv2

�
;

∂V
∂S

����
H¼v;S¼w

¼ 0 ¼ w

�
−μ2χ þ

1

2
λv2 þ λχw2

�
: ð4Þ

The mass matrix of the scalar fields is given by the
Hessian:

M2
s ¼

0
B@ ∂

2V
∂H2

∂
2V

∂H∂S

∂
2V

∂S∂H
∂
2V
∂S2

1
CA

H¼v;S¼w

¼
�
2λϕv2 λvw

λvw 2λχw2

�
; ð5Þ

which can be diagonalized by a rotation matrix

Zs ¼
�

cos θs sin θs
− sin θs cos θs

�
; ð6Þ

so that ZT
s M2

sZs ¼ diagðM2
h;M

2
sÞ. The parameters Mh

and Ms are the masses of the propagating states h and s
[29]. The positivity condition for the masses implies the
condition

ð4λχλϕ − λ2Þv2w2 > 0 ð7Þ

among the scalar couplings and VEVs. Explicitly, the
angle of rotation and the scalar masses Mh and Ms can
be expressed through the VEVs and couplings at tree
level as

tanð2θsÞ ¼
λvw

λχw2 − λϕv2
; ð8Þ

M2
h ¼ λϕv2 þ λχw2 −

λχw2 − λϕv2

cosð2θsÞ
; ð9Þ

M2
s ¼ λϕv2 þ λχw2 þ λχw2 − λϕv2

cosð2θsÞ
: ð10Þ

In the absence of mixing (λ ¼ 0, θs ¼ 0) we have
Mh ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2λϕv2

q
, Ms ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2λχw2

q
. As the scalar fields are

coupled to the W� bosons with the interaction vertices

Γμν
hWW ¼ i

2
ðg2LvcosθsÞgμν and Γμν

sWW ¼ i
2
ðg2LvsinθsÞgμν;

ð11Þ

only the BEH field is coupled to the W bosons and to the
other SM fields in the limit of vanishing mixing between
the scalars. Hence, we naturally identify the VEV v as that
related to the Fermi coupling, and also the parameter Mh
with the mass of the Higgs boson measured at the LHC
[30], by introducing the notation

mh ¼ 125.10 GeV; Δmh ¼ 0.14 GeV; and

v ¼ ð
ffiffiffi
2

p
GFÞ−1=2 ¼ 246.22 GeV; ð12Þ

and requiring Mh ∈ ½mh − Δmh;mh þ Δmh�. In accor-
dance with this assumption, we restrict θs to fall in the
range ð−π=4; π=4Þ.
The VEV w can be expressed through these known

parameters and the scalar couplings using Eqs. (8) and (9),

w ¼ Mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h − 2λϕv2

2λχðM2
h − 2λϕv2Þ þ λ2v2

s

¼ 1

2v

���� sinð2θSÞðM2
h −M2

sÞ
λ

����: ð13Þ

Thus, the formal conditions for the nonvanishing w,
required at the electroweak scale, are either

Mh
2 > 2λϕv2; with 4λχλϕ > λ2 ð14Þ

[the second condition deriving from the positivity con-
straint in (7) for positive v2w2], or

4λχ

�
λϕ −

1

2

M2
h

v2

�
> λ2; if 2λϕv2 > Mh

2 > 0: ð15Þ

As we have fixed v andMh experimentally, the input value
of λϕ decides which of these two cases is to be considered.
Equations (3)–(5) are valid at tree level. The effect of the

quantum corrections can be summarized by substituting the
potential V with the effective potential Veff , whose formal
loop expansion is

Veff ¼
X∞
i¼0

Veff
ðiÞ ð16Þ

where Veff
ð0Þ ¼ V and Veff

ðiÞ represents the i-loop
correction.
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III. VACUUM STABILITY IN THE SWSM
AT ONE-LOOP ACCURACY

The potential (3) is stable if it is bounded from below.
Due to its continuity in the field variables, it is sufficient to
study the positivity of (3) for large values of h and s, which
translates to the following conditions on the quartic scalar
couplings:

λϕ; λχ > 0;

4λϕλχ − λ2 > 0 for λ < 0: ð17Þ

Taking into account the radiative corrections, we get the
dependence on the renormalization scale μ for all renor-
malized couplings, as well as the corrections Veff

ðiÞ. While
it is straightforward to require that the conditions (17) be
satisfied for the running couplings at any sensible value of
μ, we cannot write the stability conditions for the one-loop
effective potential in a closed form such as in Eq. (17) valid
at tree level. Hence, we investigate the stability of the
potential in Eq. (3) with running couplings.
Nontrivial phenomenology exists if w > 0, otherwise

there would be no observable mixing in the scalar sector,
which can be seen by looking at Eq. (5). Contrary to the
stability condition of the effective potential with higher-
order quantum corrections, the existence of the new VEV w
can be established with high accuracy. We require the
existence of a nonvanishing wðMtÞ indirectly, extracting it
from the known pole mass of the Higgs boson, rather than
computing it explicitly from the effective potential (16)
with radiative corrections taken into account. Our pro-
cedure can be described in terms of analytic expressions at
the one-loop accuracy as follows.
We investigate the vacuum stability in the range

μ ∈ ðMt;MPlÞ, i.e., from the pole mass Mt of the t quark
up to the Planck mass MPl where quantum gravitational
effects become important. The scale dependence of a given
coupling g is described by the autonomous system of
coupled differential equations of the form

∂g
∂t

¼ βg; ð18Þ

called RGEs, where ∂=∂t ¼ μ∂=∂μ. We assume that the
model remains perturbatively valid for the complete range
by requiring

jgðμÞj < 4π; μ ∈ ðMt;MPlÞ ð19Þ

for any coupling g in the theory, which we check in
the stability analysis. Consequently, we can employ per-
turbation theory to compute the βg functions. We integrate
the complete set of RGEs of the SWSM, while requiring
the stability and perturbativity conditions (17) and (19). We
also assume the existence of w at the scale μ ¼ Mt, which
implies the existence of a second massive neutral gauge

boson and a second massive scalar particle as predictions of
the model. To check this condition, we compute the loop
corrected scalar mixing angle and scalar pole masses:

tanð2θsðp2ÞÞ¼ λðμÞvðμÞwðμÞþΠHSðp2Þ
λχðμÞwðμÞ2−λϕðμÞvðμÞ2þΠ−ðp2Þ ; ð20Þ

M2
h ¼ λϕðμÞvðμÞ2 þ λχðμÞwðμÞ2 þ ΠþðM2

hÞ

−
λχðμÞwðμÞ2 − λϕðμÞvðμÞ2 þ Π−ðM2

hÞ
cosð2θsðM2

hÞÞ
; ð21Þ

M2
s ¼ λϕðμÞvðμÞ2 þ λχðμÞwðμÞ2 þ ΠþðM2

sÞ

þ λχðμÞwðμÞ2 − λϕðμÞvðμÞ2 þ Π−ðM2
sÞ

cosð2θsðM2
sÞÞ

; ð22Þ

using the shorthand notation

Π�ðp2Þ ¼ 1

2
ðΠ̃SSðp2Þ � Π̃HHðp2ÞÞ; ð23Þ

where Π̃φφðp2Þ ¼ Πφφðp2Þ − Tφ=hφi, with ΠφIφJ
ðp2Þ

being the sum of all one-particle-irreducible (1PI) two-
point functions with external legs φI and φJ, while Tφ is the
sum of all 1PI one-point functions with external leg φ (φ,
φI ¼ H or S). In other words, Eqs. (20)–(22) are valid at
any order in perturbation theory. We collect these one- and
two-point functions computed at one-loop accuracy in
Appendix A. As shown explicitly, each coupling and
VEV in Eqs. (20)–(22) depends on the renormalization
scale μ, but the pole massesMh

2 andMs
2 do not depend on

this renormalization scale up to the effect of neglected
higher-order corrections. An important check of our cal-
culations is the independence of the scalar pole masses Mh
and Ms of the renormalization scale μ,

μ
∂Mh

∂μ
¼ μ

∂Ms

∂μ
¼ 0: ð24Þ

As mentioned, we identify the pole mass Mh, computed in
perturbation theory in (21), as the observed Higgs boson
mass mh � Δmh, which constrains the possible values of
wðMtÞ severely for a given set of input couplings at μ ¼ Mt.
The lower panels in Fig. 2 show the dependence of jΔMhj,
withΔMh ¼ Mh −mh, on wðMtÞ. We see that it falls below
the experimental uncertainty Δmh, represented by the
dashed lines, in a fairly narrow range of wðMtÞ. To find
the range of values of the allowed wðiÞðMtÞ, with the
superscript referring to the accuracy in perturbative order,
we solve the two equations

Mhðwð1ÞÞjμ¼Mt
¼ mh � Δmh ð25Þ

for wð1ÞðMtÞ numerically. We consider the two solutions to
be physical if they are positive, shown by the vertical lines.
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Then we use the accepted values wð1ÞðMtÞ, falling into
the ranges between the vertical line, to compute the
possible values of Ms using Eq. (22). This procedure is
shown by the plots on the top of Fig. 2 for a specific set of
input couplings.
The complete set of running couplings can be grouped

into three sets: (i) SM couplings gY; gL; gs; yt, (ii) SW gauge
coupling gz, and (iii) scalar quartic couplings λϕ; λχ ; λ,
together with the sterile neutrino Yukawa coupling yx. We
assume one light sterile neutrino—a candidate for dark
matter [27]—and two heavy ones with equal masses for
simplicity, yx ¼ yx;5 ¼ yx;6. We neglect the effect of the
SW gauge coupling from our analysis because its max-
imally allowed value is very small, gz ≲ 10−4, if the model
is to explain the origin of dark matter [27] and also obey the
direct observational limit of the NA61 experiment [31].
Explicitly, in group (iii) we have the following autonomous
system of RGEs at one loop:

∂λϕ
∂t

¼ βð1Þλϕ;SM
þ λ2

ð4πÞ2 ;
∂λχ
∂t

¼ 1

ð4πÞ2 ð20λ
2
χ þ2λ2−2y4xþ4λχy2xÞ;

∂λ

∂t
¼ λ

ð4πÞ2
�
−
3

2
g2Y −

9

2
g2Lþ12λϕþ8λχ þ4λþ6y2t þ2y2x

�
;

ð26Þ

for the scalar couplings, with βð1Þλϕ;SM
being the one-loop beta

function of the SM quartic scalar coupling, and

∂yx
∂t

¼ 2y3x
ð4πÞ2 ;

∂w
∂t

¼ −
w

ð4πÞ2
y2x
2

ð27Þ

for the Yukawa coupling and new VEV. The one-loop beta
functions show that a sufficiently large Higgs portal
coupling λ is able to drive λϕ and λχ to positive values,
while the sterile neutrino Yukawa couplings drive λχ
towards negative values. In the last equation, the RGE
for w does not affect the vacuum stability analysis. We
present it to check the conditions in Eq. (24).
There are three SM precision parameters measured

precisely: GF, MZ, and αMS
em ðMZÞ, which can be turned

into input values for the couplings in group (i), together

with the less precisely known Mt and αMS
s ðMZÞ. The self-

energies ΠWWðp2Þ and ΠZZðp2Þ also receive contributions
ΠSW

VV ðp2Þ due to the SWextension, given in Eq. (B1), which
shift the input values of the VEV v and the electroweak
gauge couplings. Hence, we use the following inputs in
group (i):

gYðMtÞ ¼ 0.3586þ δgYðMtÞ;
gLðMtÞ ¼ 0.6477þ δgLðMtÞ;
vðMtÞ ¼ 247.55 GeVþ δvðMtÞ; ð28Þ

with gsðMtÞ ¼ 1.167 and ytðMtÞ ¼ 0.940. The SW correc-
tions δgY , δgL, and δv are defined in Appendix B. The SM
value of the gauge- and scale-dependent VEV v in the
Feynman gauge is vSMðMtÞ ¼ 247.55 GeV. The SW cor-
rections to the electroweak input parameters δgY , δgL, and

FIG. 2. Dependence of the absolute difference Mh minus the observed Higgs boson mass on wðMtÞ (bottom) and the dependence of
Ms on wðMtÞ (top) with input values λϕðMtÞ ¼ 0.15, λχðMtÞ ¼ 0.2, and λðMtÞ ¼ 0.1. Left: yxðMtÞ ¼ 0. Right: yxðMtÞ ¼ 0.8. The
dashed horizontal line corresponds to the uncertainty Δmh. The black dash-dotted curves are computed at tree level [Eqs. (9) and (10)],
while the solid colored ones are computed at one loop [Eqs. (21) and (22)].
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δv are small and do not noticeably modify our final results
even at two loops. We take the value of ytðMtÞ from the fit
formula (25) of Ref. [4] as the largest possible value. This
choice is the most conservative one concerning the vacuum
stability because the main culprit causing the metastable
SM vacuum is the large value of the t quark Yukawa
coupling ytðMtÞ. The last set (iii) of the input couplings are
unconstrained, and we scan their values at μ ¼ Mt in order
to obtain the parameter space in fλϕ; λχ ; λ; yxgμ¼Mt

where
the stability (17) and perturbativity (19) conditions in the
range μ ∈ ðMt;MPlÞ, together with the existence of the w
vacuum at μ ¼ Mt, are fulfilled.
We scan the volume VλðyxÞ ¼ fλϕ; λχ ; λgμ¼Mt

spanned
by the input couplings at fixed values of yxðMtÞ to find
the parameter space allowed by our conditions. There
are two quantitatively different regions. In the first one,
(a) Ms<Mh; i.e., the new scalar is lighter than the Higgs
boson. In the second one, (b) Ms > Mh. We present the
result of such scans in the next section where the compu-
tations are performed at two-loop accuracy. Having found
the allowed region of the input parameters, we can compute
the scalar mixing angle and mass of the new scalar using
Eqs. (20) and (22), to obtain the allowed parameter space in
the Ms − j sinðθsðMtÞÞj plane, shown in Fig. 3 at selected
values of the neutrino Yukawa coupling. In case (a), the
parameter space is empty for yxðMtÞ ¼ 0, but it grows
nonlinearly with increasing yxðMtÞ. For instance, the
parameter space for yxðMtÞ ¼ 0.4 is not empty, but it is
still invisible at the resolution of Fig. 3, as in that case, one
has Ms < 300 MeV and j sinðθsÞj < 0.04. For yxðMtÞ ≳ 1,
the stability condition λχ > 0 is not satisfied at any scale
belowMPl. It turns out that in case (b) the value of the VEV
wð1ÞðMtÞ and hence that of Ms can be larger than shown in

the plot when the scalar mixing coupling tends to zero. As
that also means vanishing mixing coupling λ, it represents
the phenomenologically rather irrelevant case of a very
weakly coupled dark sector.

IV. VACUUM STABILITY IN THE SWSM
AT TWO-LOOP ACCURACY

In order to check the robustness of the perturbative
analysis of the parameter space where the vacuum is
stable, we repeat the procedure described in the previous

FIG. 3. Allowed parameter space VλðyxÞ in theMs − j sinðΘSÞj plane at representative values of yx at one-loop accuracy. The different
colored areas correspond to different values of yxðMtÞ as shown in the legends. Left: Ms < Mh. Right: Ms > Mh.

FIG. 4. Three-dimensional parameter space at yxðMtÞ ¼ 0.4.
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section at two-loop accuracy. Given a set of input
couplings fλϕðMtÞ; λχðMtÞ; λðMtÞ; yxðMtÞg, we first com-
pute wð1ÞðMtÞ at μ ¼ Mt, using our analytic formulas
as described in the previous section. We solve the
two-loop β-functions to check the conditions of stability
and perturbativity only if we find wð1ÞðMtÞ > 0. If all the
stability and perturbativity conditions are fulfilled for
the input values fλϕðMtÞ; λχðMtÞ; λðMtÞ; yxðMtÞg, we use
spheno [32,33] to compute the scalar pole masses at two
loops, Mh

ð2Þ and Ms
ð2Þ, using w as a free input parameter.

Starting from the initial value w ¼ wð1ÞðMtÞ, we search for
the w at which

Mh
ð2ÞðwÞ ¼ mh; ð29Þ

which we call w ¼ wð2Þ. This procedure of using only
such points in the parameter space where the condition
wð1ÞðMtÞ > 0 is satisfied saves significant CPU time as the
numerical solutions of the two-loop β-functions, and
especially the computations in SPheno, are very time-con-
suming [34].
The parameter space is shown by a perspective view at

yxðMtÞ ¼ 0.4 in Fig. 4, and its projections to the two-
dimensional subspaces at selected values of yxðMtÞ are
given in Figs. 5 and 6. We also compute the regions VλðyxÞ
using the tree-level relation (13) instead of the one-loop one
in Eq. (21) as typically done in the case of scalar singlet
extensions (see, e.g., Ref. [35]). We find that the allowed
region on theMs − j sinðθsÞj plane for case (a)Ms < Mh is
sensitive to such a change in an interesting way: For a

FIG. 5. Planar projections of the allowed parameter space, whereMs > Mh and the conditions (17), (19), wð2ÞðMtÞ > 0 are fulfilled at
two-loop accuracy. Top left: allowed regions in the Ms − j sin θsj plane. Other plots show the two-dimensional projections of the three-
dimensional allowed regions in VλðyxÞ. The different colored regions correspond to different values of yx as shown in the legends.
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vanishing Yukawa coupling, the allowed region found
using Eq. (13) disappears at one loop (see the discussion
of Fig. 3 in the previous section) but reappears at two loops,
which had not been found in previous analyses. If yxðMtÞ is
increased from zero, we find nonempty parameter space at
any of the first three orders in perturbation theory. The
minimum value ofMs in region (a) depends on yxðMtÞ, but
it is always larger than about 1 GeV in the two-loop
analysis.
One can make two important remarks about the param-

eter space in case (b) Ms > Mh presented in Fig. 6. On the
one hand, the parameter space shrinks as yxðMtÞ increases,
and it disappears completely for yxðMtÞ ≳ 1. On the other
hand, we have jλðMtÞj > 0 because for λðMtÞ ¼ 0 the
scalar mixing vanishes; then λϕ coincides with λSM, which
does not satisfy the vacuum stability conditions, while

preserving the pole mass of the Higgs boson. Also, the
volume VλðyxÞ increases slightly with increasing order in
perturbation theory.
We have checked Eq. (24) numerically for both cases (a)

and (b) at randomly selected input values fλϕ;λχ ;λ;yxgμ¼Mt

in the range μ ∈ ð0.5Mt; 2MtÞ and compared the scale
dependence of the tree-level masses (9) and (10) to the scale
dependence of the one-loop accurate pole masses (21) and
(22). As shown in Fig. 7, we find that the scale dependence
of the tree-level masses is reduced significantly at one-loop
and even more at two-loop accuracy. The sizable difference
between the scalar pole massesMs at the first two orders of
perturbation theory (and to a much less extent between the
next two orders) is not caused by radiative corrections.
Rather than loop corrections to the masses, the jumps
originate from the shifts in wðMtÞ required to reproduce the

FIG. 6. Same as Fig. 5 but for Ms < Mh.
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Higgs boson pole mass at different orders of perturbation
theory, as can be seen in Fig. 2.

V. EXPERIMENTAL CONSTRAINTS

The electroweak precision observables (EWPO) [36] are
sensitive to BSM physics, such as the existence of an
additional scalar particle. Previous analyses show that
amongst the EWPO, theW-boson mass is perhaps the most
sensitive to a new scalar sector [37,38]. In this work we only
consider the mass of the W boson from the EWPO to set
exclusion bands on the parameter space [39]. The theoretical
prediction for theW-bosonmass uses precision electroweak
observables (except MW itself), and it is sensitive to new
physics [37]. Hence, it is often used as a benchmark
compared to the experimentally observed value [30]

Mexp
W ¼ 80.379� 0.012 GeV: ð30Þ

The current, most precise theoretical estimates are Mtheo
W ¼

80.359� 0.011 GeV [40], 80.362� 0.007 GeV [41], and
80.357� 0.009� 0.003 GeV [42]. We take 80.360 GeVas
the SM prediction and the combined uncertainty from the
experimental and theoretical values to be ΔMW ≃ 17 MeV.
We set twice this value as an upper limit to find the allowed
range for the new physics contribution to Mtheo

W , which
means that the SWcontribution to themass of theW boson is
excluded outside the range ð19� 34Þ MeV, i.e., out-
side ½−15; 53� MeV.
We compute the SW contributions δMSW

W toMtheo
W at one-

loop accuracy. We find that the contribution of the new
gauge sector is heavily suppressed due to the required
smallness of the new gauge coupling gz ≲ 10−4. The sterile
neutrinos may change the measured value of the Fermi
coupling GF affecting the mass of the W boson already at
tree level [43]. In fact, right-handed neutrinos can provide a
significant contribution to theW-boson mass [44], although
at the price of introducing some tension with universality
bounds. Hence, a proper account of the effect of sterile
neutrinos is certainly warranted; however, it is beyond the

scope of the present paper, and we leave it for a planned
global scan of the parameter space. The contribution of the
new scalar sector to MW , however, can be comparable to
ΔMW [37,45].We present the SWcorrection δMW in (B7) of
Appendix B, expressed with two free parameters, Ms and
sin2 θs. For the case of a light new scalar,Ms < Mh, the SW
correction is positive, while for the heavy one, it is negative.
The excluded regions obtained by (a) δMW > 53 MeV and
(b) δMW < −15 MeV are presented in Fig. 9 together with
other experimental constraints thatwe discuss below.We see
that the W-mass measurement at present uncertainties does
not provide a significant reduction of the parameter space.
However, if the improved measurement published recently
by the CDF Collaboration [46] is confirmed, in the high-
mass region the stability of the vacuum and the exper-
imental value of the mass of the W boson will become
incompatible, as in that case the SW correction to the SM
value is negative. The low-mass region also becomes
significantly constrained.
In Fig. 8 we present the allowed parameter space,

together with contour lines representing the border of
the excluded parameter space (below the line), assuming
a δMW increase of the W mass by selected benchmark
values due to the new scalar in the self-energy loop [47].
Clearly, the large positive shift required to explain the
CDF-II result is not compatible with the conditions of
stability and perturbativity of the scalar sector of the model.
The Higgs boson couplings to the SM particles are

modified due to the mixing in the extended scalar sector of
the SWSM. Consequently, the theoretical predictions for
the production and decay rates of the Higgs boson are
affected, which can be used to impose exclusion bounds on
the parameter space. In the SWSM, the SM Higgs cou-
plings are multiplied by a factor of cos θs. In addition, new
decay channels open up:

Γðh → ssÞ ¼ Γ2
hss

32πM2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

M2
s

M2
h

s
; ð31Þ

FIG. 7. Dependence of the scalar boson masses MðiÞ
h and Ms on the renormalization scale μ in the range ð0.5Mt; 2MtÞ at different

orders of perturbation theory at yxðMtÞ ¼ 0.4, λϕðMtÞ ¼ 0.241, λχðMtÞ ¼ 0.096, λðMtÞ ¼ 0.217.
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Γðh → NNÞ ¼ GFMhM2
N

8
ffiffiffi
2

p
π

Γ2
hNN

�
1 − 4

M2
N

M2
h

�
3=2

; ð32Þ

when kinematically allowed, with

Γhss ¼
1

2
sinð2θSÞðM2

h þ 2M2
sÞ
�
cos θs
w

−
sin θs
v

�
; ð33Þ

ΓhNN ¼ sin θs
v
w

and MN ¼ yxffiffiffi
2

p w: ð34Þ

In the stability analysis (see Figs. 5 and 6), we find a
well-defined parameter space for Ms < Mh, with θS < 0
and λ ∈ ð0.15; 0.30Þ. Thus, it is well motivated to
investigate whether the magnitude of the partial width
Γðh → ssÞ is compatible with the experimental bound on
the Higgs boson total width Γh ¼ 3.2þ2.8

−2.2 MeV [30].
The Γhss coupling expanded in the limits Ms ≪ Mh and

jθSj ≪ 1 yields

Γhss≃ sgnðθSÞλv
�
1þ3

M2
s

M2
h

�
−
M2

h

v
θ2S

�
1þ2

M2
s

M2
h

�
: ð35Þ

Thus, the estimate for the minimal value of the partial
width is

Γðh → ssÞ ¼ λ2
v2

32πMh
≃ λ2 × ð4.82 GeVÞ ð36Þ

for θS < 0 and λ > 0. Near the kinematic threshold where
Ms ¼ Mh

2
ð1 − εÞ, one obtains

Γðh → ssÞ ¼ λ2
v2

4πMh

ffiffiffi
ε

p
≃ λ2 × ð3.44 GeVÞ ffiffiffi

ε
p

; ð37Þ

with ε ≪ 1. This shows that the λðMtÞ values allowed
in the stability analysis (Figs. 5 and 6) for Ms < Mh are

FIG. 9. Allowed parameter space in theMs − j sinðΘSÞj plane at representative values of yx and λ. The gray area and the region above
the green line correspond to the excluded region by direct searches. The red dashed area and the region above the purple line are
excluded by Higgs signal rate measurements [20,38]. The region Ms < mh=2 with the red grid is excluded due to the constraint on the
Higgs boson width at λðMtÞ ¼ 0.25.

FIG. 8. Allowed parameter space in theMs − j sinðΘSÞj plane at
representative values of yx at two-loop accuracy for Ms > Mh.
The contours at selective values of δMW represent the borderline
in the parameter space below which the new scalar cannot be
solely responsible for the increase of the W-boson mass by δMW
with respect to the SM value.
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incompatible with the experimental bound on the Higgs
decay width unless the new scalar mass is very close to
Mh=2. Clearly, if sterile neutrinos are present, the total
width of the Higgs is further increased; thus, we consider
the region Ms < mh=2 to be excluded.
The SWSM also contains an additional neutral gauge

boson Z0, which affects the SM couplings and opens new
production and decay channels. We neglect the superweak
gauge couplings and the effect of Z0 completely in order to
focus only on the effect of the extended scalar sector and
sterile neutrinos [49].
In this work we do not compute the most up-to-date

exclusion bounds set by direct searches; however, we adapt
the exclusion from precision tests and Higgs boson
coupling measurements from [20] and also from the more
recent Ref. [38] for the case of Ms > Mh in order to
compare our theoretical predictions with experimental data.
We summarize our findings in Fig. 9 at selected values of
λðMtÞ and yxðMtÞ compared to the W mass and Higgs
width restrictions computed by us and the direct search
with signal strength measurement restrictions taken from
the literature. We show slices of the parameter space taken
at different values of λðMtÞ with the exclusion limits taken
from Refs. [20,38]. However, those works marginalized the
dependence on λðMtÞ [50].

VI. CONCLUSIONS AND OUTLOOK

In this paper we have scanned the parameter space of the
superweak extension of the standard model in order to find
the allowed parameter space of the scalar sector where the
following assumptions are fulfilled: (i) The vacuum must
be stable, (ii) the model parameters must remain perturba-
tive up to the Planck scale, and (iii) the pole mass of the
Higgs boson must fall into its experimentally measured
range. The first two of these constraints were taken into
account in our preliminary work [28]. In this paper we
supersede that former study by taking into account the two-
loop corrections, both in the renormalization group equa-
tions of the running couplings and in the measured value of
the mass of the Higgs boson. We have taken into account
the largest neutrino Yukawa coupling yx. In the limit of
vanishing yx and neglecting the superweak gauge coupling,
the model essentially reduces to the case of a singlet scalar
extension of the standard model.
In the two-loopanalysis,we foundanonempty region in the

Ms − sin θs parameter space forMs < Mh, increasingwith yx
up to yxðMtÞ ≃ 1, where the condition of stability is not
fulfilled any longer. Such a region has beenmissed in the case
of yx ¼ 0 in earlier analyses of the singlet scalar extension
performed only at one-loop accuracy (see, e.g., Ref. [20]).
Of course, there are many experimental results that also

constrain the parameter space. The new physics contribu-
tions to electroweak precision observables, as well as direct
searches for the decay of a scalar particle into standard
model ones, provide strong constraints. Of those, we have

studied only the effect of the experimental result on the mass
of the W boson in this paper. We have seen that while MW
can indeed limit the parameter space, the current world
average without the new CDF-II result cannot provide a
further constraint on the parameter space. If we also include
the CDF II result in the average—in spite of being
incompatible with the previous average—then the parameter
space allowed by our assumptions becomes incompatible
with the W-mass constraint. We have also included the
experimental constraints adopted from Refs. [20,38] for the
singlet scalar extension of the standard model, as well as
the limit obtained from the measured value of the width of
the Higgs boson. As in the SWSM the allowed regions also
depend on the Yukawa couplings of the right-handed
neutrinos, it will also be important to take into account
all the available experimental constraints, not only from
collider experiments but also from neutrino experiments. It
will also be interesting to check whether possible signatures
of the production of a new scalar boson at the LHC (such as
those proposed in Refs. [51,52]) can be explained in the
SWSM. Such a complete study of the parameter space and
searches for signatures is beyond the scope of the present
paper, and we leave it to an upcoming study where we plan
to use the analytic expressions of the present work.
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APPENDIX A: LOOP CORRECTIONS TO THE
SCALAR MASSES IN THE SWSM

On one hand, the quantum effects correct the tadpole
equations (4), such that

0 ¼ v

�
−μ2ϕ þ

1

2
λw2 þ λϕv2

�
þ TH;

0 ¼ w

�
−μ2χ þ

1

2
λv2 þ λχw2

�
þ TS; ðA1Þ

where Tφ is the sum of all 1PI one-point functions
with external leg φ ¼ H or S. On the other hand, the
scalar self-energies ΠφIφJ

—i.e., the sum of all 1PI
Feynman graphs with external legs φI and φJ—directly
correct the propagator matrix of the scalar fields H and S.
The inverse-propagator matrix, after applying the tadpole
equations (A1) to eliminate the mass parameters μϕ and
μχ , is given as
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�
p2 0

0 p2

�
−
�
2λϕv2 þ Π̃HHðp2Þ λvwþ ΠSHðp2Þ
λvwþ ΠHSðp2Þ 2λχw2 þ Π̃SSðp2Þ

�
;

ðA2Þ

where Π̃φφðp2Þ ¼ Πφφðp2Þ − Tφ=hφi, with hφi ¼ v, w. In
order to obtain the mixing angle θs (20) and the scalar pole
masses (21) and (22), one has to diagonalize the real part
of (A2), leading to Eqs. (20)–(22).

We implement a SARAH model file for the SWSM [26]
and use it to compute the one-loop scalar self-energies and
tadpoles in Feynman gauge (ξ ¼ 1). In the following, we
list explicitly the one-loop corrections to the scalar inverse-
propagator matrix (A2), after some simplifications of the
SARAH output.
The Higgs self-energy is

Π̃HHðp2Þ ¼ κ

�
3y2t ð4m2

t − p2ÞB0ðp2; m2
t ; m2

t Þ −
1

2
λ2v2B0ðp2; 0; 0Þ þ λw sinð2θsÞ

2v
ðA0ðm2

sÞ − A0ðm2
hÞÞ

−
1

2
ð6λϕvcos2θs − λw sinð2θsÞ þ λvsin2θsÞ2B0ðp2; m2

h; m
2
hÞ

−
1

2
ðλvcos2θs þ λw sinð2θsÞ þ 6λϕvsin2θsÞ2B0ðp2; m2

s ; m2
sÞ

−
1

2
ðλw cosð2θsÞ þ ð3λϕ − λ=2Þv sinð2θsÞÞ2B0ðp2; m2

s ; m2
hÞ

þ 1

v2
ðð4p2m2

W − 12m4
W − 4λ2ϕv

4ÞB0ðp2; m2
W;m

2
WÞ þ 8m2

WÞ

þ 1

2v2
ðð4p2m2

Z − 12m4
Z − 4λ2ϕv

4ÞB0ðp2; m2
Z;m

2
ZÞ þ 8m2

ZÞ
�

ðA3Þ

where κ ¼ ð4πÞ−2 and mpðμÞ is the running mass of particle p as computed using tree-level relations. If the elements of the
Dirac neutrino mass matrix MD are much smaller than those of the Majorana neutrino mass matrix MN , i.e., ðMDÞij ≪
ðMNÞkk for any i; j; k ∈ ð1; 2; 3Þ, then the loop correction to the scalar mass from the active neutrinos is negligible and the
sterile neutrinos contribute to Π̃SS only, namely,

Π̃SSðp2Þ ¼ κ

�
1

2

X3
i¼1

y2x;ið4m2
N;i − p2ÞB0ðp2; m2

N;i; m
2
N;iÞ þ

λv sinð2θsÞ
2w

ðA0ðm2
sÞ − A0ðm2

hÞÞ

−
1

2
ðλwcos2θs − λv sinð2θsÞ þ 6λχwsin2θsÞ2B0ðp2; m2

h; m
2
hÞ

−
1

2
ð6λχwcos2θs þ λv sinð2θsÞ þ λwsin2θsÞ2B0ðp2; m2

s ; m2
sÞ

−
1

2
ðλv cosð2θsÞ − ð3λχ − λ=2Þw sinð2θsÞÞ2B0ðp2; m2

s ; m2
hÞ

− w2

�
λ2B0ðp2; m2

W;m
2
WÞ þ

1

2
λ2B0ðp2; m2

Z;m
2
ZÞ − 2λ2χB0ðp2; 0; 0Þ

��
ðA4Þ

and

ΠHSðp2Þ ¼ ΠSHðp2Þ ¼ κ

�
1

2
λ sinð2θsÞðA0ðm2

hÞ − A0ðm2
sÞÞ þ

1

2
ð6λϕvcos2θs − λw sinð2θsÞ þ λvsin2θsÞ

× ðλwcos2θs − λv sinð2θsÞ þ 6λχwsin2θsÞB0ðp2; m2
h;m

2
hÞ −

1

2
ð6λχwcos2θs þ λv sinð2θsÞ þ λwsin2θsÞ

× ðλvcos2θs þ λw sinð2θsÞ þ 6λϕwsin2θsÞB0ðp2; m2
s ; m2

sÞ

−
1

4
ð2λv cosð2θsÞ − ð6λχ − λÞw sinð2θsÞÞ × ð2λw cosð2θsÞ þ ð6λϕ − λÞv sinð2θsÞÞB0ðp2; m2

s ; m2
hÞ

− λvwð2λϕB0ðp2;M2
W;M

2
WÞ þ λϕB0ðp2;M2

Z;M
2
ZÞ þ λχB0ðp2;M2

Z0 ;M2
Z0 ÞÞ

�
: ðA5Þ
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We have neglected terms proportional to gz and the mass
M0

Z of the Z
0 boson asMZ0 ≪ v, w. Each coupling and mass

in the one-loop contributions (A3)–(A5) is the running
parameter depending on the renormalization scale μ, and
the vacuum expectation values v and w are the gauge- and
scale-dependent running VEVs. We suppress the scale
dependence for easier reading. The masses mx correspond
to the tree-level formulas but with running couplings

mt ¼
1ffiffiffi
2

p ytv; mW ¼ 1

2
gLv;

mZ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Y þ g2L

q
v; and mN;i ¼

yx;iffiffiffi
2

p w; ðA6Þ

and θs, mh, ms correspond to Eqs. (8)–(10). The loop
functions A0 and B0 are given as

A0ðm2Þ ¼ m2

�
1 − ln

�
m2

μ2

��
; ðA7Þ

B0ðs;m2
1; m

2
2Þ

¼ −
Z

1

0

du ln
�
um2

1 þ ð1 − uÞm2
2 − uð1 − uÞs

μ2

�
: ðA8Þ

In the special case of vanishing masses, the latter reduces to

B0ðs;0;0Þ¼ 2− ln

�
−

s
μ2

�
¼ 2− ln

���� sμ2
����þ iπΘðsÞ ðA9Þ

where Θ is the Heaviside step function.

APPENDIX B: ONE-LOOP CORRECTIONS
TO GAUGE BOSONS AND ELECTROWEAK

INPUT PARAMETERS IN THE SWSM

The SWSM introduces new corrections to the W and Z
gauge boson self-energies. The radiative corrections
from the new gauge sector are neglected due to coupling
suppression gz ≲ 10−4, whereas the sterile neutrinos may
contribute radiatively through the PMNS matrix as well as
at tree level by affecting the Fermi coupling GF through the
low-energy muon decay. We neglect the neutrino contri-
butions (to be investigated in an upcoming paper) and focus
here on the pure scalar radiative corrections. In the MS
scheme the scalar SW contribution to the gauge boson self-
energies is

ΠSW
VV ðp2Þ ¼ sin2θs

16π2
m2

V

v2
ðFðp2; m2

V;m
2
sÞ − Fðp2; m2

V;m
2
hÞÞ;

V ¼ W;Z; ðB1Þ

where the loop function F is defined as

Fðs;m2
1;m

2
2Þ

¼ 2

3

�
m2

1þm2
2−

s
3

	
þ
�
sþm2

1−m2
2

3s

�
ðA0ðm2

1Þ−A0ðm2
2ÞÞ

−
1

3
A0ðm2

2Þ−
1

3

�ðm2
1−m2

2Þ2
s

−2ðm2
2−5m2

1Þþ s

�
×B0ðs;m2

1;m
2
2Þ: ðB2Þ

We have checked, in the Rξ gauge, that the scalar
contribution ΠSW

VV ðp2Þ is explicitly independent of the
gauge parameter ξ, hence gauge invariant. Furthermore,
ΠSW

VV ðM2
VÞ is independent of the renormalization scale at

one-loop accuracy.
The shift in the electroweak input parameters due to the

SW corrections is then

δgL
gL

¼ 1

4m2
W − 2m2

Z

�
ΠSW

WWð0Þ −
m2

W

m2
Z
ΠSW

ZZ ðM2
ZÞ
�
; ðB3Þ

δgY
gY

¼ m2
Z −m2

W

4m2
W − 2m2

Z

�
−
ΠSW

WWð0Þ
m2

W
þ ΠSW

ZZ ðM2
ZÞ

m2
Z

�
; ðB4Þ

δv
v

¼ −
ΠSW

WWð0Þ
2m2

W
; ðB5Þ

which agrees with Eq. (22) of [20]. TheW-boson pole mass
is then given as

MW
2 ¼ 1

4
ðgL þ δgLÞ2ðvþ δvÞ2

þ ΠSM
WWðMW

2Þ þ ΠSW
WWðMW

2Þ: ðB6Þ

It is convenient to express MW as the sum of the SM MW
theo

and the new physics contribution δMW as

MW ¼ MW
theo: þ δMW; with

δMW ¼ MW
δv
v
þ 1

2
δgLvþ

ΠSW
WWðMWÞ
2MW

: ðB7Þ
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