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We study the high-scale validity of a type-X two Higgs doublet scenario, which provides an
explanation of the observed value of muon (g − 2). This region allows a pseudoscalar physical
state, which is well below the observed 125-GeV scalar in mass. A second neutral scalar particle can be
both above and below 125 GeV in such a scenario. Admissible regions in the parameter space are
obtained by using the most recent data on muon (g − 2), theoretical constraints such as low-scale
perturbativity and vacuum stability, and also all experimental constraints, including the available LHC
results. Among other things, both the aforesaid orders of CP-even neutral scalar masses are included in
our benchmark studies. Two-loop renormalization group equations are used to predict the values of
various couplings at high scales, and the regions in the space spanned by low-scale parameters, which
retain perturbative unitarity as well as vacuum stability up to various scales are identified. We thus
conclude that such a scenario, while successfully explaining the observed muon (g − 2), can be valid up
to energy scales ranging from 104 GeV to the Planck scale, thus opening up directions of thought on its
ultraviolet completion.
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I. INTRODUCTION

It is often speculated that the spontaneous symmetry-
breaking sector of the electroweak theory may include
additional ingredients, over and above the single complex
Higgs doublet postulated in the “minimal” original frame-
work. The simplest and most obvious extension is a
scenario with two complex scalar doublets. The spectrum
of physical fields in such a case, after the absorption of three
Goldstone bosons, consists of two CP-even neutral scalars,
one CP-odd neutral scalar and a pair of mutually conjugate
charged scalar bosons. While the doublets can both acquire
vacuum expectation values in such a scenario, the Yukawa
couplings to fermions aremoremodel specific, depending on
the various possibilities restricted by the principle of natural
flavour conservation. Various phenomenological features of

a two Higgs doublet model (2HDM) are accordingly
decided.
A scenario of particular interest is the type-X2HDMwhere

one of the scalar doublets couples only to quarks, and the
other, to leptons. The doublet that couples to quarks domi-
nates the mass eigenstate corresponding to the 125-GeV
scalar that has been experimentally discovered. We are
concerned with this kind of a theory in the present work.
A rather striking consequence of a type-X 2HDM is that

it admits of scalar physical states considerably lighter than
125 GeV, consistently with all experimental observations
so far. In particular, the neutral pseudoscalar here can be
well below 100 GeV. This is worthy of special mention
because such a light pseudoscalar can mediate contribu-
tions to the muon anomalous magnetic moment, leading
to a closer agreement with the experimental observation
[1–3]. Keeping this in mind, the region of the parameter
space answering to such a light pseudoscalar has been
investigated from various angles in recent times, including
its implications for the LHC [4–19].
Let us now motivate the present study, which is centered

around an examination of the type-X 2HDM spectrum and
interactions at higher energy scales. We start by remember-
ing the various other scenarios beyond the standard model,
which have been invoked to explain the observed value of
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muon (g − 2). As randomly chosen samples, these include,
among many others

(i) Supersymmetry (SUSY) [20].
(ii) Left-right symmetric models [21].
(iii) Scenarios with exotic (vectorlike) fermions [22].
(iv) Scenarios with dark photons [23].
(v) Seesaw models [24,25].
If we look at them in turn, all of the above scenarios

admit ultraviolet (UV) completion in some way or the
other. SUSY can be embedded in a grand unified theory
(GUT) or in high-scale scenarios like those based on
supergravity. Left-right symmetric theories can emerge as
low-energy limits of popular GUT theories such as
SO(10). Vectorlike fermions occur in the fundamental
representation of E6 GUT. Dark photons, too, arise out of
an additional U(1), which in turn can be the artifact of
GUT models with symmetry breaking at intermediate
scales.
While the minimal SUSY standard model subsumes a

type-II 2HDM, no such obvious connection with a UV
complete scenario is noticeable for a type-X 2HDM. It is
therefore an important question to ask whether the type-X
scenario, while providing an explanation of muon (g − 2),
is also capable of merger with any popular high-scale
scenario, for, in that case the subtle discrepancy in a low-
energy phenomenon would be traceable to ultraviolet
physics. In order for that to happen, however, the corre-
sponding type-X 2HDM parameter space needs to be
consistent, among other things, with theoretical constraints
such as vacuum stability or perturbative unitarity, all the
way to the scale of the aforesaid new physics. If, on the
other hand, such constraints indicate a relatively low cutoff
for type-X 2HDM, then one senses the presence of addi-
tional physics at an intermediate scale, before its merger
into any popular high-scale scheme (such as GUT) is
conceivable.
The above question can be settled by (1) precisely

identifying regions in the parameter space of a type-X
2HDM answering to the latest measurement of muon
(g − 2), (2) running the low-scale parameters of the scalar
potential to progressively high energy scales, and (3) check-
ing whether the issues of vacuum stability or perturbative
unitarity lead to upper limits of validity for various bench-
mark regions in the parameter space. This is the hitherto
unaccomplished task that has been performed in the current
work.
The type-X 2HDM scenario is, according to several

extant studies, amenable to election in TeV-scale collider
experiments. This is possible through not only a light
pseudoscalar state but also via searches for the correspond-
ing charged scalar. The details of the observable phenom-
enology depend on the values of the various parameters that
enter into the arena. To study them, one naturally seeks
consistency with the latest muon (g − 2) data. With this in
view, even before addressing the main question mentioned

above, we have first updated the allowed region in light of
that data. While many studies have explicitly shown only
the dominant Feynman diagrams contributing to the
anomalous magnetic moment of muon, we have thoroughly
considered the contributions from all possible diagrams. In
addition, we have included both the possibilities of the
125-GeV state being the lighter (possible decoupling of
the extended scalar sector) or the heavier (nondecoupling of
the extended scalar sector) one between the two neutral
CP-even physical fields. In addition, the Yukawa inter-
actions of spin-zero states being of either the same sign or
of the opposite sign with respect to the couplings to gauge
boson pairs are considered.
We would like to mention here that studies in the past

have explored type-X 2HDM in the context of muon
(g − 2). We have made identification of right- and
wrong-sign Yukawa couplings as well as the possibilities
of the 125 GeV scalar being the lighter/heavier CP-even
state, in the context of type-X 2HDM. We have performed
an exhaustive analysis in this work, taking into account all
such possibilities and presented the allowed region of
parameter space in each of these scenarios, in a bid to
finally unfold the UV completion of each scenarios.
Having thus set the stage, the question we ask here is

this: Can the aforesaid aspects of low-energy phenomenol-
ogy provide any hint of the UV completion of this
scenario? If so, then not only does the muon anomalous
magnetic moment get related to high-scale physics, but we
also build towards some insights into features such as the
signs of Yukawa interactions at low energy or the possible
decoupling or nondecoupling structure of the extended
scalar sector. With this in view, we have undertaken a
detailed study of the high-scale behavior of the various
quartic couplings in the scalar potential of the type-X
2HDM. Limits on its high-scale validity then arise from
vacuum stability, perturbativity, and unitarity of the cou-
plings. This exercise has been carried out across various
regions of the parameter space, including both right- and
wrong-sign Yukawa interaction regions, where the muon
anomalous magnetic moment is better explained, and all
other theoretical and experimental constraints are satisfied.
We make use of two-loop renormalization group (RG)
equations. However, it is demonstrated in some illustrative
cases that the difference in the results is not qualitative, as
compared to those obtained with one-loop RG equations
(RGEs). Therefore, the explanation of the allowed regions
of the parameter space corresponding to various levels of
high-scale validity has been often given by referring to the
one-loop RGs where the effects of different parameters of
the theory are more transparent.
The plan of this work is as follows. In Sec. II, we discuss

the type-X two Higgs doublet model and its various aspects
relevant for our analysis. Section III summarizes the
implications of the observed muon (g − 2) for this specific
model. We discuss various theoretical and experimental
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constraints on this model and the allowed parameter space
in Sec. IV. In Sec. V, we study the renormalization group
evolution of various couplings for a few benchmarks. We
next identify in Sec. VI, the regions of parameter space
which are valid up to various high scales and are also
interesting from the perspective of the anomalous magnetic
moment of muon as well as relevant collider searches. This
way we try to explore the validity of type-X 2HDM as a
UV-complete theory. Finally, we conclude our analysis in
Sec. VII.

II. TYPE-X TWO HIGGS DOUBLET MODEL

The most general scalar potential involving two scalar
doublets with hypercharge Y ¼ 1, under the assumption of
a softly broken discrete Z2 symmetry, is given by [26]

V ¼ m2
11ðΦ†

1Φ1Þ þm2
22ðΦ†

2Φ2Þ − ½m2
12ðΦ†

1Φ2 þ H:c:Þ�

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
λ5
2
ðΦ†

1Φ2Þ2 þ H:c:

�
: ð1Þ

We assume CP conservation, in which case all λis and m2
12

are real.
The two complex Higgs doublets with hypercharge

Y ¼ 1 can be written as

Φ1 ¼
� ϕþ

1

1ffiffi
2

p ðv1 þ ϕ0
1 þ ia1Þ

�
;

Φ2 ¼
� ϕþ

2

1ffiffi
2

p ðv2 þ ϕ0
2 þ ia2Þ

�
: ð2Þ

Where v1 and v2 are the vacuum expectation values
with v2 ¼ v21 þ v22 ¼ ð246 GeVÞ2 and tan β ¼ v2=v1.
After electroweak symmetry breaking, we obtain five
physical states, two neutral CP-even scalars, the lighter
of which will be called h, and the heavier H, one neutral
pseudoscalar A, and a pair of charged scalars H�.
In type-X 2HDM the Yukawa interactions can be

given as

−LYukawa ¼ Yu2Q̄LΦ̃2uR þ Yd2Q̄LΦ2dR

þ Yl1L̄LΦ1eR þ H:c: ð3Þ

in whichQT
L ¼ðuL;dLÞ, LT

L ¼ ðνL; lLÞ, and Φ̃1;2 ¼ iτ2Φ�
1;2.

Yu2, Yd2, and Yl1 are the couplings of the up, down quarks
and leptons with the two doublets, family indices are
suppressed.
The factors by which the standard model (SM) Higgs

interaction strengths need to be scaled to obtain the neutral
scalar Yukawa couplings are

yfih ¼ ½sinðβ − αÞ þ cosðβ − αÞκf�;
yfiH ¼ ½cosðβ − αÞ − sinðβ − αÞκf�;
yfiA ¼ −iκf ðfor uÞ; yfiA ¼ iκf ðfor d;lÞ;

with κl ≡ − tan β; κu ¼ κd ≡ 1=tan β: ð4Þ

The corresponding charged Higgs Yukawa couplings are

LY ¼ −
ffiffiffi
2

p

v
Hþfūi½κdðVCKMÞijmdjPR

− κumuiðVCKMÞijPL�dj þ κlν̄mlPRlg þ H:c:; ð5Þ

in which i, j ¼ 1, 2, 3.
The couplings of gauge boson pairs with the neutral

scalars are given by

yVh ¼ sinðβ−αÞ×gVSM; yVH ¼ cosðβ−αÞ×gVSM; ð6Þ

Where V denotes W or Z and gVSM is the coupling strength
of the SM Higgs with a gauge boson pair.
Furthermore, Yukawa couplings here may or may not

have the same sign as in the SM case [27],

yfih × yVh > 0 for SM-like coupling or right-sign ðRSÞ;
yfih × yVh < 0 for wrong-sign ðWSÞ: ð7Þ

This can happen, for example, for down-type Yukawa
couplings in type II 2HDM [27] as well. However, in type-
X 2HDM the wrong-sign Yukawa coupling can arise in the
lepton Yukawa sector alone, unless one allows tan β < 1. In
the case of SM-like coupling, the 125-GeV Higgs cou-
plings are very close to those in the SM, which is the so-
called alignment limit. Now in the wrong-sign regime, the
absolute values of ylh and yVh should still be close to unity
because of the restrictions of 125-GeV Higgs signal data
[28,29]. Moreover, there are two scenarios: (1) The lightest
CP-even scalar h is SM-like, i.e., mh ¼ mhSM ¼ 125 GeV,
we call this scenario 1 and (2) when the heavier CP-even
scalar H is SM-like, i.e., mH ¼ mhSM ¼ 125 GeV, we call
this scenario 2. Both scenarios 1 and 2 can in principle lead
to right sign or wrong sign of Yukawa coupling depending
on the conditions stated in Eq. (7).
Let us first consider scenario 1 in the right- and wrong-

sign regions. In scenario 1, the 125-GeV Higgs couplings
are

ylh ¼ sinðβ−αÞ− cosðβ−αÞ tanβ; yVh ≃ sinðβ−αÞ:

In the alignment limit jsinðβ − αÞj ≈ 1. The following
possibilities emerge depending on the sign of sinðβ − αÞ
and range of tan β.

MUON g − 2 AND A TYPE-X TWO-HIGGS-DOUBLET … PHYS. REV. D 106, 055023 (2022)

055023-3



(1) For sinðβ − αÞ < 0, cosðβ − αÞ > 0, ylh takes the
form −ð1þ ϵÞ. ylh × yVh > 0 and it corresponds to
right-sign region.

(2) On the other hand, for sinðβ−αÞ>0, cosðβ−αÞ> 0,
ylh takes the form (1 − ϵ). This case also corresponds
to the right-sign region.

(3) When sinðβ − αÞ > 0 and cosðβ − αÞ > 0 and
tan β ≳ 10, ylh becomes negative and ylh × yVh < 0.
This scenario gives rise to wrong-sign lepton-
Yukawa coupling.

Having discussed the coupling structure in scenario 1,
we will now explore the same for scenario 2. In this case,
the heavier CP-even Higgs is the observed 125 GeV Higgs,
i.e., mH ¼ 125 GeV. Here the couplings of H with the
leptons and gauge bosons take the following forms.

ylH ¼ cosðβ−αÞþ sinðβ−αÞ tanβ; yVh ≃ cosðβ−αÞ

In the alignment limit, jsinðβ − αÞj ≪ 1. The sign of
sinðβ − αÞ and ranges of tan β in this case will give rise
to the following conditions:
(1) For sinðβ − αÞ > 0, cosðβ − αÞ > 0, ylH takes the

form (1þ ϵ) and ylH × yVH > 0. Therefore this case
corresponds to the right-sign region.

(2) On the other hand, for sinðβ−αÞ<0, cosðβ−αÞ> 0,
ylH takes the form (1 − ϵ), ylH × yVH > 0. Hence this
region also gives rise to right-sign lepton-Yukawa
coupling.

(3) When sinðβ − αÞ < 0 and cosðβ − αÞ > 0 and
tanβ≳10, ylH becomes negative and ylH × yVH < 0.
In this scenario, wrong-sign condition is satisfied.

For the classification of wrong and right sign of Yukawa
couplings in various parts of the parameter space, we
present the aforementioned conditions in Table I.
Throughout the discussion concerning scenarios 1 and 2,

ϵ is assumed to be an extremely small positive quantity.
One should note that tan βð≳10Þ in the right-sign region
will give rise to Yukawa scale factors widely differing from
unity (therefore disfavored by the Higgs signal strength
data), unless jsinðβ − αÞj (scenario 1) or jcosðβ − αÞj
(scenario 2) is very close to 1. Notably, cosðβ − α) is kept
positive in all the above cases, since the signs of the
Yukawa interactions are unambiguously decided by (β − α)
lying in two of the four quadrants. The required ranges of
tan β are not altered by such quadrant choice.

The main motivation of the present study is to explore
the possibility of having a light (≲100 GeV) pseudoscalar
in type-X 2HDM, which makes it easier to match the
observed value of anomalous magnetic moment of muon
(henceforth to be called gμ − 2). We will see in the
following section that large tan β regions will be favored
from this particular requirement. There will be further
overlap or tension between various theoretical and exper-
imental constraints on the model parameter space. These
are decisive in understanding the high-scale validity of the
scenario, which is our ultimate purpose here.

III. EXPLANATION OF gμ − 2
The anomalous magnetic moment of muon is an early

triumph of quantum field theory. In today’s context, the
long-standing discrepancy between SM prediction and
experimental observation [30] hints towards new physics.
The recent result from Fermilab [2,3] has strengthened
this disagreement further. The future E34 experiment at
J-PARC [31] may shed new light on this tension between
theory and experiment.
The effect of loop corrections are usually parameterized

in terms of aμ ¼ gμ−2
2
. The SM contributions to aμ ¼ gμ−2

2

have been extensively studied [32–54], the most recent
estimate [55] being

aSMμ ¼ 116591810ð43Þ × 10−11: ð8Þ

In [55], the combined contribution of QED, electroweak,
and hadronic SM processes are discussed. The hadronic
contribution is comprised of hadronic vacuum polarization
(HVP) and hadronic light-by-light scattering. In determin-
ing HVP, data-driven methods are proven to be most
effective [39,40]. Lattice QCD calculations are also avail-
able for HVP [56]. However, the currently available lattice
results for HVP have a larger uncertainty compared to the
data-driven ones according to [55]. On the other hand,
hadronic light-by-light scattering has been calculated with
both phenomenological approach [48,57] as well as lattice
QCD [49,58]. Both methods are in agreement with each
other and yield comparable precision. Hence a weighted
average of the two results has been considered. We refer the
reader to [55] (in particular their Sec. 8) for further
discussion on the technicalities which are beyond the scope
of the present paper.

TABLE I. The requirement for RS/WS regions as a function of the mass hierarchies as well as sgnðsinðβ − αÞÞ and sgnðcosðβ − αÞÞ.
Mass hierarchy sgnðsinðβ − αÞÞ sgnðcosðβ − αÞÞ Region

Scenario 1 (mh ¼ 125 GeV) − þ RS
Scenario 1 (mh ¼ 125 GeV) þ þ RS=WS
Scenario 2 (mH ¼ 125 GeV) þ þ RS
Scenario 2 (mH ¼ 125 GeV) − þ RS=WS
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While the most recent experimental bound [2] is
obtained by combining the Fermilab data (2021) [3] and
earlier BNL (2006) data [1]:

aexpμ ¼ 116592061ð41Þ × 10−11: ð9Þ

This may be contrasted with the earlier limits from BNL
data [1]:

aexp−BNLμ ¼ 116592089ð63Þ × 10−11: ð10Þ

Thus there is approximately a 4.2σ discrepancy when
one uses the combined experimental result [Eq. (9)]:

Δaμ ¼ aexpμ − aSMμ ¼ 251ð59Þ × 10−11: ð11Þ

On the other hand, a discrepancy at the level of 3.7σ is
seen, if one uses only the BNL data [Eq. (10)]:

ΔaBNLμ ¼ aexp−BNLμ − aSMμ ¼ 279ð76Þ × 10−11: ð12Þ

We consider one loop as well as two loop Barr-Zee type
contribution to Δaμ in type-X 2HDM. It has been shown in
earlier works [59,60], that the two-loop Barr-Zee diagrams
dominate over the one-loop contributions, both of which
are shown in Figs. 1–4. Although the two loop diagrams
suffer from a loop suppression factor, they also have an
enhancement factor of M

2

m2
μ
, whereM is the mass of the heavy

particle running in the loop namely, t; b; τ; H�;W� (see
Fig. 2). One should note that in type-X 2HDM, the
contribution from the τ loop gets an additional enhance-
ment factor from the τ coupling with pseudoscalar (A) in
the large tan β region. The enhancement factor in general
dominates over the aforementioned loop suppression. The
diagram involving W� in the loop (Fig. 2, bottom), will
have negligible contribution due to suppression in the

FIG. 1. Nonstandard contribution to Δaμ at one-loop.

FIG. 2. Nonstandard contribution to Δaμ from two-loop Barr-Zee diagrams with internal γ=Z.
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coupling between W� bosons and the nonstandard CP-
even Higgs in the alignment limit. We also consider the
Barr-Zee diagrams where charged Higgs replaces the
neutral Higgs and also W� substitutes the internal γ (see
Figs. 3 and 4). The contribution from these diagrams can be
sizable in some regions of the parameter space [60].
In order to obtain updated constraints on Δaμ, we have

calculated afresh the contributions from all the aforemen-
tioned diagrams following [59,60]. The resulting con-
straints on the mA– tan β plane is shown in Fig. 5. The
3σ upper and lower bound on the experimentally observed
central value of Δaμ have been used in the scan. We have
(1) used the most recent gμ − 2 constraints and (2) taken
into account the exhaustive set of one-loop diagrams and
two-loop Barr-Zee diagrams in our analysis. In our scan,
we have marginalized over all the model parameters except

mA and tan β and also considered both right- and wrong-
sign lepton-Yukawa couplings. Similar scans have been
carried out earlier [61–63]. We would like to mention that
one can in principle have additional contribution from two-
loop non-Barr-Zee diagrams. But they will have negligible
effect, as pointed out in [62].
In Fig. 5, the yellowish interior corresponds to the

region that satisfies constraints coming from a combina-
tion of the BNL and Fermilab data. The red bands on both
sides of this region, denote the additional regions which
are allowed at the 3σ level before Fermilab data came into
existence. The red band on the lower side is consistent
even when the new data are included, so long as one
allows experimental values to be undersaturated by
type-X 2HDM. On the other hand, points in the upper
red band overshoot the 3σ limit arising from the combined

FIG. 3. Nonstandard contribution to Δaμ from two-loop Barr-Zee diagrams with internal W� and H�. Cross-diagrams with H� and
W� interchanged are also considered.

FIG. 4. Same as in Fig. 3, but with both internal lines H�H� and W�W�.
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data, and therefore, may be taken to be in conflict with the
most recent experiments.
We mention here that, for the most part of our parameter

space, the dominant two-loop contribution comes from the
Barr-Zee diagrams involving τ loop. The other two-loop
diagrams contribute ≲10% of the Barr-Zee contribution.
The one-loop diagrams, on the other hand, amount to
∼30–40% of the two-loop Barr-Zee contribution but it
comes with a relative negative sign with respect to the two-
loop as well as total SM contribution.
It is clear that a low mass pseudoscalar with an enhanced

coupling to the τ leptons, will give rise to a significant
contribution to Δaμ [see Fig. 2 (top left)], especially for
large tan β. Overall, low mA and large tan β region is
favored in the light of gμ − 2 data in our model. In this
work, we are interested to know the high-scale behavior of
this particular region of parameter space. Before exploring
the high-scale validity of this region of the parameter space,
we would like to consider the other important theoretical as
well as experimental constraints on such a scenario.

IV. FIRST LEVEL OF FILTER: ALLOWED
PARAMETER SPACE FROMLOWENERGY DATA

In order to examine the possible UV completion of
type-X 2HDM, especially in the region of parameter space

which nicely explains the observed gμ − 2, one needs to
check the effects of various other constraints. For example,
a pertinent question is this: Which parts of the model
parameter space are valid from the perturbative unitarity
and vacuum stability at the electroweak scale, so that the
possibility of their UV completion can be tested. Another
important question is this: Which parts of the parameter
space that are valid up to high scales, are already ruled out
by the experimental observations, and which parts can be
probed in the near future. A thorough study of all the
relevant theoretical and experimental constraints will be
necessary to answer these questions. The analysis in this
section is done with this motivation. We have divided our
parameter space into categories, based on important fea-
tures of the model, such as the sign of Yukawa coupling,
decoupling/nondecoupling extended scalar sector, and
studied the constraints on each of these categories, to have
a better understanding of the interplay between various
model parameters, while the constraints are imposed.

A. Constraints from electroweak precision observables

The custodial SU(2) is a symmetry of the tree-level
2HDM potential and can be broken at the loop level due to
corrections to weak boson masses as well as weak
couplings by extra scalars in 2HDM (in addition to mass
splitting between the two components in a fermion
doublet). Electroweak precision measurements of the
oblique parameters, have been performed by the Gfitter
group [64]. This restricts the mass difference between the
charged scalar and the nonstandard CP-even scalar
jΔmj ¼ jmh=H −mH�j, depending on mA and values of
mH� [61]. The status of two Higgs doublet models in light
of the global electroweak data has been presented in [65].
The allowed parameter space in mA–Δm plane is shown

in Fig. 6 with color-coded representation of mH� . We
mention here that, in order to take into account the

FIG. 5. The allowed region in mA − tan β plane from gμ − 2
data at 3σ level. The limits have been obtained by marginalizing
over all other parameters of the 2HDM, except the mass of one of
the neutral CP-even scalars is set at 125 GeV. The nonstandard
CP-even neutral scalar and charged scalar masses have been
varied from 90 to 870 GeV. The yellowish interior corresponds to
the combined constraints from older [1] and recent data [2,3],
while the red regions on both sides show the additional regions
allowed when only the older data are used.
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FIG. 6. The region allowed by S; T; U; V;W; X parameters on
the mA − Δm plane, where m�

H is shown as the color axis.
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correlation between S and T parameters, we have consid-
ered the elliptic contour in the S − T plane, computed with
U as a free parameter within its experimentally allowed
range. This choice leaves us with a less constrained
parameter space than the scenario when U is fixed at 0.
We have also taken into account the other Peskin-Takeuchi
parameters (V,W, and X [66]) and the bounds coming from
their measurement [67], since we are considering scalar
masses below the EW scale. However, we found these
parameters do not further constrain the parameter space,
once the S, T parameter requirements are satisfied.
This was also pointed out in [68]. The quantities
S; T;U; V;W; X for our parameter space have been calcu-
lated using the package 2HDMC-1.8.0 [69].
We can see from Fig. 6, in the pseudoscalar mass range

of our interest (mA ≲ 100 GeV), one can have jΔmj ≲
50 GeV with m�

H (≲200 GeV). The upper limit on jΔmj
becomes further stringent when m�

H ≳ 200 GeV. However,
large positiveΔm (up to a TeVor so) is allowed when A and
H� are closely degenerate. This behavior can be under-
stood from the mutual cancellation between terms in the
calculation of T parameter, when either A or H is mass
degenerate with H� [70–72].

B. Constraints from lepton universality

In the SM τ decay takes place viaW-boson exchange. In
2HDM, tree-levelH� exchange also contributes to leptonic
τ decay. At one-loop level, the contribution to leptonic τ
decay is dominated by τ-Yukawa coupling to H�=H=A,
which are essentially proportional to ðm2

τ=v2Þ tan2 β. The
one-loop diagrams contributing to the process are shown in
[8]. It has been also pointed out there that other diagrams
such as box diagrams give rise to subdominant contribu-
tion. The leptonic τ decay (τ → μνμντ) is parametrized in
terms of a parameter Gμτ, which is defined as

�
Gμτ

GF

�
2

¼ Γðτ → μντνμÞ2HDM
Γðτ → μντνμÞSM

: ð13Þ

On the other hand, since me;mμ ≪ mτ, the analogous
parameters Geμ, Geτ, corresponding to μ → eνeνμ and
τ → eνeντ decays are close to their SM values, i.e.,
Geμ ≈Geτ ≈GF. The constraints on lepton universality
from HFAG group [73] are as follows:

Gμτ

Geμ
¼ 1.0029�0.0015;

Gμτ

Geτ
¼ 1.0018�0.0014; ð14Þ

with their correlation coefficient 0.48. This constraints
restrict the 2HDM parameter space, in particular, gμ − 2

allowed mA– tan β plane depending on mH� and mH. In the
low mH� limit, the mA and tan β get restricted to lower
values. With higher values of mH� , larger mA and tan β
regions get allowed [8,19]. In our work, we have chosen

our benchmarks such that they are allowed by the afore-
mentioned lepton universality constraints at the 3σ level.
We would like to mention that similar to τ decay,

constraints also come from Z-decay width [especially
ΓðZ → ττÞ], which in 2HDM gets modified from their
SM value, due to enhanced loop contribution coming from
the extra scalars, especially in the large tan β region.
However, it has been shown in [8] that, this constraint
turns out to be much weaker compared to the τ-decay
constraint and therefore is trivially satisfied for all our
benchmarks.

C. Theoretical constraints

Theoretical constraints include perturbativity, unitarity,
and vacuum stability conditions at the electroweak scale.
Effects of these constraints on various 2HDMs have been
studied in detail in earlier works [74–76]. It has been
pointed out that a large separation between mA and mH� is
disfavored by the requirement of vacuum stability and
perturbativity. We concentrate on the low mA region and
therefore it is crucial to look at the allowed upper limit on
m�

H in this scenario. We devote some discussion to these
constraints because in the subsequent analysis we repeat-
edly check on the compliance with such constraints at
various high energies, by running the parameters with the
help of RG equations.
(1) Perturbativity and unitarity: If 2HDM is a perturba-

tive quantum field theory at a given scale, it would
imply all quartic couplings jCHiHjHkHl

j < 4π and all
Yukawa couplings jYjj <

ffiffiffiffiffiffi
4π

p
. Further, unitarity

bound on the tree level scattering amplitude of the
Higgses and longitudinal parts of EW gauge bosons
put an upper bound on the eigenvalues jaij ≤ 8π of
the 2 → 2 scattering matrices [77,78].

The physical masses can be written as a function of the
quartic couplings in the following manner:

m2
A ¼ m2

12

sin β cos β
− λ5v2; ð15Þ

m2
H� ≈m2

A þ 1

2
v2ðλ5 − λ4Þ: ð16Þ

It is clear from Eq. (16) thatm2
H� −m2

A is proportional to
λ5 − λ4 which should be less than λ3 þ

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
from the

requirement of vacuum stability [see Eq. (20)]. Therefore
these conditions along with the requirement of perturba-
tivity, i.e., jCHiHjHkHl

j < 4π puts an upper limit on the mass

square difference m2
H� −m2

A.
In what follows, we translate these constraints into those

of the parameter space for both right- and wrong-sign
Yukawa couplings. With this in view, we first express the
quartic couplings in terms of physical masses and mixing
angles.
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λ1 ¼
m2

H cos2 αþm2
h sin

2 α −m2
12 tan β

v2 cos2 β
;

λ2 ¼
m2

H sin2 αþm2
h cos

2 α −m2
12 cot β

v2 sin2 β
;

λ3 ¼
ðm2

H −m2
hÞ cos α sin αþ 2m2

H� sin β cos β −m2
12

v2 sin β cos β
;

λ4 ¼
ðm2

A − 2m2
H�Þ sin β cos β þm2

12

v2 sin β cos β
;

λ5 ¼
m2

12 −m2
A sin β cos β

v2 sin β cos β
: ð17Þ

It is clear from the expression of λ1 in Eq. (17) that, to have
it in the perturbative limit, the soft Z2 breaking parameter

m2
12 ≈

m2
H

tan β. Also the perturbativity condition of the quartic

couplings λ4 and λ5 implies m2
H� −m2

A < 4πv2, which
translates to the limit mH� ≲ 870 GeV for very low mA.
(2) Vacuum stability: Vacuum stability demands that

there can exist no direction in the field space in
which V → −∞. This implies the following con-
ditions on the quartic couplings of the Higgs
potential [79–81].

λ1;2 > 0; ð18Þ

λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð19Þ

jλ5j < λ3 þ λ4 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð20Þ

The last condition in Eq. (20) can be rewritten as λ3 þ λ4 −
λ5 > −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
formH > mA. One of the key features to note

is that the upper limits on the heavyHiggsmasses showquite
different behaviors in the right-sign and wrong-sign limit of
the Yukawa couplings [82]. The light-Higgs Yukawa cou-
plings for leptons ylh in type-X 2HDM can be expressed as

ylh ¼ −
sin α
cos β

≡ sinðβ − αÞ − tan β cosðβ − αÞ: ð21Þ

The 125 GeV-Higgs boson couplings are experimentally
found to be very much SM-like, implying, in particular,
jsinðβ − αÞj ≃ 1 and jylhj ≈ 1. This can be achieved when
tan β cosðβ − αÞ ≈ 0 (leading to the right-sign lepton
coupling ylh ≈þ1), or in the large tan β limit with
tan β cosðβ − αÞ ≈ 2 (leading to the wrong-sign coupling
ylh ≈ −1). Using the Eqs. (21) and (17), one finds [83]

λ3 þ λ4 − λ5 ¼
2m2

A þ ylh sinðβ − αÞm2
h − ðsin2ðβ − αÞ þ ylh sinðβ − αÞÞm2

H

v2
þO

�
1

tan2 β

�
ð22Þ

in the large tan β limit. Now, in the right-sign case
(ylh sinðβ − αÞ → þ1), we have

2
m2

H

v2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.26 × 4π

p
þ 2m2

A þm2
h

v2
; ð23Þ

which puts a strong upper bound, mH ≲ 250 GeV for low
mA, which is consistent with [61]. On the other hand, in the
wrong-sign limit (ylh sinðβ − αÞ → −1), mH can be arbitrar-
ily large with the condition sin2ðβ − αÞ þ ylh sinðβ − αÞ ≈ 0

being trivially satisfied in the alignment limit. These
particular properties of wrong-sign and right-sign regions
can be seen from Figs. 7(a) and 7(b).

FIG. 7. Allowed parameter space inmH� −mA plane consistent with theoretical bounds in the (a) WS and (b) RS cases. The parameter
space considered in the both of these figures correspond to scenarios 1 and 2 combined.
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D. Constraints from the direct search at colliders

1. LEP data

The earliest collider constraint on the masses of charged
and neutral scalars came from the LEP experiments [84].
The charged Higgs has been searched for at LEP in the
process eþe− → γ=Z → HþH− with subsequent decay
H� → τ�ντ. Direct search at LEP in this channel provides
a lower limit on charged Higgs mass mH� as a function of
BRðH� → τ�ντÞ. The strongest bound results in mH� ≳
90 GeV [84] at 95% C.L., considering BRðH� → τντ ≈
100%Þ. However, the upper limit varies only mildly
with the BRðH� → τντÞ and therefore is fairly model
independent. On the other hand, another LEP search in
the channel pp → hA → 4τ also puts an upper limit on
BRðh → τþτ−Þ × BRðA → τþτ−Þ × RhA (mixing between
two doublets) for mA þmh up to 200 GeV [85].

2. LHC data on the SM-like Higgs

An important constraint comes from the direct search for
125-GeV Higgs decaying into two light pseudoscalar final
states when it is kinematically allowed. The upper bound
on this branching ratio puts a severe constraint on the
parameter space of this model. As gμ − 2 constraint pushes
us to a region tilted towards large tan βwith smallmA, it can
lead to substantial branching fraction in the decay mode
hSM → AA, when this particular decay is kinematically
allowed, i.e., mA ≲ mh

2
. At large tan β, pseudoscalar A

decays to τþτ− pair with ≳99% branching fraction, leaving
a small branching fraction (∼0.35%) in the μþμ− final state
[10,11,86,87]. LHC searches for hSM → AA in the 4τ or
2τ þ 2μ final state disfavors a large BRðhSM → AAÞ. We
impose the most stringent upper limit BRðhSM→AAÞ≲
0.04, consistent with the upper bounds provided by the
experimental results [88].1

First we consider scenario 1, i.e., mh ¼ 125 GeV. The
partial decay width of Higgs decaying to a pair of
pseudoscalars is given by

Γðh → AAÞ ¼ 1

32π

g2hAA
mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

A=m
2
h

q
: ð24Þ

Using the relations between the quartic couplings λs and
the physical masses and Higgs mixing parameter m2

12, in
the alignment limit jsinðβ − αÞj ≈ 1, hAA coupling [81]
takes the following form.

ghAA ∝ ðλ3þλ4−λ5Þv

≈
sinðβ−αÞylhðm2

h−m2
HÞþ2m2

A−m2
12=ðsinβcosβÞ

v
ð25Þ

Expressing the quantity ylh sinðβ − αÞ in terms of ghAA and
mass parameters we get

ylh sinðβ − αÞ ¼ ghAAvþm2
12=ðsin β cos βÞ − 2m2

A

m2
h −m2

H
: ð26Þ

We can see from Eq. (24) that when mA ≲ mh
2
, the only

way a small branching ratio for BRðh → AAÞ can be
achieved is when the coupling ghAA is extremely small.
We should also remember from our discussion of pertur-

bativity that, in this scenario m2
12 ≈

m2
H

tan β, in order to ensure
perturbativity of the quartic couplings. If we demand
perturbativity as well as the condition, ghAA ≈ 0, Eq. (26)
implies ylh sinðβ − αÞ < 0. In other words, wrong-sign
lepton Yukawa coupling is more favored in scenario 1,
when one demands smallness of BRðhSM → AAÞ as well as
perturbativity of the quartic couplings.
The other possibility is to consider the case when the

heavier CP-even scalar is the SM-like Higgs, i.e.,
mH ¼ 125 GeV, which is our scenario 2. However, in this
case the LEP limit implies either mA or mh can be less than
mH
2

[89]. We consider the low mass pseudoscalar and
therefore mh >

mH
2
. Here the decay width of 125-GeV

Higgs decaying to a pair of pseudoscalars is given by

ΓðH → AAÞ ¼ 1

32π

g2HAA

mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

A=m
2
H

q
: ð27Þ

Here too, like the previous scenario, the limit on
BRðH → AAÞ will indicate extremely small value of the
coupling gHAA, whose expression in the alignment limit,
i.e., jcosðβ − αÞj ≈ 1 is given as follows:

gHAA ∝ ðλ3þλ4−λ5Þv

≈
cosðβ−αÞylHðm2

H −m2
hÞþ2m2

A−m2
12=ðsinβcosβÞ

v
:

ð28Þ

Expressing the quantity ylH cosðβ − αÞ in terms of gHAA
and mass parameters we get

ylH cosðβ−αÞ¼ gHAAvþm2
12=ðsinβcosβÞ−2m2

A

m2
H−m2

h

: ð29Þ

We can see from Eq. (29) that, as we are concerned
with low pseudoscalar mass here (mA ≲ mH

2
), in the limit

gHAA ≈ 0, ylH cosðβ − αÞ will be positive for the most part
of our parameter space. Therefore we can conclude that the
right-sign region will be favored in the case of scenario 2.
We will see the implications of these in the next section.

1The limit is taken on the strongest side in our analysis. It may
become slightly relaxed with varying mA. Thus our study is
conservative.

DEY, LAHIRI, and MUKHOPADHAYA PHYS. REV. D 106, 055023 (2022)

055023-10



Important limits come from the signal strength mea-
surements of the 125-GeV Higgs in various final states
including γγ, ZZ, WW, bb̄, and ττ final states [28,29].
The experimental data indicate that the gauge boson
and Yukawa couplings of the 125-GeV scalar are very
close to their SM value. Therefore in our analysis we
confine ourselves to the alignment limit, i.e., jyVh=Hj ≈ 1

[yVh ¼ sinðβ − αÞ for scenario 1 and yVH ¼ cosðβ − αÞ for
scenario 2] and jylh=Hj is also close to unity. This in
turn implies that tan β can not be very large in the RS
region. However, in the WS region this condition gets
slightly relaxed and jyVh=Hj can deviate slightly further
from unity, within the allowed range and tan β can be large
as long as jylh=Hj is close to 1.

3. Direct search for heavier (pseudo)scalars at the LHC

Collider searches for the nonstandard neutral scalar states
also put constraints on the parameter space of interest. Such
searches are performed at the LHC, in various SM final
states. As we are particularly interested in the low pseudo-
scalar mass regionwith its enhanced coupling to leptons, the
limits which are crucial for our analyses, come from the
search for low pseudoscalar produced in association with a
pair of b quarks and decaying into ττ final state [90,91].
Constraints from the search for low mass (pseudo)scalar
produced in association with bb̄ and decaying into bb̄
[92,93] have also been taken into account.
We have also taken into account the upper limits

from CP-even nonstandard scalars (h=H) decaying
to ττ [75] final state. CMS has also looked for
decay involving two nonstandard Higgs bosons such as

h=H → AZ [94,95], H → hh [96–98], and h=H → VV
[99–101].
At the LHC, the charged Higgs search can be produced

in several ways. When m�
H < mt, charged Higgs can be

produced from the decay of top quark (t → bH�). This
decay has been searched for in τν [102,103] and cs̄
[104,105] final state. These searches put an upper limit
on BRðt → bH�Þ × ðH� → τν=cs̄Þ. The other important
search mode at the LHC is ðpp → tbH�Þ in the final states
τν [103,106] and cs̄ [107,108] and tb̄ [109].
The most stringent bounds in the context of direct

search for nonstandard scalars come from pp →
h=H=A → ττ [91,110–112] and pp → tbH�ðH� → τνÞ
[113]. Although in type-X model at large tan β, the neutral
nonstandard scalars decay to ττ with almost 100% BR and
the charged Higgs decays to τν final state almost exclu-
sively, the production cross-section is suppressed at large
tan β as the quark couplings scale as 1=tan β. This in turn
puts an lower bound on tan β [75]. We would like to
mention here that, although throughout the parameter
space of our interest (typically large tan β), BRðH → ττÞ
or BRðH� → τνÞ are almost 100%, the production cross
section for these nonstandard scalar states are highly
suppressed because of large tan β. Therefore, the direct
search constraints [90,91,102,110–113] do not put any
significant bound on our parameter space. We have ensured
that our chosen benchmarks are consistent with all the
relevant experimental upper limits. In the figures showing
constraints on the scenario, the aforesaid limits from direct
search do not improve upon the stronger limits obtained from
vacuum stability/perturbative unitarity/search based on
hSM →AA etc.

FIG. 8. Allowed parameter spaces inmA − tan β plane for scenario 1 with (a) WS Yukawa and (b) RS Yukawa. The green lines denote
the upper and lower limits coming from the observed gμ − 2 at 3σ level. All the points in the plots are allowed by theoretical constraints.
Since perturbativity strongly constrains large tan β regions, we have chosen an upper limit for our scan tan β < 100. tan β values beyond
that are indeed allowed, subject to the constraints.
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E. Allowed parameter space

Having listed all these constraints, our next task is
to use them to constrain a type-X 2HDM, for both
scenarios 1 and 2. We take this up in the present section.

Note that the parameter tan β has been varied up to 100
in our scan. Although one can in principle have
higher values of tan β. Such values get increasingly
constrained due to reasons ranging from perturbativity

FIG. 9. Allowed parameter spaces in scenario 1 in (a) and (b)mH − tan β, (c) and (d) Rðβ−αÞ– tan β, (e) and (f) Rðβ−αÞ − ylh × sinðβ − αÞ
plane. (a), (c), and (e) correspond to WS Yukawa; (b), (d), and (f) correspond to RS Yukawa. All the points in the plots are allowed by
theoretical constraints. The explanation for upper limit on tan β is same as Fig. 8.
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of τ Yukawa to enhancement of the ττ decay mode of light
pseudoscalars.

1. Scenario 1

This scenario corresponds to the case, where lighter
CP-even scalar is the SM-like Higgs boson. One can further
categorize this scenario with WS and RS regions depending
on the leptonic coupling of h, as discussed earlier. We scan
our parameter space in the following ranges:

mH ∈ ½125;870�GeV; m�
H ∈ ½125;870�GeV;

mA ∈ ½20;100�GeV; tanβ∈ ½20;100�;
jsinðβ−αÞj∈ ½0.99;1�;

m2
12 ∈

�
m2

H

tanβ
−200GeV2;

m2
H

tanβ
þ200GeV2

�
: ð30Þ

We also mention here that λ6 ¼ λ7 ¼ 0, as we only
consider soft Z2 breaking terms.
In Fig. 8, we see that though theoretical constraints

(namely, perturbativity, unitarity, and stability) prefer low
to moderate tan β, we can still get a large parameter space in
WS domain which alleviates gμ − 2 discrepancy. On the
other hand, in the RS region, large tan β is less favored. As
discussed earlier in Sec. IV, we do not get a small enough
BRðh → AAÞ≲ 4% for mA ≲mh=2, as long as we are in
the RS domain. This is clear from Fig. 8.
In Figs. 9(a) and 9(b), we show the allowed region in

mH − tan β plane. We can see that moderate tan β regions
are favored by the theoretical constraints, especially when
mH is large. In addition to that, the upper bound from
BRðhSM → AAÞ, pushes the allowed range of tan β to
further lower side.
Figures 9(c) and 9(d) displays the allowed region in the

Rðβ−αÞ– tan β plane, where Rðβ−αÞ is defined as follows:

Rðβ−αÞ ¼ sgn½sinðβ − αÞ� × cosðβ − αÞ: ð31Þ
On the whole, while the RS case admits sinðβ − αÞ with

both signs, it is restricted to positive values only for WS.
Furthermore, the WS picture disfavors large tan β from the
limit on BRðhSM → AAÞ so long as mA ≲ mh

2
.

In Figs. 9(e) and 9(f), we plot ylh × sinðβ − α) against
Rðβ−αÞ. The limit on BRðh → AAÞ for mA ≲mh=2 does not
allow much deviation of ylh × sinðβ − αÞ from unity,
which is also consistent with the alignment limit. In
Fig. 9(f), one can see that, both positive and negative signs
for sinðβ − αÞ are equally consistent with the alignment
limit (jylhj × sinðβ − αÞ ≈ 1Þ in the RS region.

2. Scenario 2

In this scenario, the heavier CP-even scalarH is the SM-
like Higgs. To get the allowed regions in this scenario, we
scan our parameter space in the following range:

mh∈ ½80;125�GeV; m�
H ∈ ½80;180�GeV;

mA∈ ½20;100�GeV; tanβ∈ ½20;100�;
jcosðβ−αÞj∈ ½0.99;1�;

m2
12∈

�
m2

H

tanβ
−200GeV2;

m2
H

tanβ
þ200GeV2

�
: ð32Þ

In Figs. 10 and 11, we plot the points allowed by
theoretical constraints as well as constraints on
BRðH → AAÞ, in two-dimensional planes of various model
parameters.
If we focus on Fig. 10(a), then it becomes clear that for

mA ≲ mH
2
, the constraints onHAA coupling can leave a very

narrow region near resonance mA ≈mH=2, for WS cases,
which is not quite compatible with the gμ − 2 observation,
within 3σ. But the situation will be more relaxed in the RS

FIG. 10. Allowed parameter spaces inmA– tan β plane for scenario 2 with (a) WS Yukawa and (b) RS Yukawa. The green lines denote
the upper and lower limits coming from the observed gμ − 2. All the points in the plots are allowed by theoretical constraints. The
explanation for upper limit on tan β is same as Fig. 8.
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FIG. 11. Allowed parameter spaces in scenario 2 in (a) and (b) mH − tan β, (c) and (d) sinðβ − αÞ − tan β, (e) and
(f) sinðβ − αÞ − ylh × sinðβ − αÞ plane. (a), (c), and (e) correspond to WS Yukawa; (b),(d), and (f) correspond to RS Yukawa.
All the points in the plots are allowed by theoretical constraints. The explanation for upper limit on tan β is same as Fig. 8.
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domain for scenario 2 [yellow points in Fig. 10(b)]. On the
other hand, we can get a large parameter space both in
WS and RS region, which can solve gμ − 2 discrepancy,
for mA > mH

2
.

In Figs. 11(a) and 11(b), the allowed regions in mh −
tan β plane are shown for the WS and RS, respectively. We
can see that, in the RS case, low to moderate tan β will be
favored from the requirement of low BRðhSM → AAÞ.
However, when the difference between the lighter and
heavier CP-even scalar masses decreases, even larger tan β
becomes allowed.
In Figs. 11(c) and 11(d), we show the allowed region in

sinðβ − αÞ − tan β plane where both positive and negative
sinðβ − αÞ is allowed for RS cases, but WS is attained with
only negative sinðβ − αÞ.
In Figs. 11(e) and 11(f), one can see similar behavior as

scenario 1, where small BRðH → AAÞ for mA ≲ mH
2
prefers

lepton Yukawa coupling ylh close to unity, consistent with
the observed Higgs signals for both WS and RS cases.

V. THE RUNNING OF VARIOUS COUPLINGS

A. The RGEs

The parameters constrained above are considered at the
electroweak scale, set at the pole mass of top quark
(∼173.34 GeV). We now investigate how they evolve at
higher scales and thus obtain their domain of validity in the
light of vacuum stability(following [80]) and perturbative
unitarity (following [78]). This yields the cutoff scale
Λcutoff
UV , which precludes the vitiation of the RG-evolution

trajectories via the occurrence of Landau pole.
In this subsection, we present the one-loop RG equations

for the various quartic couplings as well as the gauge and
third generation Yukawa couplings. For the actual presen-
tation of our results, we will take recourse to the two-loop
renormalization group equations [114] for enhanced pre-
cision and rigor. However, we will soon see that, qualita-
tively the evolution trajectories at the one- and two-loop
levels are very similar in our case and that the quantitative
differences are rather minor, at least at energy scales well
below the perturbative limits of couplings. Keeping this in
view, we start by presenting the one-loop RGEs so that we
can fall back on them to provide intuitive explanations of
the trajectories. At the same time, the detailed results
presented in the next subsection are all based on two-loop
equations, although we take the liberty of explaining them
in terms of one-loop equations, empowered by reasons
summarized above.
First, we present the one-loop RGEs for the gauge

couplings.

16π2βg1 ¼ 7g31;

16π2βg2 ¼ −3g32;

16π2βg3 ¼ −7g33: ð33Þ

They form a stand-alone set, at one loop, as we can see
from Eq. (33), and therefore they remain unchanged for
different types of 2HDMs. We mention here that, in writing
Eq. (33), GUT normalization has not been used.
We focus next on the RGE of the Yukawa couplings in

type-X 2HDM. The corresponding equations are as fol-
lows. Here g and Y in the superscripts, respectively, denote
gauge and Yukawa interactions, contributing to the running
of the Yukawa couplings (taken here as real).

16π2βgYt
¼ −

�
17

12
g21 þ

9

4
g22 þ 8g23

�
Yt;

16π2βYYt
¼

�
3

2
Y2
b þ

9

2
Y2
t

�
Yt;

16π2βgYb
¼ −

�
5

12
g21 þ

9

4
g22 þ 8g23

�
Yb;

16π2βYYb
¼

�
9

2
Y2
b þ

3

2
Y2
t

�
Yb;

16π2βgYτ
¼ −

�
15

4
g21 þ

9

4
g22

�
Yτ;

16π2βYYτ
¼ 5

2
Y3
τ : ð34Þ

The resulting beta function will be the sum of the gauge
and Yukawa components.

βY ¼ βgY þ βYY: ð35Þ

The Yukawa and gauge contributions show similar
behavior for Yt and Yb. It is clear from Eq. (34) that the
gauge contribution decreases with energy whereas the
Yukawa part goes up at higher energy. However, the terms
involving the strong coupling constant g3 dominates over
the other terms and therefore the top and bottom Yukawa
couplings monotonically decrease with energy. The τ-
Yukawa coupling on the other hand, unaffected by the
strong interaction, remains almost constant. This behavior
can be seen in Fig. 15.
The relevant equations for the running of quartic

couplings are given below. Here, the superscripts b and
Y denote, respectively, bosonic (gauge couplings and
quartic couplings) and Yukawa interactions, contributing
to the running of λs.

16π2βbλ1 ¼
3

4
g41 þ

3

2
g21g

2
2 þ

9

4
g42 − 3g21λ1 − 9g22λ1 þ 12λ21

þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25;

16π2βYλ1 ¼ −4Y4
τ þ 4Y2

τ λ1;

16π2βbλ2 ¼
3

4
g41 þ

3

2
g21g

2
2 þ

9

4
g42 − 3g21λ2 − 9g22λ2 þ 12λ22

þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25;

16π2βYλ2 ¼ −12Y4
b − 12Y4

t þ ð12Y2
b þ 12Y2

t Þλ2;
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16π2βbλ3 ¼
3

4
g41 −

3

2
g21g

2
2 þ

9

4
g42 − 3g21λ3 − 9g22λ3

þ ðλ1 þ λ2Þð6λ3 þ 2λ4Þ þ 4λ23 þ 2λ24 þ 2λ25;

16π2βYλ3 ¼ ð6Y2
b þ 6Y2

t þ 2Y2
τÞλ3;

16π2βbλ4 ¼ 3g21g
2
2 − ð3g21 þ 9g22Þλ4 þ 2λ1λ4 þ 2λ2λ4

þ 8λ3λ4 þ 4λ24 þ 8λ25;

16π2βYλ4 ¼ ð6Y2
b þ 6Y2

t þ 2Y2
τÞλ4;

16π2βbλ5 ¼ ð−3g21 − 9g22 þ 2λ1 þ 2λ2 þ 8λ3 þ 12λ4Þλ5;
16π2βYλ5 ¼ ð6Y2

b þ 6Y2
t þ 2Y2

τÞλ5: ð36Þ

Like before, the actual beta function will be the sum of
the bosonic and Yukawa components:

βλ ¼ βbλ þ βYλ : ð37Þ

One should note, since the Yukawa couplings depend on
the specific kinds of 2HDM, it is obvious that their
evolution as well as those of the quartic couplings are
model dependent. This is obvious from Eqs. (34) and (36).

B. Coupling trajectories and inference
drawn from them

In this subsection, the running of various couplings will
be illustrated in terms of a few chosen benchmark points. A
brief justification for choosing those will be given shortly.
Based on the discussion in the preceding subsection, we
will present here the full two-loop results for our bench-
mark points (BPs). Our chosen benchmarks are consistent
with theoretical as well as experimental constraints.
We have seen that, in scenario 1, the requirement of a

low branching fraction of SM-like Higgs to two pseudo-
scalars along with other constraints leads us to mA > mh

2
in

the RS region. However, it is possible to get allowed points
in the whole range ofmA in the WS regime. Keeping this in
mind, we choose three benchmarks BP1, BP2, and BP3 for
scenario 1. BP1 corresponds to WS region with mA > mh

2
.

BP2 corresponds to WS region and mA < mh
2
. For BP3, we

have taken RS with mA > mh
2
. We present the benchmark

points chosen for scenario 1 in Table II.
As long as we are in the alignment limit with large tan β,

λ2 is precisely determined by SM-like Higgs with a very

small value(≈ m2
h

v2 ≈ 0.258), which is the case for all the
benchmarks in Table II. On the other hand, λ1 and λ3
depend on the mass splitting between two CP-even scalars.
Furthermore, λ1 can be controlled by m2

12, which gets an
enhancement factor in the large tan β region. As for this

parameter space, we have m2
12 ∼

m2
H

tan β with large tan β, λ4 is

proportional to m2
A − 2m2

H� þm2
H and takes a negative

value for our benchmarks. Similarly, λ5 takes a value
close to λ4 with a opposite sign, being proportional to

−m2
A þm2

H. It is clearly seen that for degenerate mH and
mH� , λ5 ≈ −λ4. The equality in magnitude is prominent in
case of large mH. For BP3 this does not apply. However,
the mutual opposite sign between λ4 and λ5 still holds.
We would like to mention here that all the benchmarks
satisfy the limit on ylh as well as yVh from the alignment
condition [28,29].
In Fig. 12, we can see the two-loop RG running of

quartic couplings for BP1, BP2, and BP3. For all these
benchmarks tree level unitarity decides the value of Λcutoff

UV
which is denoted by the end scale in all figures, whereas
stability and perturbativity can be satisfied even after that
cutoff scale. It is clear from the running that the larger the
value for any quartic coupling at the electroweak scale, the
quicker it breaks the unitarity criteria. For both BP1 and
BP2, λ3 becomes the largest among the quartic couplings at
the breakdown scale, whereas in BP3 λ1 plays this role.
Also from Fig. 12(c), it is clear that starting from nearly the
same value, λ1 can increase faster than λ3 as energy
increases. On the other hand, the runnings of other λs
show a flat nature compared to λ1 and λ3. As we do not
allow hard Z2 breaking, λ6 and λ7 do not change with
energy and are fixed at zero. In explicit terms, the RG
equations for λ6 and λ7, always carry the terms proportional
to these two λs and therefore the relation dλ

dμ ¼ 0 remains
valid throughout their running.
A complementary picture is noticed in scenario 2. Here

the requirement of a low branching fraction of SM-like
Higgs to a pair of pseudoscalars along with other con-
straints pushes mA > mH

2
in the WS region. On the other

hand, in the RS case, it is possible to get a low BRðhSM →
AAÞ in the entire range of mA. To examine scenario 2 on a
case by case basis, we choose three benchmarks BP4, BP5,
and BP6. BP4 corresponds to the RS region with mA > mH

2
,

BP5 corresponds to the RS region with mA < mH
2
. We

considerWS region withmA > mH
2
in BP6. The benchmarks

for scenario 2 are listed in Table III. We mention here that

TABLE II. Benchmark points for scenario 1.

BP1 BP2 BP3

mH in GeV 449.734 324.237 153.865
mA in GeV 80.0 24.6997 63.0
mH� in GeV 453.895 331.34 176.152
λ1 0.095392 1.4963 0.52616
λ2 0.25788 0.25792 0.25773
λ3 6.9130 3.5968 0.52559
λ4 −3.3549 −1.8783 −0.56774
λ5 3.23062 1.72343 0.324993
m2

12 in GeV2 2696.2389 1992.85 353.226215
tan β 75.0 52.7154 67.0
sinðβ − αÞ 0.9996 0.999163 0.999996
ylh × sinðβ − αÞ −1.12095144 −1.15624366 0.81048833
Δaμ 84.59×10−11 234.65×10−11 82.28×10−11
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although it is possible to get a few points in the WS region,
with mA ≲ mH

2
, in the resonant region with severe fine-

tuning, we do not consider this region further in our
analysis.
Our BP4 and BP6 have negative sinðβ − αÞ and large

tan β, where BP5 has positive sinðβ − αÞ and comparatively
small tan β. Here too, in the alignment limit, λ2 is governed
by the 125-GeV Higgs mass and therefore for all the
benchmarks, its values remain similar to that in scenario 1.
In this case, λ3 is comparatively smaller than the previous
case due to smaller mass gap between mH and mh, whereas
λ1 can get a somewhat enhanced contribution from the m2

12

term at large tan β. On the other hand, λ4 and λ5 are opposite
in sign, similar to the previous scenario.
Having thus identified our benchmark points, we further

note that all the six aforesaid benchmark points fall in the
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FIG. 12. Two-loop RG running of quartic couplings for the benchmarks (a) BP1 (WS), (b) BP2 (WS), and (c) BP3 (RS) from
scenario 1.

TABLE III. Benchmark points for scenario 2.

BP4 BP5 BP6

mH in GeV 117.409 93.6073 121.446
mA in GeV 67.0 15.7859 64.0
mH� in GeV 167.0 135.00 171.0
λ1 0.013324 1.0251 0.060649
λ2 0.25774 0.25767 0.25773
λ3 0.71998 0.58636 0.70471
λ4 −0.61858 −0.45412 −0.65377
λ5 0.153385 0.138905 0.175768
m2

12 in GeV2 196.928761 393.28757 216.89098
tan β 70.0 22.0 68.00
sinðβ − αÞ −0.00141421 0.00601127 −0.03161882
ylh ×cosðβ−αÞ 0.901003399 1.13220955 −1.14940501
Δaμ 132.17×10−11 69.67×10−11 121.83×10−11
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yellowish interior region of Fig. 5. Therefore our analyses
based on them are legitimate, both with the older data and
on taking the very recent results into account, as far as
constraints from gμ − 2 are concerned. For our subsequent
analysis on UV completion, we shall use the combined
data of gμ − 2 as the constraining factor on the parameter
space.
In Fig. 13, we display two-loop RG running of

quatic couplings for BP4, BP5, and BP6. We can see
that for all the three benchmarks Λcutoff

UV is again decided
by tree-level unitarity. For BP4 and BP6, comparatively
smaller values of λs at the electroweak scale ensure tree-
level unitarity as well as perturbativity and stability up to
a very high scale (∼1016 GeV). We can see that in
general, it is easier to achieve UV completion for scenario
2 than 1.

We have noticed in Figs. 12 and 13 that for all the λs, the
negative contribution to the running of λs comes from the
combination ð3g21 þ 9g22Þλ and terms involving Yukawa
couplings. If to this we couple the information that g2 falls
at higher energies, while g1 has at best marginal rise and the
Yukawa couplings remain more or less constant, one finally
has all quartic couplings rising with energy in this scenario.
This feature, which is generic to 2HDMs, is due to the
proliferation of bosonic degrees of freedom in the RG
equations. Thus the stronger constraint almost invariably
comes from perturbative unitarity.
The quartic coupling λ2 shows a unique behavior. For

some benchmarks (namely BP1 and BP2) it shows the
usual monotonically increasing trend. But for the other BPs
(BP3 to BP6), it decreases initially and then increases. The
reason behind this behavior is the following: in the case of
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FIG. 13. Two-loop RG running of quartic couplings for the benchmarks (a) BP4 (RS), (b) BP5 (RS), and (c) BP6 (WS) from
scenario 2.
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BP1 and BP2, the magnitude of λ3, λ4, and λ5 are much
larger compared to the rest of the benchmarks. The terms
proportional to λ3, λ4, and λ5 control the positive contri-
bution to the beta function for λ2. Therefore depending on
their values the cancellation between the positive and
negative terms can sometimes, take place. However, here
the dominant negative contribution comes from terms
involving Yukawa couplings and their strengths drop at
higher energies. Thus λ2 starts to increase at high energies
for all the benchmarks. One can also note that this behavior
is correlated to the mass difference between the two neutral
scalars h and H as the coupling λ3 is proportional to this
mass difference. It is evident from Table II that, in the case
of BP1 and BP2, this mass difference is much larger.
Consequently, the beta function for λ2 takes a positive value
in these cases at all energies.
On the other hand, in the case of BP3, we see that λ1 and

λ3 start from similar low energy values, but λ1 tends to grow
faster. As in this case λ1; λ3 > λ2; λ4, the bosonic contri-
bution is larger in the case of λ1 compared to λ3. The
Yukawa contributions drop with energy whereas the
bosonic contributions keep growing. Therefore, beyond a
certain energy (∼1010 GeV), λ1 becomes larger than λ3.
Another interesting feature can be observed if we

compare the running of λ4 and λ5 in the case of BP1
and BP2. In these two cases, at the EW scale, jλ4j ≈ jλ5j as
can be seen from Table II. It can be checked from Eq. (36)
that, in this limit, the beta functions for λ4 and λ5 become
almost equal to each other in magnitude and opposite in
sign. This behavior is clearly seen in Fig. 12.
A comparison has been made between one-loop and two-

loop RG running of quartic couplings in Fig. 14, for a
representative benchmark (BP3). We have seen that in the
case of one-loop RG evolution unitarity breaks down faster
than in the two-loop case. However, the breaking scale is of

the order of 1013 GeV in both cases. The values of quartic
couplings, too, are very similar at high scales. Nonetheless,
it is seen that the two-loop contribution helps us achieve
somewhat higher UV cutoff scales.
The running of the gauge and Yukawa couplings are

shown in the case of BP3 and BP4 in Fig. 15. The
qualitative nature of the running will be the same for all
the benchmarks. The variation in the top- and bottom-
Yukawa couplings are significant, as can be seen through
the logarithmic plots, since they are affected by strong
interaction, unlike what happens to the τ Yukawa [see
Eq. (34)]. The τ-Yukawa interaction overrides even the top-
Yukawa coupling at high scales, by virtue of the fact that
we are considering benchmark points with large tan β.
Some remarks are in order on the evolution of the gauge

couplings, especially in the context of possible embedding
of the type-X 2HDM in a GUT. As far as the gauge
interactions are concerned, the evolution patterns are
largely similar to the SM trajectories, if one remembers
that GUT normalization has not been used for the U(1)
gauge coupling. It should also be noted that one loses
perturbative unitarity of quartic couplings at around
1013 GeV for BP3, and even the two-loop RGEs cease
to be trustworthy beyond that. So long as perturbativity is
held to be sacrosanct, one therefore needs the intervention
of new physics within approximately 1013 GeV in this
case, and that intervening physics should have a role in
ensuring grand unification, if at all. For BP4, on the other
hand, no such requirement arises since the interactions are
perturbative almost all the way to the GUT scale. However,
the merger of the three kinds of gauge interaction at the
GUT scale still requires some additional threshold effects,
as much as they do in the standard model, a requirement
eminently fulfilled, for example, by supersymmetry broken
at the TeV scale.
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FIG. 14. (a) One-loop and (b) two-loop RG running of quartic couplings for BP3 (RS) from scenario 1.
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VI. ALLOWED REGIONS WITH VARIOUS
CUTOFF SCALES

After discussing the RG evolutions of all the relevant
couplings in the model, we proceed to scan the model
parameter space and look for points that satisfy all the
theoretical constraints, namely perturbativity, unitarity, and
vacuum stability up to cutoff scale Λcutoff

UV . Four values of
such scale, have been used as benchmarks here. These are
∼104; 108; 1016, and 1019 GeV. While the last two are
connected with the GUT and Planck scales, we have also
thought in terms of intermediate scales such as 108 GeV.
Lastly, Λcutoff

UV ∼ 104 GeV, too, has been included in the
study, which corresponds to a situation where, a rather rich
intermediate sector becomes obvious with potential impli-
cations in collider phenomenology. Tomaintain consistency

in the discussion we divide our analysis in four previously
considered scenarios namely
(1) Case 1: Scenario 1 with WS Yukawa.
(2) Case 2: Scenario 1 with RS Yukawa.
(3) Case 3: Scenario 2 with WS Yukawa.
(4) Case 4: Scenario 2 with RS Yukawa.

We will identify the allowed parameter spaces for each of
these cases in two-dimensional planes of relevant physical
model parameters as well as the quartic couplings λs. In all
the plots in Figs. 16–27 the blue, green, red, and yellow
points represent the regions valid up to 104; 108; 1016;
1019 GeV, respectively.

A. Case 1

In Fig. 16(a), the two black lines represent the upper and
lower bounds from gμ − 2 anomaly at 3σ. Figure 16(b)
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FIG. 15. Two-loop RG running of third generation Yukawa couplings for (a) BP3 (RS scenario 1) and (b) BP4 (RS scenario 2) and
gauge couplings for (c) BP3 (RS scenario 1) and (d) BP4 (RS scenario 2), respectively.
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shows the allowed parameter space which satisfy the
observed gμ − 2 as well as the strong upper limit from
BrðhSM → AAÞ. It can be seen from this plot that high-
scale validity up to the Planck scale favors tan β ≲ 30. At
the electroweak scale, we have seen that large tan β
regions are disfavored from the requirement of perturba-
tive unitarity, since large tan β eventually results in large
λs. For high-scale validity, λs need to be small at the
electroweak scale. Naturally, relatively small values of
tan β are favored from the standpoint of high-scale
validity. On the other hand, the observed gμ − 2 prefers
tan β on the higher side, rendering a very tiny region valid
up to the Planck scale, which is clear from Fig. 16(b). In
the same figure, we see a sharp discontinuity in the
allowed parameter space around mA ≈mh=2. This is
because of the fact that when mA ≲ mh

2
, one is strongly

restricted by the limit BRðhSM → AAÞ≲ 4%. This con-
straint is particularly severe for large tan β, a feature we
have already seen in Sec. IV.
In Figs. 17(a)–17(c), we show the high-scale validity in

the ðmH − tan βÞ, ðsinðβ − αÞ − tan βÞ, and ðmH −mH�Þ
planes, respectively. We can see that the high-scale validity
demands smaller mH. The major reason behind this is the
following. As λ3 increases with mH in this region [see
Eq. (17)], the requirement of small λ3 at the electroweak
scale (which is necessary for high-scale validity) pushes
us towards small mH values. One more feature from the
figure is that, when tan β ≲ 50, there is a discontinuity
in the allowed points. The reason behind this is the
following. The parameter space with tan β ≲ 50 and
mA > mh

2
, albeit allowed by the BRðhSM → AAÞ constraints,

faces severe constraint from the lower limit on ðgμ − 2Þ
[see Fig. 16(a)]. On the other hand, the small strip below
tan β ≲ 50 corresponds to the points where mA ≲ mh

2
and

BRðhSM → AAÞ upper limit is satisfied. Similar feature is

observed in Fig. 17(b) where the small strip below tan β ≲
50 corresponds to mA ≲ mh

2
. From Fig. 17(c), we can see

that the high-scale validity puts a strong upper bound on
mH, which also follows from our understanding of the
perturbativity and unitarity condition at the electroweak
scale. The degeneracy betweenmH andmH� mass naturally
pushes the charged scalar mass to smaller values, at the
high scales, which is evident from Fig. 17(c).
Let us now discuss the high-scale validity in the planes

spanned by the quartic couplings, as they play the key role
in this regard. In Fig. 18(a), we can see that λ1 controls the
high-scale behavior much more than λ2. This happens
because λ2 at the electroweak scale is solely determined by
the 125-GeV Higgs mass and varies only slightly with
energy, a behavior we have already seen. With the
variation in scale from 104 to 1019 GeV, the allowed
range of λ2 varies only slightly around its electroweak
value. On the contrary, allowed range for λ1 varies from 3
to 0.5 with the same variation in scale. In Fig. 18(b), we
have shown the region allowed after the constraints from
gμ − 2 and BRðhSM → AAÞ are applied. We have seen
from our earlier discussions that gμ − 2 favors large tan β
while the upper limit on BRðhSM → AAÞ favors low tan β.
λ2 is inversely proportional to tan β in the alignment
region. Therefore higher values of λ2 are disfavored by the
observed gμ − 2 data, while the lower λ2 gets constrained
from the BRðhSM → AAÞ.
In Fig. 18(c), we demonstrate regions with different

levels of high-scale validity in the parameter space spanned
by λ1 and λ3. Their high-scale behavior appears to be
strongly correlated with each other and the allowed range in
the λ1 − λ3 plane shows elliptic contours. Figure 18(d)
shows the allowed region after the imposition of gμ − 2 and
BRðhSM → AAÞ constraints. We can see that these two
constraints do not affect these couplings directly, but only

FIG. 16. mA − tan β plane, valid up to different energy scales after applying (a) theoretical constraints (b) theoretical constraints
þðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 1.
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reduces the density of points uniformly, depending on the
other quartic couplings.
In Fig. 18(e), we plot the high-scale validity in the λ4–λ5

plane. We have seen in our earlier discussion that the mass
degeneracy between mH and mH� implies λ4 ≈ −λ5. As the
perturbative unitarity condition favors this mass degen-
eracy, this correlation between λ4 and λ5 is also favored for
high-scale validity. The gμ − 2 and BRðhSM → AAÞ con-
straints result in only uniform reduction of allowed points,
the nature of the allowed region remaining unaltered [see
Fig. 18(f)].
It is clear from the discussion in the plane of quatic

couplings that, the requirement of validity of the theory up
to higher scales, pushes the quartic couplings to smaller
values.

B. Case 2

In Fig. 19, we show the high-scale validity in mA– tan β
plane in the right-sign region of scenario 1. Here the nature

of high-scale validity is same as case 1 and for the same
reason. The black line in the Fig. 19(a) denotes the lower
limit coming from the gμ − 2 data. We have shown only the
region mA > mh

2
here, because from the upper limit on

BRðhSM → AAÞ, this is the only allowed region in this case,
as discussed in Sec. V.
In Figs. 20(a)–20(c) we show the high-scale validity in

the ðmH– tan βÞ, ðRðβ−αÞ– tan βÞ, and ðmH–mH�Þ planes,
respectively, after imposing the gμ − 2 constraints and the
upper limit from BRðhSM → AAÞ. Here too, we observe
similar behavior as case 1 and the same discussion follows.
We note here that, tan β ≲ 50 is completely disfavored in
this case unlike case 1. The reason behind this is in case 2,
we do not have a region with mA ≲ mh

2
that satisfies the

upper limit on BRðhSM → AAÞ and mA > mh
2

region gets
severely constrained by the lower limit from gμ − 2 when
tan β ≲ 50.
We report next on the high-scale validity in the RS region

of scenario 1 in the parameter space spanned by the quartic

FIG. 17. (a) mH − tan β, (b) Rðβ−αÞ − tan β, and (c) mH −mH� plane, valid up to different energy scales after applying theoretical
constraints þðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 1.
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couplings. In Figs. 21(a)–21(f), we see similar features as in
case 1. However, in this case, large values of λ3 become
disfavored even at the electroweak scale as can be seen

from Figs. 21(c) and 21(d), since in the RS case a stronger
upper bound is imposed on the mH� and mH, compared to
WS case, in the pseudoscalar mass range of our interest.

FIG. 18. Quartic couplings valid up to different energy scales after applying (a), (c), and (e) theoretical constraints and (b), (d), and
(f) theoretical constraintsþ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 1.
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In Figs. 21(e) and 21(f), we see, in this case, that the lower
masses ofmH andmH� restrict the upper limits on λ4 and λ5
to lower values compared to the WS case.

C. Case 3

We now proceed to scenario 2 (i.e., mH ¼ 125 GeV), in
the WS region. In scenario 2, the charged scalar and the

FIG. 19. mA − tan β plane, valid up to different energy scales after applying (a) theoretical constraints (b) theoretical constraints +
ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 2.

FIG. 20. (a) mH − tan β, (b) Rðβ−αÞ − tan β, and (c) mh −mH� plane, valid up to different energy scales after applying theoretical
constraints þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 2.
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nonstandardCP-even scalarmasses are kept at a lower range
compared to scenario 1. In Fig. 22, we show the high-scale
validity in themA– tan β plane. Like the previous cases, here
too, the tension between the high-scale validity and the

observed gμ − 2 continues. We have not shown the region
mA ≲ mH

2
in Fig. 22, because in scenario 2, WS region, this

region does not satisfy BRðhSM → AAÞ upper limit. On the
other hand, mA > mH

2
trivially satisfies this bound.

FIG. 21. Quartic couplings valid up to different energy scales after applying (a), (c), and (e) theoretical constraints and (b), (d), and
(f) theoretical constraints þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 2.
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In Figs. 23(a)–23(c), we show the parameter space allowed
by all the aforementioned constraints in the ðmh − tan βÞ,
ðsinðβ − αÞ − tan βÞ, and ðmh −mH

�Þ plane, respectively.

As a lowmass range for the nonstandardCP-even scalar (h) is
considered in this case, the entiremass range is valid up tovery
high scales. However, the gμ − 2 data disfavors the region

FIG. 22. mA − tan β plane, valid up to different energy scales after applying (a) theoretical constraints (b) theoretical constraints
þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 3.

FIG. 23. (a) mh − tan β, (b) sinðβ − αÞ − tan β, and (c) mh −mH� plane, valid up to different energy scales after applying theoretical
constraints þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 3.
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below tan β ≲ 50 formA > mh
2
whereasmA ≲ mh

2
is disfavored

from the upper limit on BRðhSM → AAÞ, therefore we see no
point in the range tan β ≲ 50 in Figs. 23(a) and 23(b).

The behavior of the quartic couplings in the context of
high-scale validity is similar to the previous cases consid-
ered, as we can see from Figs. 24(a)–24(f). The apparently

FIG. 24. Quartic couplings valid up to different energy scales after applying (a), (c), and (e) theoretical constraints and (b), (d), and
(f) theoretical constraints þðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 3.
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stronger upper limit on λ3 in Figs. 24(c) and 24(d) follows
from the fact that the CP-even nonstandard scalar mass
(mh) is much lower in scenario 2, compared to scenario 1,

irrespective of WS and RS. In Figs. 24(e) and 24(f), we see
a different behavior compared to scenario 1. The correla-
tion between λ4 and λ5 here is not very clear. The reason

FIG. 25. mA − tan β plane, valid up to different energy scales after applying (a) theoretical constraints and (b) theoretical constraints
þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 4.

FIG. 26. (a) mh − tan β, (b) sinðβ − αÞ − tan β, and (c) mh −mH� plane, valid up to different energy scales after applying theoretical
constraints + ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 4.
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again is the following: In scenario 2, we are confined within
a small range formh and therefore the degeneracy, which is
responsible for the correlation between λ4 and λ5, is not

very apparent in this case. As the nonstandard scalar masses
are already small, almost the entire region considered is
allowed up to a very high scale (1019 GeV).

FIG. 27. Quartic couplings valid up to different energy scales after applying (a), (c), and (e) theoretical constraints and (b), (d), and
(f) theoretical constraints þ ðgμ − 2Þ at 3σ þ BRðhSM → AAÞ bounds for case 4.
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D. Case 4

Now we will focus on the RS region of scenario 2, i.e.,
mH ¼ 125 GeV. Here too, the charged Higgs and the
nonstandard CP-even scalar masses are kept on the lower
side. In Fig. 25, similar behavior as the previous cases is
observed. One may note, similar to case 1, here we get a
small region in the range mA ≲ mH

2
, mostly in the low

tan β, which satisfies the constraint from BRðhSM → AAÞ.
In Figs. 26(a)–26(c), we show the allowed parameter

space in the plane spanned by ðmh − tan βÞ, ðsinðβ − αÞ–
tan βÞ, and ðmh −mH�Þ plane, respectively. Due to lowmass
range of the nonstandard scalars, the entire mass range
considered is valid up to very high scales just like in case 3.
The strip below tan β ≲ 50 in Figs. 26(a) and 26(b) corre-
sponds to the points with mA ≲ mH

2
, which satisfies the limit

from BRðhSM → AAÞ, as we have argued in case 1.
We show next the region of parameter space in the plane

of the quartic couplings, in Figs. 27(a)–27(f). The quali-
tative natures of the allowed regions are very similar to case
3, precisely because of low nonstandard scalar masses in
both cases.
The most salient points of the discussion in the current

section can be summarized as follows:
(i) Irrespective of the specific case at hand, the smaller

the quartic couplings are at the electroweak scale,
the higher is the scale of validity of a theory.

(ii) The requirement of small quartic couplings naturally
implies moderate tan β and/or nonstandard scalar
masses on the lower side.

(iii) The observed gμ − 2 data favor large tan β, creating a
tension with high-scale validity.

(iv) λ1(also λ3, although in a correlated manner with λ1)
and λ5(λ4 shows a strong correlation with it), mainly
control the high-scale behavior and remain practi-
cally unaffected by the constraints such as gμ − 2 or
the BRðhSM → AAÞ.

(v) λ2, on the other hand, does not play a significant role
in the high-scale validity, but remains heavily con-
strained from gμ − 2 and BRðhSM → AAÞ.

(vi) High-scale validity in general demands degeneracy
between the nonstandard scalar masses as well as
their closeness to the 125-GeV Higgs mass.

(vii) In case 2, i.e., when the lighter CP-even scalar is
SM-like in the right-sign region, the requirement of
perturbative unitarity at the electroweak scale al-
ready favors lower nonstandard scalar masses and
consequently lower quartic couplings, facilitating
high-scale validity.

(viii) In scenario 2 (both cases 3 and 4), i.e., the non-
decoupling scenario, the nonstandard scalar masses
are on the lower side, as compared to scenario 1.
Therefore, here too, a major portion of the parameter
space remains valid up to the Planck scale.

(ix) Case 1 is least favored among the four cases
considered, when high-scale validity is demanded.

Taking a cue from the above observations, we can now
identify the regions in the type-X parameter space, which
can be valid up to the GUT or Planck scale. Thus we may
say that scenarios corresponding to such regions can
become part of a grand unified framework without
requiring any additional fields. On the other hand, the
regions that encounter cutoffs at lower energies require the
intervention of additional physics if has to be part of a
grander design in its UV completion. Moreover, certain
regions in the low energy parameter space are subject to
unitarity limits at the scale of a few TeV itself. Therefore,
one may expect to see collider signals for further new
physics if observations ever indicate that one has type-X
2HDM corresponding to such parameter values.

VII. CONCLUSION

We have explored the high-scale validity of type-X
2HDM, particularly in regions of the parameter space
answering to a low-mass neutral CP-odd spinless particle.
Such a pseudoscalar is not only consistent with all
experimental limits so far but can also help in explaining
the observed discrepancy in gμ − 2. The high-scale validity
of the regions of the parameter space of this model, where
the above features of special interest are noticed, has been
studied here.
We have identified the regions in the parameter space,

which are helpful in explaining ðgμ − 2Þ including the
most recent results. Other theoretical and experimental
constraints, starting from low-scale perturbative unitarity,
vacuum stability etc., and all the way to the most recent
LHC limits, have been used to filter out the surviving
parameter regions. The two-loop running of various
couplings in such regions up to high scales has been
studied thereafter, thus identifying regions where pertur-
bative unitarity and vacuum stability are satisfied up to
various high scales, ranging from 104 GeV to the Planck
scale. Different benchmark points have been used,
including both situations where the 125 GeV state is
either the lighter or the heavier neutral CP-even scalar.
Scenarios with both right- and wrong-sign Yukawa
couplings have also been scanned across the parameter
space.
For regions in the parameter space having cutoff scales

on the lower side, the aspiration for perturbative unification
of the three SM gauge couplings is found to necessitate UV
completion of type-X 2HDM below the GUT scale. For
regions with perturbative validity inching up to the Planck
scale, on the other hand, the requirements for gauge
coupling unification turn out to be similar to what they
are for the standard model electroweak symmetry breaking
sector. All this bears ample testimony to the type-X 2HDM
being a candidate theory that explains the observed value
of gμ − 2, keeping open a rich set of UV completion
possibilities.
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