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We explore the effective field theory of a vector field X* that has a Stiickelberg mass. The absence of a
gauge symmetry for X* implies Lorentz-invariant operators are constructed directly from X*. Beyond the
kinetic and mass terms, allowed interactions at the renormalizable level include X, X*H'H, (X,X*)?, and
X, j*, where j* is a global current of the SM or of a hidden sector. We show that all of these interactions lead
to scattering amplitudes that grow with powers of \/s/my, except for the case of X, j* where j* is a
nonanomalous global current. The latter is well known when X is identified as a dark photon coupled to the
electromagnetic current, often written equivalently as kinetic mixing between X and the photon. The power
counting for the energy growth of the scattering amplitudes is facilitated by isolating the longitudinal
enhancement. We examine in detail the interaction with an anomalous global vector current X, Jhnoms
carefully isolating the finite contribution to the fermion triangle diagram. We calculate the longitudinally-
enhanced observables Z — Xy (when my < my), ff — Xy, and Zy — Zy when X couples to the baryon
number current. Introducing a “fake” gauge-invariance by writing X# = A* — d*/my, the would-be gauge
anomaly associated with A, Jhnom is canceled by jﬁ‘nomayn/ my; this is the four-dimensional Green-Schwarz
anomaly-cancellation mechanism at work. Our analysis demonstrates there is a much larger set of possible
interactions that an EFT with a Stiickelberg vector field can have, revealing scattering amplitudes that grow
with energy. The growth of these amplitudes can be tamed by a dark Higgs sector, but this requires dark
Higgs boson interactions (and reintroduces fine-tuning in the dark Higgs sector) that can be separated from

X interactions only in the limit g < 1.

DOI: 10.1103/PhysRevD.106.055020

I. INTRODUCTION

New massive vector bosons are ubiquitous in beyond the
Standard Model (SM) physics. At masses large compared
with collider energies, they provide UV completions of
higher dimensional operators [1]. At intermediate masses,
of order collider energies, they yield resonances that are
targeted by many searches [2]. At somewhat smaller
masses, they can be produced, decay, and be observed
in high intensity experiments [3—5], typically when coupled
to charged leptons (for reviews, see [6,7]). Also at smaller
masses, they can act as mediators to permit light dark
matter to interact with the SM [8—10], underpinning the
viability of a large class of light dark matter detection
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experiments [7]. At exceptionally small masses, vector
bosons can even serve as dark matter itself [11-18].

One of the attractions of a single new massive vector
boson is that a simple model [19] exists: the massive U(1)
dark photon A# (see [20] for a review),

1
au P+ 3 myA,A* = eF,, Fy . (1)

Loarky = —41—1
that involves just two parameters my and e, respectively the
mass of the U(1) dark photon and its kinetic mixing to
hypercharge. The simplicity of this extension hinges on the
existence of a Stiickelberg mass (see [21] for a review) for
the dark photon. In particular, by not specifying a Higgs
mechanism for the dark photon, one is able to avoid the
consideration of additional interactions of the dark Higgs
field ¢x. In particular, one does not need to address the
new fine tunings from the “dark hierarchy problem” that
are inevitable with a dark Higgs field or how to avoid
the respective destabilization of the dark and/or SM

Published by the American Physical Society


https://orcid.org/0000-0003-4812-4419
https://orcid.org/0000-0002-7594-364X
https://orcid.org/0000-0002-8006-6776
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.055020&domain=pdf&date_stamp=2022-09-16
https://doi.org/10.1103/PhysRevD.106.055020
https://doi.org/10.1103/PhysRevD.106.055020
https://doi.org/10.1103/PhysRevD.106.055020
https://doi.org/10.1103/PhysRevD.106.055020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

KRIBS, LEE, and MARTIN

PHYS. REV. D 106, 055020 (2022)

Higgs sectors through renormalizable interactions such
as ¢y pyH H.

One of the reasons the dark photon Lagrangian seems
simple is how the longitudinal mode is packaged in A*. We
can introduce the longitudinal mode 7 such that, under a
gauge transformation A# — A* 4+ 0"a(x), the longitudinal
mode shifts 7 — 7 + mya(x). Using the equation of
motion (EOM) for the hypercharge gauge boson, d,F}’ =
gyJy in terms of the SM hypercharge current j%, the dark
photon Lagrangian can be rewritten as:

1

1
‘Cdarky = __FX,ﬂvFl;(v + )

: XX = ey X, i (2)
in terms of X* = A% — 0"n/my—the Stiickelberg vector
field—a vector boson without a corresponding U(1) gauge
invariance. The lack of gauge invariance is obvious because
X* remains invariant under the simultaneous gauge trans-
formations of A* and z. This form of the dark photon
Lagrangian makes it clear that a Lagrangian with a
Stiickelberg mass for a vector field is best expressed in
terms of X¥; the use of the field strength F% for the kinetic
term (or kinetic mixing with the SM) has nothing to do with
gauge invariance, and instead simply ensures there are only
three propagating degrees of freedom (DOF) in X*.'

This naturally leads to the question of the effective field
theory involving a Stiickelberg vector field X#—what are
all possible interactions of X*, and what are their conse-
quences? The goal of this paper is to show that the
Lagrangian Eq. (2) is a special case of a more general
set of interactions for X*. For instance, already at the
renormalizable level we can write (X, X*)?, X, X*H'H, and
X, j* where j* is a global vector or axial current that may or
may not be (globally) anomaly-free.2 As we will see, most
of these interactions have couplings of the longitudinal
mode with itself or the SM fields, and thus lead to scattering
amplitudes that grow with powers \/s/my. This is analo-
gous to the energy growth that arise in a Higgsless SM [23].
The range of validity of the effective theory including X in
the spectrum relies on taking the coefficients of longitu-
dinally enhanced interactions to be (sometimes exception-
ally) small. Only if there are exactly zero couplings of the
longitudinal mode with itself or with the SM can the cutoff
scale of the EFT be taken arbitrarily large relative to the
mass of the Stiickelberg vector field.

There is a host of related literature that we will only
briefly mention. Numerous papers have studied theories
with a Stiickelberg vector field in the context of field theory
or string theory [21,22,24-34]. There is also a huge

'Contrast this with a spin-one gauge field, such as hypercharge
B*, which only appears in the field strength F’;" and covariant
derivatives.

*The phenomenological implications of the quartic interaction
for the electromagnetic field was explored in [22].

literature on anomalous U(1) symmetries and their impli-
cations for theory or phenomenology [29,35-53]. The
connections between anomalous U(1) symmetries and
the Green-Schwarz anomaly cancellation mechanism have
also been elucidated [29,36,38,39,46,54]. While we have
certainly benefited from this literature and we do not claim
to be the first or last word on this subject, our focus on a
theory with a Stiickelberg mass for X*, a vector field
without a corresponding gauge symmetry, lays a founda-
tion for a systematic approach to analyze the effective field
theory of X* in terms of its leading self-interactions as well
as its interactions with the SM.

The organization of this paper is as follows. First, in
Sec. II, we review the Stiickelberg Lagrangian, (fake)
gauge fixing, BRST, the external physical states, the
propagator, and the BRST current. In Sec. III we consider
tree-level interactions of the Stiickelberg vector field X*.
We demonstrate that self-couplings as well as tree-level
couplings of the longitudinal mode with the SM lead to
amplitudes that grow with energy above the mass of the
Stiickelberg vector field. While these interactions are not
radiatively generated by a dark photon Lagrangian that
consists solely of a mass term and a coupling to a conserved
vector current, there are no symmetries that forbid these
terms. Consequently, the dark photon Lagrangian appears
rather peculiar. In particular, we show that these inter-
actions can be generated by a dark Higgs mechanism for a
dark U(1) gauge theory, and like the Higgs mechanism of
the SM, the dark Higgs boson renders the amplitudes finite
above the dark Higgs mass. In Sec. IV, we consider the
coupling of a Stiickelberg vector field to an anomalous
vector current. This is motivated by Dror et al. [45], who
showed that should an anomalous symmetry of the SM
(e.g., baryon number) be gauged, the couplings of the
longitudinal mode lead to longitudinal enhancements of the
amplitudes involving the anomalous fermion triangle dia-
gram. These longitudinal enhancements are critical in
determining the viable range of parameter space in the
model [43]. The Stiickelberg vector field theory would
appear to be special, since there is no gauge symmetry, and
thus, no gauge anomalies. Nevertheless, we carefully
consider the one-loop triangle diagrams that arise because
of an anomalous global symmetry of the SM. We find that
the Stiickelberg vector field has couplings of its longi-
tudinal mode to the divergence of the anomalous global
current. The observable predictions of a Stiickelberg vector
field coupled to, say, global baryon number of the SM are
identical to the case in which baryon number is gauged, so
long as the ‘“anomalons” needed to cancel the gauge
anomaly are taken to be heavy. In Sec. V, we demonstrate
the importance of the one-loop couplings of the longi-
tudinal part of X* to an anomalous global current for
several physical processes, including Z — Xy and
ff = Xy, and Zy — Zy, when X couples to baryon
number. Finally, in Sec. VI, we discuss the implications
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of our results. The appendices contain technical details of
calculations relevant for results in Secs. IV and V.

II. REVIEW OF QUANTIZATION OF MASSIVE
VECTOR FIELDS

A. The Lagrangian and propagator for a massive
spin-one field

A massive spin-one field X* has three propagating
degrees of freedom (DOF). We see this by decomposing
the four components of the four-vector X* into the 1 & 3,
or spin-zero and spin-one, representations of the Lorentz
group. The spin-zero component leads to a negative energy
density, and can be removed as a propagating DOF in the
theory by imposing the Lorenz condition

d0,X" =0, (3)

together with writing the kinetic term for the four-vector as
a function of the field-strength tensor Fy = o*X* — 0" X*
[55]. The above two requirements are achieved by the
Proca Lagrangian

1 1
‘CP = _ZFX,;WF};(IJ + EWl%{X#X”, (4)

which yields the EOM and its derivative

0,Fy +miyX* =0,
m3%d,X* = 0. (5)

For my # 0, the Lorenz condition follows from the second
line and therefore is not an independent constraint. The
Proca Lagrangian for X* is not gauge invariant: there is no
U(1) symmetry associated with X* since there is no
redundancy in its description—all three of its propagating
DOF are physical.

The propagator for X* can be derived directly from
inverting the Proca Lagrangian, which is textbook material
[55,56]

The propagator for X* is equivalent to the propagator of a
Higgsed, massive U(1) theory in unitary gauge; however,
we emphasize that the result above is not in unitary gauge
—there is no gauge invariance. This also implies that the
sum of the polarization states for an on-shell X* coincides
with that of a massive U(1) theory, i.e.,

S e (p)er(p) = —(w _Pp ) ™)
A

my

This explicitly demonstrates the counting of the on-shell
physical DOF: X* has three physical polarizations.

B. Stiickelberg formalism: Introducing a fake
gauge symmetry

The Stiickelberg formalism expresses

Y
xt=ar -2 (8)
my

where A¥ is a “fake” U(1) gauge field and 7 is a scalar
field that also transforms under this “fake” U(1) gauge
invariance:

AF - AF + 0 a(x),

7 — 7+ mya(x), 9)

where a(x) is the gauge parameter. The Proca Lagrangian
becomes

| 1 9,7\ 2
£, =—LFp P +2m§<Aﬂ_n:X> . (0)

purely in terms of the “fake” gauge field with its field
strength given by F%". While this construction introduces
one additional DOF z, the “fake” U(1) gauge invariance
removes one DOF, leaving the same three of the massive
vector field in the original Proca Lagrangian [57,58].

We use the term “fake” to describe the gauge invariance
of A" since the physical consequences of X* and its
interactions can be determined entirely in terms of the
vector-field X* directly. The identification X* = A¥ —
n/my is exact, in the sense that renormalization does
not disrupt the size of the coefficient of 0"z /my relative to
A#. This follows from ensuring that the gauge transforma-
tions of A# and 7 leave the combination A* — o"7/my
invariant.

The purpose of introducing the “fake” gauge invariance
is to more easily uncover the role of the longitudinal
polarization of X*, namely X" which for a suitable choice
of gauge, can be fully captured by the interactions of the
scalar field z. Hence, we will refer to 7 as the “longitudinal
component” synonymously with X/ , though we emphasize
that this identification is only strictly true in Landau gauge,
as we discuss below.

C. BRST and R; gauge fixing

Before we discuss the gauge fixing of Eq. (10) and
applying the BRST to the Stiickelberg formalism, we
briefly review the general gauge-fixing and quantization
procedure using BRST [59,60]. The BRST transformations
of the fields are equivalent to gauge transformations like
those in Eq. (9) with infinitesimal gauge parameter
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a(x) = Ow(x), (11)

where 6 is an infinitesimal Grassmann constant and w is a
real, Grassmann scalar field (ghost). For the Stiickelberg
theory, we have the following BRST transformations of the
fields:

0pA = Oow,
Opm = myfw,
dgb =0,
Ogw = 0,
Spw* = 6b, (12)

where @* is a real, Grassmann scalar field (antighost) and b
is a Nakanishi-Lautrup auxiliary field [61,62]. The action
of a BRST operator s on a field ¢ is defined in terms of the
infinitesimal BRST transformation of a field ¢ by

o = Os . (13)

For a product of fields,

where + for whether ¢, is bosonic or fermionic; i.e., s can
be viewed as a fermionic operator. Using the transforma-
tions in Eq. (12), the gauge-fixing part of the Lagrangian
can be written as [24]

Lo =5 {w* (g—i—gb)} = -0'(sg) + bg+§b2, (15)

where G[A, ] is a gauge-fixing functional. Since b is an
auxiliary field and does not propagate, we can eliminate it
using its EOM, yielding an alternate form for Eq. (15),

Ly = 0" (sG) —2—§g2 (16)

The R;-like class of gauge-fixing choices is obtained by
setting

G: = 0,A" + Emyn. (17)

S =(5 +¢(5 =0|(s +@(s ,
o(9192) = (G001 ) 02+ 01(3092) [(s1)g2 01 (502) The general R;-gauge Lagrangian is the sum of Eq. (10)
(14) and the gauge-fixing terms,
|
;Cé == £ + [,gf|g§

1 o | 1 0,7 p 2 2

= 4FA;41/F +2mX A, —m—X 2—(6”A + Emyn)* — w* (0" + Emy)w
1 wo_ 1 )2 1 u 1 1 2.2 *( 12 2

= 4FA;41/F 25 (a”A ) +§mxA”A +§aﬂﬂ'aﬂﬂ—§§mxﬂ - (a +§mx)a), (18)

which explicitly exhibits the decoupling of A, ¢#z.>

From this, we see that the Proca Lagrangian corresponds
to the choice £ — 0, where the second term in the last line
of Eq. (18) decouples and 7 becomes a free, massless scalar
field. The Stiickelberg Lagrangian is obtained from the
choice of Stiickelberg-Feynman gauge & = 1,

1 o1 9,m\2 1
ESt = _ZFA’#UFQ +2 <A —m—X) —E(G”Aﬂ +mx77,')2.
(19)

Note that the first two terms in Eq. (19) are unchanged
under the gauge transformation Eq. (9); however,

3Using R gauge fixing, the ghosts decouple in Abelian gauge
theories because the ghost kinetic term involves only partial
derivatives (in Yang-Mills theories, these become covariant
derivatives in the adjoint representation). Hence, we omit them
from the Lagrangian for the remainder of the paper.

invariance of the last term requires z to obey the EOM
for a massive scalar field,

(O +m3)z = 0. (20)

D. Propagator in R, gauge

The R; gauge fixing removes the mixing terms of the
form A¥d,r in the original Stiickelberg Lagrangian of
Eq. (19), leaving just the gauge-dependent two-point
functions for A# and z. These have the standard R:-gauge
forms:

(A*(p)A*(=p)) =

p? :.mx <g/w - pzpjl;:ni (1= §)>’
(2 (p)a(=p)) = ————. (21)

p* —émg
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Using Eq. (12) and the decomposition in Eq. (8), the BRST transformation of X* is

1
5pX! = SpAF — — 'Synt = 00" w — 0 (Bw) = 0. (22)

my

X* is annihilated by the BRST operator and corresponds to a physical external state. From Eq. (21), the X* two-point

function can be reconstructed as

(X1(p)X*(=p)) = (A*(p)A"(=p)) +%(ip")(—ip”)<ﬂ(p)ﬂ(—l?)>

X

=i r'p* i rp
=S¢ -0 —é)) Tt 7
p? —m} ( p*=émy)  myp*—&my
—1 5 pl‘p”
=———(9v- : 23
(- 5F) -

which agrees with Eq. (6). The absence of £-dependence
demonstrates that the propagator for the physical state X*
is, unsurprisingly, itself independent of the fake gauge
symmetry.

E. Current conservation

The decomposition X* = A*# — d#z/my allows us to
study Stiickelberg theories using techniques familiar from
gauge theories. In fact, the fake gauge field A# has the same
form as that of a massive gauge field arising from a Higgsed
U(1) symmetry that is spontaneously broken with mass
my = gv/2. However, for a Stiickelberg vector field, we
know that only the combination A* — ¢7/my is physical
and can represent an external state, while for a gauge
theory, the external state is of course just A*. How do we
reconcile this difference?

To understand when there is a distinction between the
Stiickelberg vector field and a spontaneously broken
massive gauge field A#, we examine the BRST current,

oL
T or = Sop. (24)
BRST f%ﬂ 56 aﬂ ®

To keep things simple, consider a scenario in which the
spin-one fields have interactions with a fermion current,
ie., g(A, —0,z/mx)jrm = 9X,Jim for a Stiickelberg
vector field and gA,j... for a spontaneously broken,
gauged U(1) vector field.

In the case where A* is a gauge field that is sponta-
neously broken, it is straightforward to show that the
divergence of the BRST current is

0,J st = —®0, Jin, (for a massive gauge field A#). (25)

Therefore, a conserved BRST charge requires the diver-
gence of the fermion current to vanish.

In contrast, when the same BRST transformations are
applied to the Stiickelberg vector field, we obtain

aquéRST =0

(for a Stiickelberg vector field X¥ = A# —d*n/my).  (26)

A conserved BRST charge can always be formed since the
divergence of the BRST current vanishes independently of
the conservation of the fermion current.

Once we enforce a conserved current (in what follows, a
fermionic current), under the decomposition X* = A* —
o rm/my the scalar field 7 decouples from this interaction
leaving X* and A* indistinguishable.

III. TREE-LEVEL COUPLINGS OF A
STUCKELBERG VECTOR FIELD

We now turn to considering the tree-level interactions of
a Stiickelberg vector field X*. As we have emphasized, X*
does not transform under a gauge symmetry. Hence,
interactions in the effective theory will be built from
powers of X*. The goal in this section is to enumerate
the possible renormalizable tree-level interactions of X*
and identify those that lead to scattering amplitudes that
grow with powers of /s/my. These amplitudes arise from
couplings of the longitudinal mode X’ . The absence of a
(gauge) symmetry under which X* transforms implies that
its mass does not signal spontaneous symmetry breaking
(SSB) nor the existence of Goldstone bosons. Nevertheless,
the longitudinal mode, X%, is physical. We now state the
longitudinal equivalence theorem: the leading interactions
of the longitudinal mode can be characterized either by
working directly with X%, or by using the fake gauge
invariance of Eq. (9), choosing Landau gauge, and then
associating X, with the interactions of the derivatively
coupled longitudinal scalar field z. This is the Stiickelberg
analog of the Goldstone boson equivalence theorem.

055020-5
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A. The generalized Ward identity and the longitudinal
equivalence theorem

In a theory with an exact U(1) gauge symmetry, current
conservation leads to the Ward identity

KM, =0 (27)

for an arbitrary amplitude M in momentum space. This
implies that the longitudinal polarization of an external on-
shell gauge boson decouples. For a spontaneously broken
U(1) gauge theory, in which a gauge field A* acquires a
mass my, the longitudinal polarization of an external on-
shell gauge boson has, of course, physical couplings. Again
using current conservation, a generalized Ward identity

K
—./\/l,,(A) = iM(G%E=0) (28)
my

can be constructed that relates the momentum-contracted
amplitude for an on-shell external gauge boson A* with
momentum k* with the same amplitude, M(G%; ¢ = 0),
for the Goldstone boson in Landau gauge. In the limit of
large momentum |%| > my, € (A)~k"/my, giving the
Goldstone boson equivalence theorem

|k|>>my

&AM, (4) T2 iM% E=0)  (29)
for a single on-shell, longitudinally polarized gauge boson.

For the massive Stiickelberg vector boson, there is no
(generalized or other) Ward identity since there is no gauge
symmetry and thus no conserved local current associated
with X#. This means

XMy x) %0, (30)

my

At large momentum |l§| > my, €; (X) = k*/my, and so this
is simply a statement that the longitudinal mode of a
Stiickelberg vector field couples with a strength of k* /my.

What if we follow Secs. II B and II C and decompose the
Stiickelberg vector field into a fake gauge boson A* and
scalar field = and use the fake gauge invariance and R;
gauge fixing to remove the A*d, 7 mixing terms? Here, the
gauge redundancy of A¥ and z implies that there is no
gauge-independent identification of X% with A7 and/or .
Consider the two-point functions Eq. (21) and Eq. (23). As
we have discussed, the sum of the polarizations of X* is
gauge independent. We can match the sum of the polar-
izations of X* to that of a massive gauge field A# by going
to unitary gauge, £ — oo. In unitary gauge, = does not play
a dynamical role because m2 = £m% — oo, and so
€ (X) =€/ (A;€ - ). By contrast, in Landau gauge
(¢ =0) the sum of the polarizations of the two-point
function of A* is purely transverse, matching that of a

massless gauge theory that has only two propagating DOF.
Hence, in Landau gauge, the longitudinal polarization X’ is
fully captured by 07/ my. This is the same result found in a
spontaneously broken gauge theory in Landau gauge,
where the longitudinal polarization of a massive gauge
field is fully captured by 0#G°/my for the eaten Goldstone
scalar field.

Therefore, analogously to Eq. (29) for a spontaneously
broken theory, in Landau gauge at large momentum

|k| > my, we can identify

\l:\>>mx kH .
— — M, (X) =iM(x;£=0). (31)

0 # € (k) M, (X)
my

This is the longitudinal equivalence theorem: the leading
behavior for on-shell, external X/ interactions can be found
by replacing X/ with ¢*z/my. For Stiickelberg theories,
longitudinal equivalence arises as a consequence of the
invariance of Green’s functions under BRST transforma-
tions (Slavnov-Taylor identities) carried out on the
A, —d,m/my formulation. Following Eq. (26), BRST
invariance holds for Stiickelberg theories regardless of
whether A, — d,x/mx couples to conserved currents.
Goldstone equivalence in a Higgsed U(1) theory can
also be formulated from BRST invariance (assuming
0, Jfem = 0); however, it is more commonly derived using
the generalized Ward identities from U(1) gauge invariance
(gauge fields coupling to conserved currents).” Moreover,
we can also identify the leading behavior of the off-shell
two-point function [65],

xexe (k) 2R (ke =0). (32)

my

The Stiickelberg formalism makes clear that the large-
momentum behavior found by using Eqgs. (31) and (32)
yields nonrenormalizable interactions of the longitudinal
mode 7 suppressed by powers of my. Below, we will utilize
these results in our discussions of the leading behavior of
interactions and scattering amplitudes at large momentum.
We note that Lagrangians involving X* do not necessarily
contain interactions of the longitudinal mode z. For
example, one special case is the Proca Lagrangian Eq. (4)

1 1 k>m? ]
g Fxu ¥ +5miX,x" i 5 Oumd'm. (33)

i.e., by the equivalence above, the Proca Lagrangian for a

free massive Stiickelberg vector field becomes the
Lagrangian for a free massless scalar field z.

*See Refs. [63,64] for more details on the relation between the
BRST Slavnov-Taylor identities and the generalized Ward
identity in this regard.
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FIG. 1.

I —

(©)

Diagrams for 2-2 scattering amplitudes with two fermions and two gauge bosons: (a) XX — ff; (b) ff = XX; (c) fX = fX.

[We have omitted the u-channel diagrams for (a), (b).] When 9, j’g # 0 due to the explicit violation of the global axial current by the
fermion mass, the amplitudes for the longitudinally-polarized X field grow with energy proportional to m+/s/ m.

We now turn to considering interactions of X* with itself
or with the SM, identifying those interactions that couple to
the longitudinal mode, and discussing the consequences for
the effective field theory.

B. Conserved vector current

Consider the interaction

gXij’\l/7 (34)

in which the Stiickelberg vector field couples to a con-
served vector current j4, with strength gy. For the purposes
of this section, the current is assumed to be exactly
conserved, d, j’\’, = 0. (The anomalous case that leads to
one-loop couplings will be discussed in detail in Sec. IV.)
Using the equivalence X* = A* — d#7/my, it is clear that
the longitudinal component z decouples from the con-
served vector current, since under integration by parts (IBP)

1 . T )
m_x (0,7)fy — —m—Xdﬂf\’, - 0. (35)

This is the famous example of a dark photon kinetically
mixed with electromagnetism, namely j\, = jim, with
coupling strength gy = ee [19]. This coupling is equivalent
to a kinetically mixed Stiickelberg field with the electro-
magnetic field strength using the EOM jem = 0,Fch and
IBPin the electroweak theory, jy = ji, with coupling
strength gy = eg'/cw, where cy is the cosine of the
Weinberg angle. While f} is no longer a pure vector
current, it of course remains anomaly-free. (The couplings
of X to the axial vector part of hypercharge will be
discussed in the next section.)

While kinetic mixing eFy, F}’ is equivalent to
egy X, Jy, it is worth emphasizing that the inverse need
not be true. The Stiickelberg vector field X can be coupled
to a conserved current that is purely global and not gauged.
For example, in the SM the global current j%_; is exactly
conserved,5 and so the interaction

>The global U(1)3,_, and U(1),_, (grav)? anomalies vanish in
the presence of three right-handed neutrinos, though this is not
critical to our argument.

gXXﬂj%_L (36)

can be written without explicitly gauging B — L. This has
fascinating consequences when one imagines X* coupling
to a linear combination of both jem and ji_, [66].

These statements also hold for Stiickelberg vector fields
coupled to currents of hidden (dark) fermions, which are
commonly found in the literature. In this scenario, it is often
assumed that X* is the gauge boson of a new U(1) and that
the hidden fermions are charged under this symmetry.
However, provided the hidden current coupling to X* is
vectorlike and conserved, this need not be the case—the
interaction is indistinguishable from a Stiickelberg vector
field coupled to a global (hidden fermion) current.

C. Axial-vector current

Next, consider an interaction of X*# with an axial current,

9xXufa- (37)

Unlike the case of the global vector current, the global
axial-vector current is not, in general, conserved already at
tree-level. This is simply because an axial-vector current is
explicitly violated by fermion masses (within the SM or
beyond).

The consequences of the axial-vector current violation
by fermion mass is most easily seen by focusing on the
longitudinal component of the Stiickelberg vector field, X/,
or equivalently —d*z/my following Eq. (8). For an axial
current of fermions ji = fy*ysf, the z field is derivatively
coupled, so the longitudinal part of Eq. (37) becomes

. g - g -
9xXpufh = — m—iaﬂﬂ(fr"rsf ) = m—iﬂaﬂ (fr'rsf)

29X Frs). (38)

my

proportional to the fermion mass.

We can use this result to illustrate the high energy
behavior of X* in several scattering processes that have
axial-vector couplings including ff — XX, XX — ff, and
fX — fX as shown in Fig. 1.
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The full expression for the scattering amplitude follows
by using the vector-boson polarization tensor for the
external boson X*. Since we are interested in the high-
energy behavior of the amplitude, we can focus on just the
longitudinal part using Eq. (38). Using this effective
interaction, and taking the limit of s> mg(,m]% with ¢
fixed in the amplitude squared, we find that X, X; — ff is

32 ngfs

my(m7 —1)

IMJ? = (39)

where --- stands for terms with subdominant energy
growth. We see that the amplitude grows with energy
proportional to m +/s/my.

We can obtain a crude estimate of the scale at which
perturbative unitarity is violated by setting t — 0 (forward
scattering) and |[M|*> =1,

1 mi
W2 gzmy

Vo~ (40)

The effective theory for a Stiickelberg vector field has a
cutoff scale that is parametrically above my only when
my < my. This is fully equivalent to the Appelquist-
Chanowitz bound on scattering amplitudes involving
longitudinal electroweak gauge bosons and SM fermions
when the Higgs is decoupled from the SM [67].

If instead the fermions are much heavier than the
scattering energy, mf > s > m%, the fermions can be
integrated out, generating an effective (X, X*)? quartic
interaction at one-loop order that will also lead to ampli-
tudes that grow with energy. This is investigated below in
Sec. I E.

The coupling of X* to an axial-vector current is equiv-
alent to a dimension-4 Higgs-derivative interaction with X*

iH'D,HX", (41)

where we remind the reader that H*l(_))ﬂH =H'(D,H) -
(D,H")H is a SM gauge singlet with fully contracted
SU(2); x U(1)y indices. Focusing on the longitudinal
part,

< o
iH'D,HX! — —iH'D,H"". (42)
my
Using IBP, the longitudinal coupling becomes

L (H'D,H) = i—

[HTD2H
mx my

(D*H")H]. (43)

In the last line, we are free to promote the partial derivative
to a covariant derivative since the additional SM vector

boson terms needed to covariantize the left-hand side of

Eq. (43) vanish under D. Applying the EOM of the Higgs
field, the Higgs mass and quartic will cancel, leaving just
the z coupling to a pseudoscalar current proportional to
Yukawa couplings,

- _— h
—)—imixﬂ(fLyffR_fRy}fL)(v\jz ) (44)

For the leptons and one type of quark, we can diagonalize
the Yukawas so their entries are real and positive. In this
case,

(v+h) x
V2 my

We can convert this into an axial current by using the EOM
for the fermions and IBP once more. Starting with Eq. (43),

- —in (f sf)- (45)

T, . _
L (—exyl(H'L) + (LH)y eg + )
X

T _
=i— (—egiPer + LiPL + - --)
my

o,n -
= _L(éRyﬂeR —Ly*L+--)
my

0 _
=ij<fyﬂy5f>. (46)

Hence, the Higgs-derivative interaction can be rewritten as
axial-vector couplings of the SM fermions with X#, and
thus have the same energy growth in the amplitudes.

If we do not immediately focus on the longitudinal piece

of X,, the operator iHTDﬂHX” contains a mass mixing
between the X and Z and appears to lead to longitudinally
enhanced 7 — XZ decays (assuming light X). However, as
shown in Ref. [68], once the mass mixing is removed all
purely bosonic, longitudinally enhanced interactions are
eliminated. The only longitudinally enhanced amplitudes
come from SM axial current couplings to X that arise as a
consequence of the X — Z mixing, in agreement with our
result in Eq. (46).

While X, fy"ysf and 1HTD HX* separately lead to
amplitudes that grow with energy, a carefully chosen
combination of the two terms will not. This is precisely
what occurs for X# coupling to the axial part of the
hypercharge current [68]. Explicitly,

ny(f”;h)«m ¥ Ya(Frsf) (47)

Xﬂjlfx,y
after carrying out the manipulations in Eq. (38) to Eq. (46)
and focusing on the longitudinal piece of X*. Here Y, , Y/,
are the hypercharges for f; and f, respectively, Y is the
Higgs hypercharge, and the +(—) sign holds for leptons
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and down-type quarks (up-type quarks). Inserting the
hypercharges for SM matter, Eq. (47) vanishes. Thus,
X, j’g’y does not induce any amplitudes that grow with
energy.

D. Higgs portal

At the renormalizable level, there is one independent
Higgs interaction with X*,

1
ShlHPX, X (48)

Inserting the Higgs vacuum expectation value (vev), this
leads to an additional contribution to the mass of
Stiickelberg vector field. The shifted mass is

/12’[]2
2l 4
+ 2 (49)

ﬁﬁ( = mg(
The interactions of the longitudinal component are iden-
tified as

1 1
5/12|H|2X”X” d MﬂﬂHP(@,ﬂ@"ﬂ). (50)

This yields dimension-5 and dimension-6 interactions of
the longitudinal mode = with the Higgs field

Ao (2vh + h?)
T (0”71'6”71') (51)
that lead to scattering amplitudes that grow with powers of
\/s/my. Explicitly, examining the process XX — hh and
using |[M|> =1 as the criterion for the perturbative

unitarity limit, we find /5o ~ \/%mx.

If X* were to acquire its mass mostly through this
interaction (i.e., m% =~ 4,v?/2), the strength of the coupling
A, cancels out in Eq. (51). In this case, the Stiickelberg
vector boson amplitudes grow with energy above the
electroweak-breaking scale independently of the mass of
the Stiickelberg vector boson.

Finally, we note that this operator is familiar from the
scenario of a U(1) gauge field spontaneously broken by a
complex scalar, in which case 1, would be identified with
¢*, the square of the U(1) gauge coupling. This suggests
that 4, < 0 is highly suspect: in particular, the positivity of
A> is mandatory in the case where the mass of the
Stiickelberg field is obtained from this operator.

E. Quartic self-interaction

At the renormalizable level, there is one operator that
leads to a self-interaction of the Stiickelberg vector field:

1
4—!/14()(”)(#)2. (52)

For the longitudinal component this becomes

A4
A\m

7 (0,0 m)%. (53)

In the presence of this quartic self-interaction, the 2-2
scattering amplitude with Stiickelberg vector bosons grows
with energy as

2
'A(XLXL - XLXL> ~ /14s_4 (54)
my
due to the couplings of the longitudinal mode. The s?/m%
growth of the four-point amplitude is the same as that
encountered in the SM arising from (just) the four-point
interaction of longitudinal W gauge bosons. Of course, this
energy growth is famously canceled in the SM by Z and &
exchange diagrams.

The breakdown of the effective theory from this
operator can be obtained by performing a rough estimate
of the maximum allowed energy as in the previous
subsection,

my
vV S max SW (55)

4

Separating /Sya and my requires 44 < 1.5

However, restricting to just the interactions of the normal
dark photon model, (X,X*)? is not generated radiatively.
The coupling 4, is multiplicatively renormalized and thus
technically natural if set to an exceptionally small number
(including zero). It is well known that the sign of 1, must be
positive to ensure UV analyticity [69]. Moreover, (X MX”)z
is generated—even in the dark photon model—if we appeal
to the usual lore that quantum gravity generates all possible
higher dimensional operators (suppressed by powers of
Mpy). Specifically, we expect the operator

+ )2
(X 56

Mp,
which, below the scale of EWSB, leads to an effective
quartic A4 o ~ v*/M3,. The growth of A(X; X; — X, X;)
is so rapid that even such a minuscule A4 ~ O(107%)
can lead to perturbative unitarity violation at low scales
(meaning well within the energy range we have
probed experimentally) when my is small. Explicitly,

®For vector-boson dark matter with my ~ 107 eV [13] and
requiring the cutoff scale to be A = Mp, we find an exceptionally
small bound on the coupling 44 < 107129,
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plugging this “gravity-generated” A ¢ into Eq. (55) we
find \/Sppay ~ 108my.”

In the case of a Higgsed U(1) theory in which the vector-
boson mass is acquired through SSB, the energy growth of
XX — XX scattering is tamed by the Higgs exchange
diagram. In the low-energy effective theory below the
mass of the Higgs (but above my), this interaction is
generated with a coefficient A4 = 6g*v?/m7 where
my = gv/2, m} = 2A,v%, giving A(XX - XX) ~ 5. In
other words, the scattering of vector bosons in a sponta—
neously broken U(1) theory has an amplitude that grows
with energy until the vev v, where the EFT must be
supplemented by the Higgs boson.

IV. COUPLING A STUCKELBERG VECTOR FIELD
TO AN ANOMALOUS VECTOR CURRENT

Perhaps the most intriguing interaction that a
Stiickelberg vector field could have is X, Jhnoms a coupling
to an anomalous current. In this section we will mainly
focus on coupling to an anomalous vector current, since we
already showed in Sec. III C that a tree-level coupling to an
axial current generically leads to amplitudes that grow with
energy.

For a gauge field, A, jiom gauges what is a globally
anomalous U(1) current associated with jhyom. In the
presence of just one U(1) gauge interaction, this leads
to the usual U(1)* anomaly. When the fermions contrib-
uting to the current jhnom also transform under other gauge
symmetries, such as the SM, this leads to the mixed
anomalies (SM)?U(1). The presence of the gauge anoma-
lies leads to radiative corrections to the mass of the U(1)
gauge boson and to certain scattering amplitudes growing
with energy [35,47].

In [45], a detailed analysis of a light U(1) gauge boson
coupled to an anomalous current was carried out. Their
focus was on baryon number, which has the mixed
anomalies [U(1),]>U(1), and [SU(2),]?U(1)g. The inter-
action A, 7 leads to couplings of the longitudinal mode of
A, with the (anomalous) baryon current. The consequences
of this nonzero coupling emphasized in [45] are longitu-
dinally enhanced interactions, including Z — Ay and other
anomaly-induced decays. A careful analysis of the loop
functions leading to this decay was carried out in [50].

But now there is a puzzle. The Stiickelberg vector field
interaction X, Janom appears to lead to an anomalous
fermion triangle loop, and yet, X* is not a gauge field.
There cannot be U(1)® or (SM)2U(1) mixed gauge
anomalies because there is no U(1) gauge symmetry
associated with X*.

7Higher—dimensional operators formed from X, alone will also
be generated by the same argument. Formmg amplitudes from
these, ie., A(X; X, —4X;) from (X, X*)’/M}, we find a
similar, but weaker bound on /syy.

In this section, we resolve this puzzle and, in the course of
our analysis, find several consequences for theories with a
Stiickelberg vector boson. When we first introduce the fake
gauge symmetry of Eq. (9), the mystery seems to deepen
further because now A, would, in fact, appear to gauge an
anomalous current. We will see that the term (9, 7/ my) Jhnom
precisely cancels the gauge anomaly that arises from
A, Jhnom- The mechanism responsible for canceling the
anomaly can be understood essentially by IBP,

oym
- Janom =™ —— aﬂ
my m

Jinom &<~ F, P, (57)
my
where F w = 2 Eapu I %} and we recognize that the partial
derivative of the anomalous current d,, Jhnom 1S proportional to
F M,,F #¥_ the Chern-Pontryagin density. The resulting dimen-
sion-5 interaction on the right-hand side of Eq. (57) is referred
to as the Peccei-Quinn term® (for any of the gauge symmetries
of the SM, not just QCD). When this term is combined with
suitable Wess-Zumino terms’ (coupling a gauge/vector field
to a Chern-Simons class' [55,70]) with appropriate choices
of coefficients to restore gauge invariance, we will see that the
Ward identities can be satisfied for all symmetries, verifying
that A, does not have a gauge anomaly.ll
We now turn to considering the coupling of a vector field
to an anomalous symmetry current, jhnom = Zu/ q"y "y,
where g% are the fermion charges under the symmetry. We
wish to explicitly calculate the fermion loop attaching an
external A* to two gauged vector bosons B* and C”. Our
discussion will apply to both a gauged vector field coupled

$This is also referred to as a “Green-Schwarz term” in some of
the literature, e.g., [40].
These are also referred to as
terms” in the literature, e.g., [40,46].
'“The Chern-Simons class for a non-Abelian gauge field is (the
second term is zero for the Abelian case)

“generalized Chern-Simons

1 1
Q= e (Agng -3 f“”CA,‘jAf{A;) = 0,0 = 5e/MﬂF;:DFa
(58)

"Coupling A, and 9,r, the two “components” of X, sepa-
rately to the Chern-Simons class for an unbroken gauge sym-
metry Y yields

Ho— AH
AllQB =A e/ll/lﬂ

y)
BYFY, (59)
the dimension-4 Wess-Zumino term used to cancel the mixed
anomaly, and

oym »
S o — ——a Qs = _—FBWF;; , (60)
my

the dimension-5 Peccei-Quinn term. As we will see in Sec. IV C,
the four-dimensional Green-Schwarz mechanism combines these
two types of terms to cancel anomalies.
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Ay
—p

FIG.2. Triangle diagrams responsible for the coupling of A# (decomposed from X* = A* — 0*z/my) to two gauge bosons B* and C”.
We have labeled Lorentz indices and directions of four-momenta according to their use in the main text.

to an anomalous local symmetry current, as well as a
Stiickelberg vector field X* coupled to an anomalous
global symmetry current. For the Stiickelberg vector
field, however, we will do this by first decomposing
Xt = A* — d*r/my, carrying out the calculation of the
contribution to the gauge anomaly from A¥, and then add
back in the contribution from #z/my.

A. Triple-gauge vertex from a single fermion loop

Consider the triangle diagrams that contribute to the
anomaly with general vector bosons A, B, C as shown in
Fig. 2. By power counting, their amplitudes are linearly
divergent and thus not uniquely defined. This can be
encoded by including arbitrary four-momentum shifts a
and b in the fermion loops in the left- and right-hand side
diagrams, respectively. We will see that these arbitrary
shifts are restricted by physical requirements, e.g., gauge
invariance of either B or C.

Our convention for the amplitude of the sum of the
triangle diagrams in Fig. 2 is
|

AT (pogimyia.b) = g g3 5T (p.gimyia.b),  (61)

where the indices r; € {A, V} indicate axial or vector
couplings, respectively, of the boson with corresponding
Lorentz superscript index in the same order, and m,, is the
mass of the fermion y circulating in the loop. For now, all
fermion charges have been subsumed into the couplings, so
one should view 92,’1255% as specific to the particular fermion
in the loop, i.e., the interaction term in the Lagrangian for
this fermion is

Line = 01" (g — gers)wC* 4+ (C - A, B).  (62)

Focusing for example on the case
ry=A,r,=V,r; =V, the amplitudes for the (cou-
pling-stripped) triangle diagrams are:

1 1

fw/)ﬂl/

1
Ritraimyiond) = [0 g e g e,

+7sy”

where

/=] (le,fd- (64

For the VAV and VVA amplitudes, we move the y5 matrix in
front of y# or y*, respectively. To avoid nonchiral anoma-
lies, we set b = —a [71-73]. In terms of the external
momenta p, g, we can then express the arbitrary shift a =
zp + wq using two real parameters z, w. The amplitude can
be written in the Rosenberg parametrization as [50,71]

1 1 } (63)

1
I +b—d-m,  f+-m,  f+b+p-m,

[

. 1 | ‘
10 (P.a:2.w) =—{Gly (p.¢:w)e™ + G,y (p.qs2) e

+(F5(p.q)p" + F4(p.q)q" e’ P4
+(Fs(p.q)p* +Fe(p.q)q”)e’ P}, (65)

where e’ = ¢/"“g, and we have made implicit the
fermion mass dependence. The form factors F; are finite
and independent of {r}, whereas G', G* are dependent on
the momentum shift a (or the parameters w, z) as a
consequence of the linear divergences of the triangle
diagrams.

Full details of computing the form factors is given in
Appendix A. We quote here the final expressions for the
AVV and VAV cases that we will use in the following
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sections. Employing Eq. (A8) to eliminate F'5, we obtain
for the AVV and VAV cases:

Gavv :%(ZJF 1)+ p*F3— p - qFy,
GiVV:%(W_1)+q2F6+p'qF4’ (66)
Gyav :%(ZJF 1) + p*F3 = p - gF,,
Guav :i(w— 1)+ ¢*F¢ + p - qF 4 — my,Co(my,).  (67)

B. Momentum-contracted vertex functions

Now that we have established how the triple-gauge
vertex can be manipulated into purely finite terms—form
factors F5 ¢ plus the momentum-shift parameters w, z—
we turn to its phenomenological consequences. The most
interesting quantity is not the triple-gauge vertex itself, but
what happens when the triple-gauge vertex is contracted
with a longitudinally polarized A, B, or C: as explained in
Sec. IIT A, the longitudinal polarizations are proportional to
momenta in the large-momentum limit, and these can lead
to scattering or decay amplitudes that grow with energy.
The relevant quantities are the momentum-contracted
vertex functions (MCVF)

(p+q), A%, p, A, g, A, (68)
|

which are exactly the quantities we calculated in
Appendix A to eliminate G{ o

In fact, the MCVF are the starting points for the
calculation of the Ward identities for this vertex, e.g., for
A this is p,M*(A) = p,A”". For a vertex that respects all
of the symmetries, (p + q) pﬁf”“’ = pﬂﬂf””’ = q,A" =0,
while for anomalous fermion content, one or more of these
Ward identities is nonvanishing. Contracting the momen-
tum of a massive gauge boson with the vertex function also
yields a nonzero result, hence the Ward identity is also not
satisfied. However, as we discussed in Sec. III A, one can
construct a generalized Ward identity for a massive gauge
boson that relates the MCVF of the massive gauge boson
with that having the massive gauge bosons swapped with
the Goldstone boson (for a spontaneously broken gauge
symmetry) or the longitudinal mode (for a Stiickelberg
vector field).

Employing the procedure described in the previous
subsection, we can compute (p+ q) ﬂ&’””, pﬂﬁpﬂy,
q,A?" for C, A, B, respectively, with arbitrary combination
of V, A couplings to the fermions in the loop. For the
remainder of the paper, however, we will make the
simplification that one of the vector fields, which we take
(without loss of generality) to be B, has purely vectorial
couplings. This is because the phenomenological examples
we will examine in Sec. V all share this property. The
MCVF simplify to [50]:

A pUV g v,
(p+q),Am = 43 e ra{(w - z2)(glgh + gigy) +4m2Co(m2) - gy }.

A PUY g 78

—p, Ao — ﬁeﬂ Pa{(w —1)(glgs + gegn) — 4my Co(my) - giga},
o g

—q, A" _4;; e’Pa{(z 4+ 1)(ggs + gtg)}, (69)

1
where lim m »Co(my,) - -3
A= > M (70) lim 5, Co(m) = 0. (72)
r;.re{AV} m,,,

and C, is a special case of the three-point Passarino-
Veltman scalar function

CO(mz) p+Q) p ml//’ml//’ml//)

/ dx/l “aya, (71)

with A from Eq. (A3). Two relevant limits are

More precisely, these are limits of mlf, with respect to the
other scales p?, (p + q)?, ¢* that appear in Eq. (A3).

In a theory with a fermion content that is nonanomalous,
obviously all of the MCVF in Eq. (69) vanish independ-
ently of the presence or absence of masses for the vector
bosons. When the fermion content is anomalous, i.e., with
respect to A and/or C (recall that we take B to couple
vectorially), the MCVF are not uniquely determined due to
the freedom to choose the coefficients of the most general
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momentum shift a = zp + wq in the vertex function. This
allows for several possibilities. One possible choice of
coefficients results in all three MCVF being equal,

(p +q), A" = p A =g, A £0,  (73)

a configuration referred to as the “consistent anomaly”
[74-76]. This choice is convenient from an EFT perspec-
tive: we view the contributions to the gauge anomaly as
arising from the SM plus a contact term that, for instance,
arises from some heavy fermions that maintain anomaly
cancellation. In the consistent picture, all gauge symmetries
are violated, so integrating out UV physics can generate
gauge-violating operators. Combining these gauge-
violating operators with the SM loop (also gauge-violating
in the consistent picture) and choosing its coefficient
appropriately, we can cancel all anomalies."

A second possibility is to utilize momentum shifts such
that the anomaly resides in only a single gauge interaction,
the so-called “covariant anomaly” [75,76]. Gauge-
variant Wess-Zumino effective operators of the form
e"?A,C Fg ,, can be added to the Lagrangian to shift
from the consistent to covariant picture. This approach is
often employed for calculations with two gauge bosons,
B, C, with anomaly-free couplings and one (massive)
gauge boson, A, that has anomalous couplings. By taking
w =z = —1 in Eq. (69), the terms that are independent of
fermion mass appear only in the MCVF for A

gB 5 €l Pam? »Co(m

ARI)E

< g
—p A = = e {(glgy + gea))

+ 2my Co(my) - 9Ega}s
—q, A" = 0. (74)

(p+4q), A" =

Notice that the fermion mass-dependent terms in the first
two expressions above come with different coupling
structures: if the fermions have purely axial couplings to
A (VAV structure), the mass-dependent term vanishes from
the first line, while if the couplings to C are purely axial
(AVV structure), the mass-dependent term vanishes from
the second line.

In the covariant picture, discussed below, the issue in the
EFT is that integrating out UV physics can only change the
coefficients of SM terms, or generate new, higher-dimensional
terms that respect the UV symmetries. As there is no B- or C-
invariant, A-violating term, there is no coefficient to change, and
the power counting for higher-dimensional terms will not work
out correctly to cancel the anomaly. Therefore, working in the
covariant picture requires doing calculations in the full UV
theory, keeping both SM and UV physics and not taking the
low-energy limit of SM + effective operators.

C. Anomaly cancellation, Ward identities, and =

We are now in a position to clarify the role that the
longitudinal mode z plays in anomaly cancellation.
Consider a theory with massless fermions in which the
vector field A* has anomalous couplings. For a single
massless fermion y, the MCVF become

(p +a), 8% =0,

W
QCQ;EZBQB €py;pq(qquxw+qu v.,/>’

—q, A" =0, (75)

—pMN’”’“ - _

where from Eq. (72), m}Cy(mj,) — 0 in the massless
fermion limit. Here, we have also separated the coupling
constants gy g ¢ from the individual fermion charges q? B.C
by writing

V, A,
9y =gxay”. 9t = gxqy”
95 = 9845 95 =0,
V. Ay
@ =gcac”. 92 =gcqc”. (76)

In this limit, the only nonvanishing MCVF is the one
involving the A¥. If we sum over several massless fermions,
this becomes

—Du AP = — Ay % ePv:ra (77)

in terms of the A* anomaly coefficient
Ay = qu‘” (gc”ax” +ac"x").  (78)

From the start of Sec. IVA until now, we have focused
solely on the contribution to the MCVF from a vector field
A*. Aside from forming the MCVF in Eq. (77) by
contracting the momentum of A* onto the vertex, we have
not specified whether A# is massive or massless. In
addition, there is no distinction between whether A* is a
gauge field that gauges the fermion current to which it
couples with strength gy or is in fact a Stiickelberg vector
field X* that couples to a global fermion current with
strength gx.

Below, we identify three distinct cases.

(1) A* is a massless gauge field: In this case, Eq. (77)

manifestly violates the Ward identity, and so either
A* must acquire a mass or the theory contains
multiple massless fermions with charges chosen
such that, while the contribution from any single
(Weyl) fermion is nonzero, the sum in Eq. (78)
vanishes.

(2) A" represents X", the massive Stiickelberg vector

field: In this case, Eq. (77) is the final result for the
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MCVF that connects X* with the gauge fields C” and
B through a loop of massless fermions. There is no
(generalized or other) Ward identity since there is no
symmetry or conserved current associated with X*.
(3) A* represents a massive gauge field arising from a
spontaneously broken U(1) gauge symmetry: This is
the conventional case, which requires additional
massive fermions, “anomalons,” to cancel the
anomaly. The presence of anomalons is the key
distinction from case 2.
We now want to compare and contrast cases 2 and 3, but we
first need to resolve the puzzle of decomposing
Xt = A* — *z/my. In this decomposition, A* is a gauge
field, and so A, jaom necessarily gauges the anomalous
current jhyom; however, X u Jhnom 1S simply an interaction of a
vector field with a globally anomalous current jhuom. How
can A* be anomalous under its gauge symmetry while X*
has nothing to do with a gauge symmetry or a gauge
anomaly?
The resolution is found by considering the additional
contribution from the scalar field z. The Lagrangian
contains

0,7 T .
—0x ”_]gnom =0x— a”]gnom, (79)
my myx
where we have used IBP to get the right-hand side. The
divergence of the anomalous current is given by

gXaﬂjg.nom = AX ngXgB FC,ny’[;Dv (80)

ﬂ.2

and so the scalar field contributes a dimension-5 Peccei-
Quinn term in the Lagrangian,

9c9x9p T v
AX 471_2 m_XFC.m/Fg . (81)

In momentum space, this interaction becomes

imy A (x) = Ay IEIXIE coipa, (82)
2n
namely a dimension-5 three-point vertex among z, C,, and
B, in the effective theory. We can combine Eq. (77) with
Eq. (82) as

P A (A) — imy A (n) = 0. (83)

This is the generalized Ward identity from Sec. III A for A#
applied to the fermion triangle diagram. That is, so long as
the dimension-5 Peccei-Quinn term has the specific
coefficient given in Eq. (81), A* satisfies the generalized
Ward identity. The specific coefficient that is required is
precisely the one that permits the combination of the
renormalizable A” j’;nom and the dimension-5 interaction

—0,7 jhnom/ My to be written as X, fanom; in other words, the
combination of A, and (d,7)/my must maintain the fake
gauge invariance. This is otherwise known as the
four-dimensional Green-Schwarz anomaly cancellation
mechanism [29,35,36,54,77].

Since A* as part of X* is not an external state, we remark
that Eq. (83), the generalized Ward identity, is not a
statement about longitudinal equivalence. Contracting an
on-shell external X* with A”* in the high-momentum limit

|%| > my gives Eq. (77), which we can equivalently
calculate using an external on-shell 7 and the longitudinal
equivalence theorem in Eq. (31). That is, A* and =
“conspire” to satisfy the generalized Ward identity while
there is no analogue of this for X*.

Finally, it is interesting to compare and contrast what
happens in a theory with a massive Abelian gauge boson in
which the anomalous contribution is canceled by anom-
alons. The general case, with arbitrary vector and axial
couplings for A* and C”, can be worked out straightfor-
wardly from Eq. (69). For the purposes of this discussion,
however, we simply illustrate the similarities and
differences in the case where the massless fermions
contributing to the anomaly have purely vector interactions
to A* and B* and purely axial interactions to C”, in which
case Eq. (78) simplifies to

A= ap"dqc"ax" (84)
v

The massive anomalons have purely axial interactions to A#
and purely vector interactions to B* and C”,

Asom =N gy i gy (85)
v

Anomaly cancellation requires that the sum of the charges
of the anomalons under the gauge symmetries satisfy

Agem = — Ay, (86)

such that Eq. (78) vanishes.

However, for massive anomalons, there are additional
contributions to the momentum-contracted vertex function
from the C, functions in Eq. (69). We further simplify this
discussion by taking all of the anomalons to have the same
mass m,,. For the specific choices in Eqgs. (84) and (85), the
only nonzero MCVF is

3 9cIxIB 0.
=, Ao = I8 o Ay — Ao (142 Com3))

= Ao JETIR coivim? Co (). (87)

where we used the anomaly cancellation condition Eq. (86)
to get the second line. If the anomalons were massless, the
right-hand side above would vanish using Eq. (72); this is
as expected since by definition the theory would then be
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anomaly-free and the Ward identities satisfied. If the
anomalons are infinitely massive, the term in parentheses
on the first line multiplying A3"™ vanishes using Eq. (72),
leaving the right-hand side nonzero and equal to Eq. (77),
i.e., back to where we started.

With nonzero anomalon masses, Eq. (87) does not
vanish. Following our discussion in Sec. III A, we can
again construct a generalized Ward identity such that

P MH(A) — imyM(G®) = 0. (88)

where, for this discussion, G° is the Goldstone boson
absorbed to make A# massive. Applying this to the MCVF
for the fermion triangle diagram,

p A — imy A (G°) = 0. (89)

From this we can deduce the required interaction that the
Goldstone boson must have with the MCVF,

2
~ m
iAr(GY) = Agpom ICIXIB cpuipa "V ¢ (2. (90)
T my

Here, we finally see the key difference between the case of
a Stiickelberg vector field and a spontaneously broken
massive Abelian gauge field. In the specific example above,
the anomalons have axial interactions with A#, implying the
anomalons are chiral with respect to the gauge symmetry
associated with A#. The only way to give mass to these
chiral fermions without explicitly breaking the symmetry is
to write Yukawa interactions with the Higgs field whose
vev spontaneously breaks the gauge symmetry associated
with A¥. This means that, with conventional normalizations
m, :yv,v/\/f and my = gv/2, one power of the vev
drops out in Eq. (90). Hence we see that the generalized
Ward identity can be satisfied with renormalizable Yukawa
interactions of the Goldstone mode with the fermions. This
key difference is what permits a spontaneously broken
gauge symmetry with anomalous fermion content (and a
separate set of anomalons with heavier masses) to be at
least possibly viable without a divergence in the UV
leading to a cutoff scale. The caveat is that this requires
Yukawa couplings to be perturbative (i.e., less than order
one) in order to avoid Landau poles.

V. APPLICATIONS TO BARYON NUMBER

We now consider specific cases where the Stiickelberg
vector field X* couples to a globally anomalous current in
order to investigate the phenomenological consequences.
One of the most interesting possibilities is X* coupling to
baryon number. Baryon number is anomalous in the SM,
but anomaly-free with respect to SU(3), x U(1),,, below
the electroweak scale. Here, our focus is to investigate the
observable consequences of the longitudinal enhancements

that occur in the presence of X, /i, specifically three

observables: Z — Xy, ff — Xy, and Zy — Zy. These
depend on the electroweak scale and disappear in the limit
v — oo0. We compare and contrast our results with those
when baryon number is gauged [45,50], identifying the
similarities and differences for the case of a Stiickelberg
vector field. In the discussion below, we take all SM
fermions to be massless; however, it is straightforward to
reintroduce SM fermion mass dependence (e.g., [50]). In
reality, only the top quark significantly invalidates this
assumption, causing the baryon anomaly coefficient to be
slightly smaller than what we have assumed below.

A. Prelude: Z — Ay with gauged baryon number

As a prelude to the results in subsequent sections, we
want to review the calculation of Z — Ay, where A* is
the gauge field associated with gauged baryon number
[78-80]; we reserve X* to refer to the Stiickelberg vector
field. However, we will use my, gy, and gy to refer to the
mass, coupling, and charges of the (gauged or ungauged)
vector field coupled to the baryon current.

In the SM, the baryon current is anomalous with respect
to the mixed anomalies U(1)3U(1), and SU(2)7U(1), in
the specific combination [45]

Y AB nuv F7uv
ay.]/;? = g (g/zB/wBﬂ - QZW;U/WM ) (91)

Here Ay is the anomaly coefficient

Ap=>"0'qy"q5". (92)

fesMm

where the sum is over all of the fermions f in the SM with
electric charge Q/, baryon number q‘é, and axial coupling
q?’f = T’; /2 = =+1/4 to the Z. This is equivalent to the
anomaly coefficient for just SU(2)? U(1), or (the negative
of) U(1)3U(1)g since U(1)2,U(1), vanishes. Three gen-
erations of massless SM fermions give Az = 3/4.

As we have learned from Sec. IV B, we are free to

choose a set of Wess-Zumino terms such that the only
nonzero MCVF is

AP €g99x .
—PyZA/sﬁ =—Ag ey PP (93)
f

following Eq. (69) with the specific choices w = z = -1.5

Baryon number can be made anomaly-free by extending
the SM with anomalons y with charges such that, when
they are included in the sum Eq. (92), the net result is zero.

BHad we included nonzero SM fermion masses, the first line
of Eq. (69) would also be nonzero. Adding m times the Z,
Goldstone contribution, a ¢, — A —y vertex, to the first line
would yield zero.
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For certain choices of their SU(2), x U(1), charges, these
anomalons can obtain masses independently of the electro-
weak vev and therefore can be much heavier than the SM
fermions. The full result for the decay rate Z — Ay
including both SM fermions and a set of massive anom-
alons was given in [50]. However, for our purposes, it is
more convenient to separate the contributions to the triangle
loop from the SM, Eq. (93), and the massive anomalons.
Defining A%k, as the contribution to the vertex function
from the anomalons, and making the same choice
w =z = —1, the additional contribution to the MCVF
can again be easily obtained from Eq. (69),

_pyZAdnom -

To cancel the anomaly and obtain mass without electro-
weak symmetry breaking, these anomalons have pure
vector couplings to Z and pure axial couplings to A such
that

99" P (1 4 2m2Co(m2)). (94)
Cw

ZQW Ay Vl[l

174

= —Ay. (95)

This is the same situation we encountered in Sec. [V C—
the anomalon mass only appears in the MCVF in Eq. (94).

If we were instead to take m, — O (and therefore
degenerate with the SM), the two sectors would cancel
exactly, as required of an anomaly-free theory. For nonzero
anomalon masses, the cancellation between the two sectors
is inexact, leaving

AP, gg .
—p”ZA{(ﬁ” Ag ij e"””’qmg,Co(mg,), (96)
fw

as in Eq. (87). It is interesting to consider anomalons that
are much heavier than the Z boson.'* Then the right-hand
side simplifies to

—puy A

fw

= Ay X €99x ePipd (97)
271' Cw

which up to corrections of O(m%/m;,) reduces to just the
original SM-only contribution in Eq. (93). Dividing both
sides by my, the above equation becomes the amplitude for
Z — Apy, where A; is the longitudinal polarization.
Squaring, we can convert this to a decay rate (again, in

"“To play a role in the anomaly, the anomalons must receive
some of their mass from the same SSB that gives mass to A and
therefore m,, ~ yvy, where my ~ gxvy and y is some Yukawa
coupling. A large hierarchy between the anomalons and X
requires taking gy <<y, with the validity of perturbation theory
limiting y. ~ 47. More discussion on the phenomenological
implications of this “maximum hierarchy” between y and X can
be found in [50].

the limit that the SM fields are massless and the anomalons
are infinitely heavy)

3

my<<my 3 (ngax mZ

I['(Z - Ay) [(Z-Ay)~ , (98)

3277 ety s m%

where sy, is the sine of the Weinberg angle and we have
used A =3/4.

As emphasized in [45], the mZ%/m% longitudinal
enhancement implies the decay width is unbounded in
the limit my < my . For the effective theory to be valid,
I'(Z - Ay) < my, which implies a lower bound on my of

my > Vor x —22X_ s m,. (99)
6473 cy
Up to an irrelevant numerical prefactor, this is the same
bound obtained by Preskill [35] for an anomalous gauge
theory by requiring the divergent three-loop contribution to
the (anomalous) gauge boson mass not exceed its bare

mass. More precisely, Preskill derived an expression A =

642;“’ my for the cutoff scale A of the effective theory that

has the same scaling as Eq. (99) when we reinterpret the
cutoff scale A to be m.

What happens when my is lowered below the bound
given in Eq. (99)? In a theory with anomalons, it is no
longer possible to take their mass m,, to be much larger than
my. Approximating the results in [50] in the limit my <«
m,, < my (with massless SM fermions), we find

2 4
(ZﬁAy)Nimxmzx "y
327% k53, mymsy

2
log* % (100)
mz

where now the EFT requirement I'(Z — Ay) < my implies
the lower bound on my is modified to

2
eqgx m, ,m

my > Vor x —=— X m,, x —log? —¥ .

647" cyy my my

(101)
This implies that we can lower the mass for my at the price
of reducing the anomalon masses below m . However, the
additional suppression factor m,,/mzlog? mj,/m% on the
right-hand side in Eq. (101) relative to the result in Eq. (99)
implies that the separation between my and m,, can become
increasingly large as m,, is lowered below my.

B. Z —» Xy with global baryon number

Now we are in a position to evaluate Z — Xy when X is a
Stiickelberg vector field with coupling gxX, Jp to the
global, anomalous baryon current of the SM. The contri-
bution to the Z, — X, — y, vertex coming from loops of SM
fermions is identical to the gauged case in the last section.
Therefore, the nonzero MCVF is
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_pMZA% = _ﬁ%yv;pq. (102)
f

2
2w Cw

This is the total contribution since there are no anomalons
present.
Using this vertex to calculate Z — Xy, we find

3 anay m%
N2 =X 52 2, wh

my<<myz

I'Z-Xy) =~ (103)

exactly the same result as Eq. (98), the case where U(1) is
gauged and made anomaly-free via infinitely heavy anom-
alons. We remark that the same result could also have been
obtained using the longitudinal equivalence theorem to
relate ¢ A?*(X) to A”(z) in Landau gauge at large
momentum [K| 3> my.

Thus we see that the gauging of the would-be anomalous
baryon number symmetry is irrelevant to the presence of
the physically observable decay process Z — Xy. It is the
presence of the global baryon number anomaly that is
essential for this decay to proceed. Said differently, our
results show that the decay rate alone cannot differentiate
between the scenarios of a gauge boson accompanied by
heavy anomalons and a Stiickelberg field coupled to a
global current—a perspective emphasized in [73].

The presence of the Peccei-Quinn term, a dimension-5
operator in the Stiickelberg EFT, implies a UV cutoff that
cannot be taken arbitrarily large. Applying Eq. (81) to the
specific case of the anomalous baryon current, the dimen-
sion-5 operator is

€ggx T Ty
B 2 FZ,/u/Fem,
4r”cy my

(104)

and requiring the coefficient of this operator be less than
47z, we obtain a cutoff scale of order

3
167° cyymy

105
Ageggx ( )

V Smax ™~

The existence of a cutoff scale is not surprising because we
previously discovered in Eq. (99) that we could not
arbitrarily separate my from m, while allowing the decay
rate I'(Z — Xy) to remain perturbative. Both bounds scale
similarly (up to numerical coefficients) with couplings and
mass. What we see is that a Stiickelberg vector field
coupled to a globally anomalous current has a nonrenor-
malizable interaction signaling the existence of amplitudes
that can grow with energy. This is explicitly seen in the
decay rate Z — Xy, and as we will see below, also occurs
for processes that have one or more factors of A”** with an
odd number of axial couplings embedded in the amplitude.

For finite m,, > m, there will be corrections in Eq. (98)
of O(m%/my,) that are absent in Eq. (103). It is tempting to
think that these corrections would be observable given

sufficiently accurate measurements of my and I'(Z — Xy).
However, this is premature, since in the case of a
Stiickelberg vector field, there are additional higher-
dimensional operators suppressed by A that can contribute
to the decay process. Hence, in the absence of direct
observations (on-shell production) of anomalons and/or a
Higgs boson, there is no way to unambiguously determine
whether the decay process signals the existence of gauged
baryon number, or instead, a Stiickelberg vector field
coupled to global baryon number.

C.ff - Xy

Attaching the Z” leg of the Z¥ — X* — y¥ vertex to a
fermion current, we can explore how the longitudinal
enhancement of the vertex manifests in ff — Xy, where
f is a SM fermion. This calculation is interesting because it
allows us to probe the triple-gauge vertex and its longi-
tudinal enhancement at a wider range of energies than in Z
decay. In particular, we can consider limits such as
m% < s < m%, where the Z has been integrated out.

The diagrams for ff — Xy are shown above in Fig. 3; an
s-channel diagram proceeding through the triple-gauge
vertex A?*, plus ¢- and u-channel diagrams. The #- and
u-channel diagrams involve only vectorial couplings and
lead to the usual collinear divergences in the cross section.
However, at least in the limit that the SM fermions are
massless, they do not couple to the longitudinal part of X
and thus do not grow with s (for a fixed scattering angle)."”
Therefore, we will ignore these diagrams and focus on the
s-channel piece, deferring a more general calculation to
Appendix B. Furthermore, we will focus on the X; piece of
the amplitude, as this contains the leading dependence on s:

T ig 1 _
M X, y)=— k))y”
M = Xur) = Lty
Jf 3 A l/p *
X (‘1}” - qéfYS)”(kl)Af(l)lt mf”%(ﬂ)»

(106)

where q}/’f (q?’f ) are the vectorial (axial) couplings of
fermion f to the Z and A?%” is the triple-gauge vertex after
summing over all fermions—SM and beyond—in the loop.
Here we have used ¢} (X) — p*/my for large |p| > my,

—— V'V

—<—V/VV

FIG. 3. Diagrams for ff — Xy, with f an SM fermion: if only
anomalons y couple to X, only the left diagram is relevant;
otherwise, if f also couples to X, there are the 7- and u-channel
diagrams as well (cross diagrams not shown).
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and so we are implicitly imagining a scenario where /s of
the process is large compared to my. Note that only the
transverse part of the Z propagator enters, since
(p+q),A% =0.

As shown in previous sections, p,Afy’ has the same
value whether we consider a Stiickelberg vector field
coupled to global baryon number or a gauged baryon
number with anomalons much heavier than all of the other
physical scales in the process. Thus we can evaluate p, Aly”
via Eq. (102) or Eq. (97), yielding

ig Ageggy 1
v(ky)y”
Cw 27Pcy mys— mZ

x(qy” = a5 ys)u(k))ePies(q).

M(ff->Xr)=
(107)

The details of the calculation of the leading behavior of
the squared, polarization-summed and initial-state spin-
averaged amplitude are given in Appendix B. We employ
Eq. (B14) with only the AVV terms in the second line and
the massless fermion limit of Eq. (B15) to obtain

Y- EADSARIC/S AU/
4(N. )2 *\\ew X (s —m3)?
s2 u AL
— == 10,7 |, 108
(1) (Srear). oo
where N, is the number of colors of the initial-state

fermions, k"¢ = k9 = 1/3 is the baryon number of the
quarks, and Q7 is the electromagnetic charge of the quark
q. For up- and down-type quarks, qg"q =T5/2, so
Q'qs" =1/6 and Q%q5" = 1/12. The entire squared-
sum on the right-hand side evaluates to 1/16 for one
generation (including the color factor); there is an addi-
tional factor of 9 for three generations. This agrees with
A% =9/16. The cross section resulting from this ampli-
tude is

31 aemax

V.f\2
oA o (@)
22

Afyay (s —my)

+ (g7 ))mg((s—m%)z

O'(fJ_C - Xpy) =
(109)

This expression already assumes s > m% (and in the
case of gauged baryon number, the masses of any anom-
alons are much greater than m and /s); however, there are
a couple of further limits that are interesting to explore.
First, consider s> m% with the hierarchy of scales
m% < m% < s. In this case, the cross section becomes a
constant

15Additionally, the interference between the 7- and u-channel
diagrams and the s-channel diagram is zero.

31 aemax

1
V.fy2 AVANILE
871'N2 st 7 ((g77)" +(az7) )mg(

(110)

A 2-2 scattering cross section constant in energy implies an
amplitude squared that grows as s, so an amplitude that
grows linearly with energy.

A more interesting limit is s < m%, with the hierarchy of
scales m% < s < m%. In this limit,

‘7(]61_r - XL}’)s>>m

7 31 aemaX V.f\2
X 2 e h
U(ff - L}/)mx<<s<<m7 87TN2 CWSW ((qZ )
A2 st 1
. 111
H@P) e (111)
This cross section implies an amplitude squared  s°, so an

amplitude « s3/2. To see why this limit is intriguing, let us

write the amplitude squared as <55 If we use the
mz nmy

condition | M|?> = 1 to set a limit on the cutoff of the theory,

we find
1 <mx> 1/3
—_— my.
a 2o 76 \m, Z

em Oy

V/Smax ~ (112)

We contrast the above with the result from a four-fermion

interaction in the Fermi theory. There, the amplitude

M(ff — ff) ~-* (using my instead of v to make the
z

comparison easier and neglecting couplings and numerical
factors), implying /s, ~ mz—a cutoff at the scale of
particles we have integrated out. Compared to this, the limit
from ff — X,y is smaller by a factor of (my/m;)'/3. We
remark in passing that in Eq. (112), it is curious that the
cutoff scale of the theory scales as m )l(/ ? in the same way as
the weak gravity conjecture suggests when m is replaced

The situation becomes even more intriguing once we
recall that the SM below the weak scale is purely vectorial.
The triple-gauge vertices formed from loops of fermions
with vectorial couplings (VVV in the language introduced
in Sec. IV) are zero—stated in the language of gauge
anomalies, the theory is anomaly-free. As such, ff — Xy
cannot exhibit any pathological scaling with respect to s in
the limit that we take the weak scale to be infinitely heavy.
The 1/m} scaling on the right-hand side of Eq. (111)
satisfies this requirement; however, unusually, it predicts
the scale where perturbative unitarity is violated (using
|M|? < 1) to be parametrically lower than the weak scale.
If we require that ff — Xy remain valid at least until m,
this sets a lower limit on the mass of X,

. A,
4Badnax((ay” ) + (a1
My min ~ ) mz.

CwSw

(113)

Taking f to be a charged lepton, my yin ~ 6 x 1073 /aym;.
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P1, 11 q1,1
4;%} 7T ﬂ
D2, 12 q2,12

s

FIG. 4. Zy — Zy scattering through an s-channel z (left) or A (right, with 3 cross diagrams not pictured).

The above bound is a function of ay, so it can be made
arbitrarily small by sending ay < 1; in other words, for
ay < 1, the EFT cutoff implied by Eq. (112) can be pushed
above the scale of current experiments. It is an interesting
and open question as to whether processes such as ff —
Xy could place bounds on (ay,my) that are competitive
with bounds from Z — Xy and other electroweak scale
processes.

D. Zy — Zy via X exchange

The final amplitude we calculate using the triple-gauge
vertex involves a so-called “BIM” process [81], the
scattering of gauge fields off each other through
the exchange of an off-shell Stiickelberg vector field.
The original BIM calculation considered the scattering
of massless bosons through a (massive) Stiickelberg vector
field. For consistency with previous sections, here we
specialize the calculation to the case of a Stiickelberg
vector field coupling to global baryon number, and so we
consider Zy — Zy through an s-channel X. The diagrams
involving X are shown in Fig. 4.

There are, of course, additional diagrams from boxes of
fermions or W bosons, but these are independent of gy. If all
loop fermions y are heavy relative to /s, we recover the
Euler-Heisenberg Lagrangian from the box diagrams, with

M(Zy - Zy) ~ r:l—i Here we focus on the same scenario
w

considered in the previous subsections, with only massless
SM fermions in the loop. (We would obtain the same result
with gauged baryon number so long as the anomalon masses
are taken to be much heavier than all other scales). Together
with the limit s > m3,, the box diagrams involving W
bosons have no bad s behavior'® [82,83], so we will neglect
them and focus on the contributions from X exchange.

The X exchange occurs through a single diagram stitching
together two Z — y — X vertices. However, if we write X* as
A¥ — ¥ n/my and employ gauge fixing as described in
Sec. I C, there appear to be two diagrams as in Fig. 4—one
from z exchange and one from A exchange, each with gauge
dependence. Feynman rules for these diagrams can be
derived from the Lagrangian in Appendix C.

"®Here we are referring to (s/M)" behavior at fixed scattering
angle, where M is some other mass scale in the problem, and not
to divergences in the limit of forward or backward scattering. The
latter manifest as ratios of Mandelstam invariants.

The A exchange piece for Z,(py)r.(q:1) =
Z,(p2)ry(q2), coming from loops of SM fermions
alone, is

—i AM’V g/m ( ) (pl + QI) (pZ + QZ)”, Ap’//v’
s —m% s — Emy M

(114)
while the 7 piece is

i <-AB €ggx

s — Em% \27% cyymy

) P11 PV iD200 (115)

Evaluating the gauge-dependent piece of Eq. (114) using
Eq. (93) with appropriate modifications, then its sum with
the 7 exchange term,

i (1 5) i AB €g9x VP14 PViP20
s—m%s— .me my (s —&my)J]\27° cw
AB eggX /)y P19 €/)’I/;])2Qz# (1 _5) +L
2712 Cw S_éfm%( s—mf( mg{
As €99x VP18 PV P24 . , (116)
271' Cw mX(s - m%()

we see that the £ dependence cancels. Notice that the final
result of Eq. (116) is the same as just 7z exchange given
by Eq. (115) in the limit s > m% in Landau gauge (¢ = 0),
as required by the longitudinal equivalence theorem
in Eq. (32).

Assuming s > m%, m%, we can neglect the other terms
and use Eq. (116) as an approximation to the full amplitude,
deferring a more complete and general calculation to
Appendix C. Forming a cross section from Eq. (116)
and taking the large-s limit, we find:

4 2
27 demay s

o(Zy = Z =+ - 117
(zy )= 1287° cwsﬁ, mg‘( (117)
where the - - - indicates terms subleading in s.

While the diagrams in Fig. 4 are reminiscent of longi-
tudinal W scattering in the SM, we emphasize that the
external y, Z fields in the BIM process are purely trans-
verse. In the large-s limit, contracting the vertices above
with longitudinal Z polarizations yields zero (for massless
SM fermions) via the MCVFE

055020-19



KRIBS, LEE, and MARTIN

PHYS. REV. D 106, 055020 (2022)

VI. DISCUSSION

We have investigated theories with a Stiickelberg vector
field, emphasizing the systematic approach to constructing
an effective field theory involving X#. We considered several
possible interactions of the Stiickelberg vector field with the
SM or with itself, identifying the couplings of the longi-
tudinal mode that lead to scattering amplitudes that grow
with energy. At tree-level these involve the operators
(X,X*)?, H'HX,X* and H'D,HX*, while the interaction
X, Janom (With janom an anomalous global current) induces
one-loop amplitudes that grow with energy. The energy
growth implies an EFT with one of these interactions
requires a UV cutoff scale that appears above my by an
amount that is parametrically 1/(coupling) of the interac-
tion. In the specific case of X* coupled to the global baryon
current, we demonstrated that the finite contribution to the
fermion triangle diagram leads to a variety of processes that
have longitudinal enhancements in the small my limit,
including Z — Xy, ff — Xy and Zy — Zy."

We performed a detailed analysis of the operator
X u j’;nom. This interaction is, at first, somewhat puzzling
since X* is not a gauge boson and yet it suggests X* is
gauging an anomalous current. Preskill [35] demonstrated
that anomalous gauge theories are simply effective theories
with a narrow range of scales where the EFT is valid. His
analysis emphasized the UV divergent contributions to the
two-point function, leading to maximum separation
between the mass of the gauge boson of an anomalous
theory and the cutoff scale of the theory. As we have seen,
this result holds for theories with a Stiickelberg vector field
that has no gauge symmetry. In particular, we demonstrated
that the generalized Ward identity is satisfied if and only if
the contributions from both A¥, the (fake) gauge boson
associated with a (fake) gauge symmetry, and o“z/my
appear in the specific gauge-invariant combination
AF — #x/my. Our analysis demonstrates that it is the
existence of the global anomaly, not the gauging of it,
that leads to the physical consequence of scattering
amplitudes that grow with energy in the UV. This is
reminiscent of [84] and may lead to a different interpre-
tation of anomalies when expressed directly in terms of on-
shell scattering amplitudes. For example, [85] recasts the
constraints from anomaly cancellation in terms of on-shell
amplitudes that satisfy unitarity and locality.

As we have seen throughout the paper, the interactions of
a Stiickelberg vector field that grow with energy can and do
arise from a spontaneously broken U(1) gauge theory with
a dark Higgs sector. In each case, the coefficient of the
corresponding operator depends explicitly on powers of gy,

"The importance of Z — Xy for gauged baryon number was
emphasized in [43,50] along with other FCNC processes involv-
ing K — nX and B — KX meson decays [43]. Constraints on
other U(1) s were discussed in [48].

the U(1) gauge coupling. The cutoff scale of the EFT with
the vector boson is resolved by dark Higgs exchange, in
analogy with the growth of the scattering of longitudinally-
polarized electroweak gauge bosons in the SM. UV
completing an EFT with a Stiickelberg vector boson using
a dark Higgs sector, in which the vector boson mass is
much smaller than the dark Higgs mass, requires
gx < /4. In a U(1) gauge theory in which all U(1)
field charges are order one, this implies that all interactions
are suppressed by powers of the small gauge coupling gy,
and in particular, kinetic mixing arising from integrating
out matter that is charged under the dark U(1) and U(1), is
also bounded by € < gye.

A Stiickelberg vector field can be obtained by ungauging a
Higgsed theory while holding my fixed, that is, by sending
gx — 0 and thus taking vy — oo. This is distinct from
spontaneously-broken gauge theories: the limit my — 0,
gx — 0 with the ratio vy = my/gy held constant does not
exist, demonstrating that a strict interpretation of a theory with
a Stiickelberg vector boson does not have anything to do with
SSB. There is no Higgs mechanism, no Higgs boson, and so
the interactions that lead to longitudinally enhanced scattering
amplitudes that grow with energy have arbitrary coefficients.
Consequently, a UV cutoff scale of the EFT is inevitable.
Reece [22] has suggested that weak gravity conjecture
arguments [86] prevent an arbitrarily small Stiickelberg mass
since the limit my — 0 lies atinfinite distance in field space. It
would be interesting to further investigate the constraints on
other parameters of the effective theory of Stiickelberg vector
bosons using arguments based on embedding the theory into
quantum gravity [87,88].

In the SU(3), x U(1),,, effective theory below the
electroweak scale, all fermion currents are vectorial with
no (gauge or global) anomalies. Naively, there are no
restrictions on coupling an arbitrarily light Stiickelberg
vector field to any linear combination of these currents. Of
course, the weak interaction explicitly violates some global
symmetries, such as baryon number, so the interactions of
X with SM fermion currents are not purely vectorial.
Hence, X will have scattering amplitudes that grow with
powers of \/s/ my."® One might think this growth is the
same as four-fermion interactions that also scale with
s/m3,, such that the cutoff scale of the theory is the
electroweak breaking scale. This is not true. Consider
ff — Xy with X coupling to baryon number. While there
is s/m2 suppression in the amplitude from Z exchange,
there is also +/s/my enhancement from producing a
longitudinally polarized X. By observing this energy
growth in the cross section (at energies well below the
electroweak scale), one could determine whether or not a
vector boson has longitudinally enhanced couplings.

'8 An alternative approach in which a vector field interacts only
through higher-dimensional operators was discussed in [89].
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Finally, we should discuss the status of dark photons that
partly motivated our study of Stiickelberg vector fields. In
theories where the dark photon Lagrangian arises from a
spontaneously broken U(1) gauge symmetry by a dark
Higgs field, some discussion of the dark Higgs scalar has
appeared (e.g., [5,7,90-95]). Instead, we proclaim that the
time is ripe to consider a general set of interactions that a
Stiickelberg vector field can have with coefficients that are
notdictated by a dark Higgs sector. Longitudinally enhanced
interactions imply the theory will have a cutoff scale: within
the validity of the effective theory (i.e., v/s less than the
cutoff scale as determined by the longitudinally enhanced
scattering processes), what phenomenological conse-
quences can arise in the presence of these interactions?
This is an interesting question to explore for more general
vector boson dark matter as well as for dark photon models.

Ultimately our discussion of a Stiickelberg vector field
reiterates the lesson of the precarious nature of vector fields
in quantum field theory whose mass is not associated with
SSB. The longitudinal component generically couples to
itself or to the SM, and the presence of these couplings
leads to amplitudes that grow with energy and thus require
a cutoff scale for the EFT. There are only two resolutions:
craft the effective theory to have no couplings of the
longitudinal mode, i.e., X coupled only to an anomaly-free
global current, or introduce a Higgs mechanism with a
Higgs boson to restore unitarity of longitudinal vector
boson interactions. If evidence of a new vector boson were
uncovered in data, we hope our analysis provides a
framework to characterize the effective field theory com-
prising the leading interactions of the vector boson inde-
pendent of its ultimate UV origin.
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APPENDIX A: FORM FACTORS IN THE
ROSENBERG PARAMETRIZATION OF THE
TRIANGLE DIAGRAMS

In this appendix, we detail the computation of the
amplitude of the triple-gauge boson triangle diagrams of
Fig. 2. Factoring out couplings, the relevant expressions are
of the type in Eq. (63). To compute the finite form
factors F5 4, we follow the procedure of [40]. The
denominators on the first and second lines of Eq. (63)
can be combined as

(£ £ q)* =my))(¢ -

1) [ar [Ta

+yp? —mw+l£] ,

my,) (¢ F p)? —my)]™!
dy[£® +2¢ - k + xq?
(Al)

where k = xq — yp; since we are only interested in the
finite form factors, we can make the change of loop
momentum # — £ F k. The numerators have terms with
up to three powers of #: the terms proportional to £3, £?
will contribute only to G'2, and those linear in # vanish
because they are odd under integration. We use the AVV
case as a prototype, finding

1—‘{Zjl\l;v|f1n1te / dx / dy F / (I/ﬂZ 3

{(1 —x=3y)k* = 2ypH}errre

+ {(1 —3x — y)k¥ = 2xq"* }errira

—{(x =)k +yp* + xq’}ere), (A2)
where
A =mp —x(1-x)g> —y(1 —y)p* = 2xyp - q —ie. (A3)
The loop integral evaluates to

1 i1
=- AL A4
[ wr "y

To match Eq. (A2) to the Rosenberg parameterization in
Eq. (65), we apply the Schouten identity

kP et b 4 et abp 4 v ePor 4 kAePrrv 4 [Perira = () (AS)
to the last line, which becomes

{(X — y)k/‘ — yp# _ qu}epv;pq
—{(x =)k

— yp¥ — xq"}e”P9 + (terms in Gyyy).

(A6)

The above lead to
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1 1-x
—/ dx/ dyy(1 —y)A~!
0 0
1 1-x
—/ dx/ dyxyA~!,
0 0

1 I—x
Fs = dx dyxyA~!,
0 0
1 1—x
F¢ = / dx/ dyx(1 —x)A™, (A7)
0 0
from which we see that
F3(p,q) = —Fes(q. p),
Fu(p,q) = —Fs(p.q). (A8)

terms of Fj
terms of the finite form factors.”
we contract I” with the momenta of A,B, or C—respec—
tively, p,.q,. or (p +q) ,- From the Rosenberg paramet-
rization of Eq. (65), we obtain the following expressions
for the momentum-contracted coupling-stripped vertex
functions:

.....

w1 y
(p + q)/)l—‘/{)/:} ﬂ,' (G{r} G}L })eﬂ ,pq’

1 .
—Pul = (Gl = P?F3 = p - qFy)emr,

) 1 .
~a.00 = 5 (Gly = P aFs = ¢*Fe)e" 7. (A9)

1 1
g, 1% /Tr{m/ Y
AVV p pf—ﬂ—mu/ ”f—ml,/

/+v

However, we know that G!, G? are not uniquely defined. To
isolate their ambiguities, we first define the triangle vertex
function with wunshifted loop momentum (i.e., when a =
b =0 in Fig. 2)

l—*l’ﬂ v

w(p.q) =10 (p.g:2=0,w=0).  (Al0)

The difference T'—T" encapsulates the ambiguity from
shifting the momentum, and for any {r} with an odd
number of axial couplings, evaluates to [40]

v z v 2in? puv
Py = / O FY(€) = (g m 2 T
— Lep/wéaé —

= (Al1)

1
76‘0’“’5(2195 + Wq5)7

where ]-"?’rl}” is the integrand in, e.g., Eq. (63) for the
AVV case.

We proceed to directly calculate the left-hand sides of
Eq. (A9) using the explicit form in Eq. (63). The integrands
in each of these contractions can be massaged into terms
differing only by a shift in loop momentum, which can
then be evaluated using the analog of Eq. (All). For
example:

1 1
4
-m, "+ p—m,

1 1
—V}’; Y
S’f—ﬂ—mw”/+%—%}

} +(p— Q)’fzfrTr{ysyp ﬁn ﬁ”

1
= — lim _[ P+ (p = q) (el etrild — ehrind) O(mg,)]

1 1

+ 757 /4

Y~ -m, ”f+ﬂ—

in? ey 1
(2”) hm <t Tr ysyp/yﬂ

1
271' f—)oof

PP

T2

PRecall, F;5._ ¢ are independent of the r; € {A, V}, so the
results of Eq. (A7) hold in general and are not specific to the AVV
example.

1n the case of massless loop fermions, we note that F3 [Fg]
suffers infrared divergences if p> = 0 [¢> = 0]. This can be seen
from Egs. (A3) and (A7).

(A12)

|
where we have used 7%/ — ¢*y®/4 to simplify the
penultimate line, and the ¢*”°P? term has only one power
of Z in the numerator and therefore vanishes when we take

£ — oo.
Below, we list the complete sets of expressions for the

AVYV case,
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€M
(P +a),Pavy = — o 4my Co(my),
e
wl AVY a
o = < Al3
—qul Avy = 4_”2’ ( )
and the VAV case,
(P +4a),IVay =0,
| R e 14 4m2 Colm2
—Pulvav = _4—712( + 4my, Co(my;)),
—q, T = e (Al4)
VEVAV T T

Finally, we can fix G}f} by combining Eq. (A11) and the
above contractions of (p + ¢),. p,,» g, with unshifted F?r“}f ,
then equating the sum with Eq. (A9).

APPENDIX B: GENERALIZED ff — Xy

We examine the amplitude for the s-channel (left-hand
side) diagram of Fig. 3:

R _ lg o/ V.f A.f ! 0
iM = v(kz){c—y (0" —a37vs) 2 12,
w VA

+ iley”%lgap}u(kl) - Arrv (B1)

where Q7 is the electromagnetic charge of f, (q\Z/‘f , q?'f )

are the (vector, axial) charges of f to Z, and the Z
propagator in unitary gauge is

(ki + k2)4(p + q)
(H%o)rrp - gap - 2 £ .
myz

(B2)

The coupling y must be vectorlike.
Let us isolate the contribution from the intermediate Z:

g 1 - _ , ,
M, = —i—> 5 AP v(kz){r,,(qgf —q5"ys)
Cy s —my

2me(p 4+ q
N £( o A

3 qz Vs}u(kl)-

mz

(B3)

As expected, in the case of the ffZ vector coupling, only
the transverse part of the Z propagator contributes.
Moreover, we focus on the two cases for which we expect
a diverging amplitude: the AVV and VAV parts of the
triangle vertex functions, i.e., an axial Z coupling and a
vector X coupling or vice versa. Then

A — CigerW{qg’wKA‘wﬁ\)/ﬁv + CI?'WKV'WI:T\Z//V . (B4)
14

with ¢%,x” the charge of the fermion y to Z, X
respectively.

Squaring the amplitude, summing over final polariza-
tions, and averaging over initial spins and fermion colors
N,., we find*'

0 1 g\? 21 Pu, P v - A -
2 _ ui 2 W AT W N yTPHIV
Mzl 4(NC)2(($> gXe) (5= m2)? \ T ™ ,;,gfz Gon (@) az " kKAVTYRY + a7 kTN }

mz
(@ AT + a2 VTRV T (85)
where T, is the trace over the external fermion part of the squared-amplitude,
s .
Ty = (@774 (674 Do+ k= S0 ) + 02627 iy
A2 s K 1 s
#2167y (S 5 (1455 ) 0+ 0+, ) (B6)

with r; = m?/s. We can also simplify the contraction of the external polarization tensors and the triangle vertex functions:

we ignore the imaginary parts of these functions, which originate from the possibility of pair production of fermions appearing in the
loop. They can be calculated using the Sokhotski—Plemelj formula applied to the integrands of Egs. (A7) and (71) with A from Eq. (A3).
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14 Loy 753 % 1 o 1 o o (o}
G G Uiy Ty = fr{ﬁ (U= r)sg” =5 (L =ro{p"a" + 4'p"} +¢'q }

- (2VXGL_}GL‘,} + (1 - rx){G%r}G%r/} + G%r}GLJ}})Sgp”
#2610 Gley @' + 2614 Gy 04" + 261y Gl "7 + 2614 Gy’ a”. - (B)

1
4rX

_7[4 Py Py, g | Rl - (]:L _ G2 G%r’}){

1
A U v} (1=rx)?sg = — (1= r){p’q" + 4" p°} + qﬂq"} (B8)

zrx

|
where F;; contain products of F; and Gi;z}’{r,}, and  Thenonly F, s and mg,Co(mﬁ,) are independent. In terms of
{r}.{r'} € {AVV,VAV}. the these functions, the two quantities F7; in Eqgs. (B7)
In addition to Egs. (A8), (66), and (67), we have an  apd (B8) can then be written as
additional relation between the form factors in the
Rosenberg parametrization by using Eq. (A9) and either
Eq. (A13) or Eq. (Al4): Fr= (

1 1

1 1
ry - sFy =3+ mCo(md) = (1= ry)sFs,  (BY) +rysFy {ﬁmico(f"i) —st}

+T§SF4<SF4+SF6)+rx(SF4—SF6)(G%r} +G1r,})
We can use this relation to simplify the expressions for G!-2

in this case: - B—l—miCo(mi)—(l —2rx)sF4] (G%r}—l_G%r’})’
Gavy =%(z+ -1 _ersF4, (B12)
Givv :%(W“‘ 1) - 1 _rXSF4+m5,Co(m5/), (B10) ‘7:L:_B+m5/C0(mi)_(G%r}+1_2rXSF4)]
Gl — % (1) - 1 —2rx SFy. X B—f—mf,co(mg,) - (Gfr,} +1_TXSF4)], (B13)
o= )= R N Nt 00 i B 7 0

Inserting these results back into Eq. (B5), we obtain the
expression at leading-order in ry < 1:

_ 1 g \? 2 1 v Afor. 82 2tu
M. 12~ - - . SN2 VAVANEIN I It
.22~ s () ove) e (a2 + 25 (1-%%
2
-(Q")? [ZrG{AVV,VAV}qg ,WKrZ.W(ZG%r} a SF‘*)} : (B14)
Of the two loop momentum shift parameters, we see from Eqs. (B10) and (B11) that only w appears in the second line. In

order that the Ward identities for the photon and Z boson be satisfied, we must have w = z = —1. Examining the form factor
combinations on the second line in the two limits mg, — 0 and mg, — oo, we find:

5 - m5,—>oo
ZGAVV—SF4—>{_ 0
74
5 0 m5,—>oo
Woav=sFa=y 5 (B15)
v

For completeness, we provide expressions for the form factors in the following two limits. If the loop fermions are
infinitely heavy, then at leading order we can discard the p?> = m% term appearing in Eq. (A3), such that
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my, Co(my,) —

SF4—) +m CO(

Ty <Li2 (ﬁ) + Li, (ﬁ)) - -1
y) =0

: (B16)

sFg = 1—,/4r, — 1 arccot(,/4r, —1) = 0

where Li, is the dilogarithm function. If the loop fermions are massless, then Fg suffers an infrared divergence™:

mg,Co(mg,) -0
ry = 0: sFy — tnceld (B17)
sFg — 1 (1+2loge) (ry = 0)
APPENDIX C: OFF-SHELL X-EXCHANGE A (S - (=i )(—i )
AMPLITUDES YVh e C P1a ) (Z1P20,
In this appendix, we compute the amplitude for BB — ) i zC—e”l Pusbr(iqy 5 Vigap)
BB scattering (the BIM amplitude after [81]), for which the s — émx my LA 24>
diagrams are shown in Fig. 4. This calculation illustrates 1 2
the impact of longitudinal enhancement from the triple- M} = — —B gmipipgriviang, (C2)

gauge vertex when the Stiickelberg field is off-shell, and it
is analogous to WW scattering in the SM.

A simple setup that accommodates this process is the
“A-B” model from [38]: this consists of a single Dirac
fermion y with an axial-vector interaction to A and a
vectorlike interaction to B. The vector field A has a
Stiickelberg-like mass term. In order to cancel anomalies,
the model includes dimension-5 Peccei—Quinn local coun-
terterms coupling the Stiickelberg scalar field 7 to Chern—
Pontryagin densities. The Lagrangian after performing the
R: gauge fixing procedure as in Eq. (18) is

1 L R P
L=~ B,B" ~ F,F" —2—5(0A) + 5 myAA

C 8 C N
+ —A;( aFY Fay, + i 7B"“B,,.

o (C1)

An example Feynman diagram for the Peccei—Quinn terms
in the last line of Eq. (C1) is displayed in Fig. 5.7

The diagram on the left-hand side of Fig. 4 with s-
channel 7 exchange evaluates to

ZAs previously mentioned, sFg also has imaginary part z/4.

We can assume that e < g such that these diagrams dominate

over the standard contribution from one-loop box diagrams of
fermions in, e.g., light-by-light scattering.

s — Emy m%

For the diagram on the right-hand side, we are interested in
the part of the amplitude that involves axial couplings of the
loop fermions to A,

l'Mlzhllzvlvz *AM”‘Z( —p1. pz) _— (HX) A/:\l/l{%(Q17Q2)’
X
(P1+P2):(q1+4q2)
(Hi)/lp:glp_(l _‘S) s—§m2 /J‘ (CS)
X

Rewriting the R gauge propagator as in the second line
of Eq. (23), we can evaluate the £-dependent longitudinal
terms using the MCVF of Eq. (69) with C - A,A — B,

1 1
> et1H2:P1P2 V11239192
fmx nmy

- (4—9) {0 =)+ 4mECo(m) 2. (€Y

HipaV 1V
M, e =

For the gauge dependence to cancel, we must have

2
Cp=+2T(w=2).
Ar?

(C5)
To satisfy the anomaly-free Ward identities in Eq. (69) for
the B vector bosons, we must choose w = 1,z = —1. The
remaining £-independent amplitude is M, with the inter-
mediate A propagator in “unitary” gauge:
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By

— D o
T = ieaus (—iph)(—ig”)
B,
—q

FIG. 5. Example diagram from dimension-5 counterterms in
last line of Eq. (C1) model.

_ A
MMy — AA\IIVZ(_pl’_pZ)

-1 _
. 1 . A/)Vll/z , ,
o _ i( X)/lp avy (41-92)

(Co)

2 _ L[ (€9)?
My = 7l
LS — My
r 272
|ML|2 = l #& eH1H2:P1P2 ¢V1V239192 ¢
4 |s —m%m%
Re(ME M) — [ ;
e ==
L0 s —md m%

Since p? = ¢> = 0, the evaluation of the vertex func-
tions is simple in the BIM case. From Eq. (A8), we have
both F5 = —F,, F3 = —F¢. Then from Eq. (B10),

(€9)

2 _ 1 .
GAVV|p2:q2:0 - _GAVV|172:112:0 - ESF4-

Finally, if we have massless loop fermions, then Eq. (B17)
implies

1—rx+rxl0g(rx)
2(1—rx)2

(C10)

SF4|m§,:0 -

Then

2 \4 2.\ 4
72 (e g) 1 4 e g
Mo = ot~ ()

— Cy} 1 2g\* 1
ma G (20

16 r%(l —ry)? 4z%) r%

(e?9)’Ch 1
4 rx(l - rX)2

t
X <2G1G2 +-(G'+ G2)2)
s

g\ 1
= —(==] —.
2w 8r X
where arrows indicate the limit ry — 0 and we omitted the
AVV subscript in the interference term for clarity.

Re(ZMzMT) =

(C11)

2 C . .
:| (629)2 _geﬂlllbplpzr‘iﬂlm(_pl’ _p2)€vlu2;q1qzri{ly2<QI? Q2)

which can be broken up into its transverse and longitudinal
parts as

2.2
Mﬂ]ﬂzblvz o (e g) 1:%;41;42 1:‘”17/2
T ) (=p1. =PI (41, 92).
— My
2
M — 1 & HiH23P1 P2 cV1V234192 (C7)
L S — € :
s — my my

where the subscript AVV is implicit. The squared ampli-
tude, averaged and summed over initial and final states, is

2
2] Dk (—py =po) D, (=p1, =)0 (01, 42)T 000, (412 42).

ﬂlﬂz;PIPzel/lelelqz’

(C8)

Let us consider adding Wess-Zumino terms to the
Lagrangian of Eq. (C1). These are

5e,MpAwB”(chff + CLFY)

= —€,,,,A"B*(CLd’A* + Chp’BY).  (C12)

For the BB — BB process, only the CJ coefficient is
relevant; the amplitude is shown in Fig. 6. Along
with Fig. 4, we have three additional diagrams where
one or both fermion triangle loops in the diagram on the
right-hand side of Fig. 4 is replaced with a three-boson
vertex from Fig. 6.

A/\ - C/BE/\uuoz(q - p)a

—4q

FIG. 6. Feynman
Eq. (C12).

amplitude for Wess-Zumino term in
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We then have

IMEY2 = Che?g{eh 9 (py = pa) J71%2(qy, q2) + DH¥2(=py, =pa)e™ ™ (g, — q3)5} -

. 2%
lMZIﬂZ 12

-1
= —(Cp)2 ™% (py = pa),e™F (g, — q) P—) (Hi)zp-

—i

- (1 i
s_mgf( X)/Ip

(C13)

Again decomposing the R, propagator as in Eq. (23), we find a modified cancellation condition for gauge independence

2 e’g 2 2 \°
CB = 4—77:2{(W—Z) +4mv,C0(mV,)} _2CB .

(C14)

We are left to calculate the squared amplitude that is the sum of Eqs. (C7) and (C13), the latter with the replacement
H‘,f( — IIY. Examining the longitudinal pieces as in the second line of Eq. (C7), we find after using the gauge independence

condition above

Mﬂlllzblyz _
T =

1 C3—4(Ch)? +4CK(£Cy +2C%)

2
s —my

5 Vila;
5 HHBPIP2 V230192 (C]S)

my

which yields the same result as in Eq. (C11) in the relevant limit.
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