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We consider an extension to the Standard Model (SM) with two extra real singlet scalars which interact
with the SM Higgs particle. The lighter scalar is taken as the dark matter (DM) candidate. We show that the
model successfully explains the relic abundance of the DM in the universe and evades the strong bounds
from direct detection experiments while respecting the perturbativity and the vacuum stability conditions.
In addition, we study the hierarchy problem within the Veltman approach by solving the renormalization
group equations at one-loop. We demonstrate that the addition of the real singlet scalars contributes to the
Veltman parameters which in turn results in satisfying the Veltman conditions much lower than the Planck
scale ΛPl down to the electroweak scale. Therefore, the presence of the extra scalars solves the fine-tuning
problem of the Higgs mass. For the case of the two-scalar DM model we find two representative points in
the viable parameter space which satisfy also the Veltman conditions at Λ ¼ 300 GeV and Λ ¼ 1 TeV.
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I. INTRODUCTION

The unnatural Higgs mass of ∼125 GeV [1,2], yet
consistent with the electroweak precision test [3], has been
one of the driving forces behind developing models beyond
the StandardModel (SM) of particle physics. In fact, the SM
Higgs mass determines the scale of the electroweak sym-
metry breaking, and on the other hand, the amount of the
Higgs mass strongly depends on the quadratic divergences
from the loop corrections. In order to get a negligible one
loop correction within the SM (known as the Veltman
condition), Veltman found that the Higgs mass should be
∼314 GeV, which is of course not consistent with the
observed value. Let us assume that the SM is an effective
field theory valid up to a scale Λ, with Λ being the scale of
new physics beyond the Standard Model. Then the Higgs
mass radiative corrections of OðΛ2Þ for the leading con-
tributions, receives a huge fine-tuning mechanism to keep
the renormalized mass as small as the measured Higgs mass
or the electroweak scale [4]. Early attempts to get around
the hierarchy problem was to expect new physics at the
electroweak scale [5–10]. However, no new physics signal
is detected so far at the electroweak scale, presumably
demanding a reinterpretation of our notion for naturalness.
Before the discovery of the SM Higgs, the possibility that
the Veltman condition can be satisfied at high scale while

violated at low energy is studied in [11–13]. There are also
investigations indicating that the Veltman condition can be
fulfilled close to the Planck scale [14–17].
A prominent and ubiquitous mechanism to protect the

Higgs mass correction from large amounts is through
underlying symmetries, e.g., supersymmetric scenarios.
This type of mechanism works if its dynamical scale is
not large. Another well-known solution to the fine-tuning
problem is the scale invariant models [18–20]. The hier-
archy problem is addressed in [21] in which the SM and its
minimal extensions are merged with a high-scale super-
symmetric theory at a scale where the Veltman condition is
satisfied. The fine-tuning problem is discussed in the two-
Higgs doublet model and left-right symmetric model in
[22–25]. The Veltman condition is adapted to extended
Higgs sectors in [26,27] to lower the fine-tuning of the SM
Higgs mass. In the same context there are studies with
extended Higgs sector and various scenarios [28–38].
There are strong evidences that the SM cannot be an

ultimate theory of particle physics and new physics might be
at work at scales smaller than the Planck mass. The size of
the Higgs mass corrections may be controlled by adding
new degrees of freedom in order to cause the cancellation of
the radiative correction at the quadratic level at the scale
Λ ≪ ΛPl. An intriguing question is whether another weak
scale paradigm, the WIMP (weakly interacting massive
particle) scenario, would be interconnected to the natural-
ness problem intrinsically. In the present work we exploit a
dark matter model with two extra real singlet scalars both
coupled to the SM Higgs. We consider a setup in which one
of the singlet scalars is the dark matter (DM) candidate and
the other singlet scalar is unstable. By running the couplings
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at high scale we study the hierarchy problem and the effect
of extra scalars on the Veltman conditions while respecting
the stability of the extended Higgs potential. There can be
found various scenarios with the inclusion of two real
singlet scalars emphasising on the dark matter or LHC
phenomenology [39–49]. As experimental bounds, we
consider strong constraints from observed relic density
granted by Planck and WMAP observations, bounds from
direct detection experiments XENON1t and LUX and the
invisible Higgs decay width. On the other hand, the
theoretical constraints entail bounds from the perturbativity
and the bounded from below condition (BFB condition)
which we also call it the “positivity condition” in this article.
The setup of the paper is the following. In the next section

we describe the two-scalar model and impose bounds one
the couplings from bounded from below (BFB) condition.
Section III is devoted to the phenomenology of the dark
matter including bounds from the observed relic density,
direct detection experiments and the invisible Higgs decay.
The relevant Veltman conditions for the SM Higgs and the
two singlet scalars are obtained in Sec. IV. The renormal-
ization group equations and the numerical results for running
of the couplings are given in Sec. V. We conclude our results
in Sec. VI. In the Appendix we provide bounded from below
conditions for a generic potential with two singlet scalars
and N scalars added to the SM Higgs potential.

II. TWO-SCALAR MODEL

The two real singlet scalar extension of the SM has the
potential,

VDM ¼ 1

2
m2

1ϕ
2
1 þ

1

2
m2

2ϕ
2
2 þ ðλH1ϕ

2
1 þ λH2ϕ

2
2ÞH†H

þ λHðH†HÞ2 þ 1

4
λ1ϕ

4
1 þ

1

4
λ2ϕ

4
2 þ

1

2
λ12ϕ

2
1ϕ

2
2; ð1Þ

keeping only terms with dimensionless couplings. This
potential is symmetric under Z2 such that under which
ϕ2 → −ϕ2 and ϕ1 → ϕ1. According to this symmetry,
terms like ϕ1ϕ

3
2 and ϕ3

1ϕ2 are absent in the Lagrangian.

The new singlet scalars interact with the SM Higgs beside
having self-interactions. For the SM Higgs doublet we
expand it around the minimum in the unitary gauge,
H† ¼ ð0vþ h0Þ= ffiffiffi

2
p

, and for the singlet scalars we assume
that only the scalar ϕ1 gets nonzero vacuum expectation
value (VEV). Therefore, ϕ1 ¼ s01 þ w and ϕ2 ¼ s2 with
hϕ1i ¼ w and hϕ2i ¼ 0. The dark matter candidate is then
the scalar s2. Moreover, the coupling λH2 is taken to be
negligible at tree level, so we set λH2 ¼ 0. The running of
the coupling λH2 will be studied by solving the renorm-
alization group equations (RGE) in the next sections. We
will also consider the case when λH2 ≠ 0. In order to find
the physical mass eigenstates, h and s, the following
rotation is necessary in the space of the singlet scalars,
h0 and s01,

h ¼ h0 cos θ − s01 sin θ; s1 ¼ s01 cos θ þ h0 sin θ; ð2Þ

where θ is the mixing angle. The physical masses corre-
sponding to the scalar fields, h; s1 and s2 are respectively
mh;ms1 andms2 . In the following we adaptmh ¼ 125 GeV
and ms2 ¼ mDM being the mass of the Higgs and the DM
mass respectively. The quartic couplings λH; λ1 and λH1 are
obtained in terms of the mixing angle θ and the physical
masses mh and ms1 ,

λH ¼ 1

2v2
ðm2

hcos
2θ þm2

s1sin
2θÞ

λ1 ¼
1

2w2
ðm2

hsin
2θ þm2
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2θÞ
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sin 2θ
4vw

ðm2
s1 −m2

hÞ: ð3Þ

The potential of the model must satisfy BFB condition
(or the positivity condition) as a requirement for the
vacuum stability. For the potential in Eq. (1) the BFB
condition becomes λ1 > 0 ∧ λ2 > 0 ∧ λH > 0, and
if −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
< λ12 <
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λ1λ2

p
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; ð4Þ

and if λ12 >
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, then

λH1 > −
ffiffiffiffiffiffiffiffiffi
λ1λH

p ∧ λH2 > −
ffiffiffiffiffiffiffiffiffi
λ2λH

p
: ð5Þ

Setting λH2 ¼ 0 in Eq. (1) the BFB condition becomes
λ1 > 0 ∧ λ2 > 0 ∧ λH > 0, and

if −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
< λ12 < 0, then

λH1 > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1λ2 − λ212ÞλH

λ2

s
; ð6Þ

and if λ12 > 0, then
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λH1 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð7Þ

When scanning the parameter space of the model the
positivity conditions are imposed. The general conditions
of the positivity for a potential with two scalars and N
scalars are presented in the Appendix.

III. INVISIBLE HIGGS DECAY,
RELIC ABUNDANCE, AND DIRECT

DETECTION BOUNDS

We are interested in finding the viable regions in the
coupling space for further use in the next sections. To this
end, beside theoretical constraints, we impose additionally
the constraints from WMAP [50] and Planck [51] obser-
vations on the DM relic density with Ωh2 ∼ 0.12 and the
constraints from the latest direct detection (DD) experi-
mental bounds by XENON [52] and LUX [53].
We exploit the package micrOMEGAs [54] to compute the

relic density and the DM-nucleus elastic scattering cross
sections. The relevant Feynman diagrams for computation
of the DM annihilation cross section is depicted in Fig. 1.
The DM particles annihilate into the SM particles
(h;W�; Z; f) through s-channel, and annihilate through
t- and u-channel into two SM Higgs (hh) and into hs1.
Since it is assumed that the DM candidates are thermal
relic, its number density, n2, is governed by the Boltzmann
equation,

dn2
dt

þ 3Hn2 ¼ −hσannvreli½n22 − ðnEQ2 Þ2�; ð8Þ

where H in the second term is the Hubble parameter. The
thermal average of the annihilation cross section times the
velocity at temperature T is obtained by integration over the
center of mass energy,

hσannvreli ¼
1

8m4
s2TK

2
2ð

ms2
T Þ
Z

∞

4m2
s2

dsðs − 4m2
s2Þ

ffiffiffi
s

p
K1

×

� ffiffiffi
s

p
T

�
σannðsÞ; ð9Þ

in which K1 and K2 are modified Bessel functions.
Moreover, DM candidates interact directly with normal

matter through t-channel by exchanging a SM Higgs or the
singlet scalar s1, as shown in Fig. 2. The DM elastic
scattering cross section is spin-independent (SI) and is
given by

σSI ¼
1

4π

m4
Nf

2
N

ðmN þms1Þ2
w2λ212 sin 2θ

v2

�
1

m2
h

−
1

m2
s1

�
2

; ð10Þ

where mN ¼ 0.938 GeV is the nucleon mass and the scalar
form-factor is fN ¼ 0.3. When DM mass is small such that
ms2 < mh=2, then there are limits from invisible Higgs
decay. The ATLAS experiment provides upper limits for
the invisible branching ratio as Brexpinv < 0.26 at 95% C.L.
[55], and the CMS experiment gives a stronger limit as
Brexpinv < 0.19 at 95% C.L [56]. In this work we take the
stronger limit from the CMS. The decay width of the SM
Higgs is ΓSM ¼ 4.07 MeV [57]. When Higgs decay to the
singlet scalar s1 is kinematically allowed then the total
decay width modifies as ΓSM cos2 θ þ Γinv. Given the result
from the CMS, the theoretical invisible decay width should
satisfy the relation Γinv < 0.95cos2θ MeV. The invisible
Higgs decay through the process H → s1s1 is given by

Γinv ¼
λ12w2 sin2 θ

8πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

s1=m
2
h

q
: ð11Þ

As free parameters of the model, we choose, mDM, δ, θ, λ12,
λ2, λH2, and w, where δ ¼ ms1 −mDM. For the computation
in this section we fix w ¼ 250 GeV. First, we set
λH2 ¼ 0 and scan over the parameter space within these
ranges, 0.969< cosθ< 1, 0< λ2 < 2, −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
< λ12 < 2,

10 GeV < mDM < 2 TeV and 0 < δ < 100 GeV. The cou-
plings λH, λ1 and λH1 are given in terms of the free
parameters in Eq. (3). In Fig. 3 the viable scalar couplings
are shown after placing constraints from the BFB conditions,
the observed relic density and the DD upper bounds. Next,
we relax the condition of taking λH2 negligible and in our
scan we choose −1 < λH2 < 1. Respecting the ranges
discussed earlier for the parameters, we present the limits
on the couplings in Fig. 4 after imposing the BFB condition,
the observed relic density and the DD bounds.

FIG. 1. The relevant Feynman diagrams for dark matter
annihilation at the freeze-out epoch.

FIG. 2. The Feynman diagram for the DM direct detection
scattering.
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The results found here are beyond the expectation of the
model being simply a duplication of the singlet scalar
model. In the singlet scalar model, the DM annihilation
amplitude and the elastic scattering amplitude in the DM-
nucleon collision, share the same interaction coupling for
the entire DM mass range. This property makes it hard to
get small direct detection cross section and at the same time
large annihilation cross section needed for the correct DM
relic density. The situation is changed significantly in the
two real singlet model. This point is discussed in [41,43]
for various setups. Beside having strong constraints on the
couplings from the BFB conditions of the potential there
exist a large parameter space respecting both the observed
DM density and the DD bounds.

IV. VELTMAN PARAMETERS

To obtain the mass correction of the scalars we rewrite the
Lagrangian in terms of the fields in the mass eigenstates.
The Higgs mass correction at one loop keeping only
quadratic correction in the mass scale Λ, incorporates the
new scalar couplings λH1, λH2, λ1 and λ12 as,

δm2
h ¼

Λ2

16π2

�
6λHcos2θ þ 6λ1sin2θ þ 12λH1sin2θcos2θ

þ
�
3

4
g21 þ

9

4
g22 − 4λ2t

�
cos2θ þ 2λH1 þ 2λH2cos2θ

− 12λH1sin2θcos2θ þ 6λ1sin2θcos2θ

þ 6λHsin2θcos2θ þ 2λ12sin2θ

�
≡ Λ2

16π2
VH: ð12Þ

The measurement of the Higgs boson signal strengths [57]
constrains the mixing angle to small values, j cos θj > 0.969.
Therefore, we will approximate the Veltman parameter VH,
at small mixing angles,

VH ∼ 6λH þ 2λH1 þ 2λH2 þ
3

4
g21 þ

9

4
g22 − 4λ2t : ð13Þ

In the same way the singlet scalar masses get quadratic
corrections as,
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FIG. 3. The viable region restricted by the WMAP/Planck observed relic density and direct detection bounds from LUX/XENON1t
for the scalar dark matter mass in the range 10 GeV-2000 GeV. The BFB conditions are imposed on the couplings. Here we took
λH2 ¼ 0.
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FIG. 4. Same as Fig. 3 but with λH2 ≠ 0.
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δm2
s1 ¼

Λ2

16π2

h
6λHsin4θ þ 6λ1cos4θ þ 12λH1sin2θcos2θ þ 2λH2sin2θ þ 2λ12cos2θ þ 6λHsin2θcos2θ

þ 6λ1sin2θcos2θ − 6λH1sin2θcos2θ þ 2λH1

i
≡ Λ2

16π2
Vs1 ;

δm2
s2 ¼

Λ2

16π2

h
2sin2θλH2 þ 2λ12 þ 2cos2θλH2 þ 6λ2

i
≡ Λ2

16π2
Vs2 : ð14Þ

At the limit of small mixing angle we arrive at

Vs1 ∼ 2λ12 þ 2λH1 þ 6λ1;

Vs2 ∼ 2λ12 þ 2λH2 þ 6λ2: ð15Þ

A comment is appropriate to mention here. We have used
the cutoff regularization in computing radiative corrections
of the Higgs mass and the singlet scalar masses. The cutoff
regularization has an interesting property of disentangling
quadratic and logarithmic divergences. On the other hand,
in the dimensional regularization there is no discrimination
between these two types of divergences and one may get a
somewhat different quantum corrections as discussed in
[10]. Since in the Veltman approach the goal is to cancel the
strongest divergences (the quadratic divergences) it is
sufficient to apply the cutoff regularization [21,29].
The corresponding Veltman conditions at some high

energy scale, Λ, are VHðΛÞ ∼ 0, Vs1ðΛÞ ∼ 0 and Vs2ðΛÞ
∼ 0. Now by imposing VHðΛÞ ¼ 0, from Eq. (13) we
obtain

λH2 þ λH1 ¼ 2λ2t − 3λH −
3

8
g21 −

9

8
g22: ð16Þ

At the same scale we impose Vs1ðΛÞ ¼ 0 and Vs2ðΛÞ ¼ 0,
and then from Eq. (15), we arrive at

λ12 ¼ −λH1 − 3λ1;

λ2 ¼ λ1 þ
1

3
λH1 −

1

3
λH2: ð17Þ

We recall the relations in Eq. (3) for the couplings, λH,
λH1, and λ1.

V. RENORMALIZATION GROUP EQUATIONS
AND VELTMAN CONDITIONS

The running of the couplings are controlled by the
β functions in the renormalization group equations.
The β function for the coupling λ is defined as

βλ ¼
dλ

d lnðμ=μ0Þ
; ð18Þ

where μ is the renormalization scale with the initial value
μ0. In this work the β functions are computed at one loop

order. The gauge couplings, g1, g2 and g3, remain intact and
are similar to those in the SM,

16π2βgi ¼ big3i ; ð19Þ

where bi ¼ 41
6
;− 19

6
;−7. There are exact formulas for the

running of the gauge couplings,

giðμÞ ¼
giðμ0Þ

ð1 − 2big2i lnðμ=μ0ÞÞ1=2
: ð20Þ

The β function for the top quark Yukawa coupling at one
loop is also the same as the SM one,

16π2βλt ¼ λt

�
9

2
λ2t −

17

12
g21 −

9

4
g22 − 8g23

�
: ð21Þ

The β functions for the new dimensionless couplings in the
potential and also for the quartic Higgs self-coupling at one
loop are as follows,1

16π2βλH ¼ 3

8
g41 þ

3

4
g21g

2
2 þ

9

8
g42 − 3g21λH − 9g22λH

þ 24λ2H þ 2λ2H1 þ 2λ2H2 þ 12λHλ
2
t − 6λ4t ;

16π2βλH1
¼ −

3

2
g21λH1 −

9

2
g22λH1 þ 2λ12λH2 þ 6λ1λH1

þ 12λHλH1 þ 8λ2H1 þ 6λ2t λH1;

16π2βλH2
¼ −

3

2
g21λH2 −

9

2
g22λH2 þ 2λ12λH1 þ 6λ2λH2

þ 12λHλH2 þ 8λ2H2 þ 6λ2t λH2;

16π2βλ1 ¼ 18λ21 þ 2λ212 þ 8λ2H1;

16π2βλ2 ¼ 18λ22 þ 2λ212 þ 8λ2H2;

16π2βλ12 ¼ 8λ212 þ 6λ1λ12 þ 6λ2λ12 þ 8λH1λH2; ð22Þ

where we have set all the SM Yukawa couplings equal to
zero and only retained the top quark Yukawa coupling, since
the light quark and lepton Yukawa couplings are expected to
have quite small effects in the runnings. We first show the
running of the SM couplings in the set fg1; g2; g3; λt; λHg in

1We have checked our results applying the package SARAH
[58].
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Fig. 5. As it is evident, the coupling λH tends to zero at
Λ ∼ 105 GeV and therefore violates the bounded from
below condition of the potential. In addition we take a
look at the running of the Veltman parameter, VH, in Fig. 5
and notice that only at Λ ∼ 1020 GeV, the Veltman con-
dition is fulfilled. This scale is larger than the Planck scale.
Next, we consider two representative benchmarks in the
viable parameter space in the two-scalar model. We have
found a point at the electroweak scale (at the top quark
mass) which respects all the constraints discussed earlier in
the paper, with the following parameters,

(i) Benchmark I:
mDM ¼ 431 GeV, ms1 ¼ 505 GeV, λH ¼ 0.42, λH1 ¼

−0.021, λH2 ¼ −0.02, λ1 ¼ 9.9 × 10−3, λ2 ¼ 7.1 × 10−3,
λ12 ¼ −6 × 10−4, sin θ ¼ −0.21, w ¼ 3587 GeV.
As can be seen from the plots in Fig. 6, the Veltman

conditions are satisfied at the scale ∼300 GeV. Following

the argumentation in [4,59], the measure of fine-tuning as a
function of Λ is given by

F ≡ jδm2
hj

m2
h

¼ Λ2

16π2m2
h

jVHðΛÞj: ð23Þ

Then, we would say that the electroweak scale is fine-
tuned to one part in F , and F ≤ 1 indicates the absence of
tuning. For the representative point at the electroweak
scale Λ ∼ 173 GeV provided above, we obtain F ∼ 0.002,
which means no tuning at the electroweak scale.
Our second Benchmark point with the following param-

eters, satisfies the Veltman conditions at higher scale,
(ii) Benchmark II:
mDM ¼ 424 GeV, ms1 ¼ 828 GeV, λH ¼ 0.36, λH1 ¼

−0.039, λH2 ¼ −0.025, λ1 ¼ 9.8 × 10−3, λ2 ¼ 5.5 × 10−3,
λ12 ¼ 0.015, sin θ ¼ −0.2, w ¼ 5916 GeV.
The running of the couplings and the Veltman param-

eters are shown in Fig. 7. The Veltman conditions are
satisfied for all scalars at 1 TeV. For this Benchmark point
we find F ∼ 0.007 at Λ ∼ 173 GeV, which again indicates
no tuning at the electroweak scale.

VI. CONCLUSION

In this work we considered a dark matter model with two
real singlet scalars. The lighter scalar is taken as the DM
candidate. We have found regions in the parameter space
which explains correctly the observed DM relic density. In
contrast to the singlet scalar DM model, the two-scalar DM
model evades the latest bounds from LUX and XENON1t
direct detection experiments. Furthermore, we aimed at
considering also the vacuum stability and the hierarchy
problem within the Veltman approach. Upon running of the

FIG. 5. The running of all the SM couplings and Higgs Veltman
parameter are shown.

FIG. 6. In the left panel the running of all the scalar couplings, and in the right panel the running of the Veltman parameters are shown
for the Benchmark-I in the parameter space which fulfills the constraints from observed relic abundance, direct detection, and theoretical
bounds. The Veltman parameters are vanishing at 300 GeV.
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couplings by solving the renormalization group equations,
we consider the points in the parameter space which respect
both the vacuum stability and the perturbativity conditions.
Another theoretical restriction is to find points which
render the Veltman conditions satisfied at energies much
lower than the Planck scale. As benchmark-I and bench-
mark-II we have shown that the Veltman parameters for all
scalars in the model including the Higgs are vanishing at
300 GeVand 1 TeV respectively. The fine-tuning parameter
for these benchmarks is shown to be much smaller than
one, resulting in models with no fine-tuning problem. We
conclude that adding more singlet scalars can resolve
different fundamental problems in the SM including the
perturbativity and the vacuum stability problem in the SM
(as shown in [60]), the DM relic density while evading all
related bounds, and the fine-tuning problem via the
Veltman approach.

APPENDIX: BOUNDED FROM BELOW
CONDITION (POSITIVITY)

In this Appendix we follow [61]. Let us write the generic
two-scalar quartic potential V4 as,

V4 ¼ λHjHj4 þMðϕ1;ϕ2ÞjHj2 þ Vðϕ1;ϕ2Þ; ðA1Þ

where,

Mðϕ1;ϕ2Þ ¼ λH1ϕ
2
1 þ λH2ϕ

2
2 þ 2λH12ϕ1ϕ2; ðA2Þ

and

Vðϕ1;ϕ2Þ ¼
1

4
λ1ϕ

4
1 þ

1

4
λ2ϕ

4
2 þ

1

2
λ12ϕ

2
1ϕ

2
2 þ λ13ϕ1ϕ

3
2

þ λ31ϕ
3
1ϕ2 ðA3Þ

The BFB condition (positivity condition) V4 > 0 immedi-
ately holds if,

λH > 0 ∧ Mðϕ1;ϕ2Þ > 0 ∧ Vðϕ1;ϕ2Þ > 0: ðA4Þ
Alternatively we can write V4 ¼ ð2λHjHj2 þM2Þ2=4λH þ
Vmin where Vmin ¼ V −M2=4λH is the value of V4 at the
minimum. Therefore the positivity condition becomes,

λH > 0 ∧ Vmin ≡ Vðϕ1;ϕ2Þ −
M2ðϕ1;ϕ2Þ

4λH
> 0: ðA5Þ

Therefore the positivity condition V4 > 0 is given either by
Eqs. (A4) or (A5).
We still need to restrict the parameters with conditions

M > 0, V > 0 in Eq. (A4) and Vmin > 0 in Eq. (A5).
Making a rotation in ðϕ1;ϕ2Þ space, the polynomial M can
be diagonalized: Mðϕ0

1;ϕ
0
2Þ ¼ λ0H1ϕ

02
1 þ λ0H2ϕ

02
2 where λ0H1

and λ0H2 are eigenvalues of the Hessian matrix for
Mðϕ1;ϕ2Þ. Therefore, Mðϕ1;ϕ2Þ > 0 is equivalent to,

λ0H1≡ λH1þ λH12−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλH1 − λH12Þ2þ 4λH2λH12

q
> 0; ðA6aÞ

λ0H1≡ λH1þ λH12þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλH1− λH12Þ2þ 4λH2λH12

q
> 0: ðA6bÞ

The condition V > 0 turns into the question of positivity
of a quartic polynomial if we divide V by ϕ4

1 or ϕ4
2,

e.g., V=ϕ4
2 ≡ fðxÞ ¼ ax4 þ bx3 þ cx2 þ dxþ e > 0 with

x≡ ϕ4
1=ϕ

4
2, and

FIG. 7. In the left panel the running of all the scalar couplings, and in the right panel the running of the Veltman parameters are shown
for the Benchmark-II in the parameter space which fulfills the constraints from observed relic abundance, direct detection and theoretical
bounds. The Veltman parameters are vanishing at 1 TeV.
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a¼ λ1
4

b¼ λ31 c¼ λ12
2

d¼ λ13 e¼ λ2
4
: ðA7Þ

At x ¼ 0 and x → ∞ limits, the positivity condition
requires λ1 > 0 and λ2 > 0. Then fðxÞ remains positive
if it never intersects the real axis. In other words, the
positivity holds when the roots are always complex. The
complexity of the roots is guaranteed by the conditions,

Δ > 0 ∧ ðP > 0∨D > 0Þ ðA8Þ

where Δ is the discriminant,

Δ ¼ 256a3e3 − 192a2bde2 − 128a2c2e2 þ 144a2cd2e

− 27a2d4 þ 144ab2ce2 − 6ab2d2e − 80abc2de

þ 18abcd3 þ 16ac4e − 4ac3d2 − 27b4e2 þ 18b3cde

− 4b3d3 − 4b2c3eþ b2c2d2; ðA9Þ

and

P ¼ 8ac − 3b2;

D ¼ 64a3e − 16a2c2 þ 16ab2c − 16a2bd − 3b4: ðA10Þ

The same approach can be used to find regions with
Vmin > 0. From (A5) Vmin ¼ ax4 þ bx3 þ cx2 þ dxþ e
with

a ¼ λ1
4
−
λ2H1
4λH

; b ¼ λ31 −
λH1λH12

λH
;

c ¼ λ12
2

−
2λ2H12 þ λH1λH2

2λH
;

d ¼ λ13 −
λH2λH12

λH
; e ¼ λ2

4
−
λ2H2
4λH

: ðA11Þ

These parameters again must satisfy the conditions in
Eq. (A8) with Δ, P and D evaluated using Eq. (A11).

1. Biquadratic potential

For biquadratic potential or in the absence of the odd
terms in Eq. (1), i.e., by setting λH12 ¼ λ13 ¼ λ31 ¼ 0, the
positivity conditions will be determined as before, with b
and d being vanishing in the parameters Δ, P, and D given
in Eqs. (A9) and (A10). Therefore, in biquadratic potentials
we have,

Δ ¼ 256a3e3 − 128a2c2e2 þ 16ac4e;

P ¼ 8ac; D ¼ 64a3e − 16a2c2 ðA12Þ

The condition V > 0 is given by Eq. (A8) with,

a ¼ λ1
4
; c ¼ λ12

2
; e ¼ λ2

4
; ðA13Þ

and Vmin > 0 with,

a¼ λ1
4
−
λ2H1
4λH

; c¼ λ12
2
−
λH1λH2
2λH

; e¼ λ2
4
−
λ2H2
4λH

: ðA14Þ

2. Positivity in biquadratic potential with N scalars

Let us consider a generic potential as V4 ¼ 1=2λijϕ2
iϕ

2
j

where i; j ¼ 1;…; N with the convention that λii ≡ λi=2.
When only ϕ1 → ∞while other fields are finite, we need to
impose the condition λ11 ≡ λ1 > 0. When two scalars are
large, say ϕ1 → ∞, ϕ2 → ∞ and the rest of the scalars are
finite, the positivity imposes,

λ1 > 0 ∧ λ1λ2 − λ212 > 0 ðA15Þ

This trend should continue until N scalars. The Hessian
matrix Hij ≡ ∂

2V4=∂ϕ2
i ∂ϕ

2
j in general can be written as

H ¼

0
BBBBB@

λ11 λ12 … λ1N

λ21 λ22 … λ2N

..

. ..
. . .

. ..
.

λN1 λN2 … λNN

1
CCCCCA

ðA16Þ

that is a symmetric matrix, i.e., λij ¼ λji. The positivity
condition of N × N Hermitian matrix (symmetric matrix in
our case) à la Sylvester is the positivity of determinants for
all principal minors of the matrix H,

λ1 > 0 ∧
���� λ1 λ12

λ21 λ2

����> 0 ∧… ∧

�����������

λ1 λ12 … λ1N

λ12 λ2 … λ2N

..

. ..
. . .

. ..
.

λ1N λ2N … λN

�����������
> 0:

ðA17Þ
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