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We benefit from a recent lattice determination of the full set of vector, axial and tensor form factors for
the Λb → Λ�

cð2595Þτν̄τ and Λ�
cð2625Þτν̄τ semileptonic decays to study the possible role of these two

reactions in lepton flavor universality violation studies. Using an effective theory approach, we analyze
different observables that can be accessed through the visible kinematics of the charged particles produced
in the tau decay, for which we consider the π−ντ; ρ−ντ and μ−ν̄μντ channels. We compare the results
obtained in the Standard Model and other schemes containing new physics (NP) interactions, with either
left-handed or right-handed neutrino operators. We find a discriminating power between models similar to
the one of the Λb → Λc decay, although somewhat hindered in this case by the larger errors of the Λb → Λ�

c

lattice form factors. Notwithstanding this, the analysis of these reactions is already able to discriminate
between some of the NP scenarios and its potentiality will certainly improve when more precise form
factors are available.
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I. INTRODUCTION

The experimental observation of the Higgs boson by the
ATLAS [1] and CMS [2] collaborations announced the
completion of the electroweak sector of the Standard Model
(SM). Despite its enormous success in describing many
different experimental data, there are however theoretical
indications (see for instance chapter 10 of Ref. [3]) as well
as experimental measurements that hint at the possibility of
the SM being just a low energy effective limit of a more
fundamental underlying theory. One of the predictions of
the SM is lepton flavor universality (LFU), which implies
that the couplings to theW and Z gauge bosons is the same
for all three lepton families. However, this prediction is
being challenged by different semileptonic decays medi-
ated by charged currents (CC) involving the third lepton
and quark generation, i.e. by b → cτ−ν̄τ transitions. The
strongest evidence in the direction of LFU violation comes

from the ratios RDð�Þ ¼ ΓðB̄→Dð�Þτ−ν̄τÞ
ΓðB̄→Dð�Þμ−ν̄μÞ measured by the

BABAR [4,5], Belle [6–9] and LHCb [10–12] collabora-
tions. Their combined analysis by the HFLAV collabora-
tion indicates a 3.1σ tension with SM predictions [13].

LHCb [14] has also measured the ratio RJ=ψ ¼ ΓðB̄c →
J=ψτν̄τÞ=ΓðB̄c → J=ψμν̄μÞ, which deviates from the SM
predictions [15–27] at the 1.8σ level. If these differences
were finally confirmed they would be a clear indication for
the necessity of new physics (NP) beyond the SM.
A model-independent way to approach this problem is to

take a phenomenological point of view and to carry out an
effective field theory analysis, which includes the most
general b → cτ−ν̄τ dimension-six operators (for one of the
pioneering works on this type of approaches, see Ref. [28]).
These operators are assumed to be generated by physics
beyond the SM. Their strengths are encoded into unknown
Wilson coefficients (WCs) that can be determined by fitting
to experimental data. In order to constrain and/or deter-
mine the most plausible extension of the SM, observables
beyond the above-mentioned LFU ratios need to be
considered. Those observables typically include the aver-
aged tau-polarization asymmetry and the longitudinal D�
polarization, which have also been measured by Belle
[8,29], the τ forward-backward asymmetry and the upper
bound of the B̄c → τν̄τ leptonic decay rate [30]. A large
number of studies along these lines have been conducted,
not only for the B̄ → Dð�Þ [28,31–50] and B̄c → J=ψ ; ηc
[23,25,50–52] semileptonic decays, but also for the Λb →
Λc transition [39,42,49,53–65], where a similar behavior is
to be expected. A better discriminating power for different
models could be achieved if four body reactions, involving
for instance D� → Dπ; Dγ [33–36,41,45,48] or Λc → Λπ
[61,63] decays of the final hadron, are analyzed.
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Very recently, the LHCb collaboration has reported a
measurement of the RΛc

¼ ΓðΛb→Λcτ
−ν̄τÞ

ΓðΛb→Λcμ
− ν̄μÞ ratio [66] and the

experimental valueRΛc
¼ 0.242� 0.026� 0.040� 0.059

turns out to be in agreement, within errors, with the SM
prediction RSM

Λc
¼ 0.332� 0.007� 0.007 [67]. The τ−

lepton was reconstructed using the hadronic τ− →
π−πþπ−ðπ0Þντ decay, with the same technique used by
the LHCb experiment to obtain RD� ¼ 0.291� 0.019�
0.026� 0.013 [12], also in agreement with the SM pre-
diction. A higher value RD� ¼ 0.336� 0.027� 0.030,
however, was obtained by the same experiment when
the τ lepton was reconstructed using its leptonic decay
into a muon [10]. It is then of great interest to see if the
above result for the Λb → Λc decay is confirmed or not
when the muonic reconstruction channel is used. Such an
analysis is under way [68]. As already discussed in
Ref. [69], the different deviation of the present RΛc

and
RDð�Þ ratios with respect to their SM values, suppression for
RΛc

versus enhancement for RDð�Þ, puts a very stringent test
on NP extensions of the SM, since scenarios leading to
different deviations from SM expectations seem to be
required. In this respect, in the very recent work of
Ref. [70], it is argued that a more consistent comparison
with the SM prediction for RΛc

is achieved if the recent
ΓðΛb → Λcτ

−ν̄τÞ LHCb measurement is normalized
against the SM value for ΓðΛb → Λcμ

−ν̄μÞ instead of the
old LEP data used by the LHCb collaboration. This
analysis gives rise to a new RΛc

¼ j0.04=Vcbj2ð0.285�
0.073Þ value [70], also in agreement with the SM but with a
less suppressed central value.
In Refs. [69,71] the Λb → Λcτ

−ν̄τ and the B̄ → Dð�Þτ−ν̄τ
decays were analyzed by employing the τ− → π−ντ; ρ−ντ
and τ− → μ−ν̄μντ reconstruction channels. There, special
attention is paid to different quantities that can be measured
by looking just at the visible kinematics of the charged
particle produced in the τ decay [71]. Given a good-statistics
measurement of these visible distributions, one has access to
the values of the unpolarized differential decay width
dΓSLðωÞ=dω and the spin hPCM

L iðωÞ; hPCM
T iðωÞ, angular

AFBðωÞ; AQðωÞ, and angular-spin ZLðωÞ; Z⊥ðωÞ; ZQðωÞ
asymmetries. Here ω is the product of the two hadron
four-velocities. As shown in Ref. [71], in the absence of
CP violation, the above quantities provide the maximal
information that can be extracted from the analysis of the
semileptonicHb → Hcτ

−ν̄τ decay for a polarized final τ. The
general expression that links the visible-kinematics differ-
ential distributions to the above given asymmetries was first
given in Ref. [72] for the τ → π−ντ; ρ−ντ hadronic decay
modes. Actually, these hadronic channels are more conven-
ient to determine all the above asymmetries and the role of the
latter in distinguishing among different extensions of the SM
was analyzed in detail in Refs. [49,71]. Since the full visible-
kinematics differential decay width may suffer from low
statistics, possible statistically enhanced distributions, which
can be obtained by integrating in one or more of the related

visible-kinematics variables, are analyzed in Ref. [69] in the
search for NP.
In the present work, we will extend these kinds of studies

to the Λb → Λ�
cð2595Þ and Λb → Λ�

cð2625Þ semileptonic
decays, with the help of the recent lattice chromodynamics
(LQCD) determination of the full set of vector, axial and
tensor form factors for these two transitions [73,74]. These
two isoscalar odd parity resonances, with JP ¼ 1

2
− and 3

2
−

respectively, are promising candidates for the lightest
charmed baryon heavy-quark-spin doublet [75,76].1 The
LFU analysis of the transitions involving these excited
baryons could provide valuable/complementary information
on the possible existence of NP beyond the SM and on its
preferred extensions. TheLQCD form factors inRefs. [73,74]
are defined based on a helicity decomposition of the ampli-
tudes. After extrapolation to the physical point (both the
continuum and the physical pion mass limits), each form
factor was parametrized in terms of ω as fðωÞ ¼
Ff þ Afðω − 1Þ, corresponding to the first order Taylor
expansion around the zero recoil point (ω ¼ 1). That was
appropriate since lattice data were only available for just two
kinematics near zero recoil. Thus, one expects this para-
metrization to be reliable only for small values of (ω − 1) and,
in accordance, we shall restrict our evaluation of the different
observables to a certain kinematical region near zero recoil.
This work is organized as follows: in Sec. II we will

introduce the most general effective Hamiltonian of all
possible dimension-six operators for the semileptonic
b → c transitions. We give general analytical results valid
for the production of any lepton in the final state, although
it is generally assumed that the WCs are nonzero only for
the third quark and lepton generation. We also provide the
general expression for the transition amplitude squared for
the production of a charged lepton in a given polarization
state. In Sec. III we present the general formula for the
visible-kinematics differential decay width for the sequen-
tial Hb → Hcτ

−ðπ−ντ; ρ−ντ; μ−ν̄μντÞν̄τ decays and the
expressions after integration in one or more of the related
variables. The results and the discussion are presented in
Sec. IV. In Appendices A and B we collect the matrix
elements (form factor decomposition) and the W̃χ structure
functions needed to construct the hadron tensors for the
1=2þ → 1=2− and 1=2þ → 3=2− transitions, respectively.

II. Hb → Hcl− ν̄l EFFECTIVE HAMILTONIAN
AND DECAY AMPLITUDE

Following Ref. [45], we use an effective low energy
Hamiltonian that includes all dimension-six semileptonic
b → c operators with both left-handed (L) and right-handed
(R) neutrino fields,

1Some doubts on this respect have recently been put forward
[77,78], and experimental distributions for the semileptonic
decay of the ground-state bottom baryon Λb into both excited
states would definitely contribute to shed light into this issue [76].
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Heff ¼
4GFVcbffiffiffi

2
p ½ð1þ CV

LLÞOV
LL þ CV

RLO
V
RL þ CS

LLO
S
LL þ CS

RLO
S
RL þ CT

LLO
T
LL

þ CV
LRO

V
LR þ CV

RRO
V
RR þ CS

LRO
S
LR þ CS

RRO
S
RR þ CT

RRO
T
RR� þ H:c:; ð1Þ

with2

OV
ðL;RÞL ¼ ðc̄γμbL;RÞðl̄γμνlLÞ; OS

ðL;RÞL ¼ ðc̄bL;RÞðl̄νlLÞ; OT
LL ¼ ðc̄σμνbLÞðl̄σμννlLÞ; ð3Þ

OV
ðL;RÞR ¼ ðc̄γμbL;RÞðl̄γμνlRÞ; OS

ðL;RÞR ¼ ðc̄bL;RÞðl̄νlRÞ; OT
RR ¼ ðc̄σμνbRÞðl̄σμννlRÞ; ð4Þ

and where ψR;L ¼ ð1� γ5Þψ=2, GF¼1.166×10−5GeV−2, and Vcb is the corresponding Cabibbo-Kobayashi-
Maskawa matrix element.
The ten, complex in general, WCs CX

AB (X ¼ S, V, T, and A;B ¼ L, R) parametrize the deviations from the SM. They
could be lepton and flavor dependent although they are generally assumed to be nonzero only for the third quark and lepton
generation.
The transition amplitude for a Hb → Hcl−ν̄l decay can be written, in a short-hand notation, as

M ¼ ðJαHJLα þ JHJL þ JαβH JLαβÞνlL þ ðJαHJLα þ JHJL þ JαβH JLαβÞνlR ; ð5Þ

where the two contributions correspond to the two
different neutrino chiralities. In the mνl ¼ 0 limit
there is no interference between these two terms and
jMj2 is given by an incoherent sum of νlL and νlR
contributions.
The lepton currents for a fully polarized charged lepton

are given by

JLðαβÞχ;hS ¼ 1ffiffiffi
2

p ūSlðk0; hÞΓðαβÞPhχ
5 vν̄lðkÞ;

ΓðαβÞ ¼ 1; γα; σαβ; P
hχ
5 ¼ 1þ hχγ5

2
; ð6Þ

with uSlðk0; hÞ the spinor of the final charged lepton
corresponding to a state with h ¼ �1 polarization
(covariant spin) along a certain four-vector Sα.3 hχ ¼ �1

accounts for the two possible neutrino chiralities (hχ ¼ −1

and þ1 for χ ¼ L and χ ¼ R, respectively) considered in
the effective Hamiltonian. From the lepton currents one can
readily obtain the corresponding lepton tensors needed to
evaluate jMj2. They are constructed as

LðαβÞðρλÞ
χ;hS ¼ JLðαβÞχ;hS ðJLðρλÞχ;hS Þ�

¼ 1

2
Tr½ðk0 þmlÞΓðαβÞPhχ

5 =kγ
0ΓðρλÞ†γ0Ph

S�; ð8Þ

where we have taken mνl ¼ 0 and Ph
S stands for the

projector

Ph
S ¼

1þ hγ5=S
2

: ð9Þ

The final expressions for the lepton tensors have been
collected in Appendix B of Ref. [71].
The dimensionless hadron currents are given by

JðαβÞHrr0χð¼L;RÞðp; p0Þ ¼ hHc;p0; r0jc̄ð0ÞOðαβÞ
Hχ bð0ÞjHb;p; ri;

ð10Þ

with the hadron states normalized as hp⃗0; r0jp⃗; ri ¼
ð2πÞ3ðE=MÞδ3ðp⃗ − p⃗0Þδrr0 and where r, r0 represent the
spin index. The different OðαβÞ

Hχ operator structures are

OðαβÞ
Hχ ¼ ðCS

χ þ hχCP
χ γ5Þ; ðCV

χ γ
α þ hχCA

χ γ
αγ5Þ;

CT
χ σ

αβð1þ hχγ5Þ: ð11Þ

The WCs above are obtained as linear combinations of
those introduced in the effective Hamiltonian in Eq. (1) and

2Note that tensor operators with different lepton and quark
chiralities vanish identically. It directly follows from

σμνð1þ hχγ5Þ ⊗ σμνð1þ hχ0γ5Þ ¼ ð1þ hχhχ0 Þσμν ⊗ σμν

− ðhχ þ hχ0 Þ
i
2
ϵμναβσ

αβ ⊗ σμν; ð2Þ

where we use the convention ϵ0123 ¼ þ1.
3This uSlðk0; hÞ spinor is defined by the condition

γ5=SuSlðk0; hÞ ¼ huSlðk0; hÞ; ð7Þ

where the four-vector Sα satisfies the constraints S2 ¼ −1 and
S · k0 ¼ 0. A helicity state corresponds to Sα ¼ ðjk⃗0j; k00k̂0Þ=ml,
with k̂0 ¼ k⃗0=jk⃗0j and ml the charged lepton mass.

NEW PHYSICS EFFECTS ON Λb → Λ�
cτν̄τ DECAYS PHYS. REV. D 106, 055039 (2022)

055039-3



their expressions can be found in Appendix A of Ref. [71].
The hadron tensors that enter the evaluation of jMj2 are
defined as

WðαβÞðρλÞ
χ ¼

X
r;r0

hHc;p0; r0jc̄ð0ÞOðαβÞ
Hχ bð0ÞjHb;p; ri

× hHb;p; rjb̄ð0Þγ0OðρλÞ†
Hχ γ0cð0ÞjHc;p0; r0i;

ð12Þ

where we sum (average) over the spin of the final (initial)
hadron. As discussed in detail in Ref. [65], the use of
Lorentz, parity and time-reversal transformations of the
hadron currents and states [79] allows one to write
general expressions for the hadron tensors valid for
any Hb → Hc transition. They are linear combinations
of independent tensor and pseudotensor structures, con-
structed out of the vectors pμ, qμ, the metric tensor gμν

and the Levi-Civita pseudotensor ϵμνδη. The coefficients
of the independent structures are scalar functions of the
four-momentum transferred squared q2, denoted by eWχ

as introduced in Ref. [71]. The different eWχ scalar
structure functions (SFs) depend on the WCs CV;A;S;P;T

χ

and on the genuine hadronic responses, the matrix
elements of the involved hadron operators which can
be derived from the form factors parametrizing each
particular transition. It is shown in Refs. [65,71] that
there is a total of 16 independent eWχ SFs for each

neutrino chirality, with the eWR SFs directly obtained
from the eWL ones by the replacements CV;A;S;P;T

χ¼L →

CV;A;S;P;T
χ¼R . The different WðαβÞðρλÞ

χ hadron tensors, together

with the definition of the eWχ SFs are compiled in
Appendix C of Ref. [71].
As shown here in Appendix A, the eWχ SFs for the

Λb → Λ�
c½JP ¼ 1

2
−� transition can be easily obtained

from those in Appendix C of Ref. [71] by replacing
CV
χ ↔ CA

χ and CS
χ ↔ CP

χ . In addition, the genuine
hadron WVV;AA

i¼1;2;4;5, WVA
i¼3, WT

1;2;3;4;5, WS, WP, WVS;AP
I1;I2 ,

WST;PpT
I3 and WVT;ApT

I4;I5;I6;I7 SFs, which are independent of
the WCs, can be read out from Eqs. (E3)–(E5) of
Ref. [65] for the Λb → Λc transition.4

On the other hand, the eWχ SFs for theΛb → Λ�
c½JP ¼ 3

2
−�

decay are explicitly calculated in this work and they are
given in Eqs. (B25)–(B41) of Appendix B.
Going back to the amplitude squared, it was shown in

Refs. [49,65] that for the production of a charged lepton
with polarization h along the four-vector Sα, and for
massless neutrinos, one has that

2Σ̄jMj2
M2

¼ 2Σ̄ðjMj2νlL þ jMj2νlRÞ
M2

¼N ðω; p · kÞ

þ h

�ðp · SÞ
M

NH1
ðω; p · kÞ þ ðq · SÞ

M

×NH2
ðω; p · kÞ þ ϵSk

0qp

M3
NH3

ðω; p · kÞ
�
; ð13Þ

where we have summed (averaged) over the polarization
state of the final (initial) hadron. As already mentioned,ω is
the product of the two hadron four-velocities and it is
related to q2 via q2 ¼ M2 þM02 − 2MM0ω, with M (M0)
the mass of the initial (final) hadron. Besides, we have
made use of the notation ϵSk

0qp ¼ ϵαβρλSαk0βqρpλ. As for the
N and NH123

scalar functions, they are given by

N ðω; k ·pÞ ¼ 1

2

�
AðωÞ þBðωÞ ðk ·pÞ

M2
þ CðωÞ ðk ·pÞ

2

M4

�
;

NH1
ðω; k ·pÞ ¼AHðωÞ þ CHðωÞ

ðk ·pÞ
M2

;

NH2
ðω; k ·pÞ ¼ BHðωÞ þDHðωÞ

ðk ·pÞ
M2

þ EHðωÞ
ðk ·pÞ2
M4

;

NH3
ðω; k ·pÞ ¼ FHðωÞ þ GHðωÞ

ðk ·pÞ
M2

: ð14Þ

The term NH3
is proportional to the imaginary part of SFs,

which requires the existence of relative phases between
some of the complex WCs, thus incorporating violation of
the CP symmetry in the NP effective Hamiltonian. The
expressions of the A;B; C;AH;BH; CH;DH; EH;FH and
GH in terms of the eWχ SFs are collected in Appendix D of
Ref. [71]. As inferred from Eq. (13), A, B, and C describe
the production of an unpolarized final charged lepton,
whileAH, BH, CH,DH, EH,FH and GH are also needed for
the description of decays with a defined polarization
(h ¼ �1) of the outgoing charged lepton along the four-
vector Sα.

III. SEQUENTIAL Hb → Hcτ − ðπ − ντ ;ρ− ντ ;μ− ν̄μντÞν̄τ
DECAYS AND VISIBLE KINEMATICS

Due to its short mean life, the τ produced in a Hb →
Hcτ

−ν̄τ process cannot be directly measured and all the
accessible information on the decay is encoded in the
visible kinematics of the τ-decay products. The three
dominant decay modes τ → πντ; ρντ and lν̄lντ (l ¼ e,
μ) account for more than 70% of the total τ width.
The (visible) differential distributions of the charged
particle produced in the tau decay have been studied
extensively for B̄ → Dð�Þ decays in Refs. [31,72,80–82].
The general expression for the differential decay width for
the Hb → Hcτ

−ðdντÞν̄τ decay, with d ¼ π−; ρ−;l−ν̄l,
reads [71,72,81,82]

4Note that the names of the form factors in the parametriza-
tions of Eqs. (A1)–(A6) are chosen in order to directly use the
results of Eqs. (E3)–(E5) of Ref. [65].
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d3Γd

dωdξdd cos θd
¼ Bd

dΓSL

dω
fFd

0ðω; ξdÞ þ Fd
1ðω; ξdÞ cos θd

þ Fd
2ðω; ξdÞP2ðcos θdÞg; ð15Þ

which is given in terms of ω, ξd ¼ Ed
γmτ

(here γ ¼ q2þm2
τ

2mτ

ffiffiffiffi
q2

p ),

which is the ratio of the energies of the tau-decay charged
particle and the tau lepton measured in the τ−ν̄τ center of
mass frame (CM), and θd, the angle made by the three-
momenta of the final hadron and the tau-decay charged
particle measured in the same CM system (see Fig. 1 of
Ref. [69]). The azimuthal angular (ϕd) distribution of the
tau decay charged product is sensitive to possible CP odd
effects [NH3

term in Eq. (14)]. However, the measurement
of ϕd would require the full reconstruction of the tau three
momentum, and this azimuthal angle has been integrated
out to obtain the differential decay width of Eq. (15). That
is the reason why the latter visible distribution does not
depend on NH3

, and thus it does not contain any informa-
tion on possible CP violation contributions to the effective
NP Hamiltonian of Eq. (1).
In addition, Bd in Eq. (15) is the branching ratio for the

τ− → d−ντ decay mode and P2ðcos θdÞ stands for the
Legendre polynomial of order 2. As for dΓSL=dω, it
represents the differential decay width for the unpolarized
semileptonic Hb → Hcτ

−ν̄τ decay. It reads

dΓSL

dω
¼ G2

FjVcbj2M03M2

24π3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p �
1 −

m2
τ

q2

�
2

n0ðωÞ; ð16Þ

where n0ðωÞ contains all the dynamical information,
including any possible NP contribution. It is given by
n0ðωÞ ¼ 3a0ðωÞ þ a2ðωÞ, where a0;2ðωÞ are linear combi-
nations of AðωÞ;BðωÞ and CðωÞ, with explicit expressions
given in Eq. (18) of Ref. [65]. The Fd

0;1;2ðω; ξdÞ functions in
Eq. (15) can be written as [69,72]

Fd
0ðω; ξdÞ ¼ Cd

nðω; ξdÞ þ Cd
PL
ðω; ξdÞhPCM

L iðωÞ;
Fd
1ðω; ξdÞ ¼ Cd

AFB
ðω; ξdÞAFBðωÞ þ Cd

ZL
ðω; ξdÞZLðωÞ

þ Cd
PT
ðω; ξdÞhPCM

T iðωÞ;
Fd
2ðω; ξdÞ ¼ Cd

AQ
ðω; ξdÞAQðωÞ þ Cd

ZQ
ðω; ξdÞZQðωÞ

þ Cd
Z⊥ðω; ξdÞZ⊥ðωÞ; ð17Þ

where the decay-mode dependent coefficients Cd
aðω; ξdÞ

are purely kinematical. Their analytical expressions for
the π−ντ; ρ−ντ and l−ν̄lντ decay channels can be found in
Appendix G of Ref. [71]. The rest of the observables
in Eq. (17) are the tau-spin (hPCM

L;TiðωÞ), tau-angular
(AFB;QðωÞ) and tau-angular-spin (ZL;Q;⊥ðωÞ) asymmetries
of the Hb → Hcτν̄τ parent decay. They can be written
[65,71] in terms of the A;B; C;AH;BH; CH;DH and EH
functions introduced in Eq. (14). A numerical analysis of

the role of each of the observables dΓSL=dω, hPCM
L;TiðωÞ,

AFB;QðωÞ and ZL;Q;⊥ðωÞ in the context of LFU violation
was conducted for the Λb → Λcτ

−ν̄τ transition in
Refs. [49,71]. Here we perform an analog analysis for
the Λb → Λ�

cð2595Þ and Λb → Λ�
cð2625Þ semileptonic

decays, for which the only differences are fully encoded
in the form-factor input contained in the eWχ SFs. This is
because the expressions ofA;B; C;AH;BH; CH;DH and EH
(or equivalently the differential decay width for unpolarized
tau, the tau-spin, tau-angular and tau-angular-spin asymme-
tries) in terms of the latter is independent of the b → c
transition, and they are given by Eqs. (D1) and (D2)
of Ref. [71].
Measuring the triple differential decay width in Eq. (15)

could also be difficult due to low statistics. An increased
statistics is achieved by integrating in one or more of the
variables cos θd, ξd and ω, at the price that the resulting
distributions might not depend on some of the observables
in Eq. (17). For instance, accumulating in the polar angle
leads to the distribution [83]

d2Γd

dωdξd
¼ 2Bd

dΓSL

dω
fCd

nðω; ξdÞ þ Cd
PL
ðω; ξdÞhPCM

L iðωÞg;

ð18Þ
from where one can only extract, looking at the dependence
on ξd, dΓSL=dω and the CM τ longitudinal polarization
[hPCM

L iðωÞ�. From the latter, it immediately follows the
averaged CM tau longitudinal polarization asymmetry,

Pτ ¼ −
1

ΓSL

Z
dω

dΓSL

dω
hPCM

L iðωÞ; ð19Þ

which has been measured for the B̄ → D�τν̄τ decay by the
Belle collaboration [8].
Integrating Eq. (15) in the ξd variable one obtains the

double differential decay width [69]:

d2Γd

dωd cos θd
¼ Bd

dΓSL

dω
½eFd

0ðωÞ þ eFd
1ðωÞ cos θd

þ eFd
2ðωÞP2ðcos θdÞ�: ð20Þ

While eFd
0ðωÞ ¼ 1=2, losing in this way all information on

hPCM
L iðωÞ, one has that

eFd
1ðωÞ ¼ Cd

AFB
ðωÞAFBðωÞ þ Cd

ZL
ðωÞZLðωÞ

þ Cd
PT
ðωÞhPCM

T iðωÞ; ð21Þ
eFd
2ðωÞ¼Cd

AQ
ðωÞAQðωÞþCd

ZQ
ðωÞZQðωÞþCd

Z⊥ðωÞZ⊥ðωÞ;
ð22Þ

which retain all the information on the other six asymme-
tries, since the kinematical coefficients Cd

i ðωÞ are known.
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A further integration in ω additionally enhances the
statistics. The obtained angular distribution [69],

dΓd

d cos θd
¼ BdΓSL

�
1

2
þ bFd

1 cos θd þ bFd
2P2ðcos θdÞ

�
;

bFd
1;2 ¼

1

ΓSL

Z
ωmax

1

dΓSL

dω
eFd
1;2ðωÞdω; ð23Þ

could still be a useful observable in the search for NP
beyond the SM.
Finally, from the differential decay width d2Γd=ðdωdξdÞ

given in Eq. (18) one can get [69]

dΓd

dEd
¼ 2Bd

Z
ωsupðEdÞ

ωinfðEdÞ
dω

1

γmτ

dΓSL

dω
fCd

nðω; ξdÞ

þ Cd
PL
ðω; ξdÞhPCM

L iðωÞg; ð24Þ

where the appropriate limits in ω for each of the sequential
decays considered are given in Ref. [69].
From the latter distribution one can define the dimen-

sionless observable

bFd
0ðEdÞ ¼

mτ

2BdΓSL

dΓd

dEd
: ð25Þ

Although it is normalized for all channels as

1

mτ

Z
Emin
d

Emin
d

dEd
bFd
0ðEdÞ ¼

1

2
; ð26Þ

its energy dependence is still affected by the CM τ
longitudinal polarization hPCM

L iðωÞ.
Predictions for the d2Γ=ðdωd cos θdÞ, dΓ=d cos θd and

the bFd
0ðEdÞ distributions, and their role in distinguishing

among different NP models, were presented and discus-
sed in Ref. [69] for the Λb → Λcτ

−ðπ−ντ; ρ−ντ; μ−ν̄μντÞν̄τ
and B̄ → Dð�Þτ−ðπ−ντ; ρ−ντ; μ−ν̄μντÞν̄τ sequential decays.
Here, we will also extend the study to reactions initiated by
the Λb → Λ�

cð2595Þ and Λb → Λ�
cð2625Þ semileptonic

parent decays.

IV. RESULTS AND DISCUSSION

In this section we present Λb → Λ�
cð2595Þ;Λ�

cð2625Þ
results for the observables mentioned in Sec. III above. We
will consider SM and different NP scenarios involving left-
and right-handed neutrino fields taken from Refs. [42,45].
Since the LQCD form factors from Refs. [73,74] that we
use are not reliably obtained at high ω values, we will
restrict ourselves to the 1 ≤ ω ≤ 1.1 region. For this latter
reason we will not show results for dΓd=d cos θd or bFd

0ðEdÞ
since they involve an integration in the ω variable over the
full available phase space, including regions for which the
LQCD form factors are not reliable.

For each observable, we give central values plus an error
band that we construct by adding in quadrature the form-
factor and WC uncertainties. For the errors related to the
WCs we shall use statistical samples of WCs selected
such that the χ2-merit function computed in Refs. [42,45],
for left- and right-handed neutrino NP fits, respectively,
changes at most by one unit from its value at the fit
minimum (for further details see Sec. III B of Ref. [65]).
For the uncertainty associated to the form factors, we
consider two different sources [73]: statistical and system-
atic. We obtain the statistical error using the appropriate
covariance matrix to Monte Carlo generate a great number
of form factor samples from which we evaluate the
corresponding quantity and its standard deviation. The
systematic error is evaluated as explained in Sec. VI of
Ref. [73]. This latter determination makes use of the form
factors obtained with higher-order fits. Statistical and
systematic errors are then added in quadrature to get the
total error associated to the form factors.
In Figs. 1 and 2 we show, for the Λb → Λ�

cð2595Þτ−ν̄τ
and Λb → Λ�

cð2625Þτ−ν̄τ decays respectively, the results
for n0ðωÞ and the full set of asymmetries introduced in
Eq. (17). They have been obtained within the SM and the
two NP models corresponding to fits 6 and 7 of Ref. [42].
The latter two models include only left-handed (L) neutrino
operators and the corresponding WCs were obtained from
fits to the experimental evidences of LFU violations in the
B-meson sector. In Table I we give the values correspond-
ing to the CS

χ , CP
χ , CV

χ , CA
χ and CT

χ coefficients introduced in

Eq. (11) since the eWχ hadronic SFs are written in terms of
the latter. Even though these two NP scenarios have been
adjusted to reproduce the measured RDð�Þ ratios, they show
a different behavior for other quantities. As seen from the
figures, L fit 6 and SM results agree within errors for most
of the observables, while the predictions from L fit 7 are
quite different for the AFB; ZL, hPCM

L i and hPCM
T i asym-

metries. The latter are thus helpful in distinguishing
between these two NP models that otherwise give very
similar results for the RDð�Þ ratios.
In Fig. 3 we compare the results obtained within the SM

and fit R S7a of Ref. [45]. The latter includes only NP
operators constructed with right-handed (R) neutrino fields,
and the corresponding WCs (see Table I) have also been
adjusted to reproduce the measured RDð�Þ ratios. Among the
different R fits conducted in Ref. [45], this is one of the
more promising in terms of the pull from the SM hypoth-
esis.5 However, due to the wide error bands, we find no
significant difference between the R S7a model and SM
results. The exceptions are the ZL and hPCM

T i asymmetries
for the Λb → Λ�

cð2595Þτ−ν̄τ decay. The R S7a and the L fit

5This NP scenario considers a scalar leptoquark, with non-
vanishing CV

RR, C
T
RR and CS

RR and CS
RR ≈ −8CT

RR. The fit carried
out in Ref. [45] leads to a solution dominated by CV

RR, with CT
RR

compatible with zero within one sigma.
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6 models give also similar predictions, agreeing within
errors. As for the differences with L fit 7, the best
observables to distinguish between the R S7a and the
L fit 7 models are the AFB and hPCM

L i asymmetries
for the Λb → Λ�

cð2595Þτ−ν̄τ decay, whereas for Λb →
Λ�
cð2625Þτ−ν̄τ one finds that not only AFB and hPCM

L i,
but also ZL and hPCM

T i are adequate observables.
We show now the results for the eFd

1;2ðωÞ coefficient
functions that expand the statistically enhanced d2Γ=
ðdωd cos θdÞ differential decay width of Eq. (20).6 In fact,

we show the products n0ðωÞeFd
1;2ðωÞ since, as mentioned,

n0ðωÞ contains all the dynamical effects included in
dΓSL=dω which appears as an overall factor of the
d2Γ=ðdωd cos θdÞ distribution. Predictions obtained within
the SM, and the L fit 7 and the R S7a NP models of
Refs. [42,45], respectively, are presented in Fig. 4. As it
was to be expected from the previous results, SM and R fit
7a results agree within errors in all cases. Similar results
(not shown) are found for L fit 6. However, for most of the
observables plotted in the figure, the L fit 7 predictions are
distinguishable from those obtained using the SM or R S7a
models, either in the near zero-recoil region or in the upper
part of the shown ω interval.

FIG. 1. dΓSL=dω differential decay width and AFB; AQ; ZL; ZQ; Z⊥; hPCM
L i and hPCM

T i asymmetries evaluated for the Λb →
Λ�
cð2595Þτ−ν̄τ decay within the SM and the left-handed neutrino NP models corresponding to fits 6 and 7 of Ref. [42]. The error bands

account for uncertainties both in the WCs and form factors, see text for details.

6Note that eFd
0ðωÞ ¼ 1=2 in all cases.
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When compared to the Λb → Λc decay considered
in Refs. [69,71], we find here a worse discrimina-
ting power between different models due to the large
errors in the form factors. Nevertheless, with the present
values of the latter, these Λb → Λ�

c reactions are already
able to distinguish between the L fit 7 model of Ref. [42]
and the L fit 6 and R S7a models of Refs. [42,45], or
between L fit 7 and the SM. A more precise determi-
nation of the form factors, with less error and an
extended ω region of validity, would certainly increase
the value of the Λb → Λ�

cð2595Þ;Λ�
cð2625Þ decays in the

search for NP in LFU violation studies.

Focusing on the SM n0ðωÞ distributions in Figs. 1 and 2,
we conclude that ΓSL (or at least the partially integrated
width up to ω ≤ 1.1) for the Λ�

cð2625Þmode is smaller than
for the Λ�

cð2595Þ final state, contradicting the expectations
from heavy-quark spin symmetry [76]. Moreover, compar-
ing with the results displayed in the left-upper plot of Fig. 2
of Ref. [71], both widths are probably around a factor of 10
lower than that of the Λb decay into the ground state
charmed baryon, Λb → Λc½JP ¼ 1=2þ�. This reduction
does not affect the tau-spin, tau-angular and tau-angular-
spin asymmetries also shown in these figures, since these
observables should not depend on the overall size of the

FIG. 2. Same as Fig. 1, but for the Λb → Λ�
cð2625Þτ−ν̄τ decay.
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semileptonic width ΓSL. Actually, the asymmetries provide
distinct ω patterns for the Λb decay into each of the
charmed final state baryons, which have different spin-
parity quantum numbers. This makes the comparison of
theoretical model predictions, considering jointly all three
[Λc;Λ�

cð2595Þ;Λ�
cð2625Þ] modes, more exhaustive and

demanding.

Next, for some of the observables studied so far, we
investigate how the NP operators affect the SM predictions.
In Fig. 5, we pay attention to the n0ðωÞ (which equals to
dΓSL=dω up to a kinematical factor), and the angular-
AFBðωÞ and spin- hPCM

L;TiðωÞ asymmetry distributions.
These three observables are commonly discussed in the
literature and, presumably, they are amongst the easiest

TABLE I. Wilson coefficients entering in the hadron currents of Eqs. (10) and (11). We collect numerical values for the NP models
fitted in Refs. [42] (L fits 6 and 7) and [45] (R S7a). Here CV;A

χ¼L ¼ 1þ CV
LL � CV

RL, CS;P
χ¼L ¼ CS

LL � CS
RL, CT

χ¼L ¼ CT
LL,

CV;A
χ¼R ¼ CV

RR � CV
LR, C

S;P
χ¼R ¼ CS

RR � CS
LR, and CT

χ¼R ¼ CT
RR, where the coefficients CS;V;T

AB (A; B ¼ L, R) appear directly in the NP
effective Hamiltonian of Eq. (1). Note that within the R S7a scalar leptoquark scenario, CA

χ¼R ¼ CV
χ¼R and CP

χ¼R ¼ CS
χ¼R since in that

model CV
LR ¼ CS

LR ¼ 0 [45].

CS
χ¼L CP

χ¼L CV
χ¼L CA

χ¼L CT
χ¼L CS

χ¼R CV
χ¼R CT

χ¼R

SM � � � � � � 1 1 � � � � � � � � � � � �
L fit 6 −0.16þ0.10

−0.07 −0.26þ0.00
−0.01 1.26þ0.03

−0.04 1.10þ0.07
−0.11 0.01þ0.02

−0.04 � � � � � � � � �
L fit 7 −1.32þ0.15

−0.12 −0.22þ0.01
−0.01 1.70þ0.02

−0.02 1.02þ0.05
−0.07 −0.01þ0.02

−0.02 � � � � � � � � �
R S7a � � � � � � 1 1 � � � −0.18þ0.60

−0.32 0.42þ0.03
−0.20 0.02þ0.04

−0.08

FIG. 3. Same as Figs. 1 and 2, but comparing in this case SM to the model corresponding to fit R S7a of Ref. [45], which NP
contributions are constructed using right-handed neutrino fields. Two left columns: Λb → Λ�

cð2595Þτ−ν̄τ decay. Two right columns:
Λb → Λ�

cð2625Þτ−ν̄τ decay.
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ones to be measured since they do not involve the second
Legendre multipole in Eq. (15). We show results for both
Λb → Λ�

cð2595Þ and Λb → Λ�
cð2625Þ semileptonic decays

(panels in the first two and last two rows, respectively) and
for the three beyond the SM scenarios considered in this
work. In the left-handed neutrino NP models of fits 6 and 7
of Ref. [42], there is a total of five real WCs. In both cases
(see Table I) the tensor coefficient CT

χ¼L is negligible, but
even without considering the tensor contributions, we still
have ten different contributions taking interference into
account. In the plots collected in Fig. 5, we show SM and
full results, as well as the predictions obtained when the SM
is supplemented only by some of the NP terms.7 For the
sake of simplicity and clarity, we display only the largest
contributions and eliminate the χ ¼ L label. We do the
same for the case of the right-handed neutrino R S7a
scenario of Ref. [45], where always CV

χ¼L ¼ CA
χ¼L ¼ 1 and

for the rest of WCs, the χ ¼ R subindex is removed. Thus,
for instance the curves denoted in Fig. 5 asCS, both for L or
R scenarios, stand for the results obtained when CS is fixed
to the corresponding value fitted in the NP scheme, and the
other WCs are set to the SM values. Likewise, the CS þ CV

lines show the predictions when CS and CV are fixed to the
corresponding values fitted in the NP scheme, while the rest
of the WCs are set to the SM values. In Fig. 5, we see that
the main contributions responsible for the differences
between the L fit 7 and SM predictions come from CS

and/or CV. For the L fit 6, the latter are much smaller (see
Table I), being closer to the SM values. This explains why
the predictions from this NP scheme are more difficult to be
distinguished from those obtained within the SM,
cf. Figs. 1, 2, and 4. For the R S7a scheme, the main
NP contributions originate from the right-handed neutrino
CA and CV terms.
In Fig. 6, we present a similar analysis, but in this case

for the visible pion-energy accumulated distributionseF1ðωÞ and eF2ðωÞ for the hadron τ− → π−ντ decay mode.
The last observable, eF2ðωÞ, depends on some of the
asymmetries not considered in the previous figure. We
do not show results from the L fit 6 of Ref. [42] since its
predictions are similar to those obtained within the SM.
On the whole, we see that the observed pattern of

changes induced by NP depend on the studied quantity
and the information encoded in these two figures might be
helpful to disentangle between different extensions of
the SM.
Finally, we would like to stress that the expressions of

the eWχ SFs in terms of the 1=2þ → 1=2− and 1=2þ →
3=2− form factors derived in this work are general, and they
do not apply only to the Λb → Λ�

cð2595Þ;Λ�
cð2625Þ tran-

sitions studied here. Actually, using the appropriate numeri-
cal values for the form factors, these eWχ SFs can be used for
any 1=2þ → 1=2− or 1=2þ → 3=2− CC semileptonic
decay, driven by a q → q0l−ν̄l transition at the quark
level. This will allow to systematically analyze NP effects
in the charged-lepton unpolarized and polarized differential
distributions in all these kinds of reactions.

FIG. 4. Two left columns: n0ðωÞeFd
1;2ðωÞ for the three Λb → Λ�

cð2595Þτ−ðμ−ν̄μντ; π−ντ; ρ−ντÞν̄τ sequential decays evaluated within the
SM, the L fit 7 model of Ref. [42] and the R S7a model of Ref. [45]. Two right columns: the same but for the Λb →
Λ�
cð2625Þτ−ðμ−ν̄μντ; π−ντ; ρ−ντÞν̄τ sequential decays.

7Note that for CV;A
χ¼L, NP is encoded in their deviations

from one.
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FIG. 5. SM, L fits 6 and 7 [42] and R S7a [45] results, as well as the predictions obtained when the SM is supplemented by only some
of the NP terms (see text for details), for some selected observables among those which can be extracted from the visible differential
decay width for the Hb → Hcτ

−ðπ−ντÞν̄τ sequential decay [see Eq. (15)]. We show results for both the Λb → Λ�
cð2595Þ (two top rows)

and Λb → Λ�
cð2625Þ (two bottom rows) semileptonic decays, and for the sake of clarity, we do not display uncertainty bands.

FIG. 6. Same as in Fig. 5, but for the pion-energy accumulated distributions n0ðωÞeF1ðωÞ and n0ðωÞeF2ðωÞ. Here, we do not show
results from the L fit 6 of Ref. [42].
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APPENDIX A: HADRONIC MATRIX
ELEMENTS AND SFs

FOR 1=2+ → 1=2− TRANSITIONS

1. Form factors

We parametrize the matrix elements of the different
b → c transition operators for the Λb → Λ�

cð2595Þ decay in
such a way that we can make use of the expressions
obtained in Refs. [65,71] for 1=2þ → 1=2þ transitions with
a minimum of changes. To that end, we use the form factor
decompositions8

hΛ�
c; p⃗0; r0jc̄ð0Þγαbð0ÞjΛb; p⃗; ri ¼ ūΛ�

c;r0 ðp⃗0Þ
�
G1γ

α þ G2

pα

M
þ G3

p0α

M0

�
γ5uΛb;rðp⃗Þ; ðA1Þ

hΛ�
c; p⃗0; r0jc̄ð0Þγαγ5bð0ÞjΛb; p⃗; ri ¼ ūΛ�

c;r0 ðp⃗0Þ
�
F1γ

α þ F2

pα

M
þ F3

p0α

M0

�
uΛb;rðp⃗Þ; ðA2Þ

hΛ�
c; p⃗0; r0jc̄ð0Þbð0ÞjΛb; p⃗; ri ¼ FPūΛ�

c;r0 ðp⃗0Þγ5uΛb;rðp⃗Þ; ðA3Þ

hΛ�
c; p⃗0; r0jc̄ð0Þγ5bð0ÞjΛb; p⃗; ri ¼ FSūΛ�

c;r0 ðp⃗0ÞuΛb;rðp⃗Þ; ðA4Þ

hΛ�
c; p⃗0; r0jc̄ð0Þσαβγ5bð0ÞjΛb; p⃗; ri ¼ ūΛ�

c;r0 ðp⃗0Þ
�
i
T1

M2
ðpαp0β − pβp0αÞ þ i

T2

M
ðγαpβ − γβpαÞ

þ i
T3

M
ðγαp0β − γβp0αÞ þ T4σ

αβ

�
uΛb;rðp⃗Þ ðA5Þ

hΛ�
c; p⃗0; r0jc̄ð0Þσαβbð0ÞjΛb; p⃗; ri ¼ ūΛ�

c;r0 ðp⃗0Þϵαβρλ
�
T1

M2
pρp0λ þ T2

M
γρpλ þ T3

M
γρp0λ þ 1

2
T4γ

ργλ
�
uΛb;rðp⃗Þ; ðA6Þ

where p and p0 (M andM0) are the four-momenta (masses) of the Λb and Λ�
c baryons, respectively, uΛb;Λ�

c
are Dirac spinors,

and we have made use of σαβγ5 ¼ − i
2
ϵαβρλσ

ρλ. The form factors are Lorentz scalar functions of q2 or equivalently of ω, the
product of the four-velocities of the initial and final hadrons.
The form factors used in this work are related to the helicity ones evaluated in the LQCD simulation of Refs. [73,74] by

G1 ¼ −fð
1
2
−Þ

⊥

G2 ¼ M

�
f
ð1
2
−Þ

0

M þM0

q2
þ f

ð1
2
−Þ

þ
M −M0

s−

�
1 −

M2 −M02

q2

�
þ f

ð1
2
−Þ

⊥
2M0

s−

�

G3 ¼ M0
�
−fð

1
2
−Þ

0

M þM0

q2
þ f

ð1
2
−Þ

þ
M −M0

s−

�
1þM2 −M02

q2

�
− f

ð1
2
−Þ

⊥
2M
s−

�
ðA7Þ

F1 ¼ −gð
1
2
−Þ

⊥

F2 ¼ M

�
−gð

1
2
−Þ

0

M −M0

q2
− g

ð1
2
−Þ

þ
M þM0

sþ

�
1 −

M2 −M02

q2

�
þ g

ð1
2
−Þ

⊥
2M0

sþ

�

F3 ¼ M0
�
g
ð1
2
−Þ

0

M −M0

q2
− g

ð1
2
−Þ

þ
M þM0

sþ

�
1þM2 −M02

q2

�
þ g

ð1
2
−Þ

⊥
2M
sþ

�
ðA8Þ

8The form factors defined in this work are related to those in Ref. [76] by identifying Gi ¼ dVi
, Fi ¼ dAi

, FP ¼ dS, FS ¼ dP, and
Ti ¼ dTi

.
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T1 ¼
2M2

sþ

�
h
ð1
2
−Þ

þ − h̃
ð1
2
−Þ

þ −
sþðM −M0Þ2

q2s−
ðhð12−Þ⊥ − h

ð1
2
−Þ

þ Þ þ ðM þM0Þ2
q2

ðh̃ð12−Þ⊥ − h
ð1
2
−Þ

þ Þ
�

T2 ¼ −
2Mq · p0

q2s−
ðhð12−Þ⊥ − h

ð1
2
−Þ

þ ÞðM −M0Þ þM
q2

ðh̃ð12−Þ⊥ − h
ð1
2
−Þ

þ ÞðM þM0Þ

T3 ¼
2Mq · p
q2s−

ðhð12−Þ⊥ − h
ð1
2
−Þ

þ ÞðM −M0Þ −M
q2

ðh̃ð12−Þ⊥ − h
ð1
2
−Þ

þ ÞðM þM0Þ

T4 ¼ h
ð1
2
−Þ

þ ; ðA9Þ

where s� ¼ ðM �M0Þ2 − q2 ¼ 2p · p0 � 2MM0 ¼ 2MM0ðω� 1Þ. Finally, thanks to the equations of motion of the heavy
quarks, one can relate FP and FS to the vector and axial form factors as

FP ¼ 1

mb −mc
½−ðM þM0ÞG1 þ ðM −M0ωÞG2 þ ðMω −M0ÞG3�;

FS ¼ −
1

mb þmc
½ðM −M0ÞF1 þ ðM −M0ωÞF2 þ ðMω −M0ÞF3�; ðA10Þ

with mb and mc the masses of the b and c quarks
respectively.

2. Hadron tensors and eWχ SFs

In Eqs. (A1)–(A6), we have interchanged the form factor
decomposition of the c̄ð0ÞOðαβÞbð0Þ and c̄ð0ÞOðαβÞγ5bð0Þ
matrix elements, withOðαβÞ ¼ I; γα; σαβ, with respect to the
ones used in Refs. [65,71] for the 1=2þ → 1=2þ case due to

the opposite parity here of the final charmed baryon. In this
way, when comparing the vector (JαHVrr0 ), axial (J

α
HArr0),

scalar (JHSrr0 ), pseudoscalar (JHPrr0 ), tensor (JαβHTrr0 ) and

pseudotensor (JαβHpTrr0) hadronic matrix elements here with

those for the 1=2þ → 1=2þ transition, and apart from the
obvious differences in the actual values of the form factors,
we only have to implement the following changes:

JαHrr0χ ¼ CV
χ JαHVrr0 þ hχCA

χ JαHArr0 → CV
χ JαHArr0 þ hχCA

χ JαHVrr0 ¼ hχ ½CA
χ JαHVrr0 þ hχCV

χ JαHArr0 �;
JHrr0χ ¼ CS

χJHSrr0 þ hχCP
χ JHPrr0 → CS

χJHPrr0 þ hχCP
χ JHSrr0 ¼ hχ ½CP

χ JHSrr0 þ hχCS
χJHPrr0 �;

JαβHrr0χ ¼ CT
χ ðJαβHTrr0 þ hχJ

αβ
HpTrr0 Þ → CT

χ ðJαβHpTrr0 þ hχJ
αβ
HTrr0 Þ ¼ hχ ½CT

χ ðJαβHTrr0 þ hχJ
αβ
HpTrr0 Þ�: ðA11Þ

Since there is no left-right interference for massless neutrinos and all hadronic tensors are quadratic in the WCs, the global
factor hχ is irrelevant and, to get the eWχ SFs for the 1=2þ → 1=2− decay, it suffices to do the changes

CV
χ ↔ CA

χ ; CS
χ ↔ CP

χ ðA12Þ

in our original expressions of Appendix C of Ref. [71]. In addition, the genuine hadronWVV;AA
i¼1;2;4;5,W

VA
i¼3,W

T
1;2;3;4;5,WS,WP,

WVS;AP
I1;I2 ,WST;PpT

I3 andWVT;ApT
I4;I5;I6;I7 SFs, which are independent of the WCs, can be read out from Eqs. (E3)–(E5) of Ref. [65]

obtained for the Λb → Λc (1=2þ → 1=2þ) transition.

APPENDIX B: HADRONIC MATRIX ELEMENTS FOR 1=2+ → 3=2− TRANSITION

1. Form factors

For the Λb → Λ�
cð2625Þ decay, we use the following form factor decompositions9:

hΛ�
c; p⃗0; r0jc̄ð0Þγαbð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þ

�
FV
1

M
pμγ

α þ FV
2

M2
pμpα þ FV

3

MM0 pμp0α þ FV
4 gμ

α

�
uΛb;rðp⃗Þ; ðB1Þ

9The form factors below are related to those in Ref. [76] as FV;A;T
i ¼ lV;A;Ti

and Fð3=2Þ
S;P ¼ lS;P.
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hΛ�
c; p⃗0; r0jc̄ð0Þγαbð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þ

�
FA
1

M
pμγ

α þ FA
2

M2
pμpα þ FA

3

MM0 pμp0α þ FA
4 gμ

α

�
γ5uΛb;rðp⃗Þ; ðB2Þ

hΛ�
c; p⃗0; r0jc̄ð0Þbð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þpμ

Fð3=2Þ
S

M
uΛb;rðp⃗Þ; ðB3Þ

hΛ�
c; p⃗0; r0jc̄ð0Þγ5bð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þpμ

Fð3=2Þ
P

M
γ5uΛb;rðp⃗Þ; ðB4Þ

hΛ�
c; p⃗0; r0jc̄ð0Þσαβbð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þ

�
i
FT
1

M3
pμðpαp0β − pβp0αÞ þ i

FT
2

M2
pμðγαpβ − γβpαÞ þ i

FT
3

M2
pμðγαp0β − γβp0αÞ

þ FT
4

M
pμσ

αβ þ iFT
5 ðgμαγβ − gμβγαÞ þ i

FT
6

M
ðgμαpβ − gμβpαÞ

þ i
FT
7

M
ðgμαp0β − gμβp0αÞ

�
uΛb;rðp⃗Þ ðB5Þ

hΛ�
c; p⃗0; r0jc̄ð0Þσαβγ5bð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þ

�
FT
1

M3
pμϵ

αβ
ρλpρp0λ þ FT

2

M2
pμϵ

αβ
ρλγ

ρpλ þ FT
3

M2
pμϵ

αβ
ρλγ

ρp0λ − i
FT
4

M
pμ

1

2
ϵαβρλσ

ρλ

þFT
5 ϵ

αβ
μλγ

λ þFT
6

M
ϵαβμλpλ þFT

7

M
ϵαβμλp0λ

�
uΛb;rðp⃗Þ: ðB6Þ

Here, uμðp⃗0Þ is the Rarita-Schwinger spinor satisfying p0uμðp0Þ ¼ M0uμðp0Þ and the orthogonality conditions
γμuμðp0Þ ¼ p0

μuμðp0Þ ¼ 0. Using these relations, together with puðp⃗Þ ¼ Muðp⃗Þ and the identity

ϵαμνλ ¼ −γ5ð−iσαμσνλ − igαλgμν þ igανgμλ þ gανσμλ þ gμλσαν − gαλσμν − gμνσαλÞ; ðB7Þ

one can rewrite Eq. (B6) as

hΛ�
c; p⃗0; r0jc̄ð0Þσαβγ5bð0ÞjΛb; p⃗; ri ¼ ūμΛ�

c;r0
ðp⃗0Þγ5

�
−ipμðpαp0β − pβp0αÞ F

T
1

M3
þ ipμðγαpβ − γβpαÞM

0FT
1 −MFT

2

M3

þ ipμðγαp0β − γβp0αÞF
T
1 þ FT

3

M2

þ pμσ
αβ

�
FT
6

M
−
FT
1

M3
ðp · p0 þMM0Þ þ FT

2

M
−
M0

M2
FT
3 þ FT

4

M

�

þ iðgμαγβ − gμβγαÞ
�
FT
5 þ FT

6 þM0

M
FT
7

�
− iðgμαpβ − gμβpαÞF

T
6

M

þ iðgμαp0β − gμβp0αÞF
T
7

M

�
uΛb;rðp⃗Þ ðB8Þ

which will be the form used in the rest of the Appendix.
The vector and axial form factors used in this work are related to the helicity ones computed in Refs. [73,74] via

FV
1 ¼ ðfð32−Þ⊥ þ f

ð3
2
−Þ

⊥0 ÞMM0

s−
;

FV
2 ¼ M2

�
f
ð3
2
−Þ

0

M0

sþ

ðM −M0Þ
q2

þ f
ð3
2
−Þ

þ
M0

s−

ðM þM0Þ½q2 − ðM2 −M02Þ�
q2sþ

− ðfð32−Þ⊥ − f
ð3
2
−Þ

⊥0 Þ 2M
02

s−sþ

�

FV
3 ¼ M02

�
−fð

3
2
−Þ

0

M
sþ

ðM −M0Þ
q2

þ f
ð3
2
−Þ

þ
M
s−

ðM þM0Þ½q2 þ ðM2 −M02Þ�
q2sþ

−
�
f
ð3
2
−Þ

⊥ − f
ð3
2
−Þ

⊥0

�
1 −

sþ
MM0

��
2M2

s−sþ

�
;

FV
4 ¼ f

ð3
2
−Þ

⊥0 : ðB9Þ
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FA
1 ¼ ðgð32−Þ⊥ þ g

ð3
2
−Þ

⊥0 ÞMM0

sþ
;

FA
2 ¼ M2

�
−gð

3
2
−Þ

0

M0

s−

ðM þM0Þ
q2

− g
ð3
2
−Þ

þ
M0

sþ

ðM −M0Þ½q2 − ðM2 −M02Þ�
q2s−

− ðgð32−Þ⊥ − g
ð3
2
−Þ

⊥0 Þ 2M
02

s−sþ

�

FA
3 ¼ M02

�
g
ð3
2
−Þ

0

M
s−

ðM þM0Þ
q2

− g
ð3
2
−Þ

þ
M
sþ

ðM −M0Þ½q2 þ ðM2 −M02Þ�
q2s−

þ
�
g
ð3
2
−Þ

⊥ − g
ð3
2
−Þ

⊥0

�
1þ s−

MM0

��
2M2

s−sþ

�
;

FA
4 ¼ g

ð3
2
−Þ

⊥0 : ðB10Þ

Moreover, using the equations of motion, one can relate Fð3=2Þ
S and Fð3=2Þ

P to the vector and axial form factors through

Fð3=2Þ
S ¼ 1

mb −mc
½ðM −M0ÞFV

1 þ ðM −M0ωÞFV
2 þ ðMω −M0ÞFV

3 þMFV
4 �;

Fð3=2Þ
P ¼ −

1

mb þmc
½−ðM þM0ÞFA

1 þ ðM −M0ωÞFA
2 þ ðMω −M0ÞFA

3 þMFA
4 �: ðB11Þ

In the case of the matrix elements of the tensor operators, although there are seven different structures of the tensor (or
pseudotensor) form, one of them can be removed without any loss of generality. As shown in Ref. [84], there is a
combination of these structures that does not enter the physical amplitude. The argument goes as follows. Let us consider
the contraction of the matrix element JαβHTrr0 ðp; qÞ of the tensor operator c̄ð0Þσαβbð0Þ with a general tensor Fαβ. One would
then have

JαβHTrr0 ðp; qÞFαβ ¼ JαβHTrr0 ðp; qÞgαα
0
gββ

0
Fα0β0 ¼ JαβHTrr0 ðp; qÞgrrϵα

0�
r ϵrαgssϵ

β0�
s ϵsβFα0β0 ; ðB12Þ

with ϵr¼0;�1 the usual polarization vectors of a vector particle with four-momentum q and invariant mass
ffiffiffiffiffi
q2

p
, ϵr¼t ¼ qffiffiffiffi

q2
p

and −gtt ¼ g00 ¼ g�1�1 ¼ −1. Since JαβHTrr0 ðp; qÞ is antisymmetric in the α, β indexes, one has

JαβHTrr0 ðp; qÞϵrαϵsβ ¼ JαβHTrr0 ðp; qÞ
1

2
ðϵrαϵsβ − ϵrβϵsαÞ ðB13Þ

and then only six different products that correspond to the values ðr; sÞ ¼ fðt; 0Þ; ðt;−1Þ; ðt;þ1Þ,
ð0;−1Þ; ð0;þ1Þ; ð−1;þ1Þg could appear. One can find λ1−7ðqÞ scalar functions such that the linear combination

Λαβ
HTrr0 ðp; q; λ⃗Þ ¼ ūr0μðp⃗0Þ

�
λ1
M3

pμðpαp0β − pβp0αÞ þ λ2
M2

pμðγαpβ − γβpαÞ þ λ3
M2

pμðγαp0β − γβp0αÞ

− i
λ4
M

pμσαβ þ λ5ðgμαγβ − gμβγαÞ þ λ6
M

ðgμαpβ − gμβpαÞ þ λ7
M

ðgμαp0β − gμβp0αÞ
�
urðp⃗Þ ðB14Þ

is orthogonal to the six 1
2
ðϵrαϵsβ − ϵrβϵsαÞ antisymmetric tensors.10 A choice of such functions is given in Ref. [84] as

λ⃗ ¼ Λ
�
0; 0;

M
M0 ; 1; ðωþ 1Þ;−1;− M

M0

�
; ðB17Þ

where Λ is an arbitrary scalar function of q2. Thus, no physical observable changes if one modifies

10Using that

ϵμναβϵ0αϵtβ ¼ iðϵμþ1ϵ
ν
−1 − ϵνþ1ϵ

μ
−1Þ; ðB15Þ

ϵμναβϵ�1αϵtβ ¼ �iðϵμ�1ϵ
ν
0 − ϵν�1ϵ

μ
0Þ; ðB16Þ

it is enough to ask for the orthogonality of both Λαβ
HTrr0 and Λαβ

HpTrr0 ¼ − i
2
ϵαβρλΛ

ρλ
HTrr0 to the combinations ϵ0ϵt and ϵ�1ϵt.
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FT
3 → FT 0

3 ¼ FT
3 þ Λ

M
M0 ;

FT
4 → FT 0

4 ¼ FT
3 þ Λ;

FT
5 → FT 0

5 ¼ FT
5 þ Λðωþ 1Þ;

FT
6 → FT 0

6 ¼ FT
6 − Λ;

FT
7 → FT 0

7 ¼ FT
7 − Λ

M
M0 ; ðB18Þ

andΛ can be chosen so as to cancel one of the above form factors. For simplicity we omit the prime in what follows and take
FT
7 ¼ 0. Then one has the following relations between the tensor form factors here and the ones defined and evaluated in the

LQCD simulation of Refs. [73,74]:

FT
1 ¼ −

2M3M0

sþs−
ðhð32−Þþ − h̃

ð3
2
−Þ

þ Þ − 2M3M0ðM −M0Þ2
sþs−q2

h̃
ð3
2
−Þ

⊥ þ 2M3ðM −M0ÞðM2 −MM0 − q2Þ
sþs−q2

h̃
ð3
2
−Þ

⊥0

þ 2M3M0ðM þM0Þ2
sþs−q2

h
ð3
2
−Þ

⊥ þ 2M3ðM þM0ÞðM2 þMM0 − q2Þ
sþs−q2

h
ð3
2
−Þ

⊥0 ;

FT
2 ¼ 2M2M02

sþs−
h̃
ð3
2
−Þ

þ −
M2M0ðM −M0ÞðM2 −M02 − q2Þ

sþs−q2
ðh̃ð32−Þ⊥ − h̃

ð3
2
−Þ

⊥0 Þ þM2M0ðM þM0Þ
s−q2

ðhð32−Þ⊥ þ h
ð3
2
−Þ

⊥0 Þ;

FT
3 ¼ −

2M3M0

sþs−
h̃
ð3
2
−Þ

þ þM2M0ðM −M0ÞðM2 −M02 þ q2Þ
sþs−q2

h̃
ð3
2
−Þ

⊥

−
MðM −M0ÞðM2 þM02 −MM0 − q2ÞðM2 −M02 þ q2Þ

sþs−q2
h̃
ð3
2
−Þ

⊥0 −
M2M0ðM þM0Þ

s−q2
h
ð3
2
−Þ

⊥

−
MðM3 þM03 − q2ðM þM0ÞÞ

s−q2
h
ð3
2
−Þ

⊥0 ;

FT
4 ¼ MM0

sþ
h̃
ð3
2
−Þ

þ −
M0ðM þM0Þ

q2
h
ð3
2
−Þ

⊥0 −
M0ðM −M0ÞðM2 −M02 þ q2Þ

q2sþ
h̃
ð3
2
−Þ

⊥0 ;

FT
5 ¼ −

1

2Mq2
½hð32−Þ⊥0 ðM þM0Þsþ þ h̃

ð3
2
−Þ

⊥0 ðM −M0ÞðM2 −M02 þ q2Þ�;

FT
6 ¼ 1

q2
½hð32−Þ⊥0 ðM þM0Þ2 þ h̃

ð3
2
−Þ

⊥0 ðM −M0Þ2�: ðB19Þ

2. Hadron tensors and eWχ SFs

As already mentioned, in Refs. [65,71] we derived general expressions for the hadronic tensors that are valid for any CC
transition, the differences being encoded in the actual values of the eWχ SFs. In this case, writing

JμðαβÞHχrr0 ¼ ūr0μðp⃗0ÞΓμðαβÞ
Hχ urðp⃗0Þ; ðB20Þ

we have that the hadronic tensors are given by the traces

WðαβÞðρλÞÞ
χ ¼ 1

2
Tr

��X
r0
ur0νðp⃗0Þūr0μðp⃗0Þ

�
ΓμðαβÞ
Hχ

�X
r

urðp⃗Þūrðp⃗Þ
�
γ0ΓνðρλÞ†

Hχ γ0
�
; ðB21Þ

with X
r

urðp⃗Þūrðp⃗Þ ¼ ðpþMÞ; ðB22Þ

X
r0
ur0νðp⃗0Þūr0μðp⃗0Þ ¼ −ð=p0 þM0Þ

�
gνμ −

1

3
γνγμ −

2

3

p0
νp0

μ

M02 þ 1

3

p0
νγμ − p0

μγν
M0

�
ðB23Þ

and
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ΓμðαβÞ
Hχ ¼ CV

χ Γ
μα
HV þ hχCA

χ Γ
μα
HA; CS

χΓ
μ
HS þ hχCP

χ Γ
μ
HP; CT

χ ðΓμαβ
HT þ hχΓ

μαβ
HpTÞ; ðB24Þ

where the Γ’s can be easily read out from Eqs. (B1)–(B6).
From a direct comparison of the results for those traces with the general form of the different WðαβÞðρλÞ

χ tensors in
Refs. [65,71] we extract the corresponding 1=2þ → 3=2− eWχ SFs. They have been obtained with the use of the FeynCalc

package [85–87] on Mathematica [88] and they are given in terms of the WCs and form factors by the following
expressions11:

eW1χ ¼
1

3
fjCV

χ j2ðωþ 1Þ½ðFV
4 Þ2 þ ðFV

1 Þ2ðω − 1Þ2 − FV
1F

V
4 ðω − 1Þ�

þ jCA
χ j2ðω − 1Þ½ðGV

4 Þ2 þ ðGV
1 Þ2ðωþ 1Þ2 − GV

1G
V
4 ðωþ 1Þ�g; ðB25Þ

eW2χ ¼
1

3M02 fjCV
χ j2½2ðFV

1 Þ2MM0ðω2 − 1Þ þ FV
1 ½FV

4 ðM2ð1þ 2ωÞ − 2MM0 −M02Þ
þ 2ðM þM0Þðω2 − 1ÞðFV

3M þ FV
2M

0Þ� þ ðωþ 1Þ½ðFV
4 Þ2M2

− 2ðFV
3M þ FV

2M
0ÞFV

4 ðM0 −MωÞ þ ðω2 − 1ÞðFV
3M þ FV

2M
0Þ2��

þ jCA
χ j2½2ðFA

1 Þ2MM0ðω2 − 1Þ þ FA
1 ½FA

4 ðM2ð1 − 2ωÞ þ 2MM0 −M02Þ
− 2ðM −M0Þðω2 − 1ÞðFA

3M þ FA
2M

0Þ� þ ðω − 1Þ½ðFA
4 Þ2M2

− 2ðFA
3M þ FA

2M
0ÞFA

4 ðM0 −MωÞ þ ðω2 − 1ÞðFA
3M þ FA

2M
0Þ2��g; ðB26Þ

eW3χ ¼ −
2ReðCV

χ CA�
χ ÞM

3M0 fFV
4 ½FA

1 ðωþ 1Þ þ FA
4 � þ ðω − 1ÞFV

1 ½FA
4 − 2FA

1 ðωþ 1Þ�g; ðB27Þ

eW4χ ¼
M2

3M02 fjCV
χ j2½FV

1 ½FV
4 ð1þ 2ωÞ þ 2FV

3 ðω2 − 1Þ� þ ðωþ 1Þ½ðFV
4 Þ2 þ 2FV

3F
V
4ωþ ðFV

3 Þ2ðω2 − 1Þ��
þ jCA

χ j2½FA
1 ½FA

4 ð1 − 2ωÞ − 2FA
3 ðω2 − 1Þ� þ ðω − 1Þ½ðFA

4 Þ2 þ 2FA
3F

A
4ωþ ðFA

3 Þ2ðω2 − 1Þ��g; ðB28Þ
eW5χ ¼

2M
3M0 fjCV

χ j2½−ðω2 − 1Þ½ðFV
1 þ FV

2 ÞðFV
1 þ FV

3 Þ þ FV
2F

V
3ω� þ FV

4 ½FV
1 þ ðFV

3 − FV
2ωÞðωþ 1Þ�

−
M
M0 fFV

1 ½2FV
3 ðω2 − 1Þ þ FV

4 ð1þ 2ωÞ� þ ðωþ 1Þ½ðFV
4 Þ2 þ 2FV

3F
V
4ωþ ðFV

3 Þ2ðω2 − 1Þ�g�
þ jCA

χ j2½−ðω2 − 1Þ½ðFA
1 − FA

2 ÞðFA
1 þ FA

3 Þ þ FA
2F

A
3ω� − FA

4 ½FA
1 − ðFA

3 − FA
2ωÞðω − 1Þ�

þ M
M0 fFA

1 ½2FA
3 ðω2 − 1Þ þ FA

4 ð2ω − 1Þ� − ðω − 1Þ½ðFA
4 Þ2 þ 2FA

3F
A
4ωþ ðFA

3 Þ2ðω2 − 1Þ�g�g; ðB29Þ

eWSPχ ¼
ω2 − 1

3
½jCS

χ j2ðFð3=2Þ
S Þ2ðωþ 1Þ þ jCP

χ j2ðFð3=2Þ
P Þ2ðω − 1Þ�; ðB30Þ

eWI1χ ¼
2

3M0 fCV
χ CS�

χ Fð3=2Þ
S ðωþ 1Þ½FV

1 ðM þM0Þðω − 1Þ þ ðFV
2M

0 þ FV
3MÞðω2 − 1Þ

þ FV
4 ðMω −M0Þ� þ CA

χCP�
χ Fð3=2Þ

P ðω − 1Þ½FA
1 ðM0 −MÞðωþ 1Þ

þ ðFA
2M

0 þ FA
3MÞðω2 − 1Þ þ FA

4 ðMω −M0Þ�g; ðB31Þ
eWI2χ ¼

2M
3M0 f−CV

χ CS�
χ Fð3=2Þ

S ðωþ 1Þ½FV
1 ðω − 1Þ þ FV

3 ðω2 − 1Þ þ FV
4ω�

þ CA
χCP�

χ Fð3=2Þ
P ðω − 1Þ½FA

1 ðωþ 1Þ − FA
3 ðω2 − 1Þ − FA

4ω�g; ðB32Þ

eWI3χ ¼ −
2

3M0 fCS
χCT�

χ Fð3=2Þ
S ðωþ 1Þ½M½FT

5 þ ωFT
6 þ ðFT

2 þ FT
4 Þðω − 1Þ�

þM0½FT
7 − ðω − 1ÞðFT

1 ðωþ 1Þ þ FT
3 Þ��

þ CP
χCT�

χ Fð3=2Þ
P ðω − 1ÞM½−FT

5 þ FT
4 ðωþ 1Þ�g; ðB33Þ

11Here we have kept the explicit dependence on FT
7 .
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eWI4χ ¼
1

3M02 fCV
χ CT�

χ ½−FV
1 fFT

5MðM0 þMð2ωþ 1ÞÞ þ FT
6MðM0ωþMð2ωþ 1ÞÞ

þM0½ð2MFT
2 − 2MFT

3 − 2ðM þM0ÞFT
1 Þðω2 − 1Þ þ FT

7 ðMð2þ ωÞ þM0Þ�g − 2ðFV
2M

0 þ FV
3MÞðωþ 1Þ

× f−FT
1M

0ðω2 − 1Þ þ ½MðFT
2 þ FT

4 Þ −M0FT
3 �ðω − 1Þ þMðFT

5 þ FT
6ωÞ þM0FT

7g
− FV

4 f2FT
1M

0ðωþ 1Þ½M0 −Mω� þ FT
2M½Mð1þ 2ωÞ −M0ð2þ ωÞ� þ FT

3M
0ðM0 −MωÞ þ FT

4M½Mð1þ 2ωÞ −M0�
þM2½FT

5 þ 2FT
6 ðωþ 1Þ�g� þ CA

χCT�
χ M½FA

1fM0ðωþ 1Þ½−2ðFT
2 þ FT

3 Þðω − 1Þ þ FT
6 þ FT

7 �
þ FT

5 ðM0 þMð2ω − 1ÞÞg − 2ðFA
2M

0 þ FA
3MÞðω − 1Þ½FT

4 ðωþ 1Þ − FT
5 � þ FA

4fMFT
5

þM0½FT
6 þ FT

7 þ ðω − 1ÞðFT
2 þ FT

3 Þ� þ F4ðMð1 − 2ωÞ þM0Þg�g; ðB34Þ

eWI5χ ¼
M

3M02 fCV
χ CT�

χ ½FV
1 fðFT

5 þ FT
6 ÞMð1þ 2ωÞ þM0½FT

7 ðωþ 2Þ − 2ðFT
1 þ FT

3 Þðω2 − 1Þ�g
þ 2FV

3 ðωþ 1ÞfM0½−FT
1 ðω2 − 1Þ − FT

3 ðω − 1Þ þ FT
7 � þM½FT

5 þ ðFT
2 þ FT

4 Þðω − 1Þ þ FT
6ω�g

þ FV
4 f−M0½2FT

1ωðωþ 1Þ þ FT
3ω� þM½FT

5 þ 2FT
6 ð1þ ωÞ þ ðFT

2 þ FT
4 Þð1þ 2ωÞ�g�

þ CA
χCT�

χ ½−FA
1fFT

5Mð2ω − 1Þ þM0ðωþ 1Þ½−2FT
3 ðω − 1Þ þ FT

7 �g þ 2FA
3Mðω − 1Þ½FT

4 ðωþ 1Þ − FT
5 �

− FA
4fFT

5M þM0½FT
3 ðω − 1Þ þ FT

7 � þ FT
4Mð1 − 2ωÞg�g; ðB35Þ

eWI6χ ¼
1

3MM0 fCV
χ CT�

χ M½FV
1 ðω − 1ÞfFT

5 ½M0 −Mð1þ 2ωÞ� þ ðωþ 1Þ½2FT
4 ðM −M0Þ

−M0½−2ðFT
2 þ FT

3 Þðω − 1Þ þ FT
6 þ FT

7 ��g þ FV
4 fðωþ 1Þ½FT

4 ðM0 −MÞ þM0½ðFT
2 þ FT

3 Þð1 − ωÞ
þ 2ðFT

6 þ FT
7 Þ�� þ FT

5 ½M0 þMð2þ ωÞ�g� − CA
χCT�

χ ½FA
1 ðωþ 1Þf2FT

2Mðω − 1ÞðM −M0ωÞ
þ 2FT

3M
0ðω − 1ÞðMω −M0Þ þ 2FT

4MðM þM0Þðω − 1Þ þ FT
5M½M0 þMð1 − 2ωÞ�

− FT
6MðM −M0ωÞ þ FT

7M
0ðM0 −MωÞg þ FA

4f−FT
2Mðω − 1ÞðM −M0ωÞ þ FT

3M
0ðω − 1ÞðM0 −MωÞ

− FT
4MðM þM0Þðω − 1Þ þ FT

5M½M0 þMðω − 2Þ� − FT
6MðM −M0ωÞ þ FT

7M
0ðM0 −MωÞg�g; ðB36Þ

eWI7χ ¼
1

3M0 f−CV
χ CT�

χ ½FV
1 ðω − 1Þfðωþ 1Þ½2FT

4M −M0½FT
7 − 2FT

3 ðω − 1Þ�� − FT
5Mð1þ 2ωÞg

þ FV
4 fðωþ 1Þ½−FT

4M þM0½2FT
7 − FT

3 ðω − 1Þ�� þ FT
5Mð2þ ωÞg�

þ CA
χCT�

χ ½FA
1 ðωþ 1Þf2½ðFT

2 þ FT
4 ÞM þ FT

3M
0ω�ðω − 1Þ þ FT

5Mð1 − 2ωÞ
− FT

6M − FT
7M

0ωg − FA
4f½ðFT

2 þ FT
4 ÞM þ FT

3M
0ω�ðω − 1Þ þ FT

5Mð2 − ωÞ þ FT
6M þ FT

7M
0ωg�g; ðB37Þ

eWT
1χ ¼

jCT
χ j2

3M2
fM2½2ωðFT

5 Þ2 þ 2ðωþ 1ÞFT
5 ðFT

6ωþ FT
2 ðω − 1ÞÞ þ ðωþ 1Þ½ω2ððFT

4 Þ2

þ ðFT
6 þ FT

2 þ FT
4 Þ2Þ − 2ωðFT

2 þ FT
4 ÞðFT

6 þ FT
2 þ FT

4 Þ þ FT
2 ðFT

2 þ 2FT
4 Þ��

þ 2MM0ðωþ 1Þ½FT
5 þ ωFT

6 − ðFT
2 þ FT

4 Þð1 − ωÞ�½FT
7 − ðω − 1ÞðFT

1 ð1þ ωÞ þ FT
3 Þ�

þM02ðωþ 1Þ½FT
7 − ðω − 1ÞðFT

1 ð1þ ωÞ þ FT
3 Þ�2g; ðB38Þ

eWT
3χ ¼

jCT
χ j2

3M02 fM2½−2ωðFT
5 Þ2 þ FT

5 ðFT
6 þ FT

2 ð1þ 2ωÞ þ 4ωFT
4 Þ þ FT

6 ½FT
6 ð1þ ωÞ

þ ðFT
2 þ FT

4 Þð1þ 2ωÞ�� þMM0½−2ω2½FT
6F

T
1 þ FT

2 ðFT
1 þ FT

3 Þ þ FT
4 ðFT

1 þ 2FT
3 Þ�

− ωFT
6 ð2FT

1 þ FT
3 Þ þ 2FT

2 ðFT
1 þ FT

3 Þ þ 2FT
4 ðFT

1 þ 2FT
3 Þ

þ FT
5 ½−2FT

7 ð2þ ωÞ − 2FT
1 ð1þ ωÞ − FT

3 ð3þ 2ω − 4ω2Þ�
þ FT

7 ½FT
2 ðωþ 2Þ þ FT

4 ð2ωþ 3Þ�� −M02½2ðωþ 1ÞðFT
7 Þ2 þ FT

7 ½2ðωþ 1ÞFT
1

þ FT
3 ð3 − 2ω2Þ� − ðω2 − 1Þ½ðωþ 1ÞðFT

1 Þ2 þ 2FT
1F

T
3 − 2ðω − 1ÞðFT

3 Þ2��g; ðB39Þ
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eWT
2χ ¼ −

jCT
χ j2

3M2M02 fM4½2ωðFT
5 Þ2 − FT

5 ðFT
6 þ FT

2 ð1þ 2ωÞ þ 4ωFT
4 Þ − FT

6 ½FT
6 ð1þ ωÞ

þ ðFT
2 þ FT

4 Þð1þ 2ωÞ�� þM3M0½2ðFT
5 Þ2 − 4ðFT

4 Þ2 þ FT
5 ½4FT

6 ðωþ 1Þ
þ 2FT

7 ð2þ ωÞ þ 2FT
1 ð1þ ωÞ þ 2FT

2 ð1þ 2ωÞ þ FT
3 ð3þ 2ω − 4ω2Þ þ 4FT

4 �
þ 2ω2½ðFT

6 Þ2 þ FT
6 ðFT

1 þ 2ðFT
2 þ FT

4 ÞÞ þ 2ðFT
4 Þ2 þ FT

2 ðFT
1 þ FT

3 Þ
þ FT

4 ðFT
1 þ 2ðFT

2 þ FT
3 ÞÞ� − 2FT

2 ðFT
1 þ FT

3 Þ − 2FT
4 ðFT

6 þ FT
1 þ 2ðFT

2 þ FT
3 ÞÞ

þ ωFT
6 ð2ðFT

6 þ FT
1 þ FT

2 Þ þ FT
3 Þ − FT

7 ½ðωþ 2ÞFT
2 þ FT

4 ð2ωþ 3Þ��
þM2M02½−ω3½ðFT

1 Þ2 þ 4FT
1 ðFT

6 þ FT
2 þ FT

4 Þ − 2ððFT
2 Þ2 þ ðFT

3 Þ2Þ�
− ω2½ðFT

1 Þ2 þ 2FT
1 ð2FT

5 þ FT
3 Þ þ 2ððFT

2 Þ2 þ ðFT
3 Þ2Þ þ 2FT

3 ðFT
7 þ 2FT

2 Þ
þ 2FT

6 ð2FT
1 þ FT

2 þ 2FT
3 Þ þ 4FT

4 ðFT
2 þ FT

3 Þ�
þ ω½ðFT

6 Þ2 þ 2FT
6 ð2FT

7 − FT
2 Þ þ 2ððFT

7 Þ2 − ðFT
2 Þ2 − ðFT

3 Þ2Þ þ ðFT
1 Þ2

þ 2FT
1 ð−2FT

5 þ FT
7 þ 2FT

2 Þ þ 4FT
7F

T
2 þ 4FT

4 ðFT
7 þ FT

1 Þ�
þ ðFT

6 Þ2 þ ðFT
1 Þ2 þ 2ððFT

7 Þ2 þ ðFT
2 Þ2 þ ðFT

3 Þ2Þ
þ FT

5 ðFT
6 þ 2FT

7 − 3FT
2 − 2FT

3 Þ þ FT
6 ð4FT

7 þ FT
2 þ 2FT

3 þ FT
4 Þ

þ FT
7 ð2FT

1 þ 2FT
2 þ 3FT

3 þ 2FT
4 Þ þ 2FT

3 ðFT
1 þ 2FT

2 Þ þ 4FT
4 ðFT

2 þ FT
3 Þ�

þMM03½2FT
2F

T
3ω

2 þ 2ðFT
1 Þ2ωðω − 1Þðωþ 1Þ2 þ ωð−FT

7F
T
2 þ FT

6F
T
3

− 2FT
7F

T
3 Þ − 2FT

2F
T
3 − FT

7 ð2FT
2 þ FT

4 Þ þ FT
5 ðFT

3 þ 2FT
1 ðωþ 1ÞÞ

þ 2ðωþ 1ÞFT
1 ½ðω − 1ÞðFT

2 þ FT
4 Þ þ ωðFT

6 − 2ðFT
7 − FT

3 ðω − 1ÞÞÞ��
þM04½FT

7 ðFT
3 þ 2FT

1 ðωþ 1ÞÞ − ðω2 − 1ÞFT
1 ðFT

1 ðωþ 1Þ þ 2FT
3 Þ�g; ðB40Þ

eWT
4χ ¼

jCT
χ j2

3MM02 fM3½2ωðFT
5 Þ2 − FT

5 ðFT
6 þ FT

2 ð1þ 2ωÞ þ 4ωFT
4 Þ − FT

6 ½FT
6 ð1þ ωÞ

þ ðFT
2 þ FT

4 Þð1þ 2ωÞ�� þM2M0½ðFT
5 Þ2 þ FT

5 ½−4FT
3ω

2 þ 2ωðFT
6 þ FT

7 þ FT
1 þ FT

2 þ FT
3 Þ

þ 2FT
6 þ 4FT

7 þ 2FT
1 þ FT

2 þ 3FT
3 þ 2FT

4 � þ ω2½ðFT
6 Þ2 þ 2FT

6 ðFT
1 þ FT

2 þ FT
4 Þ�

þ 2ðω2 − 1Þ½ðFT
4 Þ2 þ FT

4 ðFT
1 þ FT

2 þ 2FT
3 Þ þ FT

2 ðFT
1 þ FT

3 Þ� þ ωFT
6 ð2FT

1 þ FT
2 þ FT

3 Þ þ FT
6 ðωFT

6 − FT
4 Þ

− FT
7 ½ðωþ 2ÞFT

2 þ ð2ωþ 3ÞFT
4 �� þMM02½−ω3½FT

1 ðFT
1 þ 2ðFT

6 þ FT
2 þ FT

4 ÞÞ
− 2ðFT

3 Þ2� − ω2½2FT
5F

T
1 þ 2FT

6 ðFT
1 þ FT

3 Þ þ 2FT
7F

T
3 þ FT

1 ðFT
1 þ 2FT

3 Þ
þ 2FT

3 ðFT
2 þ FT

3 þ FT
4 Þ� þ ω½2FT

7 ðFT
6 þ FT

7 þ FT
1 þ FT

2 þ FT
4 Þ − 2ðFT

3 Þ2
þ FT

1 ð−2FT
5 þ FT

1 þ 2ðFT
2 þ FT

4 ÞÞ� þ FT
7 ð2FT

7 þ FT
5 þ 2FT

6 þ 2FT
1 þ FT

2

þ 3FT
3 þ FT

4 Þ þ FT
1 ðFT

1 þ 2FT
3 Þ þ FT

3 ð2FT
3 − FT

5 þ FT
6 þ 2FT

2 þ 2FT
4 Þ�

þM03ω½ðω2 − 1ÞFT
1 ðFT

1 ðωþ 1Þ þ 2FT
3 Þ − FT

7 ðFT
3 þ 2FT

1 ðωþ 1ÞÞ�g: ðB41Þ

As shown in Refs. [65,71], one has the general constraint

2M2 eWT
1χ þ p2 eWT

2χ þ q2 eWT
3χ þ 2p · q eWT

4χ ¼ 0; ðB42Þ

which allows to eliminate eWT
1χ in terms of the other three SFs. In fact, as shown in Refs. [65,71], the term in eWT

1χ of the
hadron tensor does not contribute when contracted with the corresponding lepton tensor.
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