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In this paper, axion models supplemented by leptoquarks and diquarks are systematically analyzed.
Turning on some couplings to and among these latter states permits us to unify the Peccei-Quinn symmetry
with baryon (B) and lepton (L) numbers, such that the axion becomes associated to the spontaneous
breaking of the three Uð1Þ symmetries. All possible four- and six-fermion patterns of B and L violation are
discussed, including those inducing proton decay, with ΔB ¼ 1 and ΔL ¼ �1;�3, neutron-antineutron
oscillations with ΔB ¼ 2, and Majorana neutrino masses with ΔL ¼ 2. Scenarios in which one or two
axion fields necessarily appear in any B and/or L violating operators are also constructed. Nucleon decays
would then necessarily involve an axion in the final state, while neutron-antineutron oscillations would
only happen in an axionic background. This could have implications for the neutron lifetime puzzle, and
more generally, opens the door to new phenomenological and cosmological applications.
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I. INTRODUCTION

Nowadays, the axion mechanism represents our best
solution to the longstanding strong CP puzzle, that is, the
non-observation of CP violation in the strong interactions
that should have manifested itself as an electric dipole
moment for the neutron [1].
The axion mechanism relies on the spontaneous break-

ing of a new symmetry, the Peccei-Quinn (PQ) symmetry
[2], and on the subsequent realignment of the associated
Goldstone boson, the axion [3,4], by strong interaction
effects that kills off any CP violation in the QCD
Lagrangian. This solution is thus tailored to the problem
it is intended to solve and, as such, may appear a bit ad hoc.
In addition, unsuccessful experimental searches for the
axion have ruled out its simplest incarnation, leaving us
with essentially two classes of scenarios in which the axion
is extremely light (well below the eV scale) and very weakly
coupled to normal matter: the Kim, Shifman, Vainshtein,
Zakharov (KSVZ) framework [5] in which new very heavy
colored fermions are introduced, and Dine, Fischler,
Srednicki, Zhitnitsky (DFSZ) scenario [6] in which at least
two Higgs doublets are required. Though the strong CP
puzzle is extremely serious, additional motivations appear

desirable to justify such departures from the StandardModel
(SM) matter content. To that avail, knowing that the axion
could alsomake up for the observed darkmatter (DM) offers
a strong incentive to pursue this route [7].
Yet, current axion models cannot explain why the DM

relic density is so close to that of baryonic matter. Though
this may be totally coincidental, it nevertheless suggests a
link between DM and baryogenesis [8], another prominent
cosmological enigma.Actually, it suggestsDMis not foreign
to baryon B or lepton L number (see Ref. [9] and references
therein for a recent analysis), or that DM is somehow related
toB being spontaneously broken [10]. In parallel, there have
been many attempts at involving axions in the baryogenesis
mechanism, see, e.g., Refs. [11–16], though in general still
relying on the SM anomalous B þ L effects.
With this motivation in mind, our goal here is to design

models in which the PQ symmetry is, at the fundamental
level, entangled with B and L. As a matter of principle,
accidental symmetries are not particularly attractive, but
while we can live with the PQ symmetry, assuming some
dynamics hide behind it, B and L cannot be viable since, as
said before, the electroweak nonperturbative dynamics
break them, and baryogenesis asks for their violation. By
unifying the PQ symmetry with B and L, all three are
broken spontaneously, but a single Goldstone field remains,
the axion (for some recent works along this line, see
Refs. [17,18]). In this way, the complex scalar field whose
pseudoscalar component is the axion becomes charged
under B and L and, at the high scale, protects the model
from additional B and/or L violation. At the same time,
though the axion has no charge, it inherits a B and/or L
violating phenomenology. Whether this is sufficient to
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relate the DM and baryonic relic densities remains to be
seen, and is beyond the scope of the present paper, but we
think these constructions may direct us in the right direction.
In this paper, we will use scalar and vector leptoquarks

and diquarks to entangle the PQ, B, and L symmetries.
Such states are well motivated in various theoretical
settings (see Ref. [19] for a review) and, furthermore,
supported by a number of anomalies like theW boson mass
[20], B decays [21] or ðg − 2Þμ [22–24], or even combi-
nations of them [25–27]. Our goal is to systematically
analyze the B and/orL symmetry breaking patterns that can
arise combining the DFSZ and KSVZ scenarios with
leptoquarks and diquarks and, in each case, to analyze
the impact on the axion phenomenology.
The paper is organized as follows. In Sec. II A, we

briefly introduce the KSVZ and DFSZ axion models and, in
Sec. II B, discuss in some details the ambiguities arising
from the B and L fermionic currents [28,29]. Then in
Sec. II C, we set up the leptoquark and diquark sector,
describing all the possible B and L explicit breaking
patterns achievable with these states. This forms the basis
for combining the axion and leptoquark/diquark sectors in
Sec. III. We analyze first the KSVZ setting in Sec. III A and
describe the ðΔB;ΔLÞ ¼ ð1;�1Þ; ð2; 0Þ; ð1;�3Þ sponta-
neous breaking patterns, further adding to them a sponta-
neously generated ðΔB;ΔLÞ ¼ ð0; 2Þ seesaw mechanism
for neutrino masses. These scenarios are then trivially
adapted to the DFSZ setting in Sec. III B. In the final
Sec. III C, we show how to force ðΔB;ΔLÞ effects to
involve one or more axion fields. The phenomenology is
then quite different, and we briefly describe some possible
consequences for the neutron lifetime anomaly or neutron-
antineutron oscillation experiments. Finally, our results are
summarized in Sec. IV.

II. AXION AND LEPTOQUARK MODELS

In this section, the KSVZ [5] and DFSZ [6] axion models
are introduced, and their connection to baryon and lepton
numbers, B and L, are detailed. Then, we introduce
separately the leptoquarks and diquarks that can be coupled
to SM fermions, and discuss how their couplings drive
specific B and L violating patterns. This sets the stage for
the next section, where both axion models and leptoquarks/
diquarks will be put together.

A. Introducing the KSVZ and DFSZ models

In both the KSVZ and DFSZ constructions, the axion
emerges as the pseudoscalar component of a complex scalar
field. This state is neutral under all the SM gauge inter-
actions, ϕ ¼ ð1; 1; 0Þ under SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY,
but its kinetic term is invariant under the rephasing
ϕ → eiαϕ. This invariance is promoted to a spontaneously
broken symmetry Uð1Þϕ by postulating a rephasing invari-
ant scalar potential with the usual Mexican hat shape,

Vðϕ†ϕÞ ¼ μ2ϕ†ϕþ λðϕ†ϕÞ4, μ2 < 0 and λ > 0. In that
case, the components of ϕ can be written

ϕ ¼ 1ffiffiffi
2

p ðvϕ þ ρÞ expðiηϕ=vϕÞ; ð1Þ

with ηϕ the associated Goldstone boson and v2ϕ ¼ −μ2=λ
the vacuum expectation value (VEV). As the breaking scale
vϕ naturally tunes all the ηϕ couplings, it is assumed much
higher than the electroweak scale to avoid exclusion
bounds.
To solve the strong CP puzzle, ηϕ must interact with SM

particles [3,4], in particular with gluons via a ηϕGα;μνG̃a
μν

coupling [2]. What differentiates the KSVZ and DFSZ
models is how these couplings are introduced. The former
[5] adds a vectorlike colored fermion ΨL;R ∼ ðR;T; YÞ for
some complex representation R of SUð3ÞC, but otherwise
arbitrary weak representation T and hypercharge Y, and
postulates the Lagrangian (the rest of the SM couplings are
understood)

LKSVZ ¼ ∂μϕ
†
∂
μϕ − VðϕÞ þ Ψ̄L;Rði=DÞΨL;R

þ ðyϕΨ̄LΨR þ H:c:Þ − ūRYuqLH − d̄RYdqLH†

− ēRYelLH† − ν̄RYνlLH þ H:c: ð2Þ

The covariant derivative acting on ΨL;R is as appropriate to
its chosen gauge quantum numbers. What characterizes this
model is first that the Goldstone boson of the PQ symmetry
does not mix with that of the SUð2ÞL ⊗ Uð1ÞY breaking
(the phase of the Higgs doublet H). Thus, the axion is
simply a0 ¼ ηϕ, and it has no direct coupling to any of the
SM particles. It only couples to ΨL and ΨR, which
necessarily have different charges underUð1Þϕ. Then, axion
to SM gauge boson couplings first arise at one-loop, via
anomalous ΨL;R triangle loops, while those to SM fermions
require a further gauge boson loop. Since ΨL;R can be
massive in the electroweak unbroken phase, its loops do not
break SUð2ÞL ⊗ Uð1ÞY and the couplings to gauge bosons
have the SUð2ÞL ⊗ Uð1ÞY invariant form [30]

Leff
KSVZ¼−

1

16π2vϕ
a0ðg2sdLCCGa

μνG̃
a;μνþg2dCCLWi

μνW̃i;μν

þg02dLdCCYBμνB̃μνÞ; ð3Þ

with the quadratic invariants and dimensions of theR and T
representations denoted CC;L and dC;L, and CY ¼ Y2=4.
The DFSZ model [6] does not introduce new

fermions, but requires two Higgs doublets. The important
couplings are
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LDFSZ ¼ ∂μϕ
†
∂
μϕ−Vðϕ†ϕÞþϕ2H†

uHdþVðH†
uHu;H

†
dHdÞ

− ūRYuqLHu− d̄RYdqLH
†
d− ēRYelLH

†
d

− ν̄RYνlLHuþH:c: ð4Þ

The potentials and Yukawa couplings are invariant under
three independent Uð1Þs, corresponding to the rephasing
of ϕ, Hu, and Hd. A combination of these is explicitly
removed by the mixing term ϕ2H†

uHd (we could equally
take ϕH†

uHd, but at the cost of introducing a new mass
scale), so that only two Goldstone bosons arise.
Explicitly, if we adopt for Hu;d a polar representation
similar as in Eq. (1), with their pseudoscalar components
denoted as ηu;d and their VEVs as vu;d, the ϕ2H†

uHd

coupling translates as a mass term for the combination
π0 ∼ 2ηϕ=vϕ − ηu=vu þ ηd=vd. One of the two remaining
Goldstone bosons is eaten by the Z boson. Since Hu;d

have the same hypercharge, the would-be Goldstone state
G0 must be G0 ∼ vuηu þ vdηd. The last remaining
Goldstone mode, orthogonal to both π0 and G0, stays
massless and is the axion:

a0∼ηϕþ
vEW
vϕ

sin2βðcosβηu− sinβηdÞþOðv2EW=v2ϕsÞ; ð5Þ

with tan β ¼ vu=vd and v2EW ¼ v2u þ v2d ≈ ð246 GeVÞ2.
The net result of all this is that the axion components
in Hu;d are suppressed by vu;d=vϕ. The leading couplings
of the axion to SM particles come from the Yukawa
couplings, with

Leff
DFSZ ¼ −i

vEW
vϕ

sin 2β
X

f¼u;d;e

mf

vEW
χfPa

0ψ̄fγ5ψf;

χuP ¼ 1

tan β
; χdP ¼ χeP ¼ tan β: ð6Þ

To reach this form, the mass terms are identified as
sin βvEWYu ≡

ffiffiffi
2

p
mu and cos βvEWYd;e ≡

ffiffiffi
2

p
md;e and

the fermions are rotated to their mass basis. In the DFSZ
setting, the axion couplings to gauge bosons only arise
through SM fermion loops. As shown in Ref. [31] (see also
Refs. [32,33]), starting from the pseudoscalar couplings in
Eq. (6), the final couplings to gauge boson do not have the
form shown in Eq. (3), but instead explicitly break
SUð2ÞL ⊗ Uð1ÞY invariance. Naively, this is easily under-
stood since SM fermions only acquire masses after the
SUð2ÞL ⊗ Uð1ÞY breaking.

B. Introducing baryon and lepton numbers

In the following, when introducing leptoquark states,
baryon and lepton numbers B and Lwill play a central role.
The purpose in this section is to gather a few important facts
about the interplay of these global symmetries with the PQ
symmetry. Additional information on this topic can be
found in Ref. [28].
By definition, theUð1Þ symmetry associated to the axion

state is called the PQ symmetry. Given the scalar couplings
described in the previous section, the PQ charges of all the
scalar states are well defined in the KSVZ and DFSZ
models. Explicitly, we have in the KSVZ setting

KSVZ ϕ H
Uð1Þϕ 1 0

Uð1ÞH 0 1

⇒
KSVZ ϕ H
Uð1ÞPQ 1 0

Uð1ÞY 0 1

ð7Þ

and in the DFSZ, choosing the two independent Uð1Þ
symmetries as those associated to Higgs doublet
rephasings,1

DFSZ ϕ Hu Hd

Uð1ÞHu 1=2 1 0

Uð1ÞHd −1=2 0 1

⇒
DFSZ ϕ Hu Hd

Uð1ÞPQ ðxþ 1=xÞ=2 x −1=x
Uð1ÞY 0 1 1

ð8Þ

with the conventional notation tan β≡ 1=x. Note that the
Uð1ÞY and Uð1ÞPQ charges of the two Higgs doublets are
not “orthogonal,” reflecting the fact that the original
Uð1ÞHu and Uð1ÞHd charges for the three states
ðϕ; Hu;HdÞ were not. Also, it is important to keep in
mind that though well defined, these PQ charges are only
defined in the electroweak broken phase, since they are a
function of x≡ vd=vu.

For fermions, identifying the PQ charge is less trivial
because the Yukawa couplings allow for two global
symmetries, B and L (no particular structure is assumed
for Yu;d;e;ν, so individual flavors are not conserved
a priori). Looking at the Lagrangian, the KSVZ model
prescribes

KSVZ ΨL ΨR qL uR dR lL eR νR
Uð1ÞPQ α α− 1 β β β γ γ γ

Uð1ÞY Y Y 1=3 4=3 −2=3 −1 −2 0

ð9Þ
1The PQ charges of ϕ,Hu andHd are simply the coefficients of

ηϕ;u;d in Eq. (5), up to a choice of normalization.
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where α, β, and γ are arbitrary, and correspond to
conserved Ψ number, baryon number, and lepton number,
respectively. Similarly, for the DFSZ model,

DFSZ qL uR dR lL eR νR
Uð1ÞPQ β βþ x β− 1=x γ γ − 1=x γþ x

Uð1ÞY 1=3 4=3 −2=3 −1 −2 0

ð10Þ

Since β and γ are aligned with baryon and lepton numbers,
it is tempting to set β ¼ γ ¼ 0. This is not acceptable. For
the DFSZ scenario, all the SM fermions do couple to the
axion, but these couplings are not SUð2ÞL ⊗ Uð1ÞY
invariant. Looking at Eq. (6), no value of β or γ makes
perfect sense since the PQ charge of the Dirac u and d
states are different, so that of qL cannot be defined. The
situation appears simpler in the KSVZ case, where it
seems rather natural to set β ¼ γ ¼ 0 since the SM
fermions are not directly coupled to the scalar field ϕ.
Yet, even that is not tenable.
To see this, let us set off a seesaw mechanism [34]. Given

the quantum numbers of the νR field, we can either allow
for a Majorana mass term MRν̄

C
RνR, a coupling ϕν̄CRνR, or a

coupling ϕ†ν̄CRνR. These three cases are mutually exclusive
since they impose different PQ charges to νR. Let us
consider the ϕ†ν̄CRνR case, which in effect identifies the PQ
symmetry with lepton number symmetry, and the axion
with the Majoron [35–37] (see also [38]). It imposes
nonzero values for γ [28]

KSVZ∶ϕ†ν̄CRνR → γ ¼ 1

2
; ð11Þ

DFSZ∶ϕ†ν̄CRνR → γ ¼ 1 − 3x2

4x
: ð12Þ

In both cases, the PQ current acquires a component aligned
with the lepton number current, JμL ¼ l̄Lγ

μlL þ ēRγμeRþ
ν̄Rγ

μνR. In other words, lL and/or eR do end up PQ charged
also. Yet, in the KSVZ case, a look at the Lagrangian shows
that neither are directly coupled to ϕ. Because of ϕ†ν̄CRνR,
the axion does end up coupled to right-handed neutrinos,
with a a0 → νRνR vertex, but no such ΔL ¼ 2 coupling
exists with the other leptons since it is forbidden by
hypercharge. Only at the cost of extra Higgs doublet
insertions could a a0 → νLνL exist, as arising from an
effective PQ- and hypercharge-neutral operator ϕ†HlL

HlL (or ϕ†HulLHulL in the DFSZ model), while obvi-
ously, any ΔL ¼ 2 coupling to charged lepton would
require either extra gauge fields, or charged Higgs bosons.
The ambiguous nature of the PQ charges of fermions is

not purely academic. In most phenomenological studies of
the axion, the starting point is the effective Lagrangian that
is obtained by reparametrizing fermion fields to make them
PQ neutral (even if that is usually not explicitly stated):

ψ → expð−iPQðψÞa0=vϕÞψ ; ð13Þ

where ψ denotes generically the PQ-charged fermions.
Since the underlying physics is PQ neutral, this looks
innocuous. Yet, it modifies the Lagrangian of the model in
two important ways. First, it removes the axion field from
Yukawa interactions (both for the SM and heavy fermions,
if present), and replaces them by shift-symmetric derivative
couplings of the axion to the fermionic PQ current, as
adequate for a Goldstone boson

δLDer ¼
∂μa0

vϕ
JμPQ; JμPQ ¼

X
ψ

PQðψÞψ̄γμψ : ð14Þ

Second, the PQ symmetry being anomalous, the fermion
reparametrizations in Eq. (13) change the fermionic mea-
sure. To account for this, one must introduce anomalous
couplings to the gauge bosons,

δLJac ¼
a0

16π2vϕ
ðg2sN CGa

μνG̃
a;μν þ g2N LWi

μνW̃i;μν

þ g02N YBμνB̃μνÞ; ð15Þ

where the coefficients N C;L;Y are functions of the PQ
charges of all the fermions, and generically given by

N X ¼
X
ψ

PQðψÞCXðψÞ; ð16Þ

with CC;L;YðψÞ the quadratic invariant of the field ψ under
SUð3ÞC, SUð2ÞL or Uð1ÞY. The effective Lagrangian

LEff ¼ δLJac þ δLDer; ð17Þ

is in general the basis in which the axion phenomenology is
studied, with the common further assumption that δLDer is
model dependent and subleading compared to the model
independent δLJac. Yet, since the PQ charge of the fermions
are ambiguous, both δLDer and δLJac are also ambiguous.
This is most striking in the DFSZ case, whereN L ∼ 3β þ γ.
This conundrum was analyzed in Ref. [31], where in
particular it was shown that δLDer and δLJac do in fact
contribute at the same order to physical observables, and
that this ensures all the ambiguities in δLDer and δLJac
cancel each other systematically. This means that the
couplings to (chiral) gauge bosons cannot be read off
δLJac, and that δLDer cannot be neglected.
For our purpose, it is important to emphasize how this

translates for the baryon and lepton numbers. Thus,
consider the KSVZ scenario with the fermion charges in
Eq. (9), keeping α, β, and γ arbitrary, and let us perform the
reparametrization of Eq. (13) for all the fermions. The PQ
current is then identified as
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JμPQ ¼ Ψ̄Rγ
μΨR þ αJμΨ þ 3βJμB þ γJμL; ð18Þ

where

JμΨ ¼ Ψ̄Lγ
μΨL þ Ψ̄Rγ

μΨR ¼ Ψ̄γμΨ; ð19Þ

JμB ¼ 1

3
q̄LγμqL þ

1

3
ūRγμuR þ

1

3
d̄RγμdR ¼ 1

3
ūγμuþ 1

3
d̄γμd;

ð20Þ

JμL ¼ l̄Lγ
μlL þ ēRγμeR þ ν̄Rγ

μνR ¼ ēγμeþ ν̄γμν: ð21Þ

At first sight, one may think to discard the vector currents
JμΨ, JμB, and JμL from the derivative interactions since
upon integration by part, ∂μa0ψ̄γμψ ¼ −a0∂μψ̄γμψ ¼
−a0ψ̄ðm −mÞψ ¼ 0. This is incorrect though. The vector
Ward identity does not survive to the presence of chiral
gauge interactions. While JμΨ can indeed safely be dis-
carded since Ψ is vectorlike, the baryon and lepton currents
are anomalous in the presence of chiral gauge fields:

∂μJ
μ
B¼∂μJ

μ
L¼−

Nf

16π2

�
1

2
g2Wi

μνW̃i;μν−
1

2
g02BμνB̃μν

�
: ð22Þ

Obviously, these contributions trivially cancel the β and γ-
dependent Jacobian terms generated by the fermion rep-
arametrization, which have precisely the same form and
origin. Thus, in the KSVZ setting, it seems that the sole role
of the SM fermions derivative interactions aligned with the
B and L current is to kill the correspondingly spurious
anomalous gauge interactions.
There is a problem in this reasoning though. This

cancellation occurs whether a ϕ†ν̄CRνR coupling is assumed
initially present or not, since the value of γ is irrelevant. This
is puzzling since in the presence of ϕ†ν̄CRνR, the axion should
retain some couplings to νR. In the above argument, the step
at which we lost the aνRνR coupling is in the Ward identity.
After the spontaneous symmetry breaking (SSB), L, as part
of the PQ symmetry, is no longer conserved and the equation
of motion (EoM) of νR breaks explicitly the anomalous
vector Ward identity. In practice, ð∂μa0=vÞν̄RγμνR does
generate the ðMR=vÞa0νRνR coupling. This means that
whether the axion is coupled to νR or not is not apparent
at the level of the effective axion Lagrangian, but hides in the
EoM of νR. Further, these EoM spoil the 1=vϕ scaling of the
effective Lagrangian operators, since they contain terms of
OðvϕÞ. Phenomenologically, this failure of the effective

interactions to manifestly exhibit all the possible axion
interactions is clearly an important point to keep in mind.
To conclude, let us stress again:
(i) The PQ symmetry has some room for B and/or L

violating effects. In the presence of such violation,
the PQ symmetry eats part of the B and L global
Uð1Þ s, and the PQ current inherits some JμB and/or
JμL components.

(ii) Incorporating a B and/or L component in the PQ
current does not modify the leading order axion to
gauge boson couplings.

(iii) The B and/or L components of PQ current do not
tell us much about the couplings of the axion to SM
fermions. Most of the ∂μa0J

μ
B and ∂μa0J

μ
L couplings

are just there to cancel spurious local anoma-
lous terms.

(iv) Any B and/or L violating couplings must break
explicitly the (already anomalous) B and/or L vector
Ward identities. In their presence, the EoM of the
SM fermions will ensure the derivative interactions
∂μa0J

μ
B and ∂μa0J

μ
L do include the expected ΔB and/

or ΔL couplings of the axion.
As we will see in the following, introducing leptoquark

states often forces us to entangle B and/or L with the PQ
symmetry. These points are thus crucial to understand the
phenomenological consequences.

C. Introducing leptoquarks and diquarks

Leptoquarks (LQ) are scalars or vectors that couple
simultaneously to a quark-lepton pair, while diquarks
(DQ) couple to quark pairs (for a review, see e.g.,
Ref. [19]). Given the quantum numbers of the SM fermions,
only a finite number of LQ and DQ can couple to normal
matter, and only a few of them can have both LQ and DQ
couplings. Though the full list of possible LQ and DQ states
is well known, let us nevertheless go through this con-
struction as it will play an important role in the following,
and permits us to conveniently introduce our notations.
All the LQ are color triplets, while DQ are triplets (using

1 ⊃ 3 ⊗ 3 ⊗ 3) or sexplets (using 1 ⊃ 3 ⊗ 3 ⊗ 6̄). From
the point of view of SUð2ÞL, these states can be either
triplet, doublets, or singlets, depending on the involved SM
fermions. Once SUð2ÞL ⊗ SUð3ÞC contractions are set, the
hypercharge is then fixed to accommodate specific cou-
plings to SM fermions. In this regard, one should remember
that scalars couple to ψ̄LψR or ψ̄RψL, vectors to ψ̄RγμψR or
ψ̄LγμψL, and that charge conjugation C flips the chirality.
This means that a scalar can couple to ψ̄C

RψR for example.
By constructing all possible pairs of SM leptons, including
conjugate fields, the standard list of possible states are
recovered, with the scalars LQ states
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ð3; 2;þ1=3Þ∶S1=32 × ðd̄RlL; q̄LνRÞ;
ð3; 2;þ7=3Þ∶S7=32 × ðūRlL; q̄LeRÞ;
ð3; 1;−2=3Þ∶S2=31 × ðd̄RνCR; ūReCR; q̄LlC

LÞ; ð3; 3;−2=3Þ∶S2=33 × q̄LlC
L;

ð3; 1;þ4=3Þ∶S4=31 × ūRνCR;

ð3; 1;−8=3Þ∶S8=31 × d̄ReCR; ð23Þ

and the vector LQ states

ð3; 2;þ1=3Þ∶V1=3
2;μ × ðūRγμlC

L; q̄Lγ
μνCRÞ;

ð3; 2;−5=3Þ∶V5=3
2;μ × ðd̄RγμlC

L; q̄Lγ
μeCRÞ;

ð3; 1;þ4=3Þ∶V4=3
1;μ × ðūRγμνR; d̄RγμeR; q̄LγμlLÞ; ð3; 3;þ4=3Þ∶V4=3

3;μ × q̄LγμlL;

ð3; 1; 10=3Þ∶V10=3
1;μ × ūRγμeR;

ð3; 1;−2=3Þ∶V2=3
1;μ × d̄RγμνR: ð24Þ

Many notations exist for these states, in particular Si, S̃i, S̄i when several states occur with the same SUð3ÞC ⊗ SUð2ÞL
quantum numbers [19]. Here, we denote all states as color triplets Syt or V

y
t , with t the SUð2ÞL dimensionality and y the

absolute value of the Uð1ÞY hypercharge. Note also that V2=3
1;μ and S4=31 exist only in the presence of νR, and are thus often

discarded. Concerning diquarks, there are only six possible combinations of quark fields, leading to

ð3; 2;þ1=3Þ∶V1=3
2;μ × d̄CRγ

μqL;

ð3; 2;−5=3Þ∶V5=3
2;μ × ūCRγ

μqL;

ð3; 1;−2=3Þ∶S2=31 × ðq̄CLqL; d̄CRuRÞ; ð3; 3;−2=3Þ∶S2=33 × q̄CLqL;

ð3; 1;þ4=3Þ∶S4=31 × d̄CRdR;

ð3; 1;−8=3Þ∶S8=31 × ūCRuR: ð25Þ

All these states are already present in the LQ list. Note that
each of the above quark state can also couple to a DQ
transforming like 6̄ under SUð3ÞC, with the same SUð2ÞL ⊗
Uð1ÞY quantum numbers. In that case, they do not have LQ
couplings. We will adopt the same notation for these states,
relying on the context to make clear whether they transform
as 3 or 6̄.
Introducing scalar or vector states that couple to quarks

and leptons can impact the global B and L symmetries (for
a recent review, see, e.g., Ref. [39]). Depending on which
states are introduced and, if several of them are present,
depending also on how they are coupled, the symmetry
pattern can be quite different. Actually, these symmetry
patterns are reminiscent of those of the possible effective
operators involving SM fields but carrying nontrivial B
and/or L charges [40–42]. Those are listed in Table I. This
connection is easily understood from tree diagrams with
the external fermions linked together by virtual LQ/DQ

exchanges.2 Obviously, these external fermion states must
be SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY invariant since the LQ/
DQ are. Further, operators with six or less fermions are the
most relevant when only renormalizable interactions
among the LQ/DQ are present. Being colored, these states
can at most have quadratic or cubic interactions, hence
induce four or six fermion interactions. More complicated
fermion interactions can arise, but they would require
multiple cubic interactions, and would not open additional
phenomenologically interesting channels. Indeed, the
above set contains already the ðΔB;ΔLÞ ¼ ð0; 2Þ oper-
ators for neutrino masses, ðΔB;ΔLÞ ¼ ð2; 0Þ operators for
neutron-antineutron oscillations, and all the others for
proton decay. Note, finally, that one can understand why
some states have both LQ and DQ couplings while others

2The notation LQ/DQ generically refers to any of the pure LQ,
pure DQ, or mixed LQ/DQ state introduced in Eqs. (23)–(25).
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do not from the fact that dimension-six operators are
necessarily ðΔB;ΔLÞ ¼ ð1; 1Þ, see Table I. As tree-level
exchanges of states with both LQ and DQ couplings
(Fig. 1(a)) must match onto these operators, only Vy

2 and
Sy1 can occur since they couple to a quark-lepton (or
antiquark-antilepton) pair.3

With the above picture in mind, let us see in more details
how the various ðΔB;ΔLÞ patterns of Table I can arise.
Note that most of the following mechanisms have already
been described elsewhere, see for instance Refs. [43–47],
but this is repeated here in some details as it constitutes the
basis for the discussions in the next sections, where these
patterns will be induced spontaneously.
(A) Exact Uð1ÞB ⊗ Uð1ÞL: Whenever a given S or V

state with only LQ or DQ coupling is present, B and
L can still be unambiguously defined. The LQ or
DQ state simply carries some specific B and L
quantum numbers, but overall, Uð1ÞB ⊗ Uð1ÞL is
still exact. This remains true even in the presence of
several different states, so long as they do not couple
together.

(B) Exact Uð1ÞB−L: When a state with both LQ and DQ
couplings is present, the symmetry gets reduced to
Uð1ÞB−L, with the B − L quantum numbers −2=3

for Sy1 and Vy
2, þ1=3 and −1 for quarks and leptons,

respectively. This remains true if more than one DQ/
LQ state is present provided any couplings among
them is compatible with these charge assignments,
which further requires the B − L quantum numbers
of Sy2 and Vy

1 to be þ4=3. For example, a scenario

with S2=31 and S4=31 but without an S2=31 S2=31 S4=31

interaction, or with S7=32 , S2=31 and a coupling

H†S7=32 S2=31 S2=31 , or with S1=32 , S2=31 and a coupling

HS1=32 S2=31 S2=31 all preserve Uð1ÞB−L (note that the
antisymmetric color contraction requires at least two
different S2=31 ). For all these scenarios, the S and/or V

FIG. 1. LQ/DQ processes inducing proton decay via
ðΔB;ΔLÞ ¼ ð1; 1Þ operators (a), a neutrino Majorana mass
term (b), proton decay via ðΔB;ΔLÞ ¼ ð1;−1Þ operators (c),
and neutron-antineutron oscillations via a ðΔB;ΔLÞ ¼ ð2; 0Þ
operator (d).

TABLE I. Leading effective operators with nontrivial ðΔB;ΔLÞ charges in the SM, involving no or one νR field.
We do not include redundant patterns, e.g., all the ðΔB;ΔLÞ ¼ n × ð0; 2Þ; n × ð1; 1Þ;…with n ¼ 2; 3;… operators,
or operators of higher dimensions within each ðΔB;ΔLÞ class. With even more fields, the next unique patterns
involve eight fermions, and induce ðΔB;ΔLÞ ¼ ð1; 5Þ transitions at dimension 12, and ðΔB;ΔLÞ ¼ ð1;−5Þ
transitions at dimension 13 (with an extra Higgs field). All these processes involve at least one νR field at these
orders. Still higher in dimensionality, ðΔB;ΔLÞ ¼ ð3; 1Þ and ðΔB;ΔLÞ ¼ ð1; 7Þ come at the ten-fermion level, via
dimension-15 operators. Only the SM Higgs doublet H is used in the table together with SM fermions, but the
extension to the two-Higgs-doublet model is trivial.

ΔB ΔL Dim. Operators (no νR)

þ0 þ2 5 H†2l2
L

þ1 þ1 6 q3LlL u2RdReR qLuRdRlL q2LuReR
þ1 −1 7 H†d3Rl

C
L Hd2RqLe

C
R Hd2RuRl

C
L Hq2LdRl

C
L

þ2 þ0 9 d4RuR d3RuRq
2
L d2Rq

4
L

þ1 þ3 9 u2RqLl
3
L u3Rl

2
LeR

þ1 −3 10 Hd3Rl
C;3
L

ΔB ΔL Dim. Operators (one νR)

þ0 þ2 5 H†2eRνR
þ1 þ1 6 q2LdRνR d2RuRνR
þ1 −1 7 H†d2RqLν

C
R HdRqLuRνCR Hq3Lν

C
R

þ2 þ0 9 not applicable
þ1 þ3 9 dRu2Rl

2
LνR dRqLuRl2

LνR u3Re
2
RνR u2RqLlLeRνR q2LuRl

2
LνR

þ1 −3 10 Hd3Rl
C
Le

C
Rν

C
R Hd2RqLl

C;2
L νCR

3This condition is sometimes quantified using F ¼ 3B þ L as
a quantum numbers [19], so that those states with both LQ and
DQ couplings have F ¼ �2, and the others F ¼ 0. We prefer
here to use B � L.
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mass has to be pushed at the GUT scale since
ðΔB;ΔLÞ ¼ ð1; 1Þ operators induce proton decay
(Fig. 1(a)).

(C) No exact Uð1Þ: In the presence of two states having
different B − L quantum numbers, there is no
remaining global symmetry whenever those states
have all their gauge-allowed couplings to SM
fermions turned on, and when they are coupled
together. For example, introducing both S1=32 and

S2=31 with a μHS1=3†2 S2=31 coupling, Uð1ÞB and Uð1ÞL
are entirely broken. As seen earlier, ðΔB;ΔLÞ ¼
ð1; 1Þ proton decay is induced by S2=31 , pushing its
mass to the GUT range. But the total absence of
global Uð1Þ s means the other classes of ðΔB;ΔLÞ
operators are also generated. The simplest is the
ðΔB;ΔLÞ ¼ ð0; 2Þ operator, generating neutrino
masses via the diagram of Fig. 1(b).

(D) Exact Uð1ÞB: Adding to the scenarios A a seesaw
mechanism for neutrino masses, i.e., a ν̄CRνR term,
then Uð1ÞL is explicitly broken but Uð1ÞB remains
exact, preventing proton decay. The same pattern
can be obtained using mixing terms among some
carefully chosen LQ/DQ states, such that an effec-
tive neutrino mass term is generated but proton
decay cannot occur. For example, introducing S1=32 ,

S2=31 , the mixing term μHS1=3†2 S2=31 but turning off
the DQ couplings of S2=31 (or alternatively, with the

mixing term μS1=32 S1=32 S2=31 but turning off the LQ

couplings of S2=31 ), the dimension-five ðΔB;ΔLÞ ¼
ð0; 2Þ operator arises, see Fig. 1(b). In these scenar-
ios, S1=32 , S2=31 acquire well defined B numbers,
Uð1ÞB is conserved, and proton decay is forbidden.

(E) Exact Uð1ÞBþL Another possible symmetry pattern
corresponds to taking again S1=32 , S2=31 , and the

μHS1=3†2 S2=31 coupling but turning off the LQ cou-
plings of S2=31 (or with μS1=32 S1=32 S2=31 but turning off

the DQ couplings of S2=31 ). In this case, no neutrino
masses can be generated, but proton decay is back.
Yet, the proton decay channels do not match those
induced by the dimension-six Weinberg operators.
With the μHS1=3†2 S2=31 coupling, the simplest proc-
esses lead to the dimension-seven ðΔB;ΔLÞ ¼
ð1;−1Þ effective operators, see Fig. 1(c), while
the μS1=32 S1=32 S2=31 coupling generates ðΔB;ΔLÞ ¼
ð1;−1Þ transitions but with an extra lepton-antilep-
ton pair.

(F) Exact Uð1ÞL: Another pattern is obtained by intro-
ducing several states but now allowing only for DQ
couplings, and turning on some mixing terms (this
kind of construction was considered recently, e.g., in
Refs. [45,46]). These latter mixings are necessary
since otherwise, Uð1ÞB ⊗ Uð1ÞL remains exact.

The simplest scenarios are those with S2=31 , S4=31 ,

and the cubic coupling μS2=31 S2=31 S4=31 , or S4=31 , S8=31 ,

and the cubic coupling μS4=31 S4=31 S8=31 . In both cases,

only the DQ couplings are allowed, and S4=31 (S8=31 )
must transform as 6̄ in the first (second) case,
respectively. As a result, neither neutrino masses
nor proton decay are induced, but the dimension-nine
ðΔB;ΔLÞ ¼ ð2; 0Þ operators do arise, and contribute
to neutron-antineutron oscillations, see Fig. 1(d).

(G) Exact Uð1Þ3B−L: As for the ðΔB;ΔLÞ ¼ ð2; 0Þ case,
dimension-nine ðΔB;ΔLÞ ¼ ð1; 3Þ operators are

attainable by taking S2=31 , S4=31 , and the cubic cou-

pling μS2=31 S2=31 S4=31 , or S4=31 , S8=31 , and the cubic

coupling μS4=31 S4=31 S8=31 , but turning on only the LQ
couplings (since all LQ transform as 3, the color
contraction requires three different LQ to be present).
Yet, only interactions involving νR can occur because
of the LQ coupling of S4=31 to ūRνCR, so proton decay
is suppressed. The dimension-nine ðΔB;ΔLÞ ¼
ð1; 3Þ operators not involving νR require a combi-
nation of scalar and vector LQ, for example
S2=31 V1=3

2 V1=3
2 can induce both q̄LlC

LūRγμl
C
LūRγ

μlC
L

and ūReCRūRγμl
C
LūRγ

μlC
L.

(H) Exact Uð1Þ3BþL: While the previous two patterns
rely on cubic interactions among the Sy1 and V

y
2 states,

this pattern rather needs to involve only the Sy2 and V
y
1

states. Furthermore, since the Higgs field appears in
the six-fermion ðΔB;ΔLÞ ¼ ð1;−3Þ proton decay
operators of Table I, the simplest mechanisms should
be based on a quartic coupling H-LQ-LQ-LQ. At first
sight, the simplest would be the H†S1=32 S1=32 S1=32

coupling, but the antisymmetric color contraction
vanishes identically since S1=32 has only two SUð2ÞL
degrees of freedom [48]. The simplest mechanism
then necessarily involves either two different S1=32

states, or both scalar and vector LQ, in which case
three different LQ states must be introduced.

This concludes our list of symmetry patterns. It is quite
remarkable that a relatively simple scenario exists for all the
possible patterns of Table I, with in each case the
“orthogonal” ðΔB;ΔLÞ pattern remaining as an exact
global Uð1Þ symmetry. What this list does not show is
that actually, not so many other scenarios do exist to
generate most of these symmetry-breaking patterns.
Indeed, in most cases, allowing for several LQ/DQ states,
both scalar and vector, and some couplings among them,
one simply ends up with no global symmetries. The
interesting situations in which some global symmetries
do remain are quite constrained, and those can be classified
once and for all.
First, notice that at the renormalizable level, there are

only two classes of couplings among the LQ/DQ: those
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with bilinear color contractions, typically 3 ⊗ 3̄ or 6 ⊗ 6̄,
and those with cubic contractions, typically 3 ⊗ 3 ⊗ 3 or
3 ⊗ 3 ⊗ 6̄. For the former, barring partial derivatives
acting on the LQ/DQ fields, the only nontrivial LQ/DQ
bilinear couplings compatible with the SM gauge sym-
metries are

HS1=3†2 S2=31 ; HS4=3†1 S1=32 ; HS7=3†2 S4=31 ; HV1=3†
2;μ V2=3;μ

1 ;

HV4=3†
1;μ V1=3;μ

2 ; HV2=3†
1;μ V5=3;μ

2 : ð26Þ

The HS1=3†2 S2=31 coupling was used to illustrate the sym-
metry patterns, but all the others are completely similar:
Uð1ÞB and Uð1ÞL are entirely broken when all the LQ/DQ
couplings are present (case C), Uð1ÞB stays exact with only
LQ couplings (case D), or Uð1ÞBþL remains if Sy1 or Vy

2

have only DQ couplings (case E). This last situation is
probably the most interesting phenomenologically since
each coupling in Eq. (26) produces a specific subset of the
dimension-seven ðΔB;ΔLÞ ¼ ð1;−1Þ operators in Table I.
For cubic interactions, though there are a total of 37 such

couplings, most of them involve LQ/DQ of different B − L
charges and conserve either Uð1ÞB−L (case B) or Uð1ÞBþL
(case E). Yet, compared to the dimension 6 and 7 operators
in Table I, they necessarily produce an extra lepton-
antilepton pair. The symmetry patterns typical of six-
fermion states, i.e., leading to the dimension 9 or 10
operators in Table I, are obtained with three LQ/DQ with
the same B − L charge, and this leaves only eight pos-
sibilities:

S2=31 V1=3
2;μ V

1=3;μ
2 ; S4=31 V1=3

2;μ V
5=3;μ
2 ;

S2=31 S2=31 S4=31 ; S4=31 S4=31 S8=31 ; ð27Þ

H†S01=32 S1=32 S1=32 ; H†S1=32 V2=3
1;μ V

4=3;μ
1 ;

H†S7=32 V 02=3
1;μ V2=3;μ

1 ; HS1=32 V 02=3
1;μ V2=3;μ

1 : ð28Þ

The scenarios in the first line lead to ðΔB;ΔLÞ ¼ ð2; 0Þ or
ðΔB;ΔLÞ ¼ ð1; 3Þ operators (case F and G), and those in
the second line to ðΔB;ΔLÞ ¼ ð1;−3Þ operators (case H).
Note that for ðΔB;ΔLÞ ¼ ð1;�3Þ transitions, the LQ must
transform as 3, and the color contraction is necessarily
antisymmetric. To get a nonvanishing coupling, one of the
three S1=32 is primed in the first operator, while one of the

two V2=3
1;μ fields is primed in the last two operators of

Eq. (28). This does not apply to ðΔB;ΔLÞ ¼ ð2; 0Þ
operators, for which it is always possible to take one of
the DQ to transform as a symmetric 6̄. As a final remark, it
should be noted that scalar or vector color-singlet dileptons
could also be introduced, opening the door to quartic
couplings among the new states, and correspondingly, to
eight-fermion ðΔB;ΔLÞ ¼ ð2;�2Þ operators [49] (see also
Ref. [50] where similar operators are obtained by imposing

an additional discrete symmetry on the LQ couplings). This
will not be considered here.
Throughout this paper, when estimating bounds on LQ/

DQ masses from proton decay or neutron-antineutron
oscillations, the LQ/DQ couplings to SM fermions is
assumed flavor universal, or at the very least nonhierarchical
in flavor space. As was shown in Ref. [51], this is a strong
assumption for B and/or L violating operators. The SUð3Þ5
flavor symmetry would ask instead for a strong hierarchy
because of the systematic presence of the three quark
generations in all the operators in Table I. In the present
context, such hierarchies would first require LQ/DQ to carry
flavor quantum numbers, and then to extend the minimal
flavor violating formalism to the LQ/DQ sector [52]. This
will not be analyzed here, but such kind of flavor suppres-
sion should be kept in mind, especially given the context in
B physics. There, a number of puzzles in leptonic and
semileptonic decays can be explained by introducing new
LQ states with particular flavor hierarchies (for a recent
review, see, e.g., Ref. [21]). Typically, the favored LQ is
V4=3
1;μ ∼ ð3; 1;þ4=3Þ thanks to its qLγμlL couplings, but

other states could also occur in principle. The connection of
some of these models with axions has been investigated,
e.g., in Ref. [53] (for some considerations of axions in the
context of the B physics anomalies see e.g., [54], whereas
axions in a more broad flavor context have also been studied
in Refs. [55–58], but to our knowledge, no systematic
studies has been performed yet. In the present paper, our
goal is mainly to analyze symmetry breaking patterns
involving both LQ/DQ and axions, so the LQ/DQ couplings
to SM fermions will simply be assumedOð1Þ for all flavors
whenever deriving bounds on their masses. Turning on non-
trivial flavor structures is left for future studies.

III. COUPLING AXIONS TO LEPTOQUARKS
AND DIQUARKS

In the previous section, we have established the possible
global symmetries in the presence of LQ and DQ states.
Here, we want to add to these scenarios a KSVZ or DFSZ
sector. The consequences are rather different for both
models, since the SM fermions can be PQ neutral in the
former case, but not in the latter. Yet, so long as the ϕ (and
the heavy KSVZ fermions ΨL;R) are not directly coupled to
the LQ/DQ states, the axion stays rather insensitive to the
possible B and/or L violation.
To illustrate this, consider the KSVZ scenario. Without

direct couplings of ϕ or ΨL;R to the LQ/DQ states, the
Uð1Þϕ symmetry stays separate from Uð1ÞB;L, so the PQ
breaking proceeds trivially as

Uð1Þϕ ⊗ Uð1ÞB ⊗ Uð1ÞL ⟶
Explicit

Uð1Þϕ ⊗ Uð1ÞX
≃Uð1ÞPQ ⊗ Uð1ÞX ⟶

Spontaneous
Uð1ÞX; ð29Þ
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The specific LQ/DQ scenario fixes which global symmetry,

Uð1ÞX ¼ Uð1ÞB ⊗ Uð1ÞL; Uð1ÞB�L;

Uð1ÞB; Uð1ÞL; Uð1Þ3B�L;…; ð30Þ

survives, by introducing couplings that explicitly break
Uð1ÞB ⊗ Uð1ÞLnUð1ÞX. Yet, the axion does not break
Uð1ÞB ⊗ Uð1ÞL or Uð1ÞX, only the dynamics of the SM
and LQ/DQ fields does. Of course, the axion being
coupled to SM gauge fields and SM fermions, it does
end up coupled to leptoquarks and possibly acquires some
B and/or L violating decay channels, but this is indirect. A
good example for this situation is the KSVZ model with a
Majorana mass MRνRνR. The Majorana mass term explic-
itly breaksUð1ÞL at all scale, but such thatUð1ÞX ¼ Uð1ÞB
stays exact at all scales. Clearly, the axion dynamics
does not break Uð1ÞL, only neutrino masses do. Thus,
any ΔL ¼ 2 effect would come indirectly, e.g., as in
a0 → ν̄RνL → νRνL. The situation in the DFSZ scenario
is similar, though the Uð1ÞPQ arises from a specific
combination of Uð1Þϕ and Uð1ÞY , see Eq. (8). This
situation also corresponds to that often found in simple
GUT models. For example, in SUð5Þ, gauge interactions
break Uð1ÞB ⊗ Uð1ÞL down to Uð1ÞB−L independently of
the axion field (for a detailed account of how the PQ, B,
and L symmetries are entangled in the SUð5Þ setting,
see Ref. [29]).
Our goal is to consider situations in which the

symmetry above the PQ scale entangles Uð1Þϕ within
Uð1ÞB ⊗ Uð1ÞL. Breaking Uð1Þϕ spontaneously then
means breaking a linear combination of B and L (or both)
spontaneously. Taking again the KSVZ scenario for illus-
tration, this is accomplished by introducing some set of
couplings that are only invariant under a subgroup of
Uð1Þϕ ⊗ Uð1ÞB ⊗ Uð1ÞL. In most cases of interests,
Uð1ÞB ⊗ Uð1ÞL stays active at the high scale, but ϕ carries
some definite B and/or L quantum numbers, so that the
breaking chain becomes

Uð1Þϕ ⊗ Uð1ÞB ⊗ Uð1ÞL ⟶
Explicit

Uð1ÞB ⊗ Uð1ÞL
≃Uð1ÞPQ ⊗ Uð1ÞX ⟶

Spontaneous
Uð1ÞX: ð31Þ

The simplest example illustrating this situation is the KSVZ
model with the ϕ†ν̄CRνR couplings, so that ϕ becomes a
ðB;LÞ ¼ ð0; 2Þ state, Uð1ÞPQ ¼ Uð1ÞL is spontaneously
broken, but Uð1ÞX ¼ Uð1ÞB stays exact. Compared to the
previous case, the main difference is that the axion has a
ΔL ¼ 2 coupling a0 → νRνR of Oð1Þ. Of course, phenom-
enologically, whether one adds MRν̄

C
RνR or ϕ†ν̄CRνR is

irrelevant, but this may not be the case for scenarios in
which Uð1ÞB is spontaneously broken. Our goal here is to
systematically study these scenarios, taking advantage of
the fact that LQ/DQ open many routes to entangle Uð1Þϕ

within Uð1ÞB ⊗ Uð1ÞL at the renormalizable level (with
only SM fields, the ϕ†ν̄CRνR coupling is the only possibility).
Note, finally, that in the KSVZ context, there is actually an
extra global symmetry corresponding to Ψ number, Uð1ÞΨ,
that will either survive or be incorporated within Uð1ÞB ⊗
Uð1ÞL via explicit breaking terms independent of ϕ. In this
way, the final survivingUð1ÞX is independent ofUð1ÞΨ, and
still given by Eq. (30).
In practice, to entangle the Uð1Þϕ symmetry with the

other global symmetries, the strategy is to turn on some
direct couplings between ϕ and the LQ/DQ, and for the
latter, to turn on some or all of their couplings to SM fields
such that no direct B and/or L violation occurs. It is
important to stress that we do not assign Uð1Þ charges to
the fields. Instead, we study all possible combinations of
global Uð1Þ symmetries that can remain exact and, after-
wards, derive the charges of the fields. Indeed, it is well
known that symmetries and charges are entirely fixed given
a set of couplings in the Lagrangian, but often one identifies
them by inspection, or starts from the charges to infer the
allowed couplings. In the present case, as we will see, the
set of couplings can be quite large, and the surviving Uð1Þs
assign quite intricate charges to the fields. Typically, a naive
inspection of the Lagrangian couplings would most likely
miss some of the surviving Uð1Þs, or outright fail to
identify possible scenarios. In practice, starting from the
Lagrangian also provides a very systematic procedure: to
find the surviving Uð1Þ symmetries, it suffices to express
the charge constraint corresponding to each coupling, and
solve this system of equations. When this system is
underdetermined, each parametric underdetermination cor-
responds to a surviving Uð1Þ. The charges of ϕ under these
Uð1Þ then tell us which combination is spontaneously
broken.

A. KSVZ scenarios with leptoquarks and diquarks

Our requirements for the KSVZ scenarios are first that
there should be only one Higgs doublet, neutral under the
PQ and all global symmetries, and no direct mixing of the
heavy fermions ΨL;R with SM quarks to avoid FCNC or
CKM unitarity constraints. Also, our goal is to force proton
decay, neutron-antineutron oscillations, or a Majorana mass
terms for νR (or more generally, neutrinoless double beta
decays [59]) to only arise through the spontaneous sym-
metry breaking of Uð1Þϕ. Thus, none of these observables
should be immediately allowed by LQ/DQ transitions.
Typically, the strategy to achieve this is, starting from
some Lagrangian with a specific set of couplings among ϕ,
some chosen LQ/DQs, and the SM fermions, to identify the
global symmetries, and then make sure these symmetries
forbid any other renormalizable Lagrangian couplings. This
will be made clear going through specific examples. But,
before that, let us describe some generic features of the
scenarios and their consequence for the axion effective
Lagrangian.
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In all scenarios, there will be some ϕ2S†i Sj, ϕHS†i Sj, and/
or ϕSiSjSk couplings. In this representation, the axion ends
up coupled to the LQ/DQ, as can be seen plugging in
Eq. (1) in these couplings (remember ηϕ ¼ a0 in the KSVZ
setting). Importantly, these couplings are never suppressed
by the PQ breaking scale, since for example

ϕSiSjSk →
1ffiffiffi
2

p ðvϕ þ iηϕ þ � � �ÞSiSjSk: ð32Þ

Though as a matter of principle, the axion B and/or L
violating couplings are not suppressed by vϕ, this scale
nevertheless indirectly limits them. Indeed, the leading vϕ
term produces a direct coupling among the LQ/DQ such
that one falls into any one of the situations described in
Sec. II C, with some Uð1ÞX smaller than Uð1ÞB ⊗ Uð1ÞL
remaining exact. At low energy, these LQ/DQ couplings
can induce B and/or L violating processes, hence set rather
strong bounds on the LQ/DQ masses. Now, the largest vϕ
is, the tightest these bounds are, so indirectly, the B and/or
L violating axion couplings to SM fermions decrease for
increasing vϕ.
Coming back to the point of principle, one may wonder

how is it that the axion couplings are not suppressed by vϕ
in the effective axion Lagrangian language of Eq. (17).
Indeed, as a result of the ϕ2S†i Sj, ϕHS†i Sj, and/or ϕSiSjSk
couplings, some or all of the LQ/DQ become charged under
Uð1ÞPQ. This means that if, along with Eq. (13) for the
fermions, we reparametrize them as

Si → expð−iPQðSiÞa0=vϕÞSi; ð33Þ
the axion field is entirely removed from all the Lagrangian
couplings. Indeed, the Lagrangian is PQ-symmetric, so the
expðia0=vϕÞ factors always compensate exactly. Their
kinetic terms DμS

†
i D

μSi are not invariant under the repar-
ametrization though, and as for fermions, this is embodied
in dimension-five interactions

δLDer ¼
1

vϕ
∂μa0J

μ
PQ;

JμPQ ¼
X
i

PQðSiÞðS†i ðDμSiÞ − ðDμS†i ÞSiÞ þ � � � ð34Þ

This representation is deceptive because the axion cou-
plings to LQ/DQ appear suppressed by vϕ. Yet, they are not

suppressed because the EoM of the Si have OðvϕÞ terms,
like that coming from a vϕSiSjSk coupling in the example
of Eq. (32). The same happens if LQ/DQ are integrated out
before the reparametrization Eq. (33). They then do not
occur in JμPQ, but SM fermions do, and their EoM now have
inherited Oðvϕ=Mn) terms for some n, with M the LQ/DQ
mass scale. In all cases, the axion keeps its Oðv0ϕÞ B and/or
L violating couplings, as it should.
This shows explicitly that the shift-symmetric δLDer is

not well suited to these scenarios, at least for what concerns
couplings to matter fields. For gauge boson, the situation is
a bit different. The fermion reparametrization Eq. (13)
generates spurious anomalous interactions to chiral gauge
fields that are canceled by the anomalies in the JμPQ current,
exactly as before, but the LQ/DQ obviously do not. Thus,
for them, the axion effective Lagrangian after the repar-
ametrization of Eq. (33) correctly captures the fact that
triangle graphs with LQ/DQ running in the loop are not
anomalous, and vanish at the dimension-five level for a
massless axion. Thus, none of the axion to gauge boson
couplings is affected by the LQ/DQ at leading order.

1. Spontaneous breaking of B+L

We have seen that B þ L is immediately broken when-
ever a given Si or Vi has both LQ and DQ couplings. For
example, S8=31 with its couplings to d̄ReCR and ūCRuR can
induce ðΔB;ΔLÞ ¼ ð1; 1Þ operators and proton decay. A
possible strategy to adapt this scenario and force these
operators to appear only through the SSB of ϕ is to consider
two such states, one LQ and one DQ, with a ϕ-dependent
mixing term:

LKSVZþLQ ¼ LKSVZ þ S8=31 d̄ReCR þ S̃8=31 ūCRuR

þ ϕ2S8=3†1 S̃8=31 þ H:c:; ð35Þ
with LKSVZ given in Eq. (2), and LQ/DQ kinetic terms are
understood. We also do not write explicitly the LQ/DQ
scalar potential terms made of bilinears like S8=3†1 S8=31 or

S̃8=3†1 S̃8=31 since those are neutral under any Uð1Þ symmetry.
Solving for the Uð1Þ charges of all the fields under the
requirement that the Higgs doublet is neutral (to avoid
mixing with Uð1ÞY), a triple under-determination remains,
which we can identify as4

ϕ S8=31 S̃8=31 ΨL ΨR qL uR dR lL eR νR
Uð1ÞΨ 0 0 0 1 1 0 0 0 0 0 0

Uð1ÞB 1=2 1=3 −2=3 −1=2 0 1=3 1=3 1=3 0 0 0

Uð1ÞL 1=2 1 0 −1=2 0 0 0 0 1 1 1

ð36Þ

4Evidently, the normalization of each line is free, but that for Uð1ÞB and Uð1ÞL is chosen to reproduce conventional quark and lepton
B and L of 1=3 and 1, respectively.
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What this table shows is that ϕ carries a Uð1ÞBþL charge,
which thus gets spontaneously broken, while Uð1ÞB−L stays
exact. This model is essentially identical to that introduced
long ago in Ref. [41], except that the Goldstone boson is here
identified with the axion. This pattern of symmetry breaking
is easily understood from the Lagrangian couplings and the
diagram in Fig. 2. Plugging in the polar representation of ϕ,
Eq. (1), the effective operator at the low scale is

Heff
ðΔB;ΔLÞ¼ð1;1Þ ¼ expð2ia0=vϕÞ

v2ϕ
m2

Sm
2
S̃

ūCRuRd̄
C
ReR þ H:c:;

ð37Þ
where we have identified ηϕ as the axion a0, and denoted

the S8=31 and S̃8=31 masses as mS and mS̃, respectively. Note

well that this operator arises entirely through the SSB: the
charges in Eq. (36) explicitly prevent a DQ coupling for
S8=31 , and a LQ coupling for S̃8=31 . Expanding the expo-
nential, the leading term involves only SM particles, and
contributes to proton decay. Thus, mS and mS̃ have to be
pushed quite high, though a bit lower that in the usual
GUT scenarios. For instance, while the scale of the dim-6
operators is typically pushed above 1014 GeV, we only
need mS ≈mS̃ > 1011 GeV when vϕ ¼ 109 GeV. With
these parameters, the proton decay modes involving the
axion are thus totally negligible. Finally, notice that
the axion totally disappears from Heff

ðΔB;ΔLÞ¼ð1;1Þ under

the reparametrization Eq. (13), with the PQ charges
identified as ðB þ LÞ=2. As stated earlier, the
vϕa0ūCRuRd̄

C
ReR effective coupling would then hide in

the ∂μa0J
μ
PQ=vϕ terms since the quarks and leptons inherit

from v2ϕū
C
RuRd̄

C
ReR some Oðv2ϕÞ terms in their EoM.

As shown in Eq. (36), Uð1ÞΨ remains as an exact global
symmetry, which means that the B þ L charges of ΨL;R are
not unambiguously defined. To fix them requires ΨL;R to
couple to SM fermions, and this is possible only for some
specific gauge quantum numbers. If we further ask that S8=31

(S̃8=31 ) should always (never) couple to leptons, the only
possibilities are

Y;B;L S8=31 Ψ̄LlC
L S8=31 Ψ̄ReCR S8=31 Ψ̄Rν

C
R S̃8=31 Ψ̄C

LqL S̃8=31 Ψ̄C
RuR S̃8=31 Ψ̄C

RdR
ΨL − 5

3
; 1
3
; 0 − 2

3
; 5
6
; 1
2

− 8
3
; 5
6
; 1
2

7
3
; 1
3
; 0 4

3
; 5
6
; 1
2

10
3
; 5
6
; 1
2

ΨR − 5
3
;− 1

6
;− 1

2
− 2

3
; 1
3
; 0 − 8

3
; 1
3
; 0 7

3
;− 1

6
;− 1

2
4
3
; 1
3
; 0 10

3
; 1
3
; 0

ð38Þ

These couplings are mutually exclusive since they impose
different hypercharges for ΨL;R. Also, S8=31 Ψ̄ReCR and
S̃8=31 Ψ̄C

RuR would allow for direct Ψ̄RdR and Ψ̄RuR cou-
plings, respectively, hence must be discarded. Note how the
peculiar choice of couplings completely twists the B, L
charges, in the sense that they do not correspond to the
naive assignments of B ¼ 1=3 and L ¼ 0 one may have
expected for the “heavy quarks” of the KSVZ mechanism.
As said before, the charges of the fields have to be deduced
from the set of couplings of the Lagrangian, and not the
other way around.
Similar scenarios can be constructed using S2=31 , S4=31 ,

V1=3
2 , or V5=3

2 . Actually, S2=31 was considered in Ref. [17],
though the model built there is more complicated (here the
PQ symmetry is directly identified with B þ L and only a
single Higgs doublet is introduced instead of four). Each
time, two such states are taken, with one having LQ

couplings, and the other DQ couplings, and a ϕ-driven
mixing term is introduced. The only difference in each case
is the specific ðΔB;ΔLÞ ¼ ð1; 1Þ operator(s) that can be
spontaneously generated, see Table I, and thereby, the
induced pattern of proton decay modes. In this respect, it is
worth to look at the S4=31 scenario, since it has only LQ
couplings to νR:

LKSVZþLQ ¼ LKSVZ þ S4=31 ūRνCR þ S̃4=31 d̄CRdR þ ϕ2S4=3†1 S̃4=31

þ ϕν̄CRνR þ H:c: ð39Þ

Let us also turn on a coupling toΨL;R, to fix its charges, and

for definiteness, let us take S4=31 Ψ̄LlC
L. Because of the

ϕν̄CRνR coupling, solving for the Uð1Þ charges of all the
fields now leaves a single underdetermination:

FIG. 2. Proton decay operator generated by the spontaneous
breaking of Uð1ÞBþL.
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ϕ S4=31 S̃4=31 ΨL ΨR qL uR dR lL eR νR
Uð1ÞPQ 2 2=3 −10=3 5=3 −1=3 5=3 5=3 5=3 −1 −1 −1

ð40Þ

This time, neither B nor L survives. Starting from
Uð1Þϕ ⊗ Uð1ÞB ⊗ Uð1ÞL, twoUð1Þs are explicitly broken
by LKSVZþLQ, while the remaining exact Uð1Þ is identified
with Uð1ÞPQ and spontaneously broken by ϕ. The interest

in this scenario is that S4=31 couples only to νR, whose mass
is pushed at the PQ breaking scale by the ϕν̄CRνR coupling.
At the low-energy scale, the leading proton decay operator
will scale as

Heff
ðΔB;ΔLÞ¼ð1;1Þ ¼ expð2ia0=vϕÞ

v2ϕ
m2

Sm
2
S̃

d̄RdCRūRν
C
R þ H:c:

→ expð2ia0=vϕÞ
vϕvEW
m2

Sm
2
S̃

d̄RdCRūRν
C
L þ H:c:

ð41Þ

Thanks to this extra suppression, the PQ breaking scale,
which is also the neutrino seesaw scale, and the LQ/DQ
mass scale, can all sit at around 109 GeV. They could thus
naturally have a common UV origin.

2. Spontaneous breaking of B−L

With only LQ/DQ, scenarios in which B − L is explicitly
broken typically arise from any one of theHS†i Sj orHV†

i Vj

couplings in Eq. (26). Those couplings always involve a
pure LQ state together with a mixed LQ/DQ state. The
ðΔB;ΔLÞ ¼ ð1;−1Þ pattern arises when the latter has only
DQ couplings. All these scenarios can be adapted to force
B − L to be broken spontaneously instead of explicitly. Let
us take theHS7=3†2 S4=31 case as an example, the others being
totally similar. To entangle the KSVZ symmetry with
B − L, we start from the Lagrangian

LKSVZþLQ ¼ LKSVZ þ S4=31 d̄CRdR þ S7=32 ðūRlL þ q̄LeRÞ
þ ϕHS7=3†2 S4=31 þ H:c:; ð42Þ

where again kinetic terms and LQ/DQ potential terms are
understood. For definiteness, we also include the S4=31 Ψ̄LlC

L
coupling to get rid of Uð1ÞΨ and fix the quantum numbers
of ΨL;R. Then, there remain only a Uð1ÞB ⊗ Uð1ÞL
symmetry with charges

ϕ S7=32 S4=31 ΨL ΨR qL uR dR lL eR νR
Uð1ÞB 1 1=3 −2=3 −2=3 −5=3 1=3 1=3 1=3 0 0 0

Uð1ÞL −1 −1 0 −1 0 0 0 0 1 1 1

ð43Þ

and Uð1ÞB−L is spontaneously broken when ϕ acquires its
vacuum expectation value. Note that these charges prevent
the LQ couplings of S4=31 (taking ϕHS1=3†2 S2=31 instead, they

would further forbid theHS1=32 S1=32 S1=32 coupling). The final
operators are part of the ðΔB;ΔLÞ ¼ ð1;−1Þ dimension-
seven ones in Table I because of the Higgs doublet
appearing in the ϕHS7=3†2 S4=31 mixing term (see Fig. 3):

Heff
ðΔB;ΔLÞ¼ð1;−1Þ

¼ expðia0=vϕÞ
vϕ

m2
Sm

2
S̃

Hd̄RdCRðūRlL þ q̄LeRÞ þ H:c: ð44Þ

The situation is thus similar to that in Eq. (41). Further
lowering the LQ/DQ scale by about an order of magnitude
is possible starting from the HV2=3†

1;μ V5=3;μ
2 coupling, as

V2=3†
1;μ couples only to νR.

In this regard, note that all these scenarios are again
compatible with a seesaw mechanism. Adding either a
ϕν̄CRνR, ϕ†ν̄CRνR, or MRν̄

C
RνR coupling to LKSVZþLQ in

Eq. (42), a single exact Uð1Þ remains at the PQ scale,
with charges

FIG. 3. Proton decay operator generated by the spontaneous
breaking of Uð1ÞB−L.
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ϕ S̃7=32 S̃4=31 ΨL ΨR qL uR dR lL eR νR
ϕν̄CRνR∶ Uð1ÞPQ 2 4=3 −2=3 1=3 −5=3 1=3 1=3 1=3 −1 −1 −1
ϕ†ν̄CRνR∶ Uð1ÞPQ 2=3 0 −2=3 −1 −5=3 1=3 1=3 1=3 1=3 1=3 1=3

MRν̄
C
RνR∶ Uð1ÞPQ 1 1=3 −2=3 1=3 −5=3 1=3 1=3 1=3 0 0 0

ð45Þ

For all these cases, the axion still emerges as a massless Goldstone boson, and is associated to both Uð1ÞB−L and Uð1ÞL
spontaneous breakings.

3. Spontaneous breaking of B

The spontaneous breaking of B first arose at the dimension-9 level in Table I since it necessarily involves six fermions. As
seen in Sec. II C, typical scenarios thus require a cubic coupling among DQ states. Let us start with

LKSVZþLQ ¼ LKSVZ þ S4=31 d̄CRdR þ S8=31 ūCRuR þ ϕS4=31 S4=31 S8=31 þ H:c:; ð46Þ

where S4=31 ∼ ð3; 1;þ4=3Þ and S8=31 ∼ ð6̄; 1;−8=3Þ. Though not compulsory, we add the coupling S8=31 Ψ̄C
LqL to breakUð1ÞΨ

and fix the charges of ΨL;R. With this Lagrangian, only two Uð1Þs are exact:

ϕ S8=32 S4=31 ΨL ΨR qL uR dR lL eR νR
Uð1ÞB 2 −2=3 −2=3 1=3 −5=3 1=3 1=3 1=3 0 0 0
Uð1ÞL 0 0 0 0 0 0 0 0 1 1 1

ð47Þ

Thus, Uð1ÞPQ ¼ Uð1ÞB is broken spontaneously by two units, but Uð1ÞL stays exact. This model is actually very similar to
that of Ref. [60] (see also Ref. [61]), except that the Goldstone boson associated to theUð1ÞB breaking is identified with the
axion. In turn, the axion ends up coupled to neutron pairs, via the diagram shown in Fig. 4. The corresponding operator is

Heff
ðΔB;ΔLÞ¼ð2;0Þ ¼ expðia0=vϕÞ

vϕ
m4

S4=3
m2

S8=3
d̄CRdRd̄

C
RdRū

C
RuR þ H:c:: ð48Þ

Typical bounds on the scale of the ðΔB;ΔLÞ ¼ ð2; 0Þ operators are at around 100 TeV [62,63] if the couplings implicit in
Eq. (46) are allOð1Þ. The PQ scale of 109 GeV pushes the DQ scale slightly higher than those 100 TeV, but given that their
masses appear to the sixth power, this is marginal (less than an order of magnitude). The presence of the axion also leads to
an effective operator

1

m4
S4=3

m2
S8=3

a0d̄CRdRd̄
C
RdRū

C
RuR þ H:c: →

Λ6
QCD

m4
S4=3

m2
S8=3

a0n̄Cγ5nþ H:c:; ð49Þ

with the QCD confinement scale ΛQCD of the order of 300 MeV. Because the DQ mass scale is pushed rather high by the
dimension-nine operator in Eq. (48), this direct coupling is very suppressed. Note, though, that it could have consequences
in a cosmological context [62].
As for the previous two scenarios, a seesaw mechanism can be implemented by adding a ϕν̄CRνR, ϕ

†ν̄CRνR, or MRν̄
C
RνR

coupling to the Lagrangian in Eq. (46). For the former two, this identifies the axion as the Majoron [60]. The only change is,
in some sense, to assign a B number to νR, hence by extension, to the leptons:

ϕ S8=32 S4=31 ΨL ΨR qL uR dR lL eR νR
ϕν̄CRνR∶ Uð1ÞPQ 2 −2=3 −2=3 1=3 −5=3 1=3 1=3 1=3 −1 −1 −1
ϕ†ν̄CRνR∶ Uð1ÞPQ 2 −2=3 −2=3 1=3 −5=3 1=3 1=3 1=3 1 1 1
MRν̄

C
RνR∶ Uð1ÞPQ 2 −2=3 −2=3 1=3 −5=3 1=3 1=3 1=3 0 0 0

ð50Þ

Note that the charges imposed by the presence of ϕν̄CRνR open the door to the S4=31 ūRνCR coupling also, and thus to direct

proton decay via an S4=31 Fermi interaction. For the other two scenarios, proton decay remains forbidden since all its decay
modes include an odd number of leptons, but only ΔL ¼ 2n transitions are made possible by the Lagrangian couplings.
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4. Spontaneous breaking of B� 3L

From Eq. (27), it is clear that the scenarios leading to
ðΔB;ΔLÞ ¼ ð2; 0Þ can be adapted to generate ðΔB;ΔLÞ ¼
ð1; 3Þ effects. All that is needed is to replace all DQ
couplings by LQ couplings. The only difficulty is to

account for the antisymmetric color contraction, since
LQ necessarily transform as 3 under SUð3ÞC. If we insist
on introducing at most two different LQ, the only available
scenario is

LKSVZþLQ ¼ LKSVZ þ S2=31 ðd̄RνCR þ ūReCR þ q̄LlC
LÞ

þ V1=3
2;μ ðūRγμlC

L þ q̄LγμνCRÞ
þ ϕS2=31 V1=3

2;μ V
1=3;μ
2 þ H:c:: ð51Þ

As usual, the Uð1ÞΨ is broken explicitly, this time by
adding V1=3

2;μ Ψ̄Lγ
μeCR to force the hypercharge of ΨL;R to be

different from that of SM quarks. If instead of the LQ
couplings, DQ couplings were allowed, this scenario
produces the ðΔB;ΔLÞ ¼ ð2; 0Þ symmetry pattern dis-
cussed in the previous section. Now, with these LQ
couplings and no DQ couplings, the charges are

ϕ S2=31 V1=3
2 ΨL ΨR qL uR dR lL eR νR

Uð1ÞB 1 1=3 1=3 1=3 −2=3 1=3 1=3 1=3 0 0 0
Uð1ÞL 3 1 1 0 −3 0 0 0 1 1 1

ð52Þ

The PQ symmetry is identified with Uð1ÞBþ3L, and dimen-
sion-nine ðΔB;ΔLÞ ¼ ð1; 3Þ proton decay operators appear
at the low scale, see Fig. 5(a) (a similar LQ model was
proposed in Ref. [41] to break B þ 3L spontaneously). The
fact that these operators are dimension-nine allows to lower
the LQ scale, but qualitatively, this scenario is not very
different from the B � L ones. Also, a seesaw mechanism
can be added with either ϕν̄CRνR or MRν̄

C
RνR, but not with

ϕ†ν̄CRνR as this would allow back the DQ couplings of both
S2=31 and V1=3

2;μ . It should be noted that these charges allow for

the DμHS2=31 V1=3†
2;μ and HDμS2=31 V1=3†

2;μ couplings. If not
initially present, they are immediately generated via a
fermion loop. Yet, these operators carry ðΔB;ΔLÞ ¼
ð0; 0Þ and cannot help create simpler proton decay proc-

esses. They could turn on some new four-fermion semi-
leptonic FCNC operators though, but these effects are
beyond our scope.
The final pattern is ðΔB;ΔLÞ ¼ ð1;−3Þ, and this one is

quite difficult to induce spontaneously. The operators in
Eq. (28) being already of dimension four, we cannot
proceed as for the other cases and simply multiply them
by ϕ. One way to proceed is to start with an operator from
the ðΔB;ΔLÞ ¼ ð1; 3Þ class in Eq. (27), and then switch L
by six units using ΔL ¼ 2 operators of Eq. (26). For
instance, the Lagrangian

LKSVZþLQ ¼ LKSVZ þ S1=32 ðd̄RlL þ q̄LνRÞ þ V2=3
1;μ d̄Rγ

μνR

þ ϕðHS1=3†2 S2=31 þH†V2=3†;μ
1 V1=3

2;μ

þ S2=3†1 V1=3†
2;μ V1=3;μ†

2 Þ þ H:c:; ð53Þ

does lead to the desired ðΔB;ΔLÞ ¼ ð1;−3Þ pattern, as
shown in Fig. 5(b). With four LQ states, it is certainly
more complex than the other scenarios, though it should
be noted that there is a certain symmetric flavor to the
presence of S1=32 , S2=31 and V1=3

2;μ , V2=3
1;μ . Also, it is not

compulsory for ϕ to appear in all of the last three
couplings, but when it does, only some combinations
do give a B − 3L charge to ϕ. Further adding V2=3

1;μ Ψ̄Rγ
μeR

to fix the ΨL;R quantum numbers, we find

FIG. 4. Neutron-antineutron oscillation operators generated by
the spontaneous breaking of Uð1ÞB.

FIG. 5. Proton decay operators generated by the spontaneous
breaking of Uð1ÞBþ3L (a) and Uð1ÞB−3L (b).
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ϕ S2=31 V1=3
2 S1=32 V2=3

1 ΨL ΨR qL uR dR lL eR νR
Uð1ÞB 1=4 1=12 1=12 1=3 1=3 7=12 1=3 1=3 1=3 1=3 0 0 0

Uð1ÞL −3=4 −1=4 −1=4 −1 −1 −3=4 0 0 0 0 1 1 1

ð54Þ

The PQ symmetry is thus indeed Uð1ÞB−3L. Note that these
charges forbid all the SM fermion couplings of S2=31 and

V1=3
2 , as well as all other possible cubic interactions among

the LQ and DQ states.5However, given the complicated
structure shown in Fig. 5(b), the final operators are of
dimension 16 instead of dimension 10:

Heff
ðΔB;ΔLÞ¼ð1;−3Þ ¼

ϕ4ðH†HÞ
m2

S1=3m
4
V2=3m

2
S2=3m

4
V1=3

×H†ðd̄RlL þ q̄LνRÞd̄RγμνRd̄RγμνR

→
v4ϕv

3
EW

m2
S1=3m

4
V2=3m

2
S2=3m

4
V1=3

× ðd̄RlL þ q̄LνRÞd̄RγμνRd̄RγμνR: ð55Þ

Besides, turning on a seesaw mechanism with ϕ†ν̄CRνR (as
ϕν̄CRνR would allow back some S2=31 and V1=3

2 couplings to
SM fermions), a further suppression of ðvEW=vϕÞ2 to
connect two νR to light fermions arises. Altogether,
assuming a common scale for all the LQs, their mass
can be as low as around 100 TeV when vϕ ≈ 109 GeV. This
is much lower than in GUT scenarios, and actually falls
within the ballpark of the scale required by neutron-
antineutron oscillation from Eq. (48).

B. DFSZ scenarios with leptoquarks and diquarks

All the scenarios discussed in the KSVZ case can readily
be adapted to the DFSZ model. Basically, one removes the
ΨL;R state but introduces a ϕ2H†

uHd coupling, while the ϕ
couples to various combinations of LQ/DQ states exactly as
in the KSVZ scenarios. A number of peculiarities are worth
mentioning though:
(1) The symmetry patterns are more difficult to analyze

in the DFSZ case because the PQ and hypercharge
symmetries are entangled, see Eq. (8). Thus, further
entangling Uð1ÞB and Uð1ÞL with the Uð1Þ s
associated to Hu and Hd rephasing blurs the picture
completely. In practice, the PQ charges of ϕ, Hu,
and Hd are always fixed to PQðHuÞ ¼ x,
PQðHdÞ ¼ −1=x, PQðϕÞ ¼ ðxþ 1=xÞ=2, see

Eq. (8), no matter the amount of Uð1ÞB and
Uð1ÞL that is entangled within Uð1ÞPQ.

(2) Because Hu, and Hd carry PQ charges, so does the
SM fermions, even without the presence of LQ/DQ
states. As shown in Eq. (10), these charges have
ambiguities reflecting the exact global symmetries.
Thus, any entanglement of Uð1ÞB and Uð1ÞL with
Uð1ÞPQ will be reflected in that arbitrariness. Typ-
ically, only one free parameter will remain instead of
the β and γ parameters of Eq. (10). Thus, looking at
this remaining arbitrariness permits to identify the
combination of β and γ, i.e., Uð1ÞB and Uð1ÞL, that
has been spontaneously broken.

(3) Because Uð1ÞPQ has always a component within
Uð1ÞHu ⊗ Uð1ÞHd, the PQ charge of the SM fer-
mions are never fully aligned with some combina-
tions of B and L. As a result, LQ states are often
restricted to couple to only a single SM fermion LQ
or DQ pair. For example, the gauge symmetries
allow both S1=32 d̄RlL and S1=32 q̄LνR, but the PQ
charge do not since PQðd̄RlLÞ ¼ γ − β þ 1=x and
PQðq̄LνRÞ ¼ γ − β þ x, and this is true independ-
ently of β and γ. In some cases, this actually makes
the choice of LQ/DQ couplings more natural than in
the KSVZ case, since once some of them are
selected, the others are immediately forbidden.

(4) With Hu;d at hand, many new couplings to LQ/DQ
states are a priori possible already in the scalar
potential. For instance, replacing H by Hu or Hd in
any of the couplings in Eqs. (27) or (28) would
couple the axion to B and/or L violating operators.
However, these situations correspond to breaking
Uð1ÞB and/or Uð1ÞL at the electroweak scale, by
entangling them with Uð1ÞY . Indeed, B and/or L
violating operators would involve ηu or ηd (the
pseudoscalar components of Hu and Hd), and thus
also the would-be Goldstone associated to Uð1ÞY
since G0 ∼ vuηu þ vdηd. The axion has only tiny ηu
and ηd components, see Eq. (5). Turning on some
H†

uHdS
†
jSi couplings would prevent any G0 cou-

pling, but would similarly lead to tiny axion cou-
plings via its cos βηu − sin βηd component. For these
reasons, all the scenarios discussed below start from
coupling ϕ to the LQ/DQ states, so that B and/or L
are broken at the PQ scale and the axion inherits
some large B and/or L violating couplings. These
scenarios are thus constructed exactly as in the
KSVZ case.

5Some derivative interactions are possible though, but those
necessarily involve the LQs whose SM fermion couplings are
forbidden, hence they do not alter the symmetry breaking pattern,
and would lead to more suppressed proton decay operators.
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After these general comments, let us briefly go through each of the B and/or L spontaneous breaking scenarios.

1. Spontaneous breaking of B+L

By analogy with the KSVZ scenario, Eq. (35), let us take

LDFSZþLQ ¼ LDFSZ þ S8=31 d̄ReCR þ S̃8=31 ūCRuR þ ϕ2S8=3†1 S̃8=31 þ H:c:; ð56Þ
with LDFSZ given in Eq. (4). Solving for the Uð1Þ charges under the constraint that PQðHuÞ ¼ x, PQðHdÞ ¼ −1=x, which
fixes PQðϕÞ ¼ ðxþ 1=xÞ=2, leaves a single underdetermination. In this way, we identify the remaining symmetry as
Uð1ÞB−L, with

S8=31 S̃8=31 qL uR dR lL eR νR
Uð1ÞPQ 1

x − x −2x 0 x 1
x − 1

x − x −x − 1
x

Uð1ÞB−L −2=3 −2=3 1=3 1=3 1=3 −1 −1 −1
ð57Þ

with ϕ, Hu, and Hd neutral under Uð1ÞB−L. This shows that Uð1ÞBþL ⊂ Uð1ÞPQ ⊂ Uð1ÞHu ⊗ Uð1ÞHd ⊗ Uð1ÞB ⊗ Uð1ÞL
is spontaneously broken. Note well that the quoted Uð1ÞPQ charges are just one possible choice, since Uð1ÞB−L remains as
an ambiguity. We could also have written the charges as

S8=31 S̃8=31 qL uR dR lL eR νR
Uð1ÞPQ 1

x − x − 2ξ −2x − 2ξ ξ xþ ξ 1
x þ ξ − 1

x − x − 3ξ −x − 3ξ − 1
x − 3ξ

ð58Þ

with ξ the free parameter corresponding to Uð1ÞB−L. We
can also see that this corresponds to Eq. (10) with β ¼ ξ
and γ ¼ − 1

x − x − 3ξ. This shows that the dimension-five
axion to gauge boson couplings are unaffected by the LQ/
DQ, since they are independent of β and γ. Also, one should
not conclude that the axion does not couple to qL, even
though that coupling is absent from the axion effective
Lagrangian since PQðqLÞ is set to zero.
Concerning the axion B þ L violating operator, the same

effective interactions arises as in the KSVZ scenario, see
Eq. (37). This is evident from Fig. 2, which is independent of
how the axion emerges. The only difference is that the
pseudoscalar component ofϕ is not purely the axion, but this
is only a totally negligible OðvEW=vsÞ effect, see Eq. (5).
Finally, exactly as in the KSVZ scenario, the remaining

Uð1ÞB−L freedom permits to set up a PQ-induced seesaw
mechanism by adding ϕν̄CRνR or ϕ†ν̄CRνR. In both cases, this
simply fixes the parameter ξ and removes the remaining
Uð1ÞB−L ambiguity. Yet, the final PQ charges do not reflect
at all the peculiar symmetry breaking pattern, with
Uð1ÞBþL and Uð1ÞL being separately, but concurrently,
spontaneously broken at the PQ scale. By the way, exactly
the same PQ charges arise if ϕ2S8=3†1 S̃8=31 is replaced by

H†
dHuS

8=3†
1 S̃8=31 , though as discussed before, the symmetry

breaking chain is very different, as are the axion couplings.

2. Spontaneous breaking of B−L

Pursuing our adaptation of the KSVZ scenario, let us
consider now

LDFSZþLQ ¼ LDFSZ þ S4=31 d̄CRdR þ S7=32 ūRlL

þ ϕHuS
7=3†
2 S4=31 þ H:c:: ð59Þ

Both fermionic couplings of S7=32 cannot be present at the
same time for the PQ symmetry to exist, so we choose to
keep S7=32 ūRlL and discard S7=32 q̄LeR. Also, we introduced
Hu in the quartic scalar coupling, but could equally well
have used Hd. From this Lagrangian, the PQ charges are
found to be

S4=31 S7=32 qL uR dR lL eR νR
Uð1ÞPQ −2

x
3x
2
− 3

2x 0 x 1
x

3
2x−

x
2

5
2x−

x
2

3
2xþ x

2

Uð1ÞBþL −2=3 −2=3 1=3 1=3 1=3 1 1 1

ð60Þ
So, Uð1ÞB−L is spontaneously broken at the PQ scale, but
Uð1ÞBþL remains. As before, we could rewrite the PQ
charge introducing a free parameter to reflect the exact
Uð1ÞBþL symmetry, hence one should not interpret
PQðqLÞ ¼ 0 as meaning it has no coupling to the axion.
The Uð1ÞBþL ambiguity can then be used to allow for a
ϕν̄CRνR or ϕ†ν̄CRνR coupling, and set up the seesaw
mechanism.
The final ðΔB;ΔLÞ ¼ ð1;−1Þ operator is again one of

the dimension-seven operators listed in Table I. Note,
though, that because the PQ symmetry restricts the LQ
couplings to SM fermions, only a single operator is
induced. This is a generic characteristic of the DFSZ
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implementation: compared to the KSVZ case, it is more
restrictive. Phenomenologically, this could show up as
definite decay patterns for the proton (if ever observed).
Starting from Eq. (59), the operator arising at tree level is

Heff
ðΔB;ΔLÞ¼ð1;−1Þ ¼

1

m2
Sm

2
S̃

ϕHud̄RdCRūRlL þ H:c:; ð61Þ

Note that some other gauge and PQ invariant operators may
arise at higher loops via Yukawa insertions, but those are
more suppressed. The leading proton decay operator is thus
proportional to vϕvu=m4

S, and the constraints are similar as
in the KSVZ scenario. Concerning the axion coupling,
notice that

ϕHulL →
1

2
vuvϕ exp i

�
ηu
vu

þ vϕ
vϕ

�
νL; ð62Þ

so the combination that occurs in the effective operator is

Heff
ðΔB;ΔLÞ¼ð1;−1Þ ¼

vϕvu
m2

Sm
2
S̃

�
1þ i

G0

v
þ i

a0

vϕ

3x2 þ 1

x2 þ 1
þ i

π0

v
x

�
d̄RdCRūRνL: ð63Þ

For comparison, the μHuS
7=3†
2 S4=31 coupling would lead to

Heff
ðΔB;ΔLÞ¼ð1;−1Þ ¼

μvu
m2

Sm
2
S̃

�
1þ i

G0

v
þ i

a0

vϕ

2x2

x2 þ 1
þ i

π0

v
x

�
d̄RdCRūRνL; ð64Þ

with μ some mass scale. The ðΔB;ΔLÞ ¼ ð1;−1Þ operator arises at the vϕ scale from ϕHuS
7=3†
2 S4=31 , but at a lower scale

from HuS
7=3†
2 S4=31 since we would expect μ to be at the LQ/DQ scale, μ ∼mS, or even at the electroweak scale, μ ∼ v. Note

that in both cases, theG0 enters as expected for a would-be Goldstone, and would disappear in the unitary gauge. The axion
coupling is OðvEW=vϕÞ compared to the four-fermion operator, exactly like in the KSVZ scenario.

3. Spontaneous breaking of B

Neutron-antineutron oscillations can be induced in the same way in the DFSZ and KSVZ models, see Fig. 4. Starting
with

LDFSZþLQ ¼ LDFSZ þ S4=31 d̄CRdR þ S8=31 ūCRuR þ ϕS4=31 S4=31 S8=31 þ H:c:; ð65Þ

where S4=31 ∼ ð3; 1;þ4=3Þ and S8=31 ∼ ð6̄; 1;−8=3Þ, we get the PQ charges

S4=31 S8=31 qL uR dR lL eR νR
Uð1ÞPQ x

2
− 5

6x
7
6x −

3x
2

− x
4
− 7

12x
3x
4
− 7

12x
5
12x −

x
4

0 1
x x

Uð1ÞL 0 0 0 0 0 1 1 1

ð66Þ

Thus, Uð1ÞB is broken spontaneously, but Uð1ÞL stays exact. The phenomenology is the same as in the KSVZ model, see
Fig. 4 and Eq. (48). Majorana neutrino masses can be generated spontaneously with ϕ†ν̄CRνR, but not with ϕν̄

C
RνR as the PQ

charges of the leptons would then allow for the S4=31 ūRνCR coupling, and thereby to tree-level proton decay.

4. Spontaneous breaking of B� 3L

The last two scenarios are those producing exotic ðΔB;ΔLÞ ¼ ð1;�3Þ proton decay operators. Let us start with the
ðΔB;ΔLÞ ¼ ð1; 3Þ case, and the Lagrangian

LDFSZþLQ ¼ LDFSZ þ S2=31 q̄LlC
L þ V1=3

2;μ ðūRγμlC
L þ q̄LγμνCRÞ þ ϕ†S2=31 V1=3

2;μ V
1=3;μ
2 þ H:c:: ð67Þ

The S2=31 ðd̄RνCR þ ūReCRÞ and S2=31 q̄LlC
L couplings cannot both be present, and we take only the latter, while the

V1=3
2;μ ðūRγμlC

L þ q̄LγμνCRÞ couplings are compatible with each other. The Uð1Þ charges are then
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S2=31 V1=3
2;μ qL uR dR lL eR νR

Uð1ÞPQ 1
6x −

x
2

x
2
þ 1

6x 0 x 1
x

1
6x −

x
2

7
6x −

x
2

1
6x þ x

2

Uð1Þ3B−L 0 0 1 1 1 −1 −1 −1
ð68Þ

The Uð1Þ3B−L symmetry remains, and its orthogonal combination Uð1ÞBþ3L is spontaneously broken. Dimension-nine
ðΔB;ΔLÞ ¼ ð1; 3Þ proton decay operators thus appear at the low scale (as well as semileptonic ðΔB;ΔLÞ ¼ ð0; 0Þ
operators since these charges allow for the DμHS2=31 V1=3†

2;μ couplings). Once more, there is enough room for a seesaw

mechanism with ϕν̄CRνR and/or ϕ†ν̄CRνR. Depending on the LQ couplings of S2=31 , it is always possible to choose the seesaw

operator that sets PQ charges forbidding the DQ couplings of both S2=31 and V1=3
2;μ , and thus proton decay via dimension-six

operators.
Concerning the ðΔB;ΔLÞ ¼ ð1;−3Þ operators, we start from

LDFSZþLQ ¼ LDFSZ þ S1=32 d̄RlL þ V2=3
1;μ d̄Rγ

μνR þ ϕðHuS
1=3†
2 S2=31 þH†

dV
2=3†;μ
1 V1=3

2;μ þ S2=3†1 V1=3†
2;μ V1=3;μ†

2 Þ þ H:c:; ð69Þ

with the S1=32 q̄LνR removed. Several choices are possible for introducing the doubletsHu andHd in these couplings, and we

opt for the one most symmetrical with the Yukawa couplings, see Eq. (4). Only one of the fermionic couplings of S1=32 can

be turned on, and we choose S1=32 d̄RlL. Then, the Uð1Þ charges are found to be

S2=31 V1=3
2;μ S1=32 V2=3

1;μ qL uR dR lL eR νR

Uð1ÞPQ x2þ5
6x

x2−1
6x

5x2þ4
3x

2x2þ4
3x 0 x 1

x
5x2þ1
−3x

5x2−2
−3x

2x2þ1
−3x

Uð1Þ3BþL 0 0 0 0 1 1 1 1 1 1

ð70Þ

This time, Uð1Þ3BþL remains and Uð1ÞB−3L is spontaneously broken. The induced operator, from a process easily adapted
from that of Fig. 5, is

Heff
ðΔB;ΔLÞ¼ð1;−3Þ ¼

ϕ4ðH†
dH

†
dHuÞ

m2
S1=3m

4
V2=3m

2
S2=3m

4
V1=3

d̄RlLd̄RγμνRd̄RγμνR: ð71Þ

Again, phenomenologically, there is not much difference between the DFSZ and KSVZ implementation.

C. Axion-induced proton decay and neutron-
antineutron oscillations

In both the KSVZ and DFSZ cases, we can induce
spontaneously proton decay or neutron-antineutron oscil-
lations. But, in all the scenarios discussed up to now, the
processes involving the axion were OðvEW=vϕÞ with
respect to that without it. The reason is of course that in
all cases, some coupling of ϕ to the LQ/DQ states was
introduced, and ϕ ¼ ðvϕ þ ρÞ expðiηϕ=vϕÞ ≈ vϕ þ ρþ ia0

[see Eq. (32)]. The purpose here is to kill off the leading
term, leaving only axion-induced B and/or L violating
processes. The only way to achieve this is to consider
derivative couplings of ϕ to pairs of LQ/DQs, and there are
only three renormalizable options

∂μϕS
1=3†
2 V1=3;μ

2 ; ∂μϕS
2=3†
1 V2=3;μ

1 ; ∂μϕS
4=3†
1 V4=3;μ

1 : ð72Þ

In these cases, the axion enters as ∂μϕ ≈ ∂μρþ i∂μa0,
without a leading term tuned by vϕ. Though we have

not attempted at constructing UV complete models gen-
erating such interactions, their structure is evocative of that
which could arise if both ϕ and scalar LQ/DQ were
somehow related to the fields giving masses to the vector
LQ/DQ. Such a situation can happen in simple GUT
models: In Ref. [64] for example, ϕ is identified with
the phase of the complexH24 field breaking SUð5Þ down to
the SM gauge group. Note, though, that the PQ breaking
scale and the LQ/DQ mass scale would be related in such
models. In the present section, the two will be kept
independent, with the latter usually much lower than the
former.
Let us see which symmetry breaking patterns can be

achieved with these building blocks. We will use the KSVZ
setting throughout as the alignments of the PQ with some
combination of B and L are manifest, but the adaptation to
the DFSZ scenario is immediate. Also, we will discardΨL;R

from the discussion. As in Sec. III A, their charge can
always be set separately by introducing some couplings to
the LQ/DQ.
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1. Spontaneous breaking of B−L

The scenarios with ðΔB;ΔLÞ ¼ ð1;−1Þ operators are
immediately obtained using any one of the three couplings
in Eq. (72). For example, we can take

LKSVZþLQ ¼LKSVZþS2=31 ðq̄CLqLþ d̄CRuRÞ
þV2=3

1;μ d̄Rγ
μνRþ∂μϕS

2=3†
1 V2=3;μ

1 þH:c:; ð73Þ

and get two active Uð1Þs, with charges

ϕ S2=31 V2=3
1;μ qL uR dR lL eR νR

Uð1ÞB −1 −2=3 1=3 1=3 1=3 1=3 0 0 0

Uð1ÞL 1 0 −1 0 0 0 1 1 1

ð74Þ

Thus, ϕ spontaneously breaks Uð1ÞB−L, leaving B þ L as
an exact global symmetry. As before, we can add a ϕν̄CRνR
coupling to generate neutrino masses and forbid the LQ
couplings of S2=31 .
The situation starting from the other derivative inter-

action is similar, hence we can generate:

∂μϕS
2=3†
1 V2=3;μ

1 → Heff
ðΔB;ΔLÞ¼ð1;−1Þ

¼ 1

m2
Sm

2
V
∂μϕðq̄CLqL þ d̄CRuRÞd̄CRγμνCR; ð75Þ

∂μϕS
1=3†
2 V1=3;μ

2 → Heff
ðΔB;ΔLÞ¼ð1;−1Þ

¼ 1

m2
Sm

2
V
∂μϕd̄CRγ

μqLðd̄CRlC
L þ q̄CLν

C
RÞ; ð76Þ

∂μϕS
4=3†
1 V4=3;μ

1 → Heff
ðΔB;ΔLÞ¼ð1;−1Þ

¼ 1

m2
Sm

2
V
∂μϕd̄CRdRðūCRγμνCR þ d̄CRγ

μeCR

þ q̄CLγ
μlC

LÞ: ð77Þ

All these situations induce ðΔB;ΔLÞ ¼ ð1;−1Þ operators,
see Fig. 6(a), but necessarily involving the axion, with for
example

∂μϕ

m2
Sm

2
V
d̄RγμqCLd̄RlL þ H:c:

→
1

m2
Sm

2
V
∂μa0d̄RγμqCLd̄RlL þ H:c:

→
Λ3
QCD

m2
Sm

2
V
ð∂μa0p̄γμð1 − γ5Þl

þ ∂μa0n̄γμð1 − γ5Þνþ � � � þ H:c:Þ; ð78Þ

where (…) denotes operators with additional light
mesons. Given the proton decay bounds, and taking
ΛQCD ≈ 300 MeV, this imposes a quite high bound
mS ≈mV > 104 TeV, close to the PQ breaking scale and
quite lower than the GUT scale. With those values, such
ðΔB;ΔLÞ ¼ ð1;−1Þ operators cannot affect significantly
the phenomenology of the axion, as its coupling to photons
or gluons remain much larger.
The situation can be different for an axionlike particle

(ALP) with a mass above that of the proton. If the mass is
just slightly above but below that of the neutron,
mp −me < ma < mn, it could explain the neutron lifetime
anomaly by opening up n → a0 þ ν, realizing the mecha-
nism proposed in Ref. [65]. The branching ratio for that
latter process can reach 1% for m2

S ≈m2
V around the TeV,

i.e., very close to the bounds from direct LHC searches
[66–70]. Such a large rate may be surprising for TeV scale
LQ/DQ, but can be understood from the fact that most of
the mS powers in the operator of Eq. (78) are compensated
by ΛQCD. For comparison, the electroweak neutron beta
decay rate is proportional to GFm5

e, with me the electron
mass and GF ∼ 1=v2EW, bringing a much harsher scale
suppression.
For this scenario to be viable, the ALP should not decay

too quickly to light particles, since that would allow p →
eða0� → XÞ at an unacceptable rate. Usually, ALPs have
two gluon and/or two photon couplings. To analyze this
situation, let us turn on the usual ALP photon coupling
tuned by some very high fa scale:

e2

fa
a0FμνF̃μν → Γða0 → γγÞ ¼ 4πα2m3

a

f2a
: ð79Þ

By comparison, the decay rate into proton plus antilepton
(or antiproton plus lepton) is

Γða0 → pl̄Þ ¼ ma

4π

�
1 −

m2
p

m2
a

�
2
�
mpΛ3

QCD

m2
Sm

2
V

�2

; ð80Þ

while the neutron decay rate into ALP is

Γðn → a0νÞ ¼ mn

4π

�
1 −

m2
a

m2
n

�
2
�
mnΛ3

QCD

m2
Sm

2
V

�2

: ð81ÞFIG. 6. The ðΔB;ΔLÞ ¼ ð1;−1Þ operators involving one (a)
and two axions (b).

FERNANDO ARIAS-ARAGÓN and CHRISTOPHER SMITH PHYS. REV. D 106, 055034 (2022)

055034-20



Now, kinematically, proton decay can occur via the process
p → lða0 → γγÞ, whose decay rate is (ra ≡ma=mp, and
the lepton mass is set to zero)

Γðp → lða0� → γγÞÞ

¼ 2α2m3
p

πf2a

�
mpΛ3

QCD

m2
Sm

2
V

�2

×
Z

1

0

dz
z2ð1 − zÞ2
ðr2a − zÞ2 ≈

ra→1 2α2m3
p

3πf2a

�
mpΛ3

QCD

m2
Sm

2
V

�2

: ð82Þ

Formp < ma < mn, if we impose that the p → lða� → γγÞ
lifetime is greater than 1032 years,

mS ≈mV > 900 GeV

�
1016 GeV

fa

�
1=4

: ð83Þ

Plugging this in Eq. (81), the branching ratio for n →
a0 þ ν is at around 1% provided fa is pushed at the GUT
scale, fa ≈ 1016 GeV, see Fig. 7. Note that for that value of
fa, the ALP still decays mostly into γγ as Γða0 → pl̄Þ >
Γða0 → γγÞ requires fa about an order of magnitude larger.
The p → lða0� → γγÞ decay can happen only for l ¼ e, μ,
but the underlying LQ couplings could actually exhibit
nontrivial flavor hierarchies. If they couple preferentially to
the τ, then proton decay would be forced to occur via more
suppressed channels, e.g., via p → πντða0� → γγÞ, and fa
could be brought down by a few orders of magnitude. Thus,
an ALP could realize the scenario proposed in Ref. [65] to
solve the neutron lifetime puzzle, though it does not
alleviate its inherent fine tuning of the dark particle mass.
For heavier ALPs, neutron decay is kinematically closed,

and the Γða0 → pl̄; nν̄Þ > Γða0 → γγÞ pattern can arise for
lower fa values (though still very large from the axion point
of view), with for example Γða0 → pl̄; nν̄Þ > Γða0 → γγÞ
for fa > 1013 GeV if ma ¼ 100 GeV. This, however,
requires also to boost the a → pl̄; nν̄ rate by allowing
light LQ/DQ at around the TeV scale. Even if Γða0 →
pl̄; nν̄Þ does not dominate, such decay channels could have
some cosmological implications. From a baryogenesis
point of view, it is interesting to remark that the present
scenario has all the necessary ingredients. Provided the LQ/
DQ couple to more than one SM fermion states, several
operators will simultaneously contribute to the a0 →
pl̄; nν̄ and a0 → p̄l; n̄ν decay processes, and since the
LQ/DQ couplings to SM fermions are a priori complex,
their rates would be different (slightly, as rescattering is

required). In this picture, note that if there are several LQ/
DQ states with a non-trivial mass spectrum, their decay
chains may first generate an asymmetry when mS;V > ma

[45], but it would be washed out and regenerated at a lower
scale by the ALP decays. Whether this mechanism is
sufficient to generate the observed baryon asymmetry is left
for a future study.
To close this section, let us mention another scenario in

which ðΔB;ΔLÞ ¼ ð1;−1Þ operators require two deriva-
tive couplings, and proton decay is associated to axion pair
production. Specifically, if we start from

LKSVZþLQ ¼ LKSVZ þ S2=31 ðq̄CLqL þ d̄CRuRÞ
þ S1=32 ðd̄RlL þ q̄LνRÞ þ ∂μϕS

2=3†
1 V2=3;μ

1

þ ∂μϕV
1=3;μ†
2 S1=32 þ ϕH†V2=3†

1;μ V1=3;μ
2 þ H:c:;

ð84Þ

the mixing between S2=31 and S1=32 can only occur through

that of V2=3
1;μ and V1=3

2;μ . Specifically, with this specific choice
of couplings,

ϕ S2=31 V2=3
1;μ S1=32 V1=3

2;μ qL uR dR lL eR νR
Uð1ÞB −1=3 −2=3 −1=3 1=3 0 1=3 1=3 1=3 0 0 0

Uð1ÞL 1=3 0 −1=3 −1 −2=3 0 0 0 1 1 1

ð85Þ

FIG. 7. Evolution of the a0 → γγ, a0 → pl̄, n → a0 þ ν and
p → lða0� → γγÞ widths as functions of fa. The dashed line
indicates the observed neutron lifetime discrepancy, Γbottle −
Γbeam ≈ 7.1 × 10−30 GeV [65]. The ALP mass is kept fixed at
ma ¼ 0.9384 GeV. The LQ/DQ mass is adjusted so that
τðp → lða0� → γγÞÞ ¼ 1032 yr. For the ðΔB;ΔLÞ ¼ ð1;−1Þ
operator, Eq. (78), mS ≈mV then follows the indicated line
(Case I), and must be a bit below the TeV to reproduce
the observed Γbottle − Γbeam discrepancy. Concerning the
ðΔB;ΔLÞ ¼ ð1; 1Þ scenario, for which leptons and antileptons
should be interchanged, the extra factor of fa in Eq. (90) sets
mS ≈mV ≈ 90 TeV independently of fa (Case II).
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Thanks to these charges, which crucially follow from
whether ϕ or ϕ† are introduced in the couplings, no other
SM fermion couplings of the LQ/DQ, nor any other
renormalizable couplings among the LQ/DQ, is allowed.
Turning on ϕν̄CRνR does not change this picture, except for
the operator ϕ†S2=31 S1=32 S1=32 . This is quite natural looking at

the Lagrangian, since ϕ†S2=31 S1=32 S1=32 followed by S2=31 →

q̄CLqL and S
1=3
2 → q̄LνR permits to recover ϕν̄CRνR by closing

the qL loops. As the ϕ†S2=31 S1=32 S1=32 and ϕν̄CRνR have the
same quantum numbers, both carrying ðΔB;ΔLÞ ¼ ð0; 2Þ,
they are both able to generate neutrino masses only, and do
not affect the ðΔB;ΔLÞ ¼ ð1;−1Þ pattern.
The leading operator for proton decay is now (Fig. 6(b)):

Heff
ðΔB;ΔLÞ¼ð1;−1Þ ¼

1

m4
Sm

4
V
ϕ∂μϕ∂

μϕH†ðq̄CLqL þ d̄CRuRÞ

× ðd̄CRlC
L þ q̄CLν

C
RÞ; ð86Þ

and it contains in particular

Heff
ðΔB;ΔLÞ¼ð1;−1Þ ¼

vϕvΛ3
QCD

m4
Sm

4
V

∂μa0∂μa0p̄ð1 − γ5Þl

þ � � � þ H:c:: ð87Þ

Phenomenologically, proton decay is suppressed, even for
relatively low mS ≈mV of Oð10 TeV). On the other hand,

if a0 is an ALP with twice its mass above the proton but
below the neutron mass, this setting is less interesting
because the LQ/DQ masses need to be too low to reach
Bðn → a0 þ a0 þ ν̄Þ ≈ 1%. Whether ALP or axions, the
cosmological implications of this scenario would be worth
further study though, as the consequences of opening up
(possibly CP-violating) a0 þ p ↔ a0 þ l and a0 þ p̄ ↔
a0 þ l̄ scattering processes could provide a new baryo-
genesis mechanism.

2. Spontaneous breaking of B+L

To attain ðΔB;ΔLÞ ¼ ð1; 1Þ operators, the trick is to
start from the previous scenario, but use some additional
LQ couplings to switchL by two units. Specifically, we can
consider

LKSVZþLQ

¼ LKSVZ þ S2=31 ðq̄CLqL þ d̄CRuRÞ
þ V1=3

2;μ ðūRγμlC
L þ q̄LγμνCRÞ

þ ∂μϕS
2=3†
1 V2=3;μ

1 þ ϕH†V2=3†
1;μ V1=3;μ

2 þ H:c:: ð88Þ

Provided V2=3
1;μ has no couplings to SM fermions, and only

those two interactions among ϕ and the LQ/DQ are present,
two Uð1Þ s are present in the Lagrangian, with charges

ϕ S2=31 V2=3
1;μ V1=3;μ

2 qL uR dR lL eR νR
Uð1ÞB −1=2 −2=3 −1=6 1=3 1=3 1=3 1=3 0 0 0

Uð1ÞL −1=2 0 1=2 1 0 0 0 1 1 1

ð89Þ

So, the Uð1ÞBþL symmetry is spontaneously broken, while
B − L remains. If neutrino masses are generated by adding
the ϕν̄Rν

C
R coupling, the remaining exact Uð1Þ symmetry

suffices to keep off all other interactions among ϕ and the
LQ/DQ, as well as the LQ/DQ couplings to SM fermions
not already present in the Lagrangian, except for a
ϕ†S2=31 V1=3;μ

2 V1=3
2;μ which carries the same quantum number

as ϕ†ν̄R
CνR. Neither is able to open new ðΔB;ΔLÞ patterns

for proton decay.
The leading B þ L violating operator is (see Fig. 8)

Heff
ðΔB;ΔLÞ¼ð1;1Þ

¼ 1

m2
Sm

4
V
ϕ∂μϕH†ðq̄CLqL þ d̄CRuRÞðūCRγμlL þ q̄CLγ

μνRÞ

→
vEWvϕ
m2

Sm
4
V
∂μa0ðq̄CLqL þ d̄CRuRÞðūCRγμeL þ d̄CLγ

μνRÞ: ð90Þ

Phenomenologically, thanks to the vEWvϕ from the

ϕHV1=3†
2;μ V2=3;μ

1 coupling, the LQ/DQ scale can be lower
by about an order of magnitude without violating proton
decay bounds. For ALPs, the main difference with the
ðΔB;ΔLÞ ¼ ð1;−1Þ scenario is that fa ¼ vϕ occurs in
the n → a0ν̄ and a0 → pl amplitudes, but cancels out from
the p → l̄ða0 → γγÞ rate. This means that mS ≈mV cannot
be as low as before, but must above 90 TeV. Yet, this highFIG. 8. Axion-induced ðΔB;ΔLÞ ¼ ð1; 1Þ operators.
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scale is compensated in the n → a0ν̄ rate by the vϕ factor, so
its branching ratio can still reach Oð1%Þ. Actually, the
dependencies of the various rates on fa stays exactly as
depicted in Fig. 7, but for mS ≈mV ≈ 90 TeV.
Note, finally, that B þ L violating operators are not

easily forced to involve pairs of axions. The pattern of LQ/
DQ couplings to SM fermions, and their hypercharge, does
not leave many options if only renormalizable operators are
allowed. The simplest we could find would require two
different Higgs doublets, so would be suitable for the DFSZ
model

LDFSZþLQ¼LDFSZþS4=31 d̄CRdRþS2=31 ðd̄RνCRþ ūReCRþ q̄LlC
LÞ

þ∂μϕS
2=3†
1 V2=3;μ

1 þ∂μϕS
4=3†
1 V4=3;μ

1

þH†
uH

†
dV

2=3†
1;μ V4=3;μ

1 þH:c:: ð91Þ

As the phenomenology is similar as that for B − L violating
operators, we do not detail this situation further.

3. Spontaneous breaking of B

Given that we want to start from the derivative couplings,
which are all quadratic in the LQ/DQ, we will need to add
at least some cubic interactions. This quickly increases the
number of new state needed, and phenomenologically, the
longest the chain, the smallest the predicted rate given that
LQ/DQ masses are at least of a few TeV.
The simplest processes correspond to the skeleton graph

∂μϕ → XiðXl → XjXkÞ, with the final XiXjXk set allowing
for ðΔB;ΔLÞ ¼ ð2; 0Þ transitions, so Xi;j;k ¼ Sy1 or V

y
2 for

some y. If Xl is integrated out, the effective operator
involves ∂μϕXiXjXk plus some Higgs fields. The simplest
such operators are of dimension six, and only seven of them
are compatible with the gauge symmetries,

∂μϕH†ðS2=31 S4=31 V1=3;μ
2 ; S4=31 S4=31 V5=3;μ

2 ; V1=3;μ
2 V1=3

2;ν V
1=3;ν
2 Þ;

ð92Þ

∂μϕHðV5=3;μ
2 V1=3

2;ν V
1=3;ν
2 ; S2=31 S2=31 V1=3;μ

2 ;

S2=31 S4=31 V5=3;μ
2 ; S4=31 S8=31 V1=3;μ

2 Þ; ð93Þ

where ∂μϕ could be replaced by ∂μϕ
† wherever required.

Starting from the three derivative interactions of Eq. (72),
there are several ways to reach these operators using a
HXlXjXk or H†XlXjXk coupling. Since Xl ¼ Sy2 or Vy

1,
these operators alone cannot induce ðΔB;ΔLÞ ¼ ð2; 0Þ
processes. Further, if Xl transforms as a 6, it does not
couple to SM fermions hence these operators cannot lead to
proton decay either. If Xl transforms as a 3, one must make
sure the PQ charges forbid Xl → lq. All this nevertheless
leaves many possible mechanisms, though many of them
turn out to be essentially equivalent phenomenologically,
so let us take an example.
Consider the Lagrangian

LKSVZþLQ ¼ LKSVZ þ S2=31 ðq̄CLqL þ d̄CRuRÞ þ V1=3
2;μ d̄

C
Rγ

μqL

þ ∂μϕV
2=3;μ†
1 S2=31 þHV2=3

1;μ S
2=3
1 V1=3;μ

2 þ H:c:;

ð94Þ

where S2=31 and V2=3;μ
1 transform as 3, but V1=3;μ

2 ∼ 6̄ since

the final operator ∂μϕHS2=31 S2=31 V1=3;μ
2 would cancel for

V1=3;μ
2 ∼ 3. Dropping the ΨL;R, as their charge can inde-

pendently be fixed by turning on some couplings to the LQ,
the active Uð1Þ s are then

ϕ S2=31 V1=3
2;μ V2=3

1;μ qL uR dR lL eR νR
Uð1ÞB 2 −2=3 −2=3 4=3 1=3 1=3 1=3 0 0 0

Uð1ÞL 0 0 0 0 0 0 0 1 1 1

ð95Þ

Turning on any of the LQ couplings of S2=31 or V2=3
1;μ would

breakUð1ÞBþL, and induce proton decay [compare Eq. (94)
with Eq. (88)]. At this level, their presence is thus forbidden
by the still active Uð1ÞB and Uð1ÞL symmetries. For an
even stricter protection, the PQ symmetry can be extended
to prevent these couplings. It suffices to add a seesaw
mechanism with the ϕ†ν̄CRνR coupling, something we
should do anyway (the ϕν̄CRνR would instead allow all

the LQ couplings). Note that S2=31 and V1=3
2;μ can mix via a

DμHS2=3†1 V1=3
2;μ term, but this is inessential since they have

the same B and L quantum numbers. This scenario lead to

neutron-antineutron oscillation operators, with the diagram
of Fig. 9(a), corresponding to

Heff
ðΔB;ΔLÞ¼ð2;0Þ

¼ 1

m8
S

∂μϕHðq̄CLqL þ d̄CRuRÞðq̄CLqL þ d̄CRuRÞd̄CRγμqL þ H:c:

→
vΛ6

QCD

m8
S

∂μa0n̄Cγμγ5nþ � � � þ H:c:; ð96Þ

where we have set all the DQ masses to a common mS
value. Since there is no associated n − n̄ operator, this scale
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can in principle be quite low. The best low energy limits
come from nuclear transitions, as this operator also con-
tributes to nn → a, but those do not pushmS well above the
TeV scale [71]. The main constraint thus come from LHC
searches [66–70]. Note, though, that the generic leptoquark
searches may not apply to this case: all these states decay to

diquark pairs and, furthermore, V2=3;μ
1 could end up quite

long lived if it is lighter than V1=3;μ
2 and S2=3;μ1 , and would

show up in channels with at least four jets.
Even if mS can be quite low, at around the TeV say, the

a0nn coupling is significantly smaller than the other
couplings, including to nn̄, as can be estimated setting
fa ≡ vϕ:

1

fa
≈
vΛ6

QCD

m8
S

⇔ mS ≈ 10 GeV ×

�
fa

109 GeV

�
1=8

; ð97Þ

for ΛQCD ≈ 300 MeV. Even with fa close to the Planck
scale, the LQ mass would need to be well below the TeV
scale, which would again be ruled out by direct searches.
For mS around the TeV, the a0nn coupling is at best 10−16

smaller than that to a0nn̄. Thus, a0nn does not represent a
competitive signature for direct axion searches.
Indirectly, the a0nn coupling may nevertheless open new

routes by relying instead on neutron-antineutron oscillation
phenomena. Indeed, while a0nn cannot generate n → n̄ in
vacuum, oscillations could now be catalyzed by an axion
dark matter background. While the typical high frequency
of the coherent axion field precludes any observation using
standard beam searches for n − n̄ oscillations (the induced
δmn−n̄ would average to zero), transient variations of the
axion field may be observable in this way. Another
possibility would be to exploit the magnetic splitting
between n and n̄ states, which in a 1T magnetic field
would be of about 10−7 eV [63], larger than the axion mass
if fa > 1014 GeV. Note that the neutron beam go through a
4.6 T magnet in neutron lifetime experiments, Ref. [72,73],
and that axion-induced mixing effects, if they occur, would
not have been excluded by the recent mirror neutron search
of Ref. [74], which relies on hypothesized mirror neutrons
capabilities to pass through normal matter.

Two other features compared to the usual neutron
oscillations are worth mentioning: the coupling is axial,
n̄Cγμγ5n, instead of the usual scalar n̄Cn oscillation
operator, so the spin dependencies are different [75], and
the ∂μa0n̄Cγμγ5n coupling can be CP violating [76–78]
since the DQ couplings are a priori complex, so n and n̄
may react differently to an axionic background. Also,
compared to neutron-mirror neutron oscillations, like those
invoked to explain the neutron lifetime anomaly [79], the
antineutron would not be invisible but would either decay
to antiproton, or annihilate with the surrounding matter. A
quantitative analysis of these signatures is clearly called for
but would require a detailed study, which go beyond our
scope. Also, other manifestations of the a0nn coupling in
an astrophysical and cosmological context are left for a
future study.
With only three LQ, another rather simple scenario can

lead to the ∂μϕH†V1=3;μ
2 V1=3

2;ν V
1=3;ν
2 operator by virtual S1=32

exchanges, and involves only states transforming as 3:

LKSVZþLQ ¼ LKSVZ þ S2=31 ðq̄CLqL þ d̄CRuRÞ þ V1=3
2;μ d̄

C
Rγ

μqL

þ ∂μϕS
1=3†
2 V1=3;μ

2 þH†S1=32 V1=3
2;ν V

1=3;ν
2 þ H:c::

ð98Þ

The same Uð1ÞB charges are found as in Eq. (95), with
V2=3
1;μ → S1=32 . Also, as before, adding the ϕ†ν̄CRνR coupling

prevents all the LQ couplings of V1=3
2;μ , S2=31 , and S1=32 .

Proton decay is now forbidden by the existence of the PQ
symmetry at the high scale, and does not arise at the low
scale thanks to the specific ðΔB;ΔLÞ ¼ ð2; 0Þ and
ðΔB;ΔLÞ ¼ ð0; 2Þ symmetry breaking pattern. The final
operator is phenomenologically similar to that in Eq. (96).
Many other choices of DQ states are possible, but they

lead to similar patterns. We will not investigate more
complicated processes, except for the following that leads
to a different phenomenology:

LKSVZþLQ ¼ LKSVZ þ S2=31 ðq̄CLqL þ d̄CRuRÞ þ V1=3
2;μ d̄

C
Rγ

μqL

þ ∂μϕS
1=3†
2 V1=3;μ

2 þ ∂μϕV
2=3;μ†
1 S2=31

þ ϕ†S1=32 V1=3
2;μ V

2=3;μ
1 þ H:c:: ð99Þ

In some senses, it combines the previous two scenarios, and
gives the same charges as in Eq. (95), with V2=3

1;μ and S1=32

having B ¼ 4=3. Also, the ϕ†ν̄CRνR coupling now suffices to

prevent the LQ couplings of the four states, V1=3
2;μ , V

2=3
1;μ ,

S2=31 , S1=32 . What differs however is how the ðΔB;ΔLÞ ¼
ð2; 0Þ effects are induced at the low-energy scale. The
two derivative couplings are needed, and ϕ further occurs
in the cubic DQ coupling, so the leading operator is
[see Fig. 9(b)]

FIG. 9. One and two axion induced neutron-antineutron oscil-
lation ðΔB;ΔLÞ ¼ ð2; 0Þ operators.
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Heff
ðΔB;ΔLÞ¼ð2;0Þ

¼ 1

m10
S

ϕ∂μϕ
†
∂νϕ

†ðq̄CLqL þ d̄CRuRÞd̄CRγμqLd̄CRγνqL þ H:c:

→
vϕΛ6

QCD

m10
S

∂μa0∂μa0n̄Cγ5nþ � � � þ H:c: ð100Þ

Though this operator is now of dimension 14 instead of that
of dimension 12 in Eq. (96), the extra suppression is
compensated by the vϕ factor since vϕΛQCD=m2

S is of Oð1Þ
for mS around the tens of TeV scale and vϕ at around
106 TeV. The nuclear transition bounds are thus similar as
in the single axion case, and in any case not competitive
with direct collider searches for new colored states.
Phenomenologically, neutron-antineutron conversion now
requires pairs of axions, and would occur through scatter-
ing processes like a0 þ n ↔ a0 þ n̄ or nþ n ↔ a0 þ a0

and n̄þ n̄ ↔ a0 þ a0. Though unlikely to be ever
observed, these processes could play a cosmological role.

4. Spontaneous breaking of B� 3L

The ðΔB;ΔLÞ ¼ ð1; 3Þ scenarios are trivially obtained
from any of the ðΔB;ΔLÞ ¼ ð2; 0Þ Lagrangians of the
previous section by switching all DQ couplings to LQ
couplings. For example, starting from Eq. (98),

LKSVZþLQ ¼ LKSVZ þ S2=31 ðd̄RνCR þ ūReCR þ q̄LlC
LÞ

þ V1=3
2;μ ðūRγμlC

L þ q̄LγμνCRÞ þ ∂μϕS
1=3†
2 V1=3;μ

2

þH†S1=32 V1=3
2;ν V

1=3;ν
2 þ H:c:; ð101Þ

leads to the charges

ϕ S2=31 V1=3
2;μ S2=31 qL uR dR lL eR νR

Uð1ÞB −1 −2=3 1=3 1=3 1=3 1=3 1=3 0 0 0

Uð1ÞL −3 −2 1 1 0 0 0 1 1 1

ð102Þ

By analogy, ðΔB;ΔLÞ ¼ ð1;−3Þ transitions can be induced by taking the Lagrangian

LKSVZþLQ ¼ LKSVZ þ S1=32 ðd̄RlL þ q̄LνRÞ þ V2=3
1;μ d̄Rγ

μνR þ ∂μϕV
2=3;μ†
1 S2=31 þ ϕS2=31 S1=32 S1=32 þ H:c:; ð103Þ

with the charges are

ϕ S2=31 S1=32 V2=3
1;μ qL uR dR lL eR νR

Uð1ÞB 1=2 −1=6 1=3 1=3 1=3 1=3 1=3 0 0 0

Uð1ÞL −3=2 1=2 −1 −1 0 0 0 1 1 1

ð104Þ

Note that for each case, additional ðΔB;ΔLÞ ¼ ð0; 0Þ
couplings involving pairs of LQs are possible, like
ϕHS1=3†2 S2=31 or DμHS1=3†2 V2=3

1;μ for the ðΔB;ΔLÞ ¼ ð1;−3Þ
scenario. Those can neither affect the symmetry pattern, nor
open new routes for proton decay.
Phenomenologically, these scenarios are very similar to

the ðΔB;ΔLÞ ¼ ð1;�1Þ ones described before, so we will
not detail them further. The main difference is the extra
suppression of proton and neutron decays due to the higher
dimensionality of the operators, and of the many particles
in the final states. These scenarios thus have essentially the
same phenomenology whenever these suppressions can be
compensated by lowering the LQ mass scale without
violating LHC bounds.

IV. CONCLUSIONS

In this paper, the opportunities arising from combining
leptoquarks and diquarks with axions have been

systematically analyzed. From a phenomenological stand-
point, our main results are:
(1) The PQ symmetry of which the axion is the Gold-

stone boson can be identified with any combination
of baryon B and lepton L numbers. In this way, B
and L appear partly protected by the PQ symmetry,
which has to be exact above the PQ breaking scale.
Reminiscent of the possible ΔB and/or ΔL oper-
ators made of SM fields (see Table I), the simplest
scenarios identify Uð1ÞPQ with Uð1ÞB�L, Uð1ÞB�3L,
Uð1ÞB, or Uð1ÞL, and induce spontaneously either
proton decay, neutron-antineutron oscillations, or a
Majorana mass terms for νR (or more generally,
neutrinoless double beta decays).

(2) All scenarios can be supplemented with a seesaw
mechanism. The axion is then not only the Gold-
stone boson associated to Uð1ÞB�L, Uð1ÞB�3L, or
Uð1ÞB breaking, but becomes also the Majoron
associated to the Uð1ÞL breaking. Though no global
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symmetry (besides of course Uð1ÞPQ itself) remains,
each scenario retains a specific phenomenology. For
example, whenUð1ÞPQ is identified both withUð1ÞB
and Uð1ÞL, ðΔB;ΔLÞ ¼ ð2n; 0Þ and ðΔB;ΔLÞ ¼
ð0; 2nÞ transitions are possible, but proton decay
cannot occur.

(3) For each pattern of symmetry breaking, it is also
possible to prevent axion-free proton decay, neu-
tron-antineutron oscillations, or neutrinoless dou-
ble beta decays. In other words, one can make sure
ðΔB;ΔLÞ effects always involve at least one axion
field. Phenomenologically, ðΔB;ΔLÞ ¼ ð1; 1Þ sce-
narios open the door to p → a0 þ l, n → a0 þ ν,
p → 2a0 þ l, n → 2a0 þ ν, and scattering proc-
esses like a0 þ ðp; nÞ ↔ a0 þ ðl; νÞ. Scenarios
with ðΔB;ΔLÞ ¼ ð1;−1Þ or ð1;�3Þ are similar.
Following the strategy proposed in Ref. [65], if a0

is an ALP of just the right mass, such that proton
decay is forbidden but neutron decay is not, these
scenarios are able to solve the neutron lifetime
puzzle, see Fig. 7.

(4) When applied to ðΔB;ΔLÞ ¼ ð2; 0Þ operators,
being forced to include an axion field could lead
to very peculiar effects. The phenomenology of the
∂μa0n̄Cγμγ5n and ∂μa0∂μa0n̄Cγ5n interactions have,
to our knowledge, not been investigated in detail yet.
Though a dedicated analysis is called for, we do not
expect these interactions to be phenomenologically
relevant in vacuum, but they could open interesting
channels in an axionic dark matter background, or
transitions like n → n̄þ a0 or n → n̄þ a0 þ a0 in
an intense magnetic field.

Besides these phenomenological aspects, we have also
analyzed the consequences on the foundations of axion
effective Lagrangians. Whenever the axion is associated to
some patterns of Uð1ÞB and/or Uð1ÞL breaking, the SM
fermions become charged under the PQ symmetry.
Typically, they thus occur in the usual fa-suppressed
derivative interactions, but through vector current inter-
actions, ∂μa0ψ̄γμψ (since B and L are vectorial). Often,
these interactions are discarded owing to the naive vector
Ward identity, but this is incorrect for two reasons:
(5) Axion-gauge field interaction are usually expected

to be ðg2X=faÞN Xa0XμνX̃μν, X ¼ Ga, Wi, B, with
N X summing up the contribution of all the fields
charged under both the PQ symmetry and the X
gauge interactions of strength gX. Thus,N X depend

on the SM fermion charges, with in particular NW
andN B depending on how Uð1ÞB and/or Uð1ÞL are
embedded in Uð1ÞPQ. Yet, as shown in Ref. [31],
the SM fermion contributions to NW and N B
arising from Uð1ÞB and/or Uð1ÞL systematically
cancel with that coming from triangle graphs built
on the corresponding ∂μa0ψ̄γμψ interactions. At the
end of the day, theUð1ÞB and/orUð1ÞL components
of Uð1ÞPQ do not alter the axion to gauge boson
couplings, even though this is not apparent at the
level of the effective Lagrangian.

(6) The counting rule in powers of 1=fa, central in
constructing the axion effective Lagrangian (see,
e.g., Ref. [30]), is invalid when B and/or L are
broken spontaneously along with the PQ symmetry.
Indeed, the equations of motion of the SM fermions
(or that of the leptoquarks if they have not been
integrated out) inherit OððfαÞnÞ, n ≥ 1 terms, so
that Oðfn−1a Þ interactions are hidden inside
f−1a ∂μa0ψ̄γμψ . In practice, in the present paper,
all these interactions were suppressed by some
relatively high power of the leptoquark masses,
which are pushed above the TeV by direct collider
searches. Thus, in all the scenarios considered here,
the B and/or L violating interactions are not
expected to be dominant compared to, e.g., the
two photon or two gluon modes for fa below the
Planck scale. Still, as this relative suppression has
nothing to do with fa, there is no guarantee it
always happens.

In conclusion, even if entangling the PQ symmetry with
the accidental symmetries of the SM requires new lep-
toquarks states, and often several of them, these scenarios
end up being more economical from a Uð1Þ global
symmetry point of view. The axion becomes a central
piece, not only solving the strong CP puzzle, and maybe
making up for the observed dark matter, but also setting off
the seesaw mechanism and introducing potentially CP
violating baryon number violation. With all its capabilities,
the axion could hold the keys to many of the standing
cosmological enigmas.
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