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Leptoquarks, axions and the unification of B, L, and Peccei-Quinn symmetries
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In this paper, axion models supplemented by leptoquarks and diquarks are systematically analyzed.
Turning on some couplings to and among these latter states permits us to unify the Peccei-Quinn symmetry
with baryon (B) and lepton (£) numbers, such that the axion becomes associated to the spontaneous
breaking of the three U(1) symmetries. All possible four- and six-fermion patterns of 13 and £ violation are
discussed, including those inducing proton decay, with AB = 1 and AL = +1, 43, neutron-antineutron
oscillations with AB = 2, and Majorana neutrino masses with AL = 2. Scenarios in which one or two
axion fields necessarily appear in any BB and/or £ violating operators are also constructed. Nucleon decays
would then necessarily involve an axion in the final state, while neutron-antineutron oscillations would
only happen in an axionic background. This could have implications for the neutron lifetime puzzle, and
more generally, opens the door to new phenomenological and cosmological applications.
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I. INTRODUCTION

Nowadays, the axion mechanism represents our best
solution to the longstanding strong CP puzzle, that is, the
non-observation of CP violation in the strong interactions
that should have manifested itself as an electric dipole
moment for the neutron [1].

The axion mechanism relies on the spontaneous break-
ing of a new symmetry, the Peccei-Quinn (PQ) symmetry
[2], and on the subsequent realignment of the associated
Goldstone boson, the axion [3,4], by strong interaction
effects that kills off any CP violation in the QCD
Lagrangian. This solution is thus tailored to the problem
itis intended to solve and, as such, may appear a bit ad hoc.
In addition, unsuccessful experimental searches for the
axion have ruled out its simplest incarnation, leaving us
with essentially two classes of scenarios in which the axion
is extremely light (well below the eV scale) and very weakly
coupled to normal matter: the Kim, Shifman, Vainshtein,
Zakharov (KSVZ) framework [5] in which new very heavy
colored fermions are introduced, and Dine, Fischler,
Srednicki, Zhitnitsky (DFSZ) scenario [6] in which at least
two Higgs doublets are required. Though the strong CP
puzzle is extremely serious, additional motivations appear
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desirable to justify such departures from the Standard Model
(SM) matter content. To that avail, knowing that the axion
could also make up for the observed dark matter (DM) offers
a strong incentive to pursue this route [7].

Yet, current axion models cannot explain why the DM
relic density is so close to that of baryonic matter. Though
this may be totally coincidental, it nevertheless suggests a
link between DM and baryogenesis [8], another prominent
cosmological enigma. Actually, it suggests DM is not foreign
to baryon B or lepton £ number (see Ref. [9] and references
therein for a recent analysis), or that DM is somehow related
to B being spontaneously broken [10]. In parallel, there have
been many attempts at involving axions in the baryogenesis
mechanism, see, e.g., Refs. [11-16], though in general still
relying on the SM anomalous B + L effects.

With this motivation in mind, our goal here is to design
models in which the PQ symmetry is, at the fundamental
level, entangled with B and £. As a matter of principle,
accidental symmetries are not particularly attractive, but
while we can live with the PQ symmetry, assuming some
dynamics hide behind it, B and £ cannot be viable since, as
said before, the electroweak nonperturbative dynamics
break them, and baryogenesis asks for their violation. By
unifying the PQ symmetry with B and £, all three are
broken spontaneously, but a single Goldstone field remains,
the axion (for some recent works along this line, see
Refs. [17,18]). In this way, the complex scalar field whose
pseudoscalar component is the axion becomes charged
under B and £ and, at the high scale, protects the model
from additional B and/or £ violation. At the same time,
though the axion has no charge, it inherits a 5 and/or £
violating phenomenology. Whether this is sufficient to
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relate the DM and baryonic relic densities remains to be
seen, and is beyond the scope of the present paper, but we
think these constructions may direct us in the right direction.

In this paper, we will use scalar and vector leptoquarks
and diquarks to entangle the PQ, 3, and £ symmetries.
Such states are well motivated in various theoretical
settings (see Ref. [19] for a review) and, furthermore,
supported by a number of anomalies like the W boson mass
[20], B decays [21] or (g — 2)/4 [22-24], or even combi-
nations of them [25-27]. Our goal is to systematically
analyze the 3 and/or £ symmetry breaking patterns that can
arise combining the DFSZ and KSVZ scenarios with
leptoquarks and diquarks and, in each case, to analyze
the impact on the axion phenomenology.

The paper is organized as follows. In Sec. II A, we
briefly introduce the KSVZ and DFSZ axion models and, in
Sec. II B, discuss in some details the ambiguities arising
from the B and £ fermionic currents [28,29]. Then in
Sec. IIC, we set up the leptoquark and diquark sector,
describing all the possible B and L explicit breaking
patterns achievable with these states. This forms the basis
for combining the axion and leptoquark/diquark sectors in
Sec. III. We analyze first the KSVZ setting in Sec. III A and
describe the (AB,AL) = (1,£1),(2,0),(1,£3) sponta-
neous breaking patterns, further adding to them a sponta-
neously generated (AB,AL) = (0,2) seesaw mechanism
for neutrino masses. These scenarios are then trivially
adapted to the DFSZ setting in Sec. III B. In the final
Sec. IIIC, we show how to force (AB,AL) effects to
involve one or more axion fields. The phenomenology is
then quite different, and we briefly describe some possible
consequences for the neutron lifetime anomaly or neutron-
antineutron oscillation experiments. Finally, our results are
summarized in Sec. IV.

II. AXION AND LEPTOQUARK MODELS

In this section, the KSVZ [5] and DFSZ [6] axion models
are introduced, and their connection to baryon and lepton
numbers, B and L, are detailed. Then, we introduce
separately the leptoquarks and diquarks that can be coupled
to SM fermions, and discuss how their couplings drive
specific B and £ violating patterns. This sets the stage for
the next section, where both axion models and leptoquarks/
diquarks will be put together.

A. Introducing the KSVZ and DFSZ models

In both the KSVZ and DFSZ constructions, the axion
emerges as the pseudoscalar component of a complex scalar
field. This state is neutral under all the SM gauge inter-
actions, ¢ = (1,1,0) under SU(3), ® SU(2), ® U(1)y,
but its kinetic term is invariant under the rephasing
¢ — e'“¢. This invariance is promoted to a spontaneously
broken symmetry U(1), by postulating a rephasing invari-
ant scalar potential with the usual Mexican hat shape,

V(p'p) = 12"+ AdTp)*, u*> <0 and 1> 0. In that
case, the components of ¢ can be written

1
= 75(1&/) +p) exp(ing/vy), (1)

with 7, the associated Goldstone boson and v = —u?/2
the vacuum expectation value (VEV). As the breaking scale
vy naturally tunes all the i, couplings, it is assumed much
higher than the electroweak scale to avoid exclusion
bounds.

To solve the strong CP puzzle, n, must interact with SM
particles [3,4], in particular with gluons via a nd,G“'””GﬁD
coupling [2]. What differentiates the KSVZ and DFSZ
models is how these couplings are introduced. The former
[5] adds a vectorlike colored fermion ¥, z ~ (R, T,Y) for
some complex representation R of SU(3)., but otherwise
arbitrary weak representation T and hypercharge Y, and
postulates the Lagrangian (the rest of the SM couplings are
understood)

Lxsyz = 0,0"p— V() + Y r(iD)Y, r
+ (yp¥ Wr +Hc.) — g Y,q, H — dg Y q H'
- éRYeLpLHT - l_/RYquH —+ H.c. (2)

The covariant derivative acting on W;  is as appropriate to
its chosen gauge quantum numbers. What characterizes this
model is first that the Goldstone boson of the PQ symmetry
does not mix with that of the SU(2), ® U(1), breaking
(the phase of the Higgs doublet H). Thus, the axion is
simply a® = 114> and it has no direct coupling to any of the
SM particles. It only couples to ¥; and Wg, which
necessarily have different charges under U(1) 5. Then, axion
to SM gauge boson couplings first arise at one-loop, via
anomalous W;  triangle loops, while those to SM fermions
require a further gauge boson loop. Since W; p can be
massive in the electroweak unbroken phase, its loops do not
break SU(2); ® U(1)y and the couplings to gauge bosons
have the SU(2), ® U(1)y invariant form [30]

1 - -

LRsvz=—1g7,~ = a’(g;d CcGl, G + g dc C W, WH
¢

+g/2deCC)’BMDBIw)7 (3)

with the quadratic invariants and dimensions of the R and T
representations denoted C¢; and d¢;, and Cy = Y?/4.

The DFSZ model [6] does not introduce new
fermions, but requires two Higgs doublets. The important
couplings are
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Lopsz = 0,070~V (p'¢) +§*H H,+ V(HLH,, H H )
—ugY,q H,— C_ZRYdQLHL - ERYefLHL
—-ogY, ¢/ H,+H.c. (4)

The potentials and Yukawa couplings are invariant under
three independent U(1)s, corresponding to the rephasing
of ¢, H,, and H,;. A combination of these is explicitly
removed by the mixing term ¢*H H 4 (we could equally
take ¢HZH 4> but at the cost of introducing a new mass
scale), so that only two Goldstone bosons arise.
Explicitly, if we adopt for H,, a polar representation
similar as in Eq. (1), with their pseudoscalar components
denoted as 7,4 and their VEVs as v, 4, the $p*HyH,
coupling translates as a mass term for the combination
70 ~2n4/vy — 0,/ vy + Na/va. One of the two remaining
Goldstone bosons is eaten by the Z boson. Since H, 4
have the same hypercharge, the would-be Goldstone state
G° must be G°~w,n, + v, The last remaining
Goldstone mode, orthogonal to both z° and G°, stays
massless and is the axion:

a® w1y -+ sin2p(cos i, = sinpng) + O(vkw/13,). (5)
¢

with tanf = v,/v,; and vy = v2 + v3 ~ (246 GeV)>.
The net result of all this is that the axion components
in H, 4 are suppressed by v, 4/ v, The leading couplings
of the axion to SM particles come from the Yukawa
couplings, with

.VEw . m;y _
Lisy = —i——sin2p Z —)f;’aol//fySI//f,
U¢ f=u.d.e VEW

1

To reach this form, the mass terms are identified as
sin fogw Y, = v2m, and cos frpw Yy, = \/Emd.e and
the fermions are rotated to their mass basis. In the DFSZ
setting, the axion couplings to gauge bosons only arise
through SM fermion loops. As shown in Ref. [31] (see also
Refs. [32,33]), starting from the pseudoscalar couplings in
Eq. (6), the final couplings to gauge boson do not have the
form shown in Eq. (3), but instead explicitly break
SU(2), ® U(1), invariance. Naively, this is easily under-
stood since SM fermions only acquire masses after the
SU(2), ® U(1)y breaking.

B. Introducing baryon and lepton numbers

In the following, when introducing leptoquark states,
baryon and lepton numbers B and £ will play a central role.
The purpose in this section is to gather a few important facts
about the interplay of these global symmetries with the PQ
symmetry. Additional information on this topic can be
found in Ref. [28].

By definition, the U(1) symmetry associated to the axion
state is called the PQ symmetry. Given the scalar couplings
described in the previous section, the PQ charges of all the
scalar states are well defined in the KSVZ and DFSZ
models. Explicitly, we have in the KSVZ setting

KSVZ ¢ H KSVZ ¢ H
Ul), 1 0 = Ulp, 1 0 (7)
U, 0 1 U)y, 0 1

and in the DFSZ, choosing the two independent U(1)

xIp = . , 2% = y% =tanf. (6) symmf.:tries1 as those associated to Higgs doublet
anfj rephasings,
|
DFSZ ¢ H, Hy DFSZ ¢ H, H,
Uy, 1/2 1 0 = U(l)pg (x+1/x)/2 x ~—1/x (8)
Uy, -1/2 0 1 U(l), 0 1 1

with the conventional notation tanf = 1/x. Note that the
U(1)y and U(1)pq charges of the two Higgs doublets are
not “orthogonal,” reflecting the fact that the original
U(l)y, and U(l)y, charges for the three states
(¢,H,, H;) were not. Also, it is important to keep in
mind that though well defined, these PQ charges are only
defined in the electroweak broken phase, since they are a
function of x = v,/ v,.

"The PQ charges of ¢, H, and H ; are simply the coefficients of
Ng.ua 0 EQ. (5), up to a choice of normalization.

[

For fermions, identifying the PQ charge is less trivial
because the Yukawa couplings allow for two global
symmetries, 5 and £ (no particular structure is assumed
for Y, 4., so individual flavors are not conserved
a priori). Looking at the Lagrangian, the KSVZ model
prescribes

KSVZ ‘PL lPR qr Upg dR fL €r Up
Ulpg @ a=1 p B B v v v (9)
U(l)y Y Y 1/3 4/3 =2/3 -1 -2 0
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where «, f, and y are arbitrary, and correspond to
conserved ¥ number, baryon number, and lepton number,
respectively. Similarly, for the DFSZ model,

DFSZ qr, Ug dR fL €r Upr
U(l)PQ p p+x p-=1/x y y=1/x y+x (10)
u(l)y 1/3 4/3 -2/3 -1 -2 0

Since f and y are aligned with baryon and lepton numbers,
it is tempting to set f = y = 0. This is not acceptable. For
the DFSZ scenario, all the SM fermions do couple to the
axion, but these couplings are not SU(2), ® U(1l)y
invariant. Looking at Eq. (6), no value of f or y makes
perfect sense since the PQ charge of the Dirac u and d
states are different, so that of ¢g; cannot be defined. The
situation appears simpler in the KSVZ case, where it
seems rather natural to set f =y =0 since the SM
fermions are not directly coupled to the scalar field ¢.
Yet, even that is not tenable.

To see this, let us set off a seesaw mechanism [34]. Given
the quantum numbers of the vy field, we can either allow
for a Majorana mass term M vk, a coupling ¢, or a
coupling ¢'%vg. These three cases are mutually exclusive
since they impose different PQ charges to vp. Let us
consider the ¢’ vy case, which in effect identifies the PQ
symmetry with lepton number symmetry, and the axion
with the Majoron [35-37] (see also [38]). It imposes
nonzero values for y [28]

1
KSVZ: ¢t ~r=3. (11)

. 1 - 3x2
DFSZ:)'vg =7 = — il (12)
X

In both cases, the PQ current acquires a component aligned
with the lepton number current, J’é = £yt + egyter+
Upy*vg. In other words, £; and/or e do end up PQ charged
also. Yet, in the KSVZ case, a look at the Lagrangian shows
that neither are directly coupled to ¢. Because of ¢y,
the axion does end up coupled to right-handed neutrinos,
with a a® — vgug vertex, but no such AL =2 coupling
exists with the other leptons since it is forbidden by
hypercharge. Only at the cost of extra Higgs doublet
insertions could a a” — v, v, exist, as arising from an
effective PQ- and hypercharge-neutral operator ¢'H?,
H¢, (or ¢'H,¢; H,£; in the DFSZ model), while obvi-
ously, any AL =2 coupling to charged lepton would
require either extra gauge fields, or charged Higgs bosons.
The ambiguous nature of the PQ charges of fermions is
not purely academic. In most phenomenological studies of
the axion, the starting point is the effective Lagrangian that
is obtained by reparametrizing fermion fields to make them
PQ neutral (even if that is usually not explicitly stated):

W = exp(—iPQy)a’ /v,y (13)

where y denotes generically the PQ-charged fermions.
Since the underlying physics is PQ neutral, this looks
innocuous. Yet, it modifies the Lagrangian of the model in
two important ways. First, it removes the axion field from
Yukawa interactions (both for the SM and heavy fermions,
if present), and replaces them by shift-symmetric derivative
couplings of the axion to the fermionic PQ current, as
adequate for a Goldstone boson

d,a

0
OLper = Z_/)JgQ’ JI];Q = ZPQ(W)V_/J/MW (14)
g v

Second, the PQ symmetry being anomalous, the fermion
reparametrizations in Eq. (13) change the fermionic mea-
sure. To account for this, one must introduce anomalous
couplings to the gauge bosons,

(10

16ﬂ21]¢
+¢*NyB,,B"), (15)

5£Jac = (Q?NCGZI/G‘”W + gzNL WLI/Wi'ﬂb

where the coefficients N'¢; y are functions of the PQ
charges of all the fermions, and generically given by

Nx = PQ(y)Cx(w), (16)

74

with C¢; y(w) the quadratic invariant of the field y under
SU(3)¢, SU(2), or U(1)y. The effective Lagrangian

Lggt = 6Lysc + 6Lpers (17)

is in general the basis in which the axion phenomenology is
studied, with the common further assumption that 5Lpy, is
model dependent and subleading compared to the model
independent 6Ly, . Yet, since the PQ charge of the fermions
are ambiguous, both §Lp,, and 6Ly,. are also ambiguous.
This is most striking in the DFSZ case, where N/ ~ 35 + 7.
This conundrum was analyzed in Ref. [31], where in
particular it was shown that 6Lp and 6Ly, do in fact
contribute at the same order to physical observables, and
that this ensures all the ambiguities in 6Lp., and 6Ly,
cancel each other systematically. This means that the
couplings to (chiral) gauge bosons cannot be read off
0Ly,., and that 6Lp,, cannot be neglected.

For our purpose, it is important to emphasize how this
translates for the baryon and lepton numbers. Thus,
consider the KSVZ scenario with the fermion charges in
Eq. (9), keeping a, 3, and y arbitrary, and let us perform the
reparametrization of Eq. (13) for all the fermions. The PQ
current is then identified as
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Too = Wrr*Wr + alby + 36T + v, (18)

where

J,\;, = lilL}/I““PL + @Ryl“{’R = q‘y"“{’, (19)

1_ 1_ 1- 1._ 1-
Jiy = quy"qL + guRy”uR +§dRy"dR = guy"u +§d7/”d,

(20)

= CLy"C + eryter + UgyFug = eyfe + Dyfv.  (21)

At first sight, one may think to discard the vector currents
J4, Ji, and J. from the derivative interactions since
upon integration by part, 9,a’pyty = a0ty =
—ay(m — m)y = 0. This is incorrect though. The vector
Ward identity does not survive to the presence of chiral
gauge interactions. While J4, can indeed safely be dis-
carded since W is vectorlike, the baryon and lepton currents
are anomalous in the presence of chiral gauge fields:

Ny /1 o 1 -
— _ f Wi Wimw v
6,4]’;3 —6MJP2 = _W <§g2 nv a _EQIZB;WBM > . (22)

Obviously, these contributions trivially cancel the  and y-
dependent Jacobian terms generated by the fermion rep-
arametrization, which have precisely the same form and
origin. Thus, in the KSVZ setting, it seems that the sole role
of the SM fermions derivative interactions aligned with the
B and L current is to kill the correspondingly spurious
anomalous gauge interactions.

There is a problem in this reasoning though. This
cancellation occurs whether a ¢'o%vy coupling is assumed
initially present or not, since the value of y is irrelevant. This
is puzzling since in the presence of ¢’ v, the axion should
retain some couplings to v. In the above argument, the step
at which we lost the avgzvg coupling is in the Ward identity.
After the spontaneous symmetry breaking (SSB), £, as part
of the PQ symmetry, is no longer conserved and the equation
of motion (EoM) of vy breaks explicitly the anomalous
vector Ward identity. In practice, (0,a°/v)igy*vg does
generate the (Mg/v)a’vgug coupling. This means that
whether the axion is coupled to vz or not is not apparent
at the level of the effective axion Lagrangian, but hides in the
EoM of v. Further, these EoM spoil the 1/v, scaling of the
effective Lagrangian operators, since they contain terms of
O(v,). Phenomenologically, this failure of the effective

interactions to manifestly exhibit all the possible axion
interactions is clearly an important point to keep in mind.

To conclude, let us stress again:

(1) The PQ symmetry has some room for 3 and/or L
violating effects. In the presence of such violation,
the PQ symmetry eats part of the 3 and £ global
U(1) s, and the PQ current inherits some J; and/or
J'. components.

(ii) Incorporating a B and/or £ component in the PQ
current does not modify the leading order axion to
gauge boson couplings.

(iii) The B and/or £ components of PQ current do not
tell us much about the couplings of the axion to SM
fermions. Most of the d,aJ% and 9,a°J"; couplings
are just there to cancel spurious local anoma-
lous terms.

(iv) Any B and/or L violating couplings must break
explicitly the (already anomalous) BB and/or £ vector
Ward identities. In their presence, the EoM of the
SM fermions will ensure the derivative interactions
0,a"J%s and 0,a"J", do include the expected AB and/
or AL couplings of the axion.

As we will see in the following, introducing leptoquark
states often forces us to entangle BB and/or £ with the PQ
symmetry. These points are thus crucial to understand the
phenomenological consequences.

C. Introducing leptoquarks and diquarks

Leptoquarks (LQ) are scalars or vectors that couple
simultaneously to a quark-lepton pair, while diquarks
(DQ) couple to quark pairs (for a review, see e.g.,
Ref. [19]). Given the quantum numbers of the SM fermions,
only a finite number of LQ and DQ can couple to normal
matter, and only a few of them can have both LQ and DQ
couplings. Though the full list of possible LQ and DQ states
is well known, let us nevertheless go through this con-
struction as it will play an important role in the following,
and permits us to conveniently introduce our notations.

All the LQ are color triplets, while DQ are triplets (using
1 D23 ®3®3)or sexplets (using 1 D3 ®3 ® 5). From
the point of view of SU(2),, these states can be either
triplet, doublets, or singlets, depending on the involved SM
fermions. Once SU(2), ® SU(3). contractions are set, the
hypercharge is then fixed to accommodate specific cou-
plings to SM fermions. In this regard, one should remember
that scalars couple to Wy g Or Wy, VECLOTS 1O Wry,Wg OF
WrY.Wi» and that charge conjugation C flips the chirality.
This means that a scalar can couple to Sy for example.
By constructing all possible pairs of SM leptons, including
conjugate fields, the standard list of possible states are
recovered, with the scalars LQ states
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(3.2,+1/3):8) x (dr?1. Grve),
(3.2, +7/3)3S;/3 X (Ut qLer).
(3.1,-2/3):57° x
(3.1,44/3):8577 x g,
(3.1,-8/3): 83 x dpeS.

and the vector LQ states

(3.2.+1/3): vy x
(3.2.-5/3):v3)
(3.1.+4/3): v}
(3.1.10/3):V}" x agyex.
(3.1.-2/3): V") x dgyug.

(HRy" €5, qrr'vy).
X (dry"€5. qry*eR).

(dgvy. iige$, GLL%),

x (igy"vg. dry"eg. Gry"eL),

(3.3.-2/3):57 x g, £5.

(23)

(3.3,4+4/3): Vil x gyt

(24)

Many notations exist for these states, in particular S;, S;, S; when several states occur with the same SU(3). ® SU(2),
quantum numbers [19]. Here, we denote all states as color triplets Sy or V7, with ¢ the SU(2), dimensionality and y the

absolute value of the U(1), hypercharge. Note also that V1/ 3 and S, 3 exist only in the presence of vp, and are thus often
discarded. Concerning diquarks, there are only six possible comblnatlons of quark fields, leading to

(3.2.+1/3): vy} x d5r'qy.
(3.2.-5/3): V3 x iGr'q, .
(3.1,-2/3):S 2/3 x (g4, d5ur).
(3.1,44/3):8 4/3 x dSdp,
(3,1,-8/3):S 3% uSug.

All these states are already present in the LQ list. Note that
each of the above quark state can also couple to a DQ
transforming like 6 under SU(3), with the same SU(2), ®
U(1), quantum numbers. In that case, they do not have LQ
couplings. We will adopt the same notation for these states,
relying on the context to make clear whether they transform
as 3 or 6.

Introducing scalar or vector states that couple to quarks
and leptons can impact the global B and £ symmetries (for
a recent review, see, e.g., Ref. [39]). Depending on which
states are introduced and, if several of them are present,
depending also on how they are coupled, the symmetry
pattern can be quite different. Actually, these symmetry
patterns are reminiscent of those of the possible effective
operators involving SM fields but carrying nontrivial B
and/or L charges [40-42]. Those are listed in Table I. This
connection is easily understood from tree diagrams with
the external fermions linked together by virtual LQ/DQ

(3.3.-2/3):57° x 46q, .

(25)

exchanges.2 Obviously, these external fermion states must
be SU(3). ® SU(2), ® U(1)y invariant since the LQ/
DQ are. Further, operators with six or less fermions are the
most relevant when only renormalizable interactions
among the LQ/DQ are present. Being colored, these states
can at most have quadratic or cubic interactions, hence
induce four or six fermion interactions. More complicated
fermion interactions can arise, but they would require
multiple cubic interactions, and would not open additional
phenomenologically interesting channels. Indeed, the
above set contains already the (AB,AL) = (0,2) oper-
ators for neutrino masses, (AB, AL) = (2, 0) operators for
neutron-antineutron oscillations, and all the others for
proton decay. Note, finally, that one can understand why
some states have both LQ and DQ couplings while others

*The notation LQ/DQ generically refers to any of the pure LQ,
pure DQ, or mixed LQ/DQ state introduced in Egs. (23)—(25).
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TABLE 1.

Leading effective operators with nontrivial (AB, AL) charges in the SM, involving no or one vy, field.

We do not include redundant patterns, e.g., all the (AB, AL) = n x (0,2),n x (1, 1), ... withn = 2, 3, ... operators,
or operators of higher dimensions within each (AB, AL) class. With even more fields, the next unique patterns
involve eight fermions, and induce (AB,AL) = (1,5) transitions at dimension 12, and (AB,AL) = (1,-5)
transitions at dimension 13 (with an extra Higgs field). All these processes involve at least one vy field at these

orders. Still higher in dimensionality, (AB, AL) = (3

. 1) and (AB, AL) = (1,7) come at the ten-fermion level, via

dimension-15 operators. Only the SM Higgs doublet H is used in the table together with SM fermions, but the

extension to the two-Higgs-doublet model is trivial.

AB AL Dim. Operators (no vg)

+0 +2 5 H?¢3

+1 +1 6 i uxdper qrurdgt; qruger
+1 -1 7 HYd3 ¢ Hd%q, €% Hdbugt$ Haq?dpt$
+2 +0 9 dhug dyurq: dxqt

+1 +3 9 urqLts uyt?eg

+1 -3 10 Hdytp?

AB AL Dim. Operators (one vg)

+0 +2 5 H7epup

+1 +1 6 q? dgug dhugvg

+1 -1 7 H'dyq, 15 Hdrqpugvy Hqj vy

+2 +0 9 not applicable

+1 +3 9 drukt?ug drqLugtsvg uyexvg urq, €1 erlp G urtiug
+1 -3 10 Hdy($ e Hdyq, 5715

do not from the fact that dimension-six operators are
necessarily (AB,AL) = (1, 1), see Table I. As tree-level
exchanges of states with both LQ and DQ couplings
(Fig. 1(a)) must match onto these operators, only V3 and
§] can occur since they couple to a quark-lepton (or
antiquark-antilepton) pair.3
With the above picture in mind, let us see in more details
how the various (AB, AL) patterns of Table I can arise.
Note that most of the following mechanisms have already
been described elsewhere, see for instance Refs. [43—47],
but this is repeated here in some details as it constitutes the
basis for the discussions in the next sections, where these
patterns will be induced spontaneously.
(A) Exact U(1)z ® U(1),: Whenever a given S or V
state with only LQ or DQ coupling is present, 3 and
L can still be unambiguously defined. The LQ or
DQ state simply carries some specific 5 and £
quantum numbers, but overall, U(1)z ® U(1), is
still exact. This remains true even in the presence of
several different states, so long as they do not couple
together.
(B) Exact U(1)z_,: When a state with both LQ and DQ
couplings is present, the symmetry gets reduced to
U(1)g_p, with the B — £ quantum numbers —2/3

3This condition is sometimes quantified using F = 38 + L as
a quantum numbers [19], so that those states with both LQ and
DQ couplings have F = %2, and the others F = 0. We prefer
here to use B+ L.

for § and V3, 4+1/3 and —1 for quarks and leptons,
respectively. This remains true if more than one DQ/
LQ state is present provided any couplings among
them is compatible with these charge assignments,
which further requires the B — £ quantum numbers
of 85 and V7 to be +4/3. For example, a scenario
with §¥° and S} but without an §7/°$33s73
interaction, or with SZ/ 3, S%/ > and a coupling
HTS;BS?‘%S?{ or with Séﬁ, S%B and a coupling
HSY3$¥3833 all preserve U(1)5_ (note that the
antisymmetric color contraction requires at least two

different S%/ ?). For all these scenarios, the S and/or V

(©) q"’dk>_.ili<q’("’d:‘
q, ity §7S)" Ve

g R>%L
(d)

(a) HR 8'33 d};
<
Uy ey
(b) H

Up \/ Uy

(’/R ‘A Sls ’

el
S

-
dy

c
dy

FIG. 1. LQ/DQ processes inducing proton decay via
(AB,AL) = (1,1) operators (a), a neutrino Majorana mass
term (b), proton decay via (AB,AL) = (1,—1) operators (c),
and neutron-antineutron oscillations via a (AB,AL) = (2,0)
operator (d).
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mass has to be pushed at the GUT scale since The simplest scenarios are those with 52/3 S‘l‘/ 3,
(AB,AL) = (1,1) operators induce proton decay and the cubic coupling Sz/% Sz/3 S4/% 4/3’ Sils/3,

(Fig. 1(a)).

No exact U(1): In the presence of two states having
different B — £ quantum numbers, there is no
remaining global symmetry whenever those states
have all their gauge-allowed couplings to SM
fermions turned on, and when they are coupled

together. For example, introducing both Sl/ 3 and
S%/z with ayHSz/yrSz/3 coupling, U(1)gand U(1),
are entirely broken. As seen earlier, (AB,AL) =
(1,1) proton decay is induced by s3, pushing its
mass to the GUT range. But the total absence of

(&)

4/ 3S4/ 358/ 3 In both cases,

4/3 (S8/3)

and the cubic coupling uS,
only the DQ couplings are allowed, and S,
must transform as 6 in the first (second) case,
respectively. As a result, neither neutrino masses
nor proton decay are induced, but the dimension-nine
(AB,AL) = (2,0) operators do arise, and contribute
to neutron-antineutron oscillations, see Fig. 1(d).

Exact U(1);5_,: As for the (AB, AL) = (2,0) case,
dimension-nine (AB,AL) = (1,3) operators are

attainable by taking S2/ 3 S4 /3 and the cubic cou-

global U(1) s means the other classes of (AB, AL) pling uS7°57787"7, or 54/3 S§/3’ and the cubic
operators are also generated. The simplest is the coupling /454/ 3S4/ ! SS/ 3, but turning on only the LQ

(AB,AL) = (0,2) operator, generating neutrino
masses via the diagram of Fig. 1(b).

couplings (smce all LQ transform as 3, the color
contraction requires three different LQ to be present).

(D) Exact U (Dg: Adding to the scenerios Aca seesaw Yet, only interactions involving v, can occur because
mechanism for neutrino masses, i.e., a Ugvy term, of the LQ coupling of 5411/3 to 125, s0 proton decay
then U(1),. is .exphcltly bzloken b%; U(1)g remains is suppressed. The dimension-nine (AB,AL) =
exact, preven tng p.roton decay. e same pattern (1,3) operators not involving v require a combi-
can be obtained using mixing terms among some .

nation of scalar and vector LQ, for example
carefully chosen LQ/DQ states, such that an effec- 2/3 0 ,1/31,1/3 . _ - Co o upC
tive neutrino mass term is generated but proton Si YZ (Y_Z can_lnducce both g, £ iy, L LRy (L
decay cannot occur. For example, introducing S/, u %nd ”RZRLI‘R}’ﬂ”ﬂE ”63]’ ﬁ’/’i L X _
§73, the mixing term pHSY?'S?> but turning off (H) Exact U(1)ss,.c: While the p revious two Iy)attems
23 ] ] rely on cubic interactions among the §7 and V7, states,
the DQ couphngl%ofl /5; 1 2/3(0r alternatively, with the this pattern rather needs to involve only the S3 and V|
mixing term xS,""S,"”"S}"" but turning off the LQ states. Furthermore, since the Higgs field appears in
couplings of $7/%), the dimension-five (AB, AL) = the six-fermion (AB,AL) = (1,-3) proton decay
(0,2) operator arises, see Fig. 1(b). In these scenar- operators of Table I, the simplest mechanisms should
ios, 51/3 s3 2/3 acquire well defined B numbers, be based on a quartic coupling H-LQ-LQ-LQ. At first
1/3 61/3 al/3
U(l)yis conserved, and proton decay is forbidden. sight, the simplest would be the H'S), . S5 /35 /
(E) Exact U(1)g,, Another possible symmetry pattern coupling, but the antisymmetric color contraction

corresponds to taking again S;/ ’, S%/ ? and the

HSI/ 3TSZ/ . coupling but turning off the LQ cou-

1/331/3S2/3

plings of S 213 (or with uS, but turning off

the DQ couplings of 51/ ). In this case, no neutrino
masses can be generated, but proton decay is back.
Yet, the proton decay channels do not match those

vanishes identically since Sé/ 3 has only two SU(2),
degrees of freedom [48]. The simplest mechanism
then necessarily involves either two different Sé/ ’
states, or both scalar and vector LQ, in which case
three different LQ states must be introduced.

This concludes our list of symmetry patterns. It is quite

remarkable that a relatively simple scenario exists for all the
possible patterns of Table I, with in each case the
“orthogonal” (AB,AL) pattern remaining as an exact
global U(1) symmetry. What this list does not show is
that actually, not so many other scenarios do exist to
generate most of these symmetry-breaking patterns.
Indeed, in most cases, allowing for several LQ/DQ states,
both scalar and vector, and some couplings among them,
one simply ends up with no global symmetries. The
interesting situations in which some global symmetries
do remain are quite constrained, and those can be classified
once and for all.

First, notice that at the renormalizable level, there are
only two classes of couplings among the LQ/DQ: those

induced by the dimension-six Weinberg operators.
With the ,uHSé/ 3TS%/ 3 coupling, the simplest proc-
esses lead to the dimension-seven (AB,AL) =
(1,—1) effective operators, see Fig. 1(c), while
the ySl/3Sl/3S coupling generates (AB,AL) =
(1,—1) transitions but with an extra lepton-antilep-
ton pair.

(F) Exact U(1),: Another pattern is obtained by intro-
ducing several states but now allowing only for DQ
couplings, and turning on some mixing terms (this
kind of construction was considered recently, e.g., in
Refs. [45,46]). These latter mixings are necessary
since otherwise, U(1)z ® U(1), remains exact.
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with bilinear color contractions, typically 3 ® 3 or 6 ® 6,
and those with cubic contractions, typically 3 ® 3 ® 3 or
3®3® 6. For the former, barring partial derivatives
acting on the LQ/DQ fields, the only nontrivial LQ/DQ
bilinear couplings compatible with the SM gauge sym-
metries are

1S3 HSPTs)R HSTPTs, HV%ﬁ'Vﬁ“*‘,

HVYTVYR mvY v (26)

The HSY?'ST3 coupling was used to illustrate the sym-
metry patterns, but all the others are completely similar:
U(1)g and U(1), are entirely broken when all the LQ/DQ
couplings are present (case C), U(1); stays exact with only
LQ couplings (case D), or U(1)z, , remains if S} or V;
have only DQ couplings (case E). This last situation is
probably the most interesting phenomenologically since
each coupling in Eq. (26) produces a specific subset of the
dimension-seven (A3, AL) = (1, —1) operators in Table I.

For cubic interactions, though there are a total of 37 such
couplings, most of them involve LQ/DQ of different 5 — £
charges and conserve either U(1)z_, (case B) or U(1)z, ,
(case E). Yet, compared to the dimension 6 and 7 operators
in Table I, they necessarily produce an extra lepton-
antilepton pair. The symmetry patterns typical of six-
fermion states, i.e., leading to the dimension 9 or 10
operators in Table I, are obtained with three LQ/DQ with
the same B — L charge, and this leaves only eight pos-
sibilities:

SOV SRV,
PSSP, sSSP @)

HiSyPs sy HISPvivP,
HISYP VIRV HSYPVER v (28)

The scenarios in the first line lead to (AB, AL) = (2,0) or
(AB,AL) = (1,3) operators (case F and G), and those in
the second line to (AB, AL) = (1, —3) operators (case H).
Note that for (AB, AL) = (1, £3) transitions, the LQ must
transform as 3, and the color contraction is necessarily
antisymmetric. To get a nonvanishing coupling, one of the

three S;/ 7 is primed in the first operator, while one of the

two V%/: fields is primed in the last two operators of
Eq. (28). This does not apply to (AB,AL) = (2,0)
operators, for which it is always possible to take one of
the DQ to transform as a symmetric 6. As a final remark, it
should be noted that scalar or vector color-singlet dileptons
could also be introduced, opening the door to quartic
couplings among the new states, and correspondingly, to
eight-fermion (AB, AL) = (2, +2) operators [49] (see also
Ref. [50] where similar operators are obtained by imposing

an additional discrete symmetry on the LQ couplings). This
will not be considered here.

Throughout this paper, when estimating bounds on LQ/
DQ masses from proton decay or neutron-antineutron
oscillations, the LQ/DQ couplings to SM fermions is
assumed flavor universal, or at the very least nonhierarchical
in flavor space. As was shown in Ref. [51], this is a strong
assumption for 3 and/or £ violating operators. The SU(3)?
flavor symmetry would ask instead for a strong hierarchy
because of the systematic presence of the three quark
generations in all the operators in Table I. In the present
context, such hierarchies would first require LQ/DQ to carry
flavor quantum numbers, and then to extend the minimal
flavor violating formalism to the LQ/DQ sector [52]. This
will not be analyzed here, but such kind of flavor suppres-
sion should be kept in mind, especially given the context in
B physics. There, a number of puzzles in leptonic and
semileptonic decays can be explained by introducing new
LQ states with particular flavor hierarchies (for a recent
review, see, e.g., Ref. [21]). Typically, the favored LQ is

V‘l‘f ~(3,1,+4/3) thanks to its g;y*£; couplings, but
other states could also occur in principle. The connection of
some of these models with axions has been investigated,
e.g., in Ref. [53] (for some considerations of axions in the
context of the B physics anomalies see e.g., [54], whereas
axions in a more broad flavor context have also been studied
in Refs. [55-58], but to our knowledge, no systematic
studies has been performed yet. In the present paper, our
goal is mainly to analyze symmetry breaking patterns
involving both LQ/DQ and axions, so the LQ/DQ couplings
to SM fermions will simply be assumed O(1) for all flavors
whenever deriving bounds on their masses. Turning on non-
trivial flavor structures is left for future studies.

III. COUPLING AXIONS TO LEPTOQUARKS
AND DIQUARKS

In the previous section, we have established the possible
global symmetries in the presence of LQ and DQ states.
Here, we want to add to these scenarios a KSVZ or DFSZ
sector. The consequences are rather different for both
models, since the SM fermions can be PQ neutral in the
former case, but not in the latter. Yet, so long as the ¢ (and
the heavy KSVZ fermions ¥, ) are not directly coupled to
the LQ/DQ states, the axion stays rather insensitive to the
possible B and/or L violation.

To illustrate this, consider the KSVZ scenario. Without
direct couplings of ¢ or ¥, ; to the LQ/DQ states, the
U(1), symmetry stays separate from U(1)z ., so the PQ
breaking proceeds trivially as

U(1), ® U(l)s ® U(1); =5'U(1), ® U(1)y

Spontaneous
= U(l)PQ RU(l)y — U(l)y, (29)
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The specific LQ/DQ scenario fixes which global symmetry,

Uy =U1)z®U(1),, U(D)pig
Ul U Ul)spig. - (30)

survives, by introducing couplings that explicitly break
Ul ® U(1),\U(1)x. Yet, the axion does not break
U(l) ® U(1); or U(1)y, only the dynamics of the SM
and LQ/DQ fields does. Of course, the axion being
coupled to SM gauge fields and SM fermions, it does
end up coupled to leptoquarks and possibly acquires some
B and/or L violating decay channels, but this is indirect. A
good example for this situation is the KSVZ model with a
Majorana mass M pvrrk. The Majorana mass term explic-
itly breaks U(1) . at all scale, but such that U(1)y = U(1)p
stays exact at all scales. Clearly, the axion dynamics
does not break U(1),, only neutrino masses do. Thus,
any AL =2 effect would come indirectly, e.g., as in
a’ = vpy; — vgyy. The situation in the DFSZ scenario
is similar, though the U(1)p, arises from a specific
combination of U(1), and U(l)y, see Eq. (8). This
situation also corresponds to that often found in simple
GUT models. For example, in SU(5), gauge interactions
break U(1)z ® U(1), down to U(1)z_, independently of
the axion field (for a detailed account of how the PQ, B,
and £ symmetries are entangled in the SU(5) setting,
see Ref. [29]).

Our goal is to consider situations in which the
symmetry above the PQ scale entangles U(1), within
U(1)p ® U(1),. Breaking U(1), spontaneously then
means breaking a linear combination of B and £ (or both)
spontaneously. Taking again the KSVZ scenario for illus-
tration, this is accomplished by introducing some set of
couplings that are only invariant under a subgroup of
U(1), ® U(1)5 ® U(1),. In most cases of interests,
U(1)z ® U(1), stays active at the high scale, but ¢ carries
some definite B and/or £ quantum numbers, so that the
breaking chain becomes

Explicit

U(1)¢ ®U()p®U(l), — U(1)p®U(1),

Spontaneous

2U(1)1>Q®U(1)x — U(l)y. (31)

The simplest example illustrating this situation is the KSVZ
model with the ¢'D%v, couplings, so that ¢ becomes a
(B.L) = (0,2) state, U(1)pg = U(1), is spontaneously
broken, but U(1)y = U(1)y stays exact. Compared to the
previous case, the main difference is that the axion has a
AL = 2 coupling a® — vzvg of O(1). Of course, phenom-
enologically, whether one adds Myi&vg or ¢'tSuy is
irrelevant, but this may not be the case for scenarios in
which U(1) is spontaneously broken. Our goal here is to
systematically study these scenarios, taking advantage of
the fact that LQ/DQ open many routes to entangle U(1),

within U(1)z ® U(1), at the renormalizable level (with
only SM fields, the ¢"Zv, coupling is the only possibility).
Note, finally, that in the KSVZ context, there is actually an
extra global symmetry corresponding to ¥ number, U(1)y,
that will either survive or be incorporated within U(1)z ®
U(1), via explicit breaking terms independent of ¢. In this
way, the final surviving U(1)y is independent of U(1)y, and
still given by Eq. (30).

In practice, to entangle the U(1), symmetry with the
other global symmetries, the strategy is to turn on some
direct couplings between ¢ and the LQ/DQ, and for the
latter, to turn on some or all of their couplings to SM fields
such that no direct 5 and/or £ violation occurs. It is
important to stress that we do not assign U(1) charges to
the fields. Instead, we study all possible combinations of
global U(1) symmetries that can remain exact and, after-
wards, derive the charges of the fields. Indeed, it is well
known that symmetries and charges are entirely fixed given
a set of couplings in the Lagrangian, but often one identifies
them by inspection, or starts from the charges to infer the
allowed couplings. In the present case, as we will see, the
set of couplings can be quite large, and the surviving U(1)s
assign quite intricate charges to the fields. Typically, a naive
inspection of the Lagrangian couplings would most likely
miss some of the surviving U(1)s, or outright fail to
identify possible scenarios. In practice, starting from the
Lagrangian also provides a very systematic procedure: to
find the surviving U(1) symmetries, it suffices to express
the charge constraint corresponding to each coupling, and
solve this system of equations. When this system is
underdetermined, each parametric underdetermination cor-
responds to a surviving U(1). The charges of ¢ under these
U(1) then tell us which combination is spontaneously
broken.

A. KSVZ scenarios with leptoquarks and diquarks

Our requirements for the KSVZ scenarios are first that
there should be only one Higgs doublet, neutral under the
PQ and all global symmetries, and no direct mixing of the
heavy fermions ¥, p with SM quarks to avoid FCNC or
CKM unitarity constraints. Also, our goal is to force proton
decay, neutron-antineutron oscillations, or a Majorana mass
terms for vx (or more generally, neutrinoless double beta
decays [59]) to only arise through the spontaneous sym-
metry breaking of U(1),. Thus, none of these observables
should be immediately allowed by LQ/DQ transitions.
Typically, the strategy to achieve this is, starting from
some Lagrangian with a specific set of couplings among ¢,
some chosen LQ/DQs, and the SM fermions, to identify the
global symmetries, and then make sure these symmetries
forbid any other renormalizable Lagrangian couplings. This
will be made clear going through specific examples. But,
before that, let us describe some generic features of the
scenarios and their consequence for the axion effective
Lagrangian.
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In all scenarios, there will be some S j S;, pH Sj S;, and/
or ¢S;S;S couplings. In this representation, the axion ends
up coupled to the LQ/DQ, as can be seen plugging in
Eg. (1) in these couplings (remember 77, = a® in the KSVZ
setting). Importantly, these couplings are never suppressed
by the PQ breaking scale, since for example

1

¢SiSjSk e d ﬁ(v(/, + 171,/, + - )S,S]Sk
Though as a matter of principle, the axion B and/or £
violating couplings are not suppressed by v, this scale
nevertheless indirectly limits them. Indeed, the leading v,
term produces a direct coupling among the LQ/DQ such
that one falls into any one of the situations described in
Sec. I C, with some U(1)y smaller than U(1)z ® U(1),
remaining exact. At low energy, these LQ/DQ couplings
can induce B and/or £ violating processes, hence set rather
strong bounds on the LQ/DQ masses. Now, the largest v,
is, the tightest these bounds are, so indirectly, the 5 and/or
L violating axion couplings to SM fermions decrease for
increasing v,.

Coming back to the point of principle, one may wonder
how is it that the axion couplings are not suppressed by v,
in the effective axion Lagrangian language of Eq. (17).
Indeed, as a result of the (f)zS:ij, ¢HS?SJ~, and/or ¢S;S;Sy
couplings, some or all of the LQ/DQ become charged under
U(1)pg. This means that if, along with Eq. (13) for the
fermions, we reparametrize them as

Si — exp(=iPQ(S;)a’/vy)S;.

(32)

(33)

the axion field is entirely removed from all the Lagrangian
couplings. Indeed, the Lagrangian is PQ-symmetric, so the
exp(ia®/ v,) factors always compensate exactly. Their
kinetic terms D”SID"S ; are not invariant under the repar-
ametrization though, and as for fermions, this is embodied
in dimension-five interactions

1
5£Der = U—d)aﬂaOJﬁQ,
Thg = D _PQS)(SI(D"S;) = (D*S])S)) + -+ (34)
This representation is deceptive because the axion cou-

plings to LQ/DQ appear suppressed by v,,. Yet, they are not
|

suppressed because the EoM of the §; have O(v,,) terms,
like that coming from a v4S;S;S; coupling in the example
of Eq. (32). The same happens if LQ/DQ are integrated out
before the reparametrization Eq. (33). They then do not
occur in J’;Q, but SM fermions do, and their EoM now have
inherited (’)(% /M") terms for some n, with M the LQ/DQ
mass scale. In all cases, the axion keeps its O(vg) B and/or
L violating couplings, as it should.

This shows explicitly that the shift-symmetric 6Lp,, is
not well suited to these scenarios, at least for what concerns
couplings to matter fields. For gauge boson, the situation is
a bit different. The fermion reparametrization Eq. (13)
generates spurious anomalous interactions to chiral gauge
fields that are canceled by the anomalies in the Jp, current,
exactly as before, but the LQ/DQ obviously do not. Thus,
for them, the axion effective Lagrangian after the repar-
ametrization of Eq. (33) correctly captures the fact that
triangle graphs with LQ/DQ running in the loop are not
anomalous, and vanish at the dimension-five level for a
massless axion. Thus, none of the axion to gauge boson
couplings is affected by the LQ/DQ at leading order.

1. Spontaneous breaking of B+ L

We have seen that 5 + £ is immediately broken when-
ever a given S; or V; has both LQ and DQ couplings. For
example, S5/ with its couplings to dge$ and @Sug can
induce (AB,AL) = (1, 1) operators and proton decay. A
possible strategy to adapt this scenario and force these
operators to appear only through the SSB of ¢ is to consider
two such states, one LQ and one DQ, with a ¢-dependent
mixing term:

8/37, «8/3 -
Lxsvzirg = Lksvz + 51/ dre + Sl/ HGUR

+ ¢SSP L He, (35)

with Lxgyz given in Eq. (2), and LQ/DQ kinetic terms are
understood. We also do not write explicitly the LQ/DQ
scalar potential terms made of bilinears like Sff/ 3+S§/ o
S‘?/ 3TS’?/ 3 since those are neutral under any U(1) symmetry.
Solving for the U(1) charges of all the fields under the
requirement that the Higgs doublet is neutral (to avoid
mixing with U(1),), a triple under-determination remains,
which we can identify as

T

A T 7

qr  UR dp ¢ er g

Uly 0O 0 0 1
U(l)s 1/2 1/3 =2/3
ut, 12 1 0

12 0 1/3 1/3 1/3
~1/2 0 0 0 0

1 0 0 0 0 O (36)
0 O
1 1

- o O

4Evidently, the normalization of each line is free, but that for U(1),; and U(1) is chosen to reproduce conventional quark and lepton

B and £ of 1/3 and 1, respectively.
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FIG. 2. Proton decay operator generated by the spontaneous
breaking of U(1)z, .

What this table shows is that ¢ carries a U(1), , charge,
which thus gets spontaneously broken, while U(1)z_, stays
exact. This model is essentially identical to that introduced
long ago in Ref. [41], except that the Goldstone boson is here
identified with the axion. This pattern of symmetry breaking
is easily understood from the Lagrangian couplings and the
diagram in Fig. 2. Plugging in the polar representation of ¢,
Eq. (1), the effective operator at the low scale is

2

H?fAfB,AL):(l,l) = CXP(2iaO/”¢) uREl‘,SeR + H.c.,

2
U

(37)
where we have identified 7, as the axion a®, and denoted
the Sf/ ? and S‘Ef/ 3 masses as mg and mg, respectively. Note

well that this operator arises entirely through the SSB: the
charges in Eq. (36) explicitly prevent a DQ coupling for
SS/ 3 and a LQ coupling for ) 8/3 . Expanding the expo-
nentlal the leading term 1nv01ves only SM particles, and
contributes to proton decay. Thus, mg and mg have to be
pushed quite high, though a bit lower that in the usual
GUT scenarios. For instance, while the scale of the dim-6
operators is typically pushed above 10'* GeV, we only
need mg~mg > 10" GeV when v, = 10° GeV. With
these parameters, the proton decay modes involving the
axion are thus totally negligible. Finally, notice that

the axion totally disappears from HC!f (AB.AL)=(1,1) under

the reparametrization Eq. (13), w1th the PQ charges
identified as (B4 L£)/2. As stated earlier, the
vyaliGurdGer effective coupling would then hide in
the dﬂaOJ’IﬁQ /v, terms since the quarks and leptons inherit
from v} agugdger some O(vy) terms in their EoM.

As shown in Eq. (36), U(1)y remains as an exact global
symmetry, which means that the 5 4 £ charges of ¥, y are
not unambiguously defined. To fix them requires ¥, » to
couple to SM fermions, and this is possible only for some

specific gauge quantum numbers. If we further ask that SS/ .

(Sf/ %) should always (never) couple to leptons, the only
possibilities are

8/3\q 8/3\q 8/3\q 8/3 8/3 8/3\
Y.B.L S0, C S SWLS 33PWCy, BWC,  3uCq,
51 251 8 1 71 4 5 1 10 5 1
oo =330 =553 362 3300 552 T (38)
1 1 2 1 8 7 1 1 4 1 10 1
Y» 37573 —530 -330 3.-§5-3 330 3.5.0

These couplings are mutually exclusive smce they 1mpose
different hypercharges for ¥, . Also, S P el % and

$839Cu, would allow for direct Wpdy and Wrug cou-
plings, respectively, hence must be discarded. Note how the
peculiar choice of couplings completely twists the 5, £
charges, in the sense that they do not correspond to the
naive assignments of B = 1/3 and £ = 0 one may have
expected for the “heavy quarks” of the KSVZ mechanism.
As said before, the charges of the fields have to be deduced
from the set of couplings of the Lagrangian, and not the
other way around.

Similar scenarios can be constructed using S2/ ’ S?/ ’

V;/ 2, or VS/ 3 Actually, 51/ was considered in Ref. [17],
though the model built there is more complicated (here the
PQ symmetry is directly identified with B+ £ and only a
single Higgs doublet is introduced instead of four). Each
time, two such states are taken, with one having LQ

couplings, and the other DQ couplings, and a ¢-driven
mixing term is introduced. The only difference in each case
is the specific (AB, AL) = (1, 1) operator(s) that can be
spontaneously generated, see Table I, and thereby, the
induced pattern of proton decay modes. In this respect, it is
worth to look at the S‘l‘/ ? scenario, since it has only LQ
couplings to vg:

L:KSVZ+LQ - ‘CKSVZ + Sl MRUR S /3dCd 4 ¢2 4/3t 4/3
+ ¢VRVR + H.c. (39)

Let us also turn on a coupling to ¥, , to fix its charges, and
for definiteness, let us take S?/ 3‘11””%. Because of the
¢Pvg coupling, solving for the U(1) charges of all the
fields now leaves a single underdetermination:
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o S7P 5Py,

Wr qr Ug dp 0 e g

Ulpg 2 2/3 —-10/3 5/3

—1/3 5/3 5/3 5/3 -1 -1 -1

(40)

This time, neither B nor L survives. Starting from
U(1); ® U(1)s ® U(1), two U(1)s are explicitly broken
by LxsvziLo» While the remaining exact U(1) is identified
with U(1)pg and spontaneously broken by ¢. The interest

in this scenario is that S‘ll/ } couples only to vg, whose mass
is pushed at the PQ breaking scale by the ¢$vy coupling.
At the low-energy scale, the leading proton decay operator
will scale as

2
HefAfBAﬁ) (L.1) —eXP(zmo/U(/) EI) deCMRVR + H.c.
S S
EwW

- exp(21a°/v¢) - drd$iigl§ + H.c.
sy

(41)

Thanks to this extra suppression, the PQ breaking scale,
which is also the neutrino seesaw scale, and the LQ/DQ
mass scale, can all sit at around 10° GeV. They could thus
naturally have a common UV origin.

2. Spontaneous breaking of B—- L

With only LQ/DQ, scenarios in which B — L is explicitly
broken typically arise from any one of the H S,TS jorH VlT V;
couplings in Eq. (26). Those couplings always involve a
pure LQ state together with a mixed LQ/DQ state. The
(AB,AL) = (1,—1) pattern arises when the latter has only
DQ couplings. All these scenarios can be adapted to force
B — L to be broken spontaneously instead of explicitly. Let
us take the H Sz/ 3TS4/ 3 case as an example, the others being
totally similar. To entangle the KSVZ symmetry with
B — L, we start from the Lagrangian

Lxsvzi1o = Lksvz + STBZJ%dR + 52/3(51%& +qLer)
+¢HSYY'SY? 4 He., (42)

where again kinetic terms and LQ/DQ potential terms are

understood. For definiteness, we also include the ST/ 3‘?L f%
coupling to get rid of U(1)y and fix the quantum numbers
of W, g. Then, there remain only a U(l)z ® U(1l),
symmetry with charges

(43)

¢ 52/3 541‘/3 Y. Yo g ug dp €1 e g
Uy 1 1/3 —2/3 —2/3 —5/3 1/3 1/3 1/3 0 0 0
uly, -1 -1 0 -1 0 0 0 0 1 1 1

and U(1)gz_, is spontaneously broken when ¢ acquires its
vacuum expectation value. Note that these charges prevent
the LQ couplings of S‘I‘/ 3 (taking pH Sé/ 3+Si/ ? instead, they
would further forbid the H S;/ ’s é/ ’s ;/ ? coupling). The final
operators are part of the (AB,AL) = (1,—1) dimension-
seven ones in Table I because of the Higgs doublet

appearing in the ¢HS7/ STS4/ 3 mixing term (see Fig. 3):

HefAfB,AE):(l,—l)
= exp(zao/v¢)m 2HdeC(MRfL +C_]L€R) +HC (44)
s

The situation is thus similar to that in Eq. (41). Further
lowering the LQ/DQ scale by about an order of magnitude

is possible starting from the H Vz/ 3TV5/ H

2/3%
vy,

coupling, as

couples only to vp.

In this regard, note that all these scenarios are again
compatible with a seesaw mechanism. Adding either a
Peug, ¢TUSuR, or Mypiug coupling to Lxsyzirq in
Eq. (42), a single exact U(1) remains at the PQ scale,
with charges

dc

dc

5 @
Up,q;

fL: eR

FIG. 3. Proton decay operator generated by the spontaneous
breaking of U(1)z_,.
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¢ 33/3 Sﬁ/z’ ¥ Wr qaL ug  dp 7y R LR
¢17g1/R: U(I)PQ 2 4/3 -2/3 1/3 -5/3 1/3 1/3 1/3 -1 -1 -1
quD%uR: U(I)PQ 2/3 0 -2/3 -1 -=-5/3 1/3 1/3 1/3 1/3 1/3 1/3
MRD%/R: U(l)PQ 1 1/3 =-2/3 1/3 -=5/3 1/3 1/3 1/3 0 0 0

(45)

For all these cases, the axion still emerges as a massless Goldstone boson, and is associated to both U(1)z_, and U(1),
spontaneous breakings.

3. Spontaneous breaking of 1B

The spontaneous breaking of B first arose at the dimension-9 level in Table I since it necessarily involves six fermions. As
seen in Sec. II C, typical scenarios thus require a cubic coupling among DQ states. Let us start with

EKSVZ-&-LQ = ‘CKSVZ + Si‘/:i(_j%dlg + S?/3ljt%MR + ¢S£1‘/3S41‘/3S?/% + H.C., (46)

where S‘I‘/3 ~(3,1,44/3) and S§/3 ~ (6,1, -8/3). Though not compulsory, we add the coupling S?ﬂq’qu to break U(1)y
and fix the charges of ¥; z. With this Lagrangian, only two U(1)s are exact:

¢ 52/3 S?/3 Y ¥r qL ug dgp 0 ep g

Ul)g 2 —2/3 =2/3 1/3 =5/3 1/3 1/3 1/3 0 0 0 (47)
vy, o o o O O 0 0 0 1 1 1

Thus, U(1)pq = U(1); is broken spontaneously by two units, but U(1) . stays exact. This model is actually very similar to
that of Ref. [60] (see also Ref. [61]), except that the Goldstone boson associated to the U(1); breaking is identified with the
axion. In turn, the axion ends up coupled to neutron pairs, via the diagram shown in Fig. 4. The corresponding operator is

. v - - -
Hias ar)-(20) = eXP(ia/vy) —— o fn —— dSdrdSdgiGug + Hee.. (48)
s4/311t g8/3

Typical bounds on the scale of the (AB, AL) = (2,0) operators are at around 100 TeV [62,63] if the couplings implicit in
Eq. (46) are all O(1). The PQ scale of 10° GeV pushes the DQ scale slightly higher than those 100 TeV, but given that their
masses appear to the sixth power, this is marginal (less than an order of magnitude). The presence of the axion also leads to
an effective operator

6
%aoangc_lﬁdRﬁguR +H.c. - AQCDZ a’7i€ysn + H.c., (49)
M gay3 Mgy M gay3 My
with the QCD confinement scale Agcp of the order of 300 MeV. Because the DQ mass scale is pushed rather high by the
dimension-nine operator in Eq. (48), this direct coupling is very suppressed. Note, though, that it could have consequences
in a cosmological context [62].

As for the previous two scenarios, a seesaw mechanism can be implemented by adding a ¢pivg, ¢ DSvg, or MpiSug
coupling to the Lagrangian in Eq. (46). For the former two, this identifies the axion as the Majoron [60]. The only change is,
in some sense, to assign a 3 number to vy, hence by extension, to the leptons:

8/3 4/3
Sz/ Sl/ Y Yr qL ug dgp Cp egr Ug

¢
$ur: Ul;PQ 2 —2/3 -2/3 1/3 -5/3 1/3 1/3 1/3 -1 -1 -1 (50)
¢rrs Ullpg 2 =2/3 =2/3 1/3 =5/3 1/3 13 1/3 1 1 1
Mptvr: U(l)pq 2 —2/3 =2/3 1/3 =5/3 1/3 1/3 1/3 0 0 0

Note that the charges imposed by the presence of ¢p7%vy open the door to the ST/ 3 iigts coupling also, and thus to direct

proton decay via an S?/ ? Fermi interaction. For the other two scenarios, proton decay remains forbidden since all its decay
modes include an odd number of leptons, but only AL = 2n transitions are made possible by the Lagrangian couplings.
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FIG. 4. Neutron-antineutron oscillation operators generated by
the spontaneous breaking of U(1)g.

4. Spontaneous breaking of B + 3L

From Eq. (27), it is clear that the scenarios leading to
(AB,AL) = (2,0) can be adapted to generate (AB, AL) =
(1,3) effects. All that is needed is to replace all DQ
couplings by LQ couplings. The only difficulty is to

|

account for the antisymmetric color contraction, since
LQ necessarily transform as 3 under SU(3).. If we insist
on introducing at most two different LQ, the only available
scenario is

2/3 5 _ _
Lxsvzirg = Lksvz + 5 / (dgvf + igel + qLty)

+ V]/%(”Ri’”fc + GLr'vR)
+ 87 ViVY 4 He.. (51)

As usual, the U(1)y is broken explicitly, this time by
adding Vé/; W, y#e; to force the hypercharge of W, x to be
different from that of SM quarks. If instead of the LQ
couplings, DQ couplings were allowed, this scenario
produces the (AB,AL) = (2,0) symmetry pattern dis-
cussed in the previous section. Now, with these LQ
couplings and no DQ couplings, the charges are

o 7 VP

qL Ug dp ?p er g

Ul), 1 1/3 1/3 1/3
vy, 3 1 1 0

~2/3
-3

1/3 1/3 1/3 0 0 0 (52)
o 0 0 1 1 1

The PQ symmetry is identified with U(1)z, 5., and dimen-
sion-nine (AB, AL) = (1, 3) proton decay operators appear
at the low scale, see Fig. 5(a) (a similar LQ model was
proposed in Ref. [41] to break B + 3L spontaneously). The
fact that these operators are dimension-nine allows to lower
the LQ scale, but qualitatively, this scenario is not very
different from the B &= £ ones. Also, a seesaw mechanism
can be added with either ¢pivr or Mi%vg, but not with
¢ Uk as this would allow back the DQ couplings of both

%/ Y and Vl/ It should be noted that these charges allow for
the D”HSQ/3V1/3' and HD”SQ/g ]/”3' couplings. If not
initially present, they are immediately generated via a
fermion loop. Yet, these operators carry (AB,AL) =
(0,0) and cannot help create simpler proton decay proc-

Up,q;
v
dy Uy 4,
Ve, ex,t;
Up,q;

€0, Vi

FIG. 5. Proton decay operators generated by the spontaneous
breaking of U(1)g, 3, (a) and U(1)z_3, (b).

|
esses. They could turn on some new four-fermion semi-
leptonic FCNC operators though, but these effects are
beyond our scope.

The final pattern is (AB, AL) = (1, —3), and this one is
quite difficult to induce spontaneously. The operators in
Eq. (28) being already of dimension four, we cannot
proceed as for the other cases and simply multiply them
by ¢. One way to proceed is to start with an operator from
the (AB, AL) = (1, 3) class in Eq. (27), and then switch £
by six units using AL =2 operators of Eq. (26). For
instance, the Lagrangian

/3,5 _ 2/3-
Lxsvzirg = Lksvz + Sz/ (dr?r + qrvg) + Vl,/ﬂ dry'vg
+p(HS) ST + HIVTHY Y
2/3%1,1/3%,1/3,
+ 877V 4 Hee, (53)

does lead to the desired (AB,AL) = (1,-3) pattern, as
shown in Fig. 5(b). With four LQ states, it is certainly
more complex than the other scenarios, though it should
be noted that there is a certain symmetric flavor to the
173 g2/3 1/3 2/3

presence of §,'°, 8§77 and V,”, V{'". Also, it is not
compulsory for ¢ to appear 1n all of the last three
couplings, but when it does, only some combinations
do give a B — 3L charge to ¢. Further adding Vf/; Werter
to fix the ¥, p quantum numbers, we find
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¢ S?B Véﬁ 55/3 V?B VY. Wr g up dp L egr ug
ull), 1/4 1712 1/12 1/3 1/3 7/12 1/3 1/3 1/3 1/3 0 0 O (54)
Uu(l), -3/4 -1/4 -1/4 -1 -1 =3/4 0 0 0 0 1 1 1
I
The PQ symmetry is thus indeed U(1)z_5,. Note that these Eq. (8), no matter the amount of U(l)z and
charges forbid all the SM fermion couplings of Sf/ 3 and U(1) that is entangled within U(1)pq.
Vé/ 3 as well as all other possible cubic interactions among (2) Because H u» and Hy carry PQ charges, so does the
the LQ and DQ states.”’However, given the complicated SM fermions, even without the presence of LQ/DQ
structure shown in Fig. 5(b), the final operators are of Ziitlfisg'uﬁisessggger::tilgglatgé Eelx(z)l)ét tgle()st?al(:tsl;rrﬁfr?et};‘i:se
dimension 16 instead of dimension 10: Thus, any entanglement of U(1),; and U(1), with
U(1)pq will be reflected in that arbitrariness. Typ-
et _ ¢*(H'H) ically, only one free parameter will remain instead of
(ABAL)=(1,-3) MG 1310 /3715 /31y /3 the 8 and y parameters of Eq. (10). Thus, looking at
is _ - - this remaining arbitrariness permits to identify the
X H'(dR1, + qrvr)dry, vrdry' vy combination of # and y, i.e., U(1)z and U(1), that
Uy 0hw has been spontaneously broken.
R S S R—;] (3) Because U(1)pq has always a component within
SI/3TV2/3TS2 3TV U(1)y, ® U(1),,, the PQ charge of the SM fer-
X (dg€y + qrvg)dgy,vrdgy'vg.  (55) mions are never fully aligned with some combina-
tions of B and L. As a result, LQ states are often
Besides, turning on a seesaw mechanism with ¢'7%v, (as giSthed ;?rC%L;Iileez)a;nlﬁ; a ts;zglzsl\;[ f:“;;g:;{g
¢Sk would allow back some S%/ 3 and Vé/ ’ couplings to allow b(F))th ' §\37 ¢ :n d’ Sl/3c"1g yg b:t the PQ
SM fermions), a further suppression of (vgw/v4)? to charge do not2 sinﬁeLPQ(El /) :LyR_’ B+ 1/x and
connect two vp to light fermions arises. Altogether, PQ(q05) =7 — B +x anfi tLhis is true independ-
assuming a common scale for all the LQs, their mass ently of 8 and 7. In sor;le cases, this actually makes
?an be as low as arour}d 100 TeV whe.n vy R 10° GeV. This the choice of LQ/DQ couplings more natural than in
is much lower than in GUT scenarios, and actually falls the KSVZ case, since once some of them are
within the ball'parl.< of the scale required by neutron- selected, the others are immediately forbidden.
antineutron oscillation from Eq. (48). (4) With H, ; at hand, many new couplings to LQ/DQ

B. DFSZ scenarios with leptoquarks and diquarks

All the scenarios discussed in the KSVZ case can readily
be adapted to the DFSZ model. Basically, one removes the
W, r state but introduces a ¢*H H 4 coupling, while the ¢
couples to various combinations of LQ/DQ states exactly as
in the KSVZ scenarios. A number of peculiarities are worth
mentioning though:

(1) The symmetry patterns are more difficult to analyze
in the DFSZ case because the PQ and hypercharge
symmetries are entangled, see Eq. (8). Thus, further
entangling U(1)z and U(l), with the U(1) s
associated to H, and H; rephasing blurs the picture
completely. In practice, the PQ charges of ¢, H,,
and H, are always fixed to PQ(H,) = x,

PQ(H,) = —1/x. PQ($) = (x+1/x)/2  see

Some derivative interactions are possible though, but those
necessarily involve the LQs whose SM fermion couplings are
forbidden, hence they do not alter the symmetry breaking pattern,
and would lead to more suppressed proton decay operators.

055034-16

states are a priori possible already in the scalar
potential. For instance, replacing H by H, or H,; in
any of the couplings in Egs. (27) or (28) would
couple the axion to B and/or £ violating operators.
However, these situations correspond to breaking
U(1)z and/or U(1), at the electroweak scale, by
entangling them with U(1),. Indeed, B and/or £
violating operators would involve 7, or 7, (the
pseudoscalar components of H, and H,), and thus
also the would-be Goldstone associated to U(1),
since G ~ v,17,, + vn,. The axion has only tiny 7,
and 7n,; components, see Eq. (5). Turning on some
HszSj-S,- couplings would prevent any G° cou-
pling, but would similarly lead to tiny axion cou-
plings via its cos ffy,, — sin i, component. For these
reasons, all the scenarios discussed below start from
coupling ¢ to the LQ/DQ states, so that B and/or £
are broken at the PQ scale and the axion inherits
some large 3 and/or L violating couplings. These
scenarios are thus constructed exactly as in the
KSVZ case.
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After these general comments, let us briefly go through each of the B and/or £ spontaneous breaking scenarios.

1. Spontaneous breaking of B+ L

By analogy with the KSVZ scenario, Eq. (35), let us take

8/3-
Lorsz+1.Q = Lorsz + S 1/ dref +

$Cug + 2SS 1 He.,

(56)

with Lpgsy given in Eq. (4). Solving for the U(1) charges under the constraint that PQ(H,,) = x, PQ(H,) = —1/x, which
fixes PQ(¢p) = (x 4+ 1/x)/2, leaves a single underdetermination. In this way, we identify the remaining symmetry as

U(1)5_p. with

S§/3 5‘515/3 qr Ug dR fL er U
Ulpg 1-x —2¢x 0 x 1 —1_x —x -1 (57)
Ul)p_p -2/3 =2/3 1/3 1/3 1/3 -1 -1 =1

with ¢, H,,, and H; neutral under U(1);_,. This shows that U(1)z,, C U(1)pq C U(1)p, @ U(1) 4, @ U(1)p ® U(1),
is spontaneously broken. Note well that the quoted U (I)PQ charges are just one possible choice, since U(1)pz_, remains as

an ambiguity. We could also have written the charges as

S?B S?/B qr UR dg ‘L €R VR (58)
Ul)pg 1—x-28 -2x-2& & x+¢& 14¢& -1-x-38 —x-3¢ -1-3¢
|
with & the free para.meter corresponding to U (1) B_r- We Lprszi1q = Lorsz + S‘l‘/ 3EJ§dR + S;/ &8 RC1
can also see that this corresponds to Eq. (10) with g =¢& 773 /3
and y = _}_1( — x — 3¢&. This shows that the dimension-five +¢H,S,7 S + He.. (59)

axion to gauge boson couplings are unaffected by the LQ/
DQ, since they are independent of  and y. Also, one should
not conclude that the axion does not couple to ¢;, even
though that coupling is absent from the axion effective
Lagrangian since PQ(gq; ) is set to zero.

Concerning the axion B + L violating operator, the same
effective interactions arises as in the KSVZ scenario, see
Eq. (37). This is evident from Fig. 2, which is independent of
how the axion emerges. The only difference is that the
pseudoscalar component of ¢ is not purely the axion, but this
is only a totally negligible O(vgw/vs) effect, see Eq. (5).

Finally, exactly as in the KSVZ scenario, the remaining
U(1)g_, freedom permits to set up a PQ-induced seesaw
mechanism by adding ¢pi%vy or ¢'P5ug. In both cases, this
simply fixes the parameter £ and removes the remaining
U(1)z_, ambiguity. Yet, the final PQ charges do not reflect
at all the peculiar symmetry breaking pattern, with
U(1)g,, and U(1), being separately, but concurrently,
spontaneously broken at the PQ scale. By the way, exactly
?/ 3'1‘3?/ 3

the same PQ charges arise if ¢>S is replaced by

HLHMS§/ STS?/ ? though as discussed before, the symmetry
breaking chain is very different, as are the axion couplings.

2. Spontaneous breaking of B- L

Pursuing our adaptation of the KSVZ scenario, let us
consider now

Both fermionic couplings of S;/ 3 cannot be present at the
same time for the PQ symmetry to exist, so we choose to
keep S;/ 3L'tRf 1 and discard S;/ 351L eg. Also, we introduced
H, in the quartic scalar coupling, but could equally well
have used H,. From this Lagrangian, the PQ charges are
found to be

3 3
S?/ S;/ qr ur dr g €R VR

Ulpg -2 F-50 0 x 1 5-33-35+3
Ul)g.p =2/3 =2/3 1/3 1/3 1/3 1 1 1
(60)

So, U(1)z_, is spontaneously broken at the PQ scale, but
U(1)g,, remains. As before, we could rewrite the PQ
charge introducing a free parameter to reflect the exact
U(1)g,, symmetry, hence one should not interpret
PQ(g;) = 0 as meaning it has no coupling to the axion.
The U(1)z,, ambiguity can then be used to allow for a
¢ptug or ¢'DSug coupling, and set up the seesaw
mechanism.

The final (AB, AL) = (1, —1) operator is again one of
the dimension-seven operators listed in Table I. Note,
though, that because the PQ symmetry restricts the LQ
couplings to SM fermions, only a single operator is
induced. This is a generic characteristic of the DFSZ
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implementation: compared to the KSVZ case, it is more
restrictive. Phenomenologically, this could show up as
definite decay patterns for the proton (if ever observed).

Note that some other gauge and PQ invariant operators may
arise at higher loops via Yukawa insertions, but those are
more suppressed. The leading proton decay operator is thus

Starting from Eq. (59), the operator arising at tree level is  proportional to v,v,/m$, and the constraints are similar as

in the KSVZ scenario. Concerning the axion coupling,

1 _ .
ff _ C notice that
H?AB,AE):(I,—I) = WtﬁHudeRuRfL —+ H.C., (61)
R
|
1 v
¢H, ‘) —>—vuv¢expi<@+—¢>vb (62)
2 Uy Uy
so the combination that occurs in the effective operator is
0 07,2 0
i Yy G a’3xc+1 oz - _
H?AB'M)z(L_I) = m%m_% (1 + 174— lU_qS 211 + i—-x ARy, (63)
For comparison, the ,uHuS;/ 3TSA11/ . coupling would lead to
0 0 2 0
£f MV . .a’ 2x .7 — _
Hiapac)—(1-1) = —mén% <1 + i + lv_¢x—2 1 + 17)6) drdSiigyy, (64)

7

with 4 some mass scale. The (AB, AL) = (1, —1) operator arises at the v, scale from ¢H,S, , but at a lower scale

from H MS;/ 3TS‘1‘/ ? since we would expect u to be at the LQ/DQ scale, u ~ mg, or even at the electroweak scale, u ~ v. Note
that in both cases, the G° enters as expected for a would-be Goldstone, and would disappear in the unitary gauge. The axion
coupling is O(vgw/v,) compared to the four-fermion operator, exactly like in the KSVZ scenario.

/3% S‘l‘/3

3. Spontaneous breaking of B

Neutron-antineutron oscillations can be induced in the same way in the DFSZ and KSVZ models, see Fig. 4. Starting
with

Lopsziro = Lopsz + 87 dSdy + 3 uGug + ¢Sy} 83 + Hee., (65)
where S‘lv3 ~(3.1,+4/3) and 5213/3 ~(6,1,-8/3), we get the PQ charges
S?/3 S§/3 qL UR dr L er VR
Ul 3-8 2-F ~i-% 3% &1 0 | » (6
ul), 0 0 0 0 o 1 1 1

Thus, U(1) is broken spontaneously, but U(1), stays exact. The phenomenology is the same as in the KSVZ model, see
Fig. 4 and Eq. (48). Majorana neutrino masses can be generated spontaneously with ¢'2%v, but not with ¢Sy as the PQ

charges of the leptons would then allow for the ST/ 3 iigts coupling, and thereby to tree-level proton decay.

4. Spontaneous breaking of B+ 3L
The last two scenarios are those producing exotic (AB, AL) = (1,+£3) proton decay operators. Let us start with the
(AB,AL) = (1,3) case, and the Lagrangian

2

2/3 - 3, — + 3 3 3,
LDFSZ+LQ = Lppsz + 51/ CILf(Lj + Vé/,, (”RJ’”f(L: + quf"vﬁ) +¢ Sl/ V;/ﬂ V;/ "+ Hec. (67)

The Sf/ 3(2le% + iige%) and S%/ 351Lf% couplings cannot both be present, and we take only the latter, while the
Vé/: (gy* ¢S + qry*v$) couplings are compatible with each other. The U(1) charges are then
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2/3 1/3

Sl/ Vz,/ﬂ qr ug dr L €R VR

1 1 1 1 7 1
Ulpg &—3 3ter 0 ¥ 1 &3 &—3 &t (68)
Ul)sp, O o 1 1 1 -1 -1 -1

The U(1);3_, symmetry remains, and its orthogonal combination U(1)z,3, is spontaneously broken. Dimension-nine
(AB,AL) = (1,3) proton decay operators thus appear at the low scale (as well as semileptonic (AB,AL) = (0,0)

2/31,1/3%
/Vz./ﬂ

operators since these charges allow for the D¥HS couplings). Once more, there is enough room for a seesaw

mechanism with ¢z, and/or ¢p' I%vk. Depending on the LQ couplings of S%/ 3 itis always possible to choose the seesaw

operator that sets PQ charges forbidding the DQ couplings of both S%/ 3 and V)3

2.u°
operators.
Concerning the (AB,AL) = (1

and thus proton decay via dimension-six
,—3) operators, we start from

3- 2/35 1/31 2/3 231 /3 | 2/3ty,1/311,1/3,
Lprsz+10 = Lorsz + Sé/ dgty + V1,/,, dry'vg + ¢(Hu52/ T51/ + HZV/ T”Vé,/ﬂ + Sl/ *szﬂ*v;/ “N + He., (69)

with the Sé/ 3@ Vg removed. Several choices are possible for introducing the doublets H,, and H ; in these couplings, and we
opt for the one most symmetrical with the Yukawa couplings, see Eq. (4). Only one of the fermionic couplings of Sé/ 3 can
be turned on, and we choose Sé/ dx?;. Then, the U (1) charges are found to be

2/3 1/3 1/3 2/3
S1/ Vz,/ﬂ 52/ V1,/ﬂ qr ug dr 7L €r VR

2 2_ 2 2 2 2_ 2
Ul & & 55 % 0 x5 g 25 (70)
Ulg,, O 0 0 0 1 1 1 1 1 1

This time, U(1)33, remains and U(1)z_s is spontaneously broken. The induced operator, from a process easily adapted

from that of Fig. 5, is

¢*(H}HH,)

Hng.Ac):(1$—3> =

) 7 2
Mgy y3Myn 3N 131y /3

ZZRKLHRVWREJRV”VR' (71)

Again, phenomenologically, there is not much difference between the DFSZ and KSVZ implementation.

C. Axion-induced proton decay and neutron-
antineutron oscillations

In both the KSVZ and DFSZ cases, we can induce
spontaneously proton decay or neutron-antineutron oscil-
lations. But, in all the scenarios discussed up to now, the
processes involving the axion were O(vgw/v,) with
respect to that without it. The reason is of course that in
all cases, some coupling of ¢ to the LQ/DQ states was
introduced, and ¢ = (v, + p) exp(ing/vy) & vy + p + ia°
[see Eq. (32)]. The purpose here is to kill off the leading
term, leaving only axion-induced B and/or £ violating
processes. The only way to achieve this is to consider
derivative couplings of ¢ to pairs of LQ/DQs, and there are
only three renormalizable options

1/311,1/3, 2/3t1,2/3, 4/311,4/3,
0M¢S2/ TVZ/ ,ﬂ’ a”¢Sl/ TVI/ Il’ 0,44551/ TVI/ ﬂ_ (72)
In these cases, the axion enters as 0ﬂ¢zaﬂp—l—idﬂa0,

without a leading term tuned by vy Though we have

not attempted at constructing UV complete models gen-
erating such interactions, their structure is evocative of that
which could arise if both ¢ and scalar LQ/DQ were
somehow related to the fields giving masses to the vector
LQ/DQ. Such a situation can happen in simple GUT
models: In Ref. [64] for example, ¢ is identified with
the phase of the complex H,, field breaking SU(5) down to
the SM gauge group. Note, though, that the PQ breaking
scale and the LQ/DQ mass scale would be related in such
models. In the present section, the two will be kept
independent, with the latter usually much lower than the
former.

Let us see which symmetry breaking patterns can be
achieved with these building blocks. We will use the KSVZ
setting throughout as the alignments of the PQ with some
combination of B and £ are manifest, but the adaptation to
the DFSZ scenario is immediate. Also, we will discard ¥,
from the discussion. As in Sec. Il A, their charge can
always be set separately by introducing some couplings to
the LQ/DQ.
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1. Spontaneous breaking of B— L

The scenarios with (AB,AL) = (1,—1) operators are
immediately obtained using any one of the three couplings
in Eq. (72). For example, we can take

2/3/— =
Lysvzirg = Lisvz+ 87 (@Fq. +d5ug)
+V%,/;43‘_iR7”VR+ay¢S%/STV%/3’ﬂ+H.C., (73)

and get two active U(1)s, with charges

¢ S%/S V%/; qr ur drp Cp er g
ul), -1 -2/3 1/3 1/3 1/3 1/3 0 0 O
ul), 1 0 -1 0 0 0 1 1 1

(74)

Thus, ¢ spontaneously breaks U(1)z_,, leaving B+ L as
an exact global symmetry. As before, we can add a ¢
coupling to generate neutrino masses and forbid the LQ
couplings of S%/ .

The situation starting from the other derivative inter-
action is similar, hence we can generate:

2/3%y,2/3, e
0,8, Vi _)H(fAfB,AE)z(l,—l)

1 ) o
= 2 aﬂ¢(ngL + d%”R)dSVMU%’ (75)
sy

1/3%,1/3, .
0,y vy — Hixs.ac)-(-1)

U e e
= 0,pdSy" q, (d3Cs + g5ug). (76)
Sty

/31 1,4/3,
aﬂ‘f’S‘f Vit _)H?fAfB,Aﬁ):(l,—l)

1 - ~ _
= MM aﬂd’d%dR(”gV”Vg + d%y”e%
sy

+aprey). (77)

All these situations induce (AB, AL) = (1,—1) operators,
see Fig. 6(a), but necessarily involving the axion, with for
example

q, ,dy

q.,Ug

uR ’ (h

c.,c
v

FIG. 6. The (AB,AL) = (1,—1) operators involving one (a)
and two axions (b).

3,0
m3my,

aRy”qEL_inL —+ H.c.

-

0,adry"qSdpt; + H.c.
m%m%/ ya RV 4LARl YL +
A3
QCD 05 5
——— (0 H(1 —y)¢
—>m§m2v(ﬂap7( r)
+ 0,y (1 =y’ )v+--- +H.c.), (78)

where (...) denotes operators with additional light
mesons. Given the proton decay bounds, and taking
Agep # 300 MeV,  this imposes a quite high bound
mg =~ my > 10* TeV, close to the PQ breaking scale and
quite lower than the GUT scale. With those values, such
(AB,AL) = (1,-1) operators cannot affect significantly
the phenomenology of the axion, as its coupling to photons
or gluons remain much larger.

The situation can be different for an axionlike particle
(ALP) with a mass above that of the proton. If the mass is
just slightly above but below that of the neutron,
m, —m, < m, < m,, it could explain the neutron lifetime
anomaly by opening up n — a” + v, realizing the mecha-
nism proposed in Ref. [65]. The branching ratio for that
latter process can reach 1% for m% ~ m?, around the TeV,
i.e., very close to the bounds from direct LHC searches
[66-70]. Such a large rate may be surprising for TeV scale
LQ/DQ, but can be understood from the fact that most of
the mg powers in the operator of Eq. (78) are compensated
by Agqcp. For comparison, the electroweak neutron beta
decay rate is proportional to Gpm3, with m, the electron
mass and Gy ~ 1/vdy, bringing a much harsher scale
suppression.

For this scenario to be viable, the ALP should not decay
too quickly to light particles, since that would allow p —
e(a® — X) at an unacceptable rate. Usually, ALPs have
two gluon and/or two photon couplings. To analyze this
situation, let us turn on the usual ALP photon coupling
tuned by some very high f, scale:

e? dzaPm?

—aOFWF/“’ - F(ao - y}/) = f2
a a

(79)

By comparison, the decay rate into proton plus antilepton
(or antiproton plus lepton) is

2\ 2 3 2
Y, mg m m,A\ CD
=0 =52(1-5) () - 0

while the neutron decay rate into ALP is

my, m2\?% (m A3CD 2
F(n—)dov)—ﬂ<l—m—;> (;2’22 > . (81)
n N
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Now, kinematically, proton decay can occur via the process
p — £(a® - yy), whose decay rate is (r, = m,/m,, and
the lepton mass is set to zero)

L(p - £(a™ - yy))

3
_ 20’ m;, <mpAQCD)2
7 i

mgmy
|
X dz
0

Form, < m, < m,,if we impose thatthe p — #(a* — yy)
lifetime is greater than 1032 years,

201 = )2 1 202m3, (M, Ao\ 2
Z(1=2)n “mp(PQCD>' (82)

(ra—2)*  3afi \ mimy

(83)

1016GV 1/4
mszmv>900GeV< e) .

fa

Plugging this in Eq. (81), the branching ratio for n —
a® + v is at around 1% provided f, is pushed at the GUT
scale, f, ~ 10'® GeV, see Fig. 7. Note that for that value of
fa» the ALP still decays mostly into yy as ['(a® — p#) >
['(a® — yy) requires f, about an order of magnitude larger.
The p — #(a% — yy) decay can happen only for Z = e, ,
but the underlying LQ couplings could actually exhibit
nontrivial flavor hierarchies. If they couple preferentially to
the 7, then proton decay would be forced to occur via more
suppressed channels, e.g., via p — zv,(a® — yy), and f,
could be brought down by a few orders of magnitude. Thus,
an ALP could realize the scenario proposed in Ref. [65] to
solve the neutron lifetime puzzle, though it does not
alleviate its inherent fine tuning of the dark particle mass.
For heavier ALPs, neutron decay is kinematically closed,
and the I'(a® — pZ,nv) > I'(a® — yy) pattern can arise for
lower f, values (though still very large from the axion point
of view), with for example I'(a® — pZ,nv) > I'(a® - yy)
for f, > 10"° GeV if m, = 100 GeV. This, however,
requires also to boost the a — pZ,nv rate by allowing
light LQ/DQ at around the TeV scale. Even if I'(a® —
pz:” , nb) does not dominate, such decay channels could have
some cosmological implications. From a baryogenesis
point of view, it is interesting to remark that the present
scenario has all the necessary ingredients. Provided the LQ/
DQ couple to more than one SM fermion states, several
operators will simultaneously contribute to the a°
p? ,nv and a° - p¢, v decay processes, and since the
LQ/DQ couplings to SM fermions are a priori complex,
their rates would be different (slightly, as rescattering is
|

-

10-17 ¢ 5x10°
5 &
=l
27 f T T g
P e I e el P S
N7 ’ ase I1 8
8 N R 1 Lase 50 1 5x10% %
= o E T (=N
.E:: 5 oy N}/ &
= Vl’/'a > 5
i 1047E / \\\/’1 {1x10*
g ot N Js000 B
o 1 NZ C g
A 1057 N se 3
o N / &
£ ! > 41000 <
-67 =
10 E. L N L s L " L N L H L 500
108 1010 1012 104 1016 10'8

ALP decay constant £, (GeV)

FIG. 7. Evolution of the a® = yy, a® - p#, n = a° + v and
p = £(a% — yy) widths as functions of f,. The dashed line
indicates the observed neutron lifetime discrepancy, I'youe —
Tpeam = 7.1 x 1073° GeV [65]. The ALP mass is kept fixed at
m, = 0.9384 GeV. The LQ/DQ mass is adjusted so that
o(p = £(a” — yy)) = 102 yr. For the (AB,AL)=(1,-1)
operator, Eq. (78), mg~ my then follows the indicated line
(Case I), and must be a bit below the TeV to reproduce
the observed Toye — peam discrepancy. Concerning the
(AB,AL) = (1,1) scenario, for which leptons and antileptons
should be interchanged, the extra factor of f, in Eq. (90) sets
mg ~ my ~ 90 TeV independently of f, (Case II).

required). In this picture, note that if there are several LQ/
DQ states with a non-trivial mass spectrum, their decay
chains may first generate an asymmetry when mgy > m,
[45], but it would be washed out and regenerated at a lower
scale by the ALP decays. Whether this mechanism is
sufficient to generate the observed baryon asymmetry is left
for a future study.

To close this section, let us mention another scenario in
which (AB,AL) = (1,—1) operators require two deriva-
tive couplings, and proton decay is associated to axion pair
production. Specifically, if we start from

Lysvzirq = Lksvz + S?/3(Q%QL + dgug)
+ Séﬂ(aRfL +qLug) + aud’s%/ﬁv%/w
+0,0Vy 18 + pHVITVY M 4 Hee,
(84)

the mixing between S%/ * and Sé/ > can only occur through

that of V%/; and V;/If . Specifically, with this specific choice

of couplings,

¢ S%B V%/: S;B Vé/,f qr ugr dg L e g
uil),; -1/3 -2/3 -1/3 1/3 0 1/3 1/3 1/3 0 0 O (85)
ul), 1/3 0O -1/3 -1 -=2/3 0 0 0 1 1 1
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Thanks to these charges, which crucially follow from
whether ¢ or ¢' are introduced in the couplings, no other
SM fermion couplings of the LQ/DQ, nor any other
renormalizable couplings among the LQ/DQ, is allowed.
Turning on ¢k does not change this picture, except for

the operator ¢ S%/ 3Sé/ ’ Sé/ . This is quite natural looking at

the Lagrangian, since ¢'S>>51/?S)/ followed by §7/° —
7q, and S5 — G, v permits to recover $Suy by closing
the ¢; loops. As the ¢"S3S)/3SY3 and $piug have the
same quantum numbers, both carrying (AB,AL) = (0,2),
they are both able to generate neutrino masses only, and do
not affect the (AB, AL) = (1,—1) pattern.

The leading operator for proton decay is now (Fig. 6(b)):

1 i )
Has.a0)-(1-1) = mqﬁaﬂfﬁa"d)HT(QE% + dRug)
X (dRe] + qgvR), (86)

and it contains in particular

e _ U¢UA?2CD0 00040 5(1 — 45\ ¢
(AB,AL)=(1,-1) — W ,a°0"a’p(1 =)
+---+H.c. (87)

Phenomenologically, proton decay is suppressed, even for
relatively low mg ~ my of O(10 TeV). On the other hand,
|

if a° is an ALP with twice its mass above the proton but
below the neutron mass, this setting is less interesting
because the LQ/DQ masses need to be too low to reach
B(n — a° + a° + ©) ~ 1%. Whether ALP or axions, the
cosmological implications of this scenario would be worth
further study though, as the consequences of opening up
(possibly CP-violating) a’ + p <> a° + 7 and a° + p <
a® + ¢ scattering processes could provide a new baryo-
genesis mechanism.

2. Spontaneous breaking of B+ L

To attain (AB,AL) = (1,1) operators, the trick is to
start from the previous scenario, but use some additional
LQ couplings to switch £ by two units. Specifically, we can
consider

Lxsvz 410
= Lgsvz + S%/B(Q(L:LIL + dgug)
+ VY g €S + qur'§)
+ 0,087 VI 4 gHTVITVY M £ He (88)

Provided V%/: has no couplings to SM fermions, and only

those two interactions among ¢ and the LQ/DQ are present,
two U(1) s are present in the Lagrangian, with charges

¢ S?B V%/: Vé/s'” qr ur dp O er g
U(l)s —1/2 —2/3 —1/6 1/3 1/3 1/3 1/3 0 0 0 (89)
u(l), -1/2 0 1)2 o 0 0 1 1 1

So, the U(1), » symmetry is spontaneously broken, while
B — L remains. If neutrino masses are generated by adding
the g coupling, the remaining exact U(1) symmetry
suffices to keep off all other interactions among ¢ and the
LQ/DQ, as well as the LQ/DQ couplings to SM fermions
not already present in the Lagrangian, except for a

ngSi/ ’ Vé/ o V;/; which carries the same quantum number

q, ,dy

qL ’uR

MR ’QL

f[ )VR

FIG. 8. Axion-induced (AB,AL) = (1, 1) operators.

as ¢'vxCvg. Neither is able to open new (AB, AL) patterns
for proton decay.
The leading B + £ violating operator is (see Fig. 8)

H?fAfB,AL):(l,l)

1 . ) i i

= $0,PH" (@14 + dgur) (@ €1 + v ve)

Sty

VEwW Yy _ - _ -

msz 0,a°(q$qy + d{ug)(agr'e, + d5y'vg).  (90)
Sty

Phenomenologically, thanks to the wvgwv, from the
¢H Vé/lf +V%/ # coupling, the LQ/DQ scale can be lower
by about an order of magnitude without violating proton
decay bounds. For ALPs, the main difference with the
(AB,AL) = (1,-1) scenario is that f, = v, occurs in
the n — a’% and a° — p# amplitudes, but cancels out from
the p — #(a” — yy) rate. This means that mg ~ m cannot
be as low as before, but must above 90 TeV. Yet, this high
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scale is compensated in the n — a7 rate by the v, factor, so
its branching ratio can still reach O(1%). Actually, the
dependencies of the various rates on f, stays exactly as
depicted in Fig. 7, but for mg ~ my =~ 90 TeV.

Note, finally, that B+ £ violating operators are not
easily forced to involve pairs of axions. The pattern of LQ/
DQ couplings to SM fermions, and their hypercharge, does
not leave many options if only renormalizable operators are
allowed. The simplest we could find would require two
different Higgs doublets, so would be suitable for the DFSZ
model

Lprsz1.0=Lprsz + ST/3C_1ng + S?B (dgvs +iige§+qLty)
+0,087 VY 10,087 TV

+ 2/3t1,4/3,
+HLHVYT VI 4 Hee. (91)
As the phenomenology is similar as that for B — £ violating
operators, we do not detail this situation further.

3. Spontaneous breaking of 1B

Given that we want to start from the derivative couplings,
which are all quadratic in the LQ/DQ, we will need to add
at least some cubic interactions. This quickly increases the
number of new state needed, and phenomenologically, the
longest the chain, the smallest the predicted rate given that
LQ/DQ masses are at least of a few TeV.

The simplest processes correspond to the skeleton graph
d,¢ — X;(X; = X;X,), with the final X, X;X, set allowing
for (AB,AL) = (2,0) transitions, so X; ;, = Sy or V for
some y. If X; is integrated out, the effective operator
involves d,¢X; X ;X; plus some Higgs fields. The simplest
such operators are of dimension six, and only seven of them
are compatible with the gauge symmetries,

0! (S SSIVE VPRV,
(92)

QHVIHVLV SISV

2/3 3+,5/3, 4/3 «8/3+,1/3,
SRSV s SYRVYR, (93)

where d,¢ could be replaced by dﬂqﬂ' wherever required.
Starting from the three derivative interactions of Eq. (72),
there are several ways to reach these operators using a
HX,X ;X or H'X;X X, coupling. Since X; =S} or V{,
these operators alone cannot induce (AB,AL) = (2,0)
processes. Further, if X; transforms as a 6, it does not
couple to SM fermions hence these operators cannot lead to
proton decay either. If X, transforms as a 3, one must make
sure the PQ charges forbid X; — #¢q. All this nevertheless
leaves many possible mechanisms, though many of them
turn out to be essentially equivalent phenomenologically,
so let us take an example.

Consider the Lagrangian

2/3 - - 1/35
Lxsvzi1o = Lksvz + Sl/ (g$qL + diug) + Vz,/ﬂ dsir'q,
2

+ 0,6V S + VISPV 4 He.,
(94)
where 7% and V/** transform as 3, but V2/** ~ 6 since

the final operator 0M¢HS%/ 3S%/ 3V§/ *# would cancel for

Vé/ 3. Dropping the ¥, g, as their charge can inde-
pendently be fixed by turning on some couplings to the LQ,
the active U(1) s are then

2/3 13 2/3
¢ s° v v

qL ug dg O er g

Ul); 2 —2/3 —2/3 4/3
ul), 0 0 0 0

1/3 1/3 13 0 0 0 (95)

0 0 0 I 1 1

Turning on any of the LQ couplings of S%/ Y or V?/: would
break U(1)g, », and induce proton decay [compare Eq. (94)
with Eq. (88)]. At this level, their presence is thus forbidden
by the still active U(1)z and U(1), symmetries. For an
even stricter protection, the PQ symmetry can be extended
to prevent these couplings. It suffices to add a seesaw
mechanism with the ¢'0%v; coupling, something we
should do anyway (the ¢vrz would instead allow all

the LQ couplings). Note that S?/ ? and Vé/:

D”HSf/ o Vé/; term, but this is inessential since they have

the same 5 and £ quantum numbers. This scenario lead to

can mix via a

neutron-antineutron oscillation operators, with the diagram
of Fig. 9(a), corresponding to

eff
H(AB,A,C):(2.0)

1 . N ) L
= ﬁdﬂrﬁH(qiqL + d{ug) (g qr, + diug)dzy*q; + H.c.
S

vA%cp _
- m—anﬂaOnCy"ysn +---+Hc,

(96)

where we have set all the DQ masses to a common mig
value. Since there is no associated n — i1 operator, this scale
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q, .4y

QI, ’ dR
QI, ’ uR
g, ,dy

qL ’ uR
q;

dy

ql. 4 ul(’

FIG. 9. One and two axion induced neutron-antineutron oscil-
lation (AB, AL) = (2,0) operators.

can in principle be quite low. The best low energy limits
come from nuclear transitions, as this operator also con-
tributes to nn — a, but those do not push mg well above the
TeV scale [71]. The main constraint thus come from LHC
searches [66—70]. Note, though, that the generic leptoquark
searches may not apply to this case: all these states decay to

diquark pairs and, furthermore, Vz/ ¥ could end up quite

/3” and S2/3” and would

long lived if it is lighter than V,
show up in channels with at least four jets.

Even if mg can be quite low, at around the TeV say, the
a’nn coupling is significantly smaller than the other

couplings, including to nn, as can be estimated setting
f a = Uy

1 AQCD

— R~

fa ms

fa \V¥
= mg =~ 10 GeV x (m) s (97)

for Agep 300 MeV. Even with f, close to the Planck
scale, the LQ mass would need to be well below the TeV
scale, which would again be ruled out by direct searches.
For mg around the TeV, the a’nn coupling is at best 107!°
smaller than that to a’nii. Thus, a’nn does not represent a
competitive signature for direct axion searches.

Indirectly, the a’nn coupling may nevertheless open new
routes by relying instead on neutron-antineutron oscillation
phenomena. Indeed, while a’nn cannot generate n — i in
vacuum, oscillations could now be catalyzed by an axion
dark matter background. While the typical high frequency
of the coherent axion field precludes any observation using
standard beam searches for n — 7 oscillations (the induced
om,_; would average to zero), transient variations of the
axion field may be observable in this way. Another
possibility would be to exploit the magnetic splitting
between n and 7 states, which in a 1T magnetic field
would be of about 10~7 eV [63], larger than the axion mass
if £, > 10'* GeV. Note that the neutron beam go through a
4.6 T magnet in neutron lifetime experiments, Ref. [72,73],
and that axion-induced mixing effects, if they occur, would
not have been excluded by the recent mirror neutron search
of Ref. [74], which relies on hypothesized mirror neutrons
capabilities to pass through normal matter.

Two other features compared to the usual neutron
oscillations are worth mentioning: the coupling is axial,
iiCy#ysn, instead of the usual scalar 7i“n oscillation
operator, so the spin dependencies are different [75], and
the 9, a’iCy*ysn coupling can be CP violating [76-78]
since the DQ couplings are a priori complex, so n and 7
may react differently to an axionic background. Also,
compared to neutron-mirror neutron oscillations, like those
invoked to explain the neutron lifetime anomaly [79], the
antineutron would not be invisible but would either decay
to antiproton, or annihilate with the surrounding matter. A
quantitative analysis of these signatures is clearly called for
but would require a detailed study, which go beyond our
scope. Also, other manifestations of the a’nn coupling in
an astrophysical and cosmological context are left for a
future study.

With only three LQ another rather simple scenario can
lead to the d,¢H"V, uyl/ 3V2 operator by virtual S}/
exchanges, and 1nvolves only states transforming as 3:

2/3 = - 1/34
Lxsvzirq = Lksvz + 51/ (g5 qr + diug) + Vz,/ﬂ dgr'a,
+ aﬂqbsé/}}' Vé/lﬂ + H'}'Sé“ V;{j Vé/3~l/ +Hec.
(98)

The same U(1)pz charges are found as in Eq. (95), with

Vz/ 3 S)3. Also, as before, adding the ¢"7Su, coupling

prevents all the LQ couplings of Vl/ ’ S2/ 3 and Sl/ .
Proton decay is now forbidden by the ex1stence of the PQ
symmetry at the high scale, and does not arise at the low
scale thanks to the specific (AB,AL)=(2,0) and
(AB,AL) = (0,2) symmetry breaking pattern. The final
operator is phenomenologically similar to that in Eq. (96).

Many other choices of DQ states are possible, but they
lead to similar patterns. We will not investigate more
complicated processes, except for the following that leads
to a different phenomenology:

(a5 qr + dgug) + V;,/;433§7#QL
0S4 0V
+¢8, VIV + Hee. (99)

2
Lxsvzirg = Lksvz + S 1/

In some senses, it combines the previous two scenarios, and
gives the same charges as in Eq. (95), with Vl/ 3 and Sl/ .

having B = 4/3. Also, the ¢'25vy coupling now suffices to

prevent the LQ couplings of the four states, Vé/; , V%/; ,

S?/ 3, Sl/ 3. What differs however is how the (AB,AL) =
(2,0) effects are induced at the low-energy scale. The
two derivative couplings are needed, and ¢ further occurs

in the cubic DQ coupling, so the leading operator is
[see Fig. 9(b)]

055034-24



LEPTOQUARKS, AXIONS AND THE UNIFICATION OF B, ...

PHYS. REV. D 106, 055034 (2022)

HffAfB,AL):(z,o)
1 . _ - _ -

= Wff)aﬂﬁ'auffﬂ(qg% + djug)d{r*qrdgy’q, + H.e.
s

6
U¢AQCD
- 10
mg

0,a°0"a’iysn + --- + H.c. (100)

Though this operator is now of dimension 14 instead of that
of dimension 12 in Eq. (96), the extra suppression is
compensated by the v,, factor since v,Aqcp/m3 is of O(1)
for mg around the tens of TeV scale and v, at around
10° TeV. The nuclear transition bounds are thus similar as
in the single axion case, and in any case not competitive
with direct collider searches for new colored states.

and 7+ i <> a’ +a®. Though unlikely to be ever
observed, these processes could play a cosmological role.

4. Spontaneous breaking of B + 3L

The (AB,AL) = (1,3) scenarios are trivially obtained
from any of the (AB,AL) = (2,0) Lagrangians of the
previous section by switching all DQ couplings to LQ
couplings. For example, starting from Eq. (98),

2/3 5 _ _

Lxsvzirg = Lksvz + 51/ (dgvg + iigel + qLty)
13- _ 1/341,1/3,
+ Vz,/” (apr*f5 + quy'vy) + aﬂ¢SZ/ TVz/ !

) \ : + HISYPVIBVIEY L He, (101)
Phenomenologically, neutron-antineutron conversion now ’
requires pairs of axions, and would occur through scatter-
ing processes like @’ +n < a® +ii or n+n < a’+a”  leads to the charges
|
¢ S%ﬂ Vé/,f S%B qr ug dp €L ep g
Ul -1 —2/3 1/3 1/3 1/3 1/3 1/3 0 0 0 (102)
ul), -3 -2 1 1 0 0 0 1 1 1
By analogy, (AB,AL) = (1,-3) transitions can be induced by taking the Lagrangian
Lisvzirg = Lisvz + Sy (drlr + Guug) + Vi dgy'vg + 0,0V ST + 987788, + He.,  (103)
with the charges are
¢ S%/?) Sé/S Vi/; qr, Up dR fL €r Up
Ul 1/2 -1/6 1/3 1/3 1/3 1/3 1/3 0 0 0 (104)
ull), -3/2 1/2 -1 -1 0 0 0 1 1 1

Note that for each case, additional (AB,AL) = (0,0)
couplings involving pairs of LQs are possible, like
QHS, ST or DFHSY VI for the (AB, AL) = (1.-3)
scenario. Those can neither affect the symmetry pattern, nor
open new routes for proton decay.

Phenomenologically, these scenarios are very similar to
the (AB,AL) = (1, £1) ones described before, so we will
not detail them further. The main difference is the extra
suppression of proton and neutron decays due to the higher
dimensionality of the operators, and of the many particles
in the final states. These scenarios thus have essentially the
same phenomenology whenever these suppressions can be
compensated by lowering the LQ mass scale without
violating LHC bounds.

IV. CONCLUSIONS

In this paper, the opportunities arising from combining
leptoquarks and diquarks with axions have been

|
systematically analyzed. From a phenomenological stand-
point, our main results are:

(1) The PQ symmetry of which the axion is the Gold-
stone boson can be identified with any combination
of baryon 5 and lepton £ numbers. In this way, B
and L appear partly protected by the PQ symmetry,
which has to be exact above the PQ breaking scale.
Reminiscent of the possible AB and/or AL oper-
ators made of SM fields (see Table I), the simplest
scenarios identify U(1)pq with U(1)5.z, U(1)py3cs
U(1)g, or U(1),, and induce spontaneously either
proton decay, neutron-antineutron oscillations, or a
Majorana mass terms for v; (or more generally,
neutrinoless double beta decays).

(2) All scenarios can be supplemented with a seesaw
mechanism. The axion is then not only the Gold-
stone boson associated to U(1)z. ., U(1)gyi3., OF
U(1)z breaking, but becomes also the Majoron
associated to the U(1), breaking. Though no global
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symmetry (besides of course U(1)p itself) remains,
each scenario retains a specific phenomenology. For
example, when U(1)p, is identified both with U(1)5
and U(1),, (AB,AL) = (2n,0) and (AB,AL) =
(0,2n) transitions are possible, but proton decay
cannot occur.

(3) For each pattern of symmetry breaking, it is also
possible to prevent axion-free proton decay, neu-
tron-antineutron oscillations, or neutrinoless dou-
ble beta decays. In other words, one can make sure
(AB, AL) effects always involve at least one axion
field. Phenomenologically, (AB,AL) = (1, 1) sce-
narios open the door to p — a® + ¢, n - a° +v,
p—2a°+¢, n—2a°+v, and scattering proc-
esses like a’+ (p,n) <> a® + (¢,v). Scenarios
with (AB,AL) = (1,-1) or (1,£3) are similar.
Following the strategy proposed in Ref. [65], if a°
is an ALP of just the right mass, such that proton
decay is forbidden but neutron decay is not, these
scenarios are able to solve the neutron lifetime
puzzle, see Fig. 7.

(4) When applied to (AB,AL)=(2,0) operators,
being forced to include an axion field could lead
to very peculiar effects. The phenomenology of the
0,a° i y*ysn and 0,a°9"a°7Cysn interactions have,
to our knowledge, not been investigated in detail yet.
Though a dedicated analysis is called for, we do not
expect these interactions to be phenomenologically
relevant in vacuum, but they could open interesting
channels in an axionic dark matter background, or
transitions like n — i +a® or n - i +a° + a° in
an intense magnetic field.

Besides these phenomenological aspects, we have also
analyzed the consequences on the foundations of axion
effective Lagrangians. Whenever the axion is associated to
some patterns of U(1)z and/or U(1), breaking, the SM
fermions become charged under the PQ symmetry.
Typically, they thus occur in the usual f,-suppressed
derivative interactions, but through vector current inter-
actions, aﬂaol/'/y”y/ (since B and L are vectorial). Often,
these interactions are discarded owing to the naive vector
Ward identity, but this is incorrect for two reasons:

(5) Axion-gauge field interaction are usually expected

to be (g%/fa)Nxa®X,, X", X =G, W', B, with
Ny summing up the contribution of all the fields
charged under both the PQ symmetry and the X
gauge interactions of strength gy. Thus, Ay depend

on the SM fermion charges, with in particular Ny
and N g depending on how U(1)z and/or U(1), are
embedded in U (l)PQ. Yet, as shown in Ref. [31],
the SM fermion contributions to Ny and N
arising from U(1)z and/or U(1), systematically
cancel with that coming from triangle graphs built
on the corresponding 6ﬂa0y7y"y/ interactions. At the
end of the day, the U(1)z and/or U(1), components
of U(1)pg do not alter the axion to gauge boson
couplings, even though this is not apparent at the
level of the effective Lagrangian.

(6) The counting rule in powers of 1/f,, central in

constructing the axion effective Lagrangian (see,
e.g., Ref. [30]), is invalid when B and/or L are
broken spontaneously along with the PQ symmetry.
Indeed, the equations of motion of the SM fermions
(or that of the leptoquarks if they have not been
integrated out) inherit O((f*)"), n > 1 terms, so
that O(f2~!) interactions are hidden inside
f2'9,a°py*w. In practice, in the present paper,
all these interactions were suppressed by some
relatively high power of the leptoquark masses,
which are pushed above the TeV by direct collider
searches. Thus, in all the scenarios considered here,
the B and/or L violating interactions are not
expected to be dominant compared to, e.g., the
two photon or two gluon modes for f, below the
Planck scale. Still, as this relative suppression has
nothing to do with f,, there is no guarantee it
always happens.

In conclusion, even if entangling the PQ symmetry with
the accidental symmetries of the SM requires new lep-
toquarks states, and often several of them, these scenarios
end up being more economical from a U(1) global
symmetry point of view. The axion becomes a central
piece, not only solving the strong CP puzzle, and maybe
making up for the observed dark matter, but also setting off
the seesaw mechanism and introducing potentially CP
violating baryon number violation. With all its capabilities,
the axion could hold the keys to many of the standing
cosmological enigmas.
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