
Higgsino dark matter in pure gravity mediated supersymmetry

Jason L. Evans1 and Keith A. Olive2
1Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

2William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,
Minneapolis, Minnesota 55455, USA

(Received 2 March 2022; accepted 24 June 2022; published 21 September 2022)

We consider the prospects for the direct detection of dark matter in pure gravity meditation (PGM)
models of supersymmetry breaking. Minimal PGM models require only two parameters, the gravitino
mass,m3=2, which sets the UV mass for all scalar masses, and tan β. Gaugino masses are generated through
anomaly mediation. Typically the lightest supersymmetric state (the dark matter candidate) is a wino. Here,
we consider a one-parameter extension of the minimal model by allowing the Higgs soft masses to deviate
from universality. For simplicity, we take these to be equal and use the μ term as a surrogate. We also
consider nonuniversal stop masses. When jμj ∼ 1 TeV, the Higgsino is a viable dark matter candidate when
the gravitino mass is of order ∼1 PeV and tan β ≃ 2. We calculate the spin-dependent and spin-independent
cross sections for dark matter scattering on protons. For spin-independent scattering, existing experimental
limits place constraints on the PGM parameter space. Much of the currently allowed parameter space lies
above the irreducible neutrino background. Thus, future direct detection experiments will be able to probe
much of the remaining PGM parameter space.
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I. INTRODUCTION

One of the appeals of supersymmetric theories is
that they are capable of connecting multiple puzzles of
nature within a single framework. For example, super-
symmetry explains the radiative stability of the Higgs
boson mass [1], has a dark matter candidate [2,3],
provides for a stable electroweak vacuum [4], is con-
sistent with a 125 GeV Higgs bosons mass [5], and leads
to rather precise gauge coupling unification and so can
explain charge quantization [6]. No other model has
achieved such a high level of correlation between beyond
the standard model puzzles. It truly is a paradigm worthy
of our attention.
However, current constraints coming from the LHC put

the scale of supersymmetry breaking masses beyond the
TeV mass [7]. Although this does reduce the protection of
the Higgs mass from radiative correction, it does not force
us to sacrifice the other successes of supersymmetry. In
fact, if we accept some fine-tuning in the Higgs sector,
some of the challenges of building a successful super-
symmetric model can be alleviated, like the Polonyi
problem [8,9]. This thinking has motivated the study of

models like split supersymmetry [10] or pure gravity
mediation (PGM) with a large gravitino mass [11–18].
In the latter, the only source of supersymmetry breaking in
the minimal supersymmetric standard model (MSSM) is
the gravitino mass, m3=2. Sfermion masses are generated at
tree level and so are of the order of the gravitino mass. The
gaugino masses are generated at the one-loop level from
anomaly mediation [19] and so are also proportional to
m3=2. Even with large sfermion masses in pure gravity
mediation, the other salient features of supersymmetric
models like a wimp dark matter candidate are preserved
since the gauginos are relatively light.
PGMmodels can be viewed among the most minimal set

of supersymmetric models with radiative electroweak sym-
metry breaking (EWSB) [20] and full sfermion mass
universality [14]. In the context of minimal supergravity,
in addition to the gaugino masses, supersymmetry breaking
trilinear terms, A0, are also set by anomaly mediated
interactions and are also proportional to the gravitino mass.
Supergravity conditions then fix the Higgs bilinear super-
symmetry breaking term,B0 ¼ A0 −m3=2 ≃ −m3=2 [21,22].
Minimization of theHiggs potential then fixes the μ term and
the ratio of Higgs vacuum expectation values, tan β. This
single parameter model is however overconstrained, but can
be relaxed by adding a Giudice-Masiero (GM) term [23–25]
to the Kähler potential. In practice, one can then trade
the GM term for tan β and use the EWSB conditions to
determine the GM coupling. This leaves two free param-
eters, m3=2 and tan β.
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The typical and most widely studied dark matter can-
didate in pure gravity mediated models is the wino.
Because of the anomaly mediated gaugino mass conditions,
the wino tends to be the lightest supersymmetric particle
(LSP). Its relic density, determined by annihilations, is
relatively insensitive to the sfermion mass spectrum, and a
wino of mass of order 3 TeV can lead to the correct relic
density [26–28] after inclusion of Sommerfeld enhance-
ment effects [29]. Furthermore, if the wino is the dark
matter candidate and produced from thermal freeze-out,
there is a clear prediction for the sfermion mass spectrum.
Indeed, the correct relic density (Ωh2 ≈ 0.12 [30]) is
obtained in PGM models when m3=2 ∼ 800 TeV [17],
making the prospects for the detection of sfermions at
the LHC practically nonexistent. Instead, we expect rela-
tively strong signals from indirect dark matter experiments.
In fact, there is currently some tension with the H.E.S.S.
experiment unless the galaxy dark matter profile is of the
most cored variety [31–33]. This has led to concerns about
the viability of wino dark matter.
Although these arguments do not decisively rule out

wino dark matter, the exploration of other dark matter
candidates in models like pure gravity mediation are
warranted [17]. For example, by including additional
vectorlike multiplets [16], it is possible that either the bino
or gluino becomes the LSP. In this work, we revisit the
simpler possibility of Higgsino dark matter in pure gravity
mediation [17]. The Higgsino becomes the LSP when
μ ≪ mW̃ . This can be achieved if one [34] or both [35] of
the Higgs soft masses is nonuniversal and differ from m3=2

[15]. Higgsino dark matter in related models has been
discussed in [36–41]. Here, we specifically concentrate
on the prospects of the direct detection of dark matter in
PGM models.
As wewill show, the prospect for the direct detection of a

Higgsino dark matter candidate in PGM models is quite
good. This is due to the fact that gauginos are necessarily
loop-suppressed relatively to the sfermion masses, most
importantly the stop masses. The upper bound on the Higgs
boson mass then places an upper bound on the gauginos
masses. This then necessarily leads to a nontrivial mixing
angle between the bino, wino, and Higgsinos. Since LSP-
nucleon scattering comes at the cost of a single Higgsino-
bino or Higgsino-wino mixing angle, the cross section can
be large enough to be measured in direct detection experi-
ments for most if not all of the parameter space. In fact, a
majority of the parameter space of Higgsino dark matter in
PGM will be probed by the upcoming direct detection
experiments. In contrast, other split supersymmetry mod-
els, which do not require the gaugino mass suppression
relative the sfermion masses to be at the one-loop level, will
have large regions of parameter space inaccessible to direct
detection experiments.
In what follows, we briefly review the basic idea behind

pure gravity mediation in Sec. II. While the minimal model

can be described by two parameters, m3=2 and tan β, the
models considered here contain a third parameter, μ which
is equivalent to nonuniversal Higgs masses. Furthermore,
we also consider the effect of allowing the stop mass to be
nonuniversal. As in earlier work [17], we find a viable
Higgsino-like dark matter candidate with acceptable Higgs
masses when m3=2 ∼ 1 PeV, tan β ∼ 2, and jμj ∼ 1 TeV.
In Sec. III, we describe our calculation of the scattering
cross sections. Our results are presented in Sec. IV and our
conclusions are given in Sec. V.

II. PURE GRAVITY MEDIATION

In this section, we discuss a few details of minimal pure
gravity mediation and its realization with nonuniversal soft
masses. For more details see [15,17].
The core idea of pure gravity mediation is that all

supersymmetry breaking in the visible sector comes from
gravity. In this scenario, the soft masses are generated the
same way they are in minimal supergravity (mSUGRA),
i.e., with a flat Kähler potential, by a correction to the scalar
potential coming from Planck suppressed operators, and are
of order m3=2. In mSUGRA, we expect scalar mass univer-
sality at the scale supergravity is broken. This avoids
problems with flavor changing neutral currents [42]. In
PGM, we take universal scalar masses only for simplicity,
since as we will see, the large values needed for m3=2

preclude the problemswith flavor changing neutral currents.
Since these masses are proportional to the expectation value
of the superpotential, they do not a priori depend explicitly
on any singlets. The gaugino masses, on the other hand, for
models like mSUGRA, do generally depend on a singlet
(through a nontrivial gauge kinetic function). In order to get
a gauginomass of orderm3=2 fromgravitational interactions,
a singlet supersymmetry breaking field which couples to the
gauge fields of the following form is needed:

W ⊃
cZ
MP

WW: ð1Þ

If the field is not a singlet, this term is forbidden and the
leading order contribution is of higher order and thus very
suppressed.
With the gravity mediated contribution to the gauginos

masses suppressed, the anomaly mediated contribution [19]
becomes dominant. In this case, gaugino masses take the
form

M1 ¼
33

5

g21
16π2

m3=2; ð2Þ

M2 ¼
g22

16π2
m3=2; ð3Þ

M3 ¼ −3
g23

16π2
m3=2; ð4Þ
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where gi are the electroweak and strong gauge couplings
and we see that the gaugino masses are loop suppressed
compared to sfermion masses. Note that contributions from
Higgsino loops can be neglected if μ ≪ m3=2.
As noted above, in the minimal setup of PGM, the Kähler

potential is taken to be flat. Scalar masses are universal and
equal to gravitino mass at some high energy input scale
which we take here to be the scale of gauge coupling
unification. Gaugino masses and supersymmetry breaking
trilinear A terms are loop suppressed. Additionally, from
what we know in mSUGRA, the B term is fixed at the input
scale to be B0 ¼ A0 −m3=2 ≈ −m3=2. Thus the only free
parameters are m3=2, tan β, and μ. However, the minimiza-
tion of the Higgs potential then fixes two of these, leaving a
single parameter theory which is overly restrictive. If a GM
term is included in the Kähler potential,

ΔK ¼ cHH1H2 þ H:c:; ð5Þ

where cH is a constant, the expressions for μ and B are
modified at the input scale,

μ ¼ μ0 þ cHm3=2; ð6Þ

Bμ ¼ μ0ðA0 −m3=2Þ þ 2cHm2
3=2: ð7Þ

As a result, after minimization of the Higgs potential, there
are two remaining free parameters1 which can be chosen to
be tan β and m3=2 (so that μ and cH are determined by
EWSB). Generically, this minimal model has a wino dark
matter candidate2 with the correct thermal relic density for a
gravitino mass of order 800 TeV.
In this work, we examine a slightly more generic

scenario with nonuniversal Higgs masses [15,17]. This
can be accomplished by the addition of higher dimensional
operators involving the supersymmetry breaking field and
the Higgs fields. We take the following Kähler potential,

K ¼ yy� þ KðHÞ þ KðZÞ þ log jWj2; ð8Þ

where

KðZÞ ¼ ZZ�
�
1 −

ZZ�

Λ2

�
; ð9Þ

and

KðHÞ ¼
�
1þ a

ZZ�

M2
P

�
H1H�

1 þ
�
1þ b

ZZ�

M2
P

�
H2H�

2

þ ðcHH1H2 þ H:c:Þ; ð10Þ

and y represents all other MSSM fields other than the
Higgs bosons,H1, H2,W is the MSSM superpotential, and
Z is the supersymmetry breaking field which we assume is
strongly stabilized at some mass scale Λ < MP [9,44,45].
We do not contemplate the origin of these higher dimen-
sional operators and consider this only as an effective
theory. For this Kähler potential, all MSSM sfermion fields
get soft masses equal to m3=2 with the exception of the
Higgs soft masses. If Z is a Polonyi-like field, its expect-
ation value induces an F term and both the Higgs soft
masses become free parameters given by the constants a
and b. The two soft Higgs masses are m2

H1
¼ ð1 − 3aÞm2

3=2

and m2
H2

¼ ð1 − 3bÞm2
3=2.

Our ability to obtain a Higgsino dark matter candidate is
simplified if we allow μ to be a free input parameter. Thus
we require only one additional input parameter and we take
m2

H1
¼ m2

H2
or a ¼ b. Typically, the Higgs masses are set at

the grand unified theory (GUT) scale and then are renorm-
alization group evolved to the weak scale. The Higgs
potential minimization conditions are then used to deter-
mine μ and in this case cH (since B0 is fixed in mSUGRA
and we keep tan β free). We will instead use μ as an input
and use the Higgs potential minimization conditions to
determine m2

H2
and cH and m2

H1
is set equal to m2

H2
at the

GUT scale. This implementation of nonuniversal Higgs
masses has the advantage of being able to readily realize
a Higgsino mass which gives the correct thermal relic
density.
The range of mass scales considered in PGM models is

large. Typical scalar masses are of order 1 PeV. Since we
expect the Higgs scalar masses to be of the same order (if
not equal), there are large cancellations which occur in
the minimization of the Higgs potential which is used to
determine μ. The μ term at the minimum is given by

μ2 ¼ m2
1 −m2

2tan
2β þ 1

2
m2

Zð1 − tan2βÞ þ Δð1Þ
μ

tan2β − 1þ Δð2Þ
μ

; ð11Þ

where the correction terms are given by [46]

Δð1Þ
μ ≈−

3h2t
16π

ðfðmt̃1 ;mZÞþfðmt̃2 ;mZÞ−2fðmt;mZÞÞtan2β

þ 3h2b
16π

ðfðmb̃1
;mZÞþfðmb̃2

;mZÞ−2fðmb;mZÞÞ

þ 3h2τ
16π

ðfðmτ̃1 ;mZÞþfðmτ̃2 ;mZÞ−2fðmτ;mZÞÞ;
ð12Þ

1See [14] for more details.
2Even in this minimal setup, a Higgsino dark matter candidate

can be realized in a focus pointlike scenario [43]. However, as the
fully universal mSUGRA-PGM model is a special case of our
consideration here, it is included in our analysis.
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and

Δð2Þ
μ ≈ −

3h2t
16π

ðfðmt̃1 ; mZÞ þ fðmt̃2 ; mZÞÞ
t̃21 − t̃22

þ 3h2b
16π

ðfðmb̃1
; mZÞ þ fðmb̃2

; mZÞÞ
b̃21 − b̃22

þ 3h2τ
16π

ðfðmτ̃1 ; mZÞ þ fðmτ̃2 ; mZÞÞ
τ̃21 − τ̃22

; ð13Þ

with

fðx; yÞ ¼ x2
�
ln

�
x
y

�
− 1

�
: ð14Þ

In these expressions, we have ignored the contributions
from A terms (which are very small in PGM models),
though they are kept in our numerical evaluations. To have
an idea of the scales involved, we choose a representative
point with m0 ¼ 1 PeV, tan β ¼ 1.8 and μ ¼ 1080 GeV
(the choice of this point will be clear shortly). In the Table,
we list the relevant mass scales and corrections which
determine μ as well as some of the weak scale spectrum. As
one can see, the radiative corrections for the third gen-
eration can be quite substantial in the cancellations needed
to obtain a TeV scale μ parameter.
To better understand the running of the various super-

symmetry breaking parameters, we show in Fig. 1 (left) the
running of the soft scalar masses from the GUT scale to the
weak scale. All sfermion masses are equal tom3=2 ¼ 1 PeV
at the GUT scale. The two soft Higgs masses are set at
1.24 PeV. This value is fixed by the electroweak symmetry
breaking conditions in order to obtain μ ¼ 1080 GeV. At
low renormalization scale, Q, the running is terminated

when Q2 ¼ m2ðQÞ. Note that the electroweak symmetry is
broken despite the fact that both soft Higgs masses remain
positive. This is due to the large B term (or more precisely
large Bμ term) which at the tree level is the off-diagonal
element in the Higgs mass2 matrix. The value of B is given
in the Table, but can also be determined from Eqs. (6)
and (7). Indeed for this value of B (which like μ runs very
little), the determinant of the mass2 matrix turns negative as
mH2

runs to lower values. The running of the gaugino
masses is shown in the right panel of Fig. 1.
Later we will consider a slightly more generic model

where the stop soft masses are equal but different from the
Higgs soft masses and other sfermion masses. This can be
accomplished in the effective theory in a similar manner as
was done in Eq. (10) for the Higgs masses. The purpose of
considering nonuniversal stop masses is to attempt to
capture the features of more generic models of pure gravity
mediation beyond the minimal model. In pure gravity
mediation models, because the soft masses are so large,
order 1 changes in the soft masses have minimal effect on
the low-scale theory except for the stop masses and Higgs
masses. The Higgs boson masses play an important role in
radiative electroweak symmetry breaking and in determin-
ing the mass of the Higgsino. The stop masses, on the other
hand, play an important role in determining the standard
model Higgs boson mass. By taking the Higgs and stop soft
masses nonuniversal, we are able to capture the major
features of a more generic pure gravity mediation model
and see how Higgsino dark matter would look in this
scenario. Thus, for this work we take a model with the
following set of free parameters:

m3=2; tan β; μ; mT; ð15Þ
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FIG. 1. The running of the soft scalar masses from the GUT scale to the weak scale. Left: all sfermion masses are input at 1 PeV, while
the soft Higgs masses are set at 1.24 PeV. The lines labeled by mf̃ which are narrowly split are for mb̃R

, mL̃3
, mτ̃R , mQ̃1
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and mẽ. Right: the gaguino masses are input with their anomaly mediated value for m3=2 ¼ 1 Pev.
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where the gravitino mass is the mass of all the scalar
particles at GUT scale except the stops and the Higgs
bosons, and mT is the mass of left- and right-handed stop
masses at the input scale (thus also equal to mb̃L

, while
mb̃R

¼ m3=2). Initially, we will take mT ¼ m3=2 and then
later consider this full set of parameters.

The restricted parameter space (with mT ¼ m3=2)
was previously studied [17] and we present some
updated results in the ðμ; m3=2Þ planes shown in Fig. 2
for fixed values of tan β ¼ 1.8 and 2.2. For tan β ¼ 1.8 and
m3=2 ≲ 200 TeV, one of the stops is tachyonic and that
excluded region is shaded pink. The dark red shaded
regions contain a wino LSP. In the unshaded regions, there
is a Higgsino LSP. The LSP mass contours are not shown
but the wino LSP mass is determined primarily from
anomaly mediation with mW̃ ≈ 0.27m3=2. The mass of
the Higgsino depends primarily on μ, mH̃ ≈ 1.1μ. For both
states, there is a slight dependence on the sign of μ and
tan β. The values of the Higgs mass are shown by a series
of red dot-dashed contours as labeled. As one can see, there
is a strong dependence of the Higgs mass on tan β. For
tan β > 2.2 and the large values of m3=2 we considered, the
Higgs mass begins to exceed the experimental value even if
a relatively large theoretical uncertainty is assigned to the
Higgs mass calculation. At tan β < 1.8, renormalization
group evolution inevitably leads to a tachyonic stop for
small m3=2 and is excluded.
In the dark blue shaded strips of Fig. 2, the LSP has a relic

densityΩh2 ¼ 0.11–0.13. Note that this range is taken to be
significantly wide than the Planck results [30] which
indicate a cold dark matter density of Ωch2 ¼ 0.1200�
0.0012 and enhances the visibility of these strips. The
thermal relic density in the Higgsino region depends
primarily on the mass of the Higgsino [36] and the desired
abundance is achieved when μ ≈ −900 GeV and 1080 GeV,
with a Higgsino mass just over 1100 GeV for both positive
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FIG. 2. The ðμ; m3=2Þ plane for fixed tan β ¼ 1.8 (left) and 2.2 (right). The pink shaded region is excluded as it contains a tachyonic
stop. In the dark red shaded region, there is a wino LSP. In the remainder of the plane, the Higgsino is the LSP. Higgs mass contours, with
masses labeled are shown as red dot-dashed curves. In the dark blue strips, the relic density is Ωχh2 ¼ 0.11–0.13. The yellow star
corresponds to the point in Table I.

TABLE I. Parameters and predictions of a PGM point that
yields values of Ωχh2 andmh that are consistent with experiment.
This point corresponds to the star in the left panel of Fig. 2.

Higgs mass parameters (masses in PeV units)

mH1
¼ 1.23 mH2

¼ 0.47 μ ¼ 0.0011

B ¼ 780
ffiffiffiffiffiffi
Δ1

μ

q
¼ 0.90 Δ2

μ ¼ −0.28

Input supersymmetry parameters (masses in TeV units)
m3=2 ¼ 1000 tan β ¼ 1.8 cH ¼ −0.30
a ¼ −0.18 b ¼ −0.18

MSSM particle masses (in PeV units)
mχ ¼ 0.0011 mt̃1 ¼ 0.55 mg̃ ¼ 0.22
mχ2 ¼ 0.0011 mχ3 ¼ 0.0035 mχ4 ¼ 0.010
mt̃2 ¼ 0.80 mb̃1

¼ 0.80 mb̃2
¼ 0.99

mq̃L ¼ 0.99 md̃R
¼ 0.99 mũR ¼ 0.99

mμ̃R ¼ 1.00 mμ̃L ¼ 1.00 mτ̃1 ¼ 1.00
mτ̃2 ¼ 1.00 mχ�

1
¼ 0.0011 mχ�

2
¼ 0.0035

mH;A ¼ 1.41 mH� ¼ 1.41

Other observables
Ωχh2 ¼ 0.125 mh ¼ 125.4 GeV

HIGGSINO DARK MATTER IN PURE GRAVITY MEDIATED … PHYS. REV. D 106, 055026 (2022)

055026-5



and negative μ (the sign dependence on μ in the Higgsino
mass calculation is due to one-loop threshold corrections).
The preferred regions are seen as the vertical strips in both
panels. In the dark red shaded region at large jμj and
m3=2 ≈ 800 TeV, the wino is the LSP and Ωh2 ≈ 0.12.
One also finds three very thin dark blue diagonal strips
where the desired relic density can be obtained through
coannihilations between the wino and two Higgsinos which
are all nearly degenerate in that region. These have been
discussed in more detail in [17]. Our primary interest here is
the nearly vertical relic density strips.
We show the dependence of the Higgs mass on both the

gravitino mass and tan β in Fig. 3. We plot mh vs m3=2 for
three values of tan β ¼ 1.8, 2.0, and 2.2. The value of μ
is fixed to 1080 GeV and shown as solid curves and
−900 GeV as dashed curves. As one can see, this range of
tan β covers the experimentally acceptable values of mh for
a wide range of gravitino masses. Note again that the stop
mass becomes tachyonic for tan β ≲ 1.8. In the right panel
we see the rapid increase in mh with tan β, for fixed values
of m3=2 ¼ 0.5 and 1 PeV.
As noted above, the models considered have nonuni-

versal Higgs masses, which are set equal to each other at
the GUT scale. The degree of nonuniversality required
is shown in Fig. 4 which shows the value of a ¼
1
3
ð1 −m2

H1
=m2

3=2Þ as a function of the gravitino mass
(assuming mH1

¼ mH2
). For the displayed curves,

μ ¼ 1080 GeV, and as a function of m3=2 they track the
right blue shaded region in each panel of Fig. 2. The curves
for the left blue shaded regions (with μ ¼ −900 GeV)
would be nearly identical. As one can see, for tan β ¼ 1.8,
universality is only achieved for very large m3=2 where

the Higgs mass is significantly larger than 125 GeV.
However, for tan β ¼ 2.2 complete scalar mass universality
is achieved when m3=2 ¼ 0.49 PeV, and the Higgs mass
is 127.1 GeV. We also show the corresponding curve
with tan β ¼ 2.0. In this case, universality occurs at
m3=2 ¼ 1.35 PeV, but there mh ¼ 128.1 GeV.

III. DIRECT DETECTION OF HIGGSINO
DARK MATTER

It is straightforward to calculate the elastic scattering
cross section for a neutralino on a nucleon [47–49]. Here
we simply quote the most important ingredients from [49]
for the purpose of studying Higgsino elastic scattering.
We consider only spin-dependent and spin-independent
interaction from the four-fermi Lagrangian for χ-nucleon
scattering:

L ∋ α2iχ̄γ
μγ5χqiγμγ5qi þ α3iχχqiqi: ð16Þ

If we ignore the contributions from squark exchange as
well as the heavy Higgs scalar exchange,3 the coefficients
αi can be written as

α2i ≃ −
g2

4m2
Zcos

2θW
½jZχ3 j2 − jZχ4 j2�

T3i

2
; ð17Þ
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FIG. 3. Left: the Higgs mass vs m3=2 for three values of tan β ¼ 1.8, 2.0, and 2.2. Right: the Higgs mass vs tan β for two values of
m3=2 ¼ 0.5 and 1.0 PeV. The value of μ is fixed to 1080 GeV (solid) and −900 GeV (dashed).

3Though these contributions are negligible for the cases under
study, they are included in all our numerical work.
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α3i ≃ −
gmqi

4mWm2
hBi

½Reðδ1i½gZχ2 − g0Zχ1�ÞDiCi

þ Reðδ2i½gZχ2 − g0Zχ1�ÞD2
i ; �; ð18Þ

where T3i denotes isospin for up type (i¼ 1) and down type
(i ¼ 2) quarks, and Zχj corresponds to the B̃; W̃; H̃1; H̃2

component of the LSP for j ¼ 1; 2; 3; 4 respectively, and

δ1i ¼ Zχ3ðZχ4Þ; δ2i ¼ Zχ4ð−Zχ3Þ; ð19Þ

Bi¼ sinβðcosβÞ; Ci¼ sinαðcosαÞ; Di¼ cosαð−sinαÞ;
ð20Þ

for up (down) type quarks. We denote bymh the mass of the
light scalar Higgs and α denotes the Higgs mixing angle.
The mixing angles of a Higgsino LSP with the different

neutralino components can be approximated as

Zχ1 ¼ −
ffiffiffi
2

p

2
ðcβ � sβÞ

MZsW
M1 − jμj þOðM3

ZÞ; ð21Þ

Zχ2 ¼
ffiffiffi
2

p

2
ðcβ � sβÞ

MZcW
M2 − jμj þOðM3

ZÞ; ð22Þ

Zχ3 ¼∓
ffiffiffi
2

p

2
�

ffiffiffi
2

p

8

�
c2Wðc2β− s2βÞ
jμjðM2− jμjÞþ

c2Wðcβ� sβÞ2
ðM2− jμjÞ2

þ s2Wðc2β−s2βÞ
jμjðM1− jμjÞþ

s2Wðcβ� sβÞ2
ðM1− jμjÞ2

�
M2

ZþOðM3
ZÞ; ð23Þ

Zχ4 ¼
ffiffiffi
2

p

2
þ

ffiffiffi
2

p

8

�
c2Wðc2β− s2βÞ
jμjðM2−μÞ−

c2Wðcβ� sβÞ2
ðM2−μÞ2 þ s2Wðc2β− s2βÞ

jμjðM1−μÞ

−
s2Wðcβ� sβÞ2
ðM1−μÞ2

�
M2

ZþOðM3
ZÞ; ð24Þ

where sβ ¼ sin β, cβ ¼ cos β, cW ¼ cos θW , and sW ¼
sin θW and the upper (lower) sign is for μ > 0 (μ < 0).
This approximation is valid as long as the LSP is pre-
dominantly Higgsino and MZ=ðM2 − jμjÞ ≪ 1. Using
these approximate relations and taking the decoupling
limit where α ¼ β − π

2
, α3i and α2i can be simplified to

α2i≃−
1

8
cos2βð1− tan2βÞ

×

�
g02

jμjðM1− jμjÞþ
g2

jμjðM2− jμjÞ
�
T3i

2
; ð25Þ

and

α3i ≃ −
1

8

mqicos
2βð1� tan βÞ2
m2

H2

�
g02

M1 − jμj þ
g2

M2 − jμj
�
:

ð26Þ

We have checked that numerically these expressions are
quite accurate for much of the parameter space we consider.
In fact, even forM2 − jμj ∼ 400 GeV, these expressions are
still accurate to within about 5%.
The spin-independent scattering cross section for the

LSP on a proton can be written as
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FIG. 4. Left: the degree Higgs mass nonuniversality for three values of tan β ¼ 1.8, 2.0, and 2.2. Plotted is the Kähler coupling
a ¼ 1

3
ð1 −m2

H1
=m2

3=2Þ vs m3=2. Full scalar mass universality corresponds to a ¼ 0. Right: Kähler coupling a vs tan β for two values of
m3=2 ¼ 0.5 and 1.0 PeV. This plot assumes μ ¼ 1080 GeV, but would be nearly identical for μ ¼ −900 GeV.
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σ3 ¼
4m2

r

π
f2p; ð27Þ

where mr is the reduced LSP mass, and

fp
mp

¼
X
q

fðpÞTq

α3q
mq

: ð28Þ

The parameters fðpÞTq are defined by

mpf
ðpÞ
Tq ≡ hpjmqqqjpi; ð29Þ

and have recently been reevaluated [50]:

fðpÞTu ¼ 0.018� 0.005; fðpÞTd ¼ 0.027� 0.007; fðpÞTs ¼ 0.037� 0.017

fðpÞTc ¼ 0.078� 0.002; fðpÞTb ¼ 0.072� 0.002; fðpÞTt ¼ 0.069� 0.001: ð30Þ

The spin-dependent elastic χ-proton cross section can be
written as

σ2 ¼
24

π
G2

Fm
2
ra2p; ð31Þ

where

ap ¼
X
i

α2iffiffiffi
2

p
Gf

ΔðpÞ
i : ð32Þ

The factors Δðp;nÞ
i parametrize the quark spin content of the

nucleon [50],

ΔðpÞ
u ¼ 0.84� 0.03; ΔðpÞ

d ¼ −0.43� 0.03;

ΔðpÞ
s ¼ −0.09� 0.03: ð33Þ

IV. RESULTS

Despite the very large scalar masses associated with
PGM models, the Higgsino as a dark matter candidate still
lends itself to the possibility of detection in direct detection
experiments. As we will see, although some of the
parameter space described above is already excluded by
existing data, a substantial range in parameters remains
viable and potentially detectable in future experiments, as
much of the parameter space predicts scattering cross
sections in excess of the so-called neutrino floor [51].
In Fig. 5, we show the same (μ; m3=2) planes as in Fig. 2

with tan β ¼ 1.8 (2.2) in the left (right) panels, and provide
contours of the spin-independent cross sections, σSIp ¼ σ3.
Contour labels correspond to units of 10−8 pb. Unlabeled
contours correspond to 2× and 5× within each decade.
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FIG. 5. The spin-independent elastic cross section for LSP scattering on protons in the (μ; m3=2) plane for fixed tan β ¼ 1.8 (left) and
2.2 (right). The shaded regions are the same as in Fig. 2. Values of the cross sections are as labeled in units of 10−8 pb. Contours between
the labeled decades are 2× and 5× the preceding decade. Also shown as thick black curves are contours for the current experimental
bound from PandaX-4T [52]. Solid contours correspond to the scaled limit when the relic density is< 0.12. The neutrino floor is shown
by the thick yellow contour.
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We also show the current bound from the PandaX-4T
commissioning run [52] as black contours. In the Higgsino
region (unshaded), the allowed parameter space is above
the black line, while in the wino region (shaded), it is below
the line. These bounds are relevant only for μ > 0 as there
are significant cancellations for μ < 0 which suppress the
cross section [49,53–55], sometimes known as blind spots.
This cancellation can be understood from examining
Eq. (26). Since we consider tan β close to 1, α3i is strongly
suppressed for μ < 0 as compared to μ > 0, as can be see in
Eq. (26). For μ ≳ 1.1 TeV, (i.e., to the right of the nearly
vertical blue strip), the relic Higgsino density from thermal
freeze-out exceeds the observed cold dark density and is
only viable if there is an additional (post freeze-out) source
of entropy production. In this regime, the bound on the
cross section (at roughly 10−9 pb) weakens slightly as the
Higgsino mass (μ) increases. At lower μ, the thermal relic
density is too low and we have scaled the cross section
bound byΩχh2=0.12 to reflect the lower density (and hence
scattering rates). In the event that there is a nonthermal
source of Higgsinos, the unscaled limit is shown as a
dashed black curve which strengthens significantly as
the mass is lowered (either lower μ, or lower m3=2 in the
wino region).
Although there is currently no significant experimental

constraint on the parameter spacewhenμ < 0 [except for the
small loop around (−1; 300Þ TeV], much of the parameter
space is potentially detectable in future experiments. The
yellow contours in Fig. 5 show the position of the neutrino
floor [51] below which direct detection becomes over-
whelmed by the inevitable neutrino background. For
μ > 0, the cross section drops below the neutrino floor only

in the wedge near the Higgsino/wino boundary. There is
actually a black contour below the yellow as the cross
section drops precipitously when the LSP changes from an
antisymmetric Higgsino (½H̃1 − H̃2�=

ffiffiffi
2

p
) to a symmetric

combination (½H̃1 þ H̃2�=
ffiffiffi
2

p
) [36] causing a strong can-

cellation. A similar wedge (without a black contour) is seen
when μ < 0 when the LSP changes from a Higgsino to a
predominantly wino. The dashed contour again ignores the
fact that the relic density is low anddoes not include a scaling
of the cross section. For μ < 0, outside the wedge, only the
portion of the plane above the yellow contour is potentially
unobservable.
Some of this behavior is more easily understood in the

one-dimensional plots shown in Fig. 6. In the left panel, we
show the spin-independent cross section as a function of the
gravitino mass, while in the right panel as a function of
tan β. We have chosen values of μ so that we obtain the
correct thermal relic density in the Higgsino region, μ ¼
1080 GeV (solid curves) and μ ¼ −900 (dashed curves).
Consider for example the spin-independent cross section
μ > 0. For low m3=2, the wino is the LSP, and the cross
section rises with m3=2 to a maximum, and then drops once
the LSP becomes Higgsino-like. There is little tan β
dependence, which is also seen in the right panel where
the curves (for fixedm3=2) are rather flat. In both panels, the
upper horizontal red line represents the current 90% upper
limit from PandaX-4T [52] for a ∼1 TeV LSP. This limit
excluded values of m3=2 ≲ 850 TeV for μ > 0. The lower
horizontal red line corresponds to the neutrino floor for a
∼1 TeV LSP. All of the predicted cross sections shown lie
above the floor and are in principle detectable. For μ < 0,
there are significant cancellations which occur in Eq. (18)
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which suppress the cross section. The strong dependence
on m3=2 for low mass occurs as the identity of the LSP
changes from wino to Higgsino as m3=2 is increased. In
addition, the LSP changes between H̃½1;2� and H̃ð1;2Þ
involving rapid changes in the mixing angles and a strong
variation in the cross section. At large values of m3=2, the
cross section falls beneath the neutrino floor for μ < 0.
Similarly, we plot in Fig. 7 the spin-dependent cross

sections, σSDp ¼ σ2, for tan β ¼ 1.8 (left) and 2.2 (right).

Cross section values are again as labeled in units of
10−8 pb. The current best experimental limit on the spin-
dependent cross section comes from PICO [56] and is too
weak to be visible on this plane. The strongest constraint
2.5 × 10−5 pb for mχ ¼ 25 GeV, and is 3.5 × 10−4 for
mχ ¼ 1 TeV. Once again we find a rapid variation in the
cross section in the region transitioning between a wino and
Higgsino LSP. This is also seen in the one-dimensional
plots shown in the left panel of Fig. 8. As one can see, there
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is far less dependence on the sign of μ for the spin-
dependent cross section. This can be readily understood by
comparing Eqs. (25) and (26).
Finally,we present in Fig. 9 results in the ðmT=m3=2;m3=2Þ

plane where we allow the stop masses to be nonuniversal.
More specifically, we set the boundary condition for the
third generation left-handed quark doublet and right-handed
stop to be mT at the high energy supersymmetry breaking
input scale. We again display results for tan β ¼ 1.8 (upper
panels) and 2.2 (lower panels) and two fixed values of

μ ¼ −900 GeV (left) and 1080 GeV (right). Because we fix
μ at a value which leads to Ωχh2 ≃ 0.12 in the models with
universal sfermion masses, large portions of these planes
provide the correct relic density as seen by the dark blue
shading. For small values ofm3=2, the LSP is predominantly
a wino in the dark red shaded region. For small values of
mT=m3=2, one of the stops becomes tachyonic and we shade
this region pink. The Higgs masses are shown by red dot-
dashed curves as labeled. As one can see in much of the dark
blue shaded regionwith good relic density, theHiggsmass is
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similar to the experimental value within uncertainties.
Furthermore, for tan β ¼ 2.2, more of the parameter space
is in agreement with experiment compared to the case of
mT ¼ m3=2 as theHiggsmass decreaseswithmT=m3=2. This
means larger values of tan βwill have someviable parameter
space for mT=m3=2 small. However, it is clear from these
figures that tan β can still not be significantly larger than 2.2.
The elastic scattering cross sections are relatively insen-

sitive to the stop masses and are shown in Fig. 9 as nearly
horizontal lines. Spin-independent cross sections are shown
by green dashed lines and spin-dependent cross sections by
solid blue lines labeled in units of 10−8 pb. Once again, we
see the experimental upper limit (solid black line) and the
neutrino floor (yellow line) for μ < 0, applicable for the
spin-independent cross section only. Points below the black
line are in excess of the experimental bound and points
above the yellow line fall beneath the neutrino floor.

V. CONCLUSIONS

Experimental verification of physics beyond the
Standard Model is of the utmost importance. We know
such physics must be present in order to account for dark
matter as well as other aspects of cosmology such as the
baryon asymmetry. Supersymmetry is a well studied
extension which helps better explain features of the
Standard Model as well as providing a dark matter
candidate. However because the mechanism for breaking
supersymmetry is unknown, there is a very diverse set of
supersymmetric models to study. Models such as
mSUGRA with weak scale supersymmetry breaking are
under considerable pressure, as weak scale superpartners
have yet to be discovered [7]. Some high-scale models with
an EeV scale gravitino and still higher superpartner masses
are extremely challenging from the point of view of
discovery [57]. Naively, one might think that models with
PeV scalar masses would present similar challenges.
We have considered here PGM models with a PeV

gravitino mass (and similarly massive scalars). However,
the gaugino masses in these models are loop suppressed
and may be of order of ∼1 TeV. Further, we have extended
the minimal model (with two parameters—m3=2 and tan β)

to include μ as a free parameter, thus easily allowing for the
possibility of Higgsino dark matter. Despite the high scalar
masses, which allows us to consider the decoupling limit,
the dark matter-proton scattering cross sections are not
unobservably small. We considered the μ; m3=2 parameter
space for fixed tan β, taking values of jμj ≤ 3 TeV, and
m3=2 ≤ 1.5 PeV with tan β ¼ 1.8 and 2.2. For higher values
of tan β, the calculated Higgs mass becomes significantly
larger than its measured value (even taking into account
theoretical uncertainties in the calculation). To increase the
parameter space, we also allowed for the possibility that the
stop masses are not universal at the input supersymmetry
breaking scale (which we have taken to be the GUT scale).
This effect, however, was marginal.
We found that the spin-independent cross section was

quite sensitive to the sign of μ. For μ > 0, the current
experimental constraint on σSIp from PandaX-4T [52]
excludes gravitino masses below 850 TeV when μ ∼
1 TeV (m3=2 ≲ 200 TeV are allowed, as the cross section
begins to drop when the LSP is winolike). At larger m3=2,
the elastic cross sections are large enough to be detected in
future experiments. For example, at m3=2 ¼ 1.5 PeV (with
μ ∼ 1 TeV), σSIp ≈ 10−10 pb well above the neutrino floor at
≈2.5 × 10−12 pb formχ ≃ 1 TeV. In contrast, for μ < 0, the
cross section is below the neutrino floor when m3=2 ≳
1 PeV and is somewhat sensitive to tan β (see Fig. 6).
Current experimental results do not place significant
bounds on the parameter space when μ < 0. The resulting
cross section for spin-dependent interactions remains at
least 2 orders of magnitude below current experimental
bounds. Nevertheless, we remain hopeful that a signal for
Higgsino dark matter in PGM-like models is viable in
future direct detection experiments.
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