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We explore the effective field theory of a vector field Xμ that has a Stückelberg mass. The absence of a
gauge symmetry for Xμ implies Lorentz-invariant operators are constructed directly from Xμ. Beyond the
kinetic and mass terms, allowed interactions at the renormalizable level include XμXμH†H, ðXμXμÞ2, and
Xμjμ, where jμ is a global current of the SM or of a hidden sector. We show that all of these interactions lead
to scattering amplitudes that grow with powers of

ffiffiffi
s

p
=mX , except for the case of Xμjμ where jμ is a

nonanomalous global current. The latter is well known when X is identified as a dark photon coupled to the
electromagnetic current, often written equivalently as kinetic mixing between X and the photon. The power
counting for the energy growth of the scattering amplitudes is facilitated by isolating the longitudinal
enhancement. We examine in detail the interaction with an anomalous global vector current Xμj

μ
anom,

carefully isolating the finite contribution to the fermion triangle diagram. We calculate the longitudinally-
enhanced observables Z → Xγ (when mX < mZ), ff̄ → Xγ, and Zγ → Zγ when X couples to the baryon
number current. Introducing a “fake” gauge-invariance by writing Xμ ¼ Aμ − ∂

μπ=mX, the would-be gauge
anomaly associated with Aμj

μ
anom is canceled by jμanom∂μπ=mX; this is the four-dimensional Green-Schwarz

anomaly-cancellation mechanism at work. Our analysis demonstrates there is a much larger set of possible
interactions that an EFTwith a Stückelberg vector field can have, revealing scattering amplitudes that grow
with energy. The growth of these amplitudes can be tamed by a dark Higgs sector, but this requires dark
Higgs boson interactions (and reintroduces fine-tuning in the dark Higgs sector) that can be separated from
X interactions only in the limit g ≪ 1.

DOI: 10.1103/PhysRevD.106.055020

I. INTRODUCTION

New massive vector bosons are ubiquitous in beyond the
Standard Model (SM) physics. At masses large compared
with collider energies, they provide UV completions of
higher dimensional operators [1]. At intermediate masses,
of order collider energies, they yield resonances that are
targeted by many searches [2]. At somewhat smaller
masses, they can be produced, decay, and be observed
in high intensity experiments [3–5], typically when coupled
to charged leptons (for reviews, see [6,7]). Also at smaller
masses, they can act as mediators to permit light dark
matter to interact with the SM [8–10], underpinning the
viability of a large class of light dark matter detection

experiments [7]. At exceptionally small masses, vector
bosons can even serve as dark matter itself [11–18].
One of the attractions of a single new massive vector

boson is that a simple model [19] exists: the massive Uð1Þ
dark photon Aμ (see [20] for a review),

Ldark γ ¼ −
1

4
FA;μνF

μν
A þ 1

2
m2

XAμAμ − ϵFA;μνF
μν
Y ; ð1Þ

that involves just two parametersmX and ϵ, respectively the
mass of the Uð1Þ dark photon and its kinetic mixing to
hypercharge. The simplicity of this extension hinges on the
existence of a Stückelberg mass (see [21] for a review) for
the dark photon. In particular, by not specifying a Higgs
mechanism for the dark photon, one is able to avoid the
consideration of additional interactions of the dark Higgs
field ϕX. In particular, one does not need to address the
new fine tunings from the “dark hierarchy problem” that
are inevitable with a dark Higgs field or how to avoid
the respective destabilization of the dark and/or SM
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Higgs sectors through renormalizable interactions such
as ϕ†

XϕXH†H.
One of the reasons the dark photon Lagrangian seems

simple is how the longitudinal mode is packaged in Aμ. We
can introduce the longitudinal mode π such that, under a
gauge transformation Aμ → Aμ þ ∂

μαðxÞ, the longitudinal
mode shifts π → π þmXαðxÞ. Using the equation of
motion (EOM) for the hypercharge gauge boson, ∂μF

μν
Y ¼

gYjνY in terms of the SM hypercharge current jνY , the dark
photon Lagrangian can be rewritten as:

Ldark γ ¼ −
1

4
FX;μνF

μν
X þ 1

2
m2

XXμXμ − ϵgYXμj
μ
Y ð2Þ

in terms of Xμ ≡ Aμ
X − ∂

μπ=mX—the Stückelberg vector
field—a vector boson without a corresponding Uð1Þ gauge
invariance. The lack of gauge invariance is obvious because
Xμ remains invariant under the simultaneous gauge trans-
formations of Aμ and π. This form of the dark photon
Lagrangian makes it clear that a Lagrangian with a
Stückelberg mass for a vector field is best expressed in
terms of Xμ; the use of the field strength Fμν

X for the kinetic
term (or kinetic mixing with the SM) has nothing to do with
gauge invariance, and instead simply ensures there are only
three propagating degrees of freedom (DOF) in Xμ.1

This naturally leads to the question of the effective field
theory involving a Stückelberg vector field Xμ—what are
all possible interactions of Xμ, and what are their conse-
quences? The goal of this paper is to show that the
Lagrangian Eq. (2) is a special case of a more general
set of interactions for Xμ. For instance, already at the
renormalizable level we can write ðXμXμÞ2, XμXμH†H, and
Xμjμ where jμ is a global vector or axial current that may or
may not be (globally) anomaly-free.2 As we will see, most
of these interactions have couplings of the longitudinal
mode with itself or the SM fields, and thus lead to scattering
amplitudes that grow with powers

ffiffiffi
s

p
=mX. This is analo-

gous to the energy growth that arise in a Higgsless SM [23].
The range of validity of the effective theory including X in
the spectrum relies on taking the coefficients of longitu-
dinally enhanced interactions to be (sometimes exception-
ally) small. Only if there are exactly zero couplings of the
longitudinal mode with itself or with the SM can the cutoff
scale of the EFT be taken arbitrarily large relative to the
mass of the Stückelberg vector field.
There is a host of related literature that we will only

briefly mention. Numerous papers have studied theories
with a Stückelberg vector field in the context of field theory
or string theory [21,22,24–34]. There is also a huge

literature on anomalous Uð1Þ symmetries and their impli-
cations for theory or phenomenology [29,35–53]. The
connections between anomalous Uð1Þ symmetries and
the Green-Schwarz anomaly cancellation mechanism have
also been elucidated [29,36,38,39,46,54]. While we have
certainly benefited from this literature and we do not claim
to be the first or last word on this subject, our focus on a
theory with a Stückelberg mass for Xμ, a vector field
without a corresponding gauge symmetry, lays a founda-
tion for a systematic approach to analyze the effective field
theory of Xμ in terms of its leading self-interactions as well
as its interactions with the SM.
The organization of this paper is as follows. First, in

Sec. II, we review the Stückelberg Lagrangian, (fake)
gauge fixing, BRST, the external physical states, the
propagator, and the BRST current. In Sec. III we consider
tree-level interactions of the Stückelberg vector field Xμ.
We demonstrate that self-couplings as well as tree-level
couplings of the longitudinal mode with the SM lead to
amplitudes that grow with energy above the mass of the
Stückelberg vector field. While these interactions are not
radiatively generated by a dark photon Lagrangian that
consists solely of a mass term and a coupling to a conserved
vector current, there are no symmetries that forbid these
terms. Consequently, the dark photon Lagrangian appears
rather peculiar. In particular, we show that these inter-
actions can be generated by a dark Higgs mechanism for a
dark Uð1Þ gauge theory, and like the Higgs mechanism of
the SM, the dark Higgs boson renders the amplitudes finite
above the dark Higgs mass. In Sec. IV, we consider the
coupling of a Stückelberg vector field to an anomalous
vector current. This is motivated by Dror et al. [45], who
showed that should an anomalous symmetry of the SM
(e.g., baryon number) be gauged, the couplings of the
longitudinal mode lead to longitudinal enhancements of the
amplitudes involving the anomalous fermion triangle dia-
gram. These longitudinal enhancements are critical in
determining the viable range of parameter space in the
model [43]. The Stückelberg vector field theory would
appear to be special, since there is no gauge symmetry, and
thus, no gauge anomalies. Nevertheless, we carefully
consider the one-loop triangle diagrams that arise because
of an anomalous global symmetry of the SM. We find that
the Stückelberg vector field has couplings of its longi-
tudinal mode to the divergence of the anomalous global
current. The observable predictions of a Stückelberg vector
field coupled to, say, global baryon number of the SM are
identical to the case in which baryon number is gauged, so
long as the “anomalons” needed to cancel the gauge
anomaly are taken to be heavy. In Sec. V, we demonstrate
the importance of the one-loop couplings of the longi-
tudinal part of Xμ to an anomalous global current for
several physical processes, including Z → Xγ and
ff̄ → Xγ, and Zγ → Zγ, when X couples to baryon
number. Finally, in Sec. VI, we discuss the implications

1Contrast this with a spin-one gauge field, such as hypercharge
Bμ, which only appears in the field strength Fμν

B and covariant
derivatives.

2The phenomenological implications of the quartic interaction
for the electromagnetic field was explored in [22].
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of our results. The appendices contain technical details of
calculations relevant for results in Secs. IV and V.

II. REVIEW OF QUANTIZATION OF MASSIVE
VECTOR FIELDS

A. The Lagrangian and propagator for a massive
spin-one field

A massive spin-one field Xμ has three propagating
degrees of freedom (DOF). We see this by decomposing
the four components of the four-vector Xμ into the 1 ⊕ 3,
or spin-zero and spin-one, representations of the Lorentz
group. The spin-zero component leads to a negative energy
density, and can be removed as a propagating DOF in the
theory by imposing the Lorenz condition

∂νXν ¼ 0; ð3Þ

together with writing the kinetic term for the four-vector as
a function of the field-strength tensor Fμν

X ¼ ∂
μXν − ∂

νXμ

[55]. The above two requirements are achieved by the
Proca Lagrangian

LP ¼ −
1

4
FX;μνF

μν
X þ 1

2
m2

XXμXμ; ð4Þ

which yields the EOM and its derivative

∂μF
μν
X þm2

XX
ν ¼ 0;

m2
X∂νX

ν ¼ 0: ð5Þ

For mX ≠ 0, the Lorenz condition follows from the second
line and therefore is not an independent constraint. The
Proca Lagrangian for Xμ is not gauge invariant: there is no
Uð1Þ symmetry associated with Xμ since there is no
redundancy in its description—all three of its propagating
DOF are physical.
The propagator for Xμ can be derived directly from

inverting the Proca Lagrangian, which is textbook material
[55,56]

hXμðpÞXνð−pÞi ¼ −i
p2 −m2

X

�
gμν −

pμpν

m2
X

�
: ð6Þ

The propagator for Xμ is equivalent to the propagator of a
Higgsed, massive Uð1Þ theory in unitary gauge; however,
we emphasize that the result above is not in unitary gauge
—there is no gauge invariance. This also implies that the
sum of the polarization states for an on-shell Xμ coincides
with that of a massive Uð1Þ theory, i.e.,

X
λ

ϵμλðpÞϵνλ�ðpÞ ¼ −
�
gμν −

pμpν

m2
X

�
: ð7Þ

This explicitly demonstrates the counting of the on-shell
physical DOF: Xμ has three physical polarizations.

B. Stückelberg formalism: Introducing a fake
gauge symmetry

The Stückelberg formalism expresses

Xμ ≡ Aμ −
∂
μπ

mX
; ð8Þ

where Aμ is a “fake” Uð1Þ gauge field and π is a scalar
field that also transforms under this “fake” Uð1Þ gauge
invariance:

Aμ → Aμ þ ∂
μαðxÞ;

π → π þmXαðxÞ; ð9Þ

where αðxÞ is the gauge parameter. The Proca Lagrangian
becomes

Lg ¼ −
1

4
FA;μνF

μν
A þ 1

2
m2

X

�
Aμ −

∂μπ

mX

�
2

; ð10Þ

purely in terms of the “fake” gauge field with its field
strength given by Fμν

A . While this construction introduces
one additional DOF π, the “fake” Uð1Þ gauge invariance
removes one DOF, leaving the same three of the massive
vector field in the original Proca Lagrangian [57,58].
We use the term “fake” to describe the gauge invariance

of Aμ since the physical consequences of Xμ and its
interactions can be determined entirely in terms of the
vector-field Xμ directly. The identification Xμ ≡ Aμ −
∂
μπ=mX is exact, in the sense that renormalization does
not disrupt the size of the coefficient of ∂μπ=mX relative to
Aμ. This follows from ensuring that the gauge transforma-
tions of Aμ and π leave the combination Aμ − ∂

μπ=mX
invariant.
The purpose of introducing the “fake” gauge invariance

is to more easily uncover the role of the longitudinal
polarization of Xμ, namely Xμ

L, which for a suitable choice
of gauge, can be fully captured by the interactions of the
scalar field π. Hence, we will refer to π as the “longitudinal
component” synonymously with Xμ

L, though we emphasize
that this identification is only strictly true in Landau gauge,
as we discuss below.

C. BRST and Rξ gauge fixing

Before we discuss the gauge fixing of Eq. (10) and
applying the BRST to the Stückelberg formalism, we
briefly review the general gauge-fixing and quantization
procedure using BRST [59,60]. The BRST transformations
of the fields are equivalent to gauge transformations like
those in Eq. (9) with infinitesimal gauge parameter
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αðxÞ ¼ θωðxÞ; ð11Þ

where θ is an infinitesimal Grassmann constant and ω is a
real, Grassmann scalar field (ghost). For the Stückelberg
theory, we have the following BRST transformations of the
fields:

δθA ¼ θ∂ω;

δθπ ¼ mXθω;

δθb ¼ 0;

δθω ¼ 0;

δθω
� ¼ θb; ð12Þ

where ω� is a real, Grassmann scalar field (antighost) and b
is a Nakanishi-Lautrup auxiliary field [61,62]. The action
of a BRST operator s on a field φ is defined in terms of the
infinitesimal BRST transformation of a field φ by

δθφ ¼ θsφ: ð13Þ

For a product of fields,

δθðφ1φ2Þ¼ðδθφ1Þφ2þφ1ðδθφ2Þ¼θ½ðsφ1Þφ2�φ1ðsφ2Þ�;
ð14Þ

where � for whether φ1 is bosonic or fermionic; i.e., s can
be viewed as a fermionic operator. Using the transforma-
tions in Eq. (12), the gauge-fixing part of the Lagrangian
can be written as [24]

Lgf ¼ s

�
ω�

�
Gþ ξ

2
b

��
¼ −ω�ðsGÞ þ bGþ ξ

2
b2; ð15Þ

where G½A; π� is a gauge-fixing functional. Since b is an
auxiliary field and does not propagate, we can eliminate it
using its EOM, yielding an alternate form for Eq. (15),

Lgf ¼ −ω�ðsGÞ − 1

2ξ
G2: ð16Þ

The Rξ-like class of gauge-fixing choices is obtained by
setting

Gξ ¼ ∂μAμ þ ξmXπ: ð17Þ

The general Rξ-gauge Lagrangian is the sum of Eq. (10)
and the gauge-fixing terms,

Lξ ¼ Lg þ Lgf jGξ

¼ −
1

4
FA;μνF

μν
A þ 1

2
m2

X

�
Aμ −

∂μπ

mX

�
2

−
1

2ξ
ð∂μAμ þ ξmXπÞ2 − ω�ð∂2 þ ξm2

XÞω

¼ −
1

4
FA;μνF

μν
A −

1

2ξ
ð∂μAμÞ2 þ 1

2
mXAμAμ þ 1

2
∂μπ∂

μπ −
1

2
ξm2

Xπ
2 − ω�ð∂2 þ ξm2

XÞω; ð18Þ

which explicitly exhibits the decoupling of Aμ; ∂μπ.3

From this, we see that the Proca Lagrangian corresponds
to the choice ξ → 0, where the second term in the last line
of Eq. (18) decouples and π becomes a free, massless scalar
field. The Stückelberg Lagrangian is obtained from the
choice of Stückelberg-Feynman gauge ξ ¼ 1,

LSt¼−
1

4
FA;μνF

μν
A þ1

2
m2

X

�
Aμ−

∂μπ

mX

�
2

−
1

2
ð∂μAμþmXπÞ2:

ð19Þ
Note that the first two terms in Eq. (19) are unchanged
under the gauge transformation Eq. (9); however,

invariance of the last term requires π to obey the EOM
for a massive scalar field,

ð□þm2
XÞπ ¼ 0: ð20Þ

D. Propagator in Rξ gauge

The Rξ gauge fixing removes the mixing terms of the
form Aμ

∂μπ in the original Stückelberg Lagrangian of
Eq. (19), leaving just the gauge-dependent two-point
functions for Aμ and π. These have the standard Rξ-gauge
forms:

hAμðpÞAνð−pÞi ¼ −i
p2 −m2

X

�
gμν −

pμpν

p2 − ξm2
X
ð1 − ξÞ

�
;

hπðpÞπð−pÞi ¼ i
p2 − ξm2

X
: ð21Þ

3Using Rξ gauge fixing, the ghosts decouple in Abelian gauge
theories because the ghost kinetic term involves only partial
derivatives (in Yang-Mills theories, these become covariant
derivatives in the adjoint representation). Hence, we omit them
from the Lagrangian for the remainder of the paper.
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Using Eq. (12) and the decomposition in Eq. (8), the BRST transformation of Xμ is

δθXμ ¼ δθAμ −
1

mX
∂
μδθπ ¼ θ∂μω − ∂

μðθωÞ ¼ 0: ð22Þ

Xμ is annihilated by the BRST operator and corresponds to a physical external state. From Eq. (21), the Xμ two-point
function can be reconstructed as

hXμðpÞXνð−pÞi ¼ hAμðpÞAνð−pÞi þ 1

m2
X
ðipμÞð−ipνÞhπðpÞπð−pÞi

¼ −i
p2 −m2

X

�
gμν − ð1 − ξÞ pμpν

p2 − ξm2
X

�
þ i
m2

X

pμpν

p2 − ξm2
X

¼ −i
p2 −m2

X

�
gμν −

pμpν

m2
X

�
; ð23Þ

which agrees with Eq. (6). The absence of ξ-dependence
demonstrates that the propagator for the physical state Xμ

is, unsurprisingly, itself independent of the fake gauge
symmetry.

E. Current conservation

The decomposition Xμ ≡ Aμ − ∂
μπ=mX allows us to

study Stückelberg theories using techniques familiar from
gauge theories. In fact, the fake gauge field Aμ has the same
form as that of a massive gauge field arising from a Higgsed
Uð1Þ symmetry that is spontaneously broken with mass
mX ¼ gv=2. However, for a Stückelberg vector field, we
know that only the combination Aμ − ∂

μπ=mX is physical
and can represent an external state, while for a gauge
theory, the external state is of course just Aμ. How do we
reconcile this difference?
To understand when there is a distinction between the

Stückelberg vector field and a spontaneously broken
massive gauge field Aμ, we examine the BRST current,

JμBRST ¼
X
fieldφ

δL
δθ∂μφ

δθφ: ð24Þ

To keep things simple, consider a scenario in which the
spin-one fields have interactions with a fermion current,
i.e., gðAμ − ∂μπ=mXÞjμferm ≡ gXμj

μ
ferm for a Stückelberg

vector field and gAμj
μ
ferm for a spontaneously broken,

gauged Uð1Þ vector field.
In the case where Aμ is a gauge field that is sponta-

neously broken, it is straightforward to show that the
divergence of the BRST current is

∂μJ
μ
BRST ¼ −ω∂μj

μ
ferm ðfor a massive gauge fieldAμÞ: ð25Þ

Therefore, a conserved BRST charge requires the diver-
gence of the fermion current to vanish.

In contrast, when the same BRST transformations are
applied to the Stückelberg vector field, we obtain

∂μJ
μ
BRST¼0

ðfor a Stü ckelberg vector fieldXμ¼Aμ−∂
μπ=mXÞ: ð26Þ

A conserved BRST charge can always be formed since the
divergence of the BRST current vanishes independently of
the conservation of the fermion current.
Once we enforce a conserved current (in what follows, a

fermionic current), under the decomposition Xμ ¼ Aμ −
∂
μπ=mX the scalar field π decouples from this interaction
leaving Xμ and Aμ indistinguishable.

III. TREE-LEVEL COUPLINGS OF A
STÜCKELBERG VECTOR FIELD

We now turn to considering the tree-level interactions of
a Stückelberg vector field Xμ. As we have emphasized, Xμ

does not transform under a gauge symmetry. Hence,
interactions in the effective theory will be built from
powers of Xμ. The goal in this section is to enumerate
the possible renormalizable tree-level interactions of Xμ

and identify those that lead to scattering amplitudes that
grow with powers of

ffiffiffi
s

p
=mX. These amplitudes arise from

couplings of the longitudinal mode Xμ
L. The absence of a

(gauge) symmetry under which Xμ transforms implies that
its mass does not signal spontaneous symmetry breaking
(SSB) nor the existence of Goldstone bosons. Nevertheless,
the longitudinal mode, Xμ

L, is physical. We now state the
longitudinal equivalence theorem: the leading interactions
of the longitudinal mode can be characterized either by
working directly with Xμ

L, or by using the fake gauge
invariance of Eq. (9), choosing Landau gauge, and then
associating Xμ

L with the interactions of the derivatively
coupled longitudinal scalar field π. This is the Stückelberg
analog of the Goldstone boson equivalence theorem.
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A. The generalized Ward identity and the longitudinal
equivalence theorem

In a theory with an exact Uð1Þ gauge symmetry, current
conservation leads to the Ward identity

kμMμ ¼ 0 ð27Þ

for an arbitrary amplitude M in momentum space. This
implies that the longitudinal polarization of an external on-
shell gauge boson decouples. For a spontaneously broken
Uð1Þ gauge theory, in which a gauge field Aμ acquires a
mass mX, the longitudinal polarization of an external on-
shell gauge boson has, of course, physical couplings. Again
using current conservation, a generalized Ward identity

kμ

mX
MμðAÞ ¼ iMðG0; ξ ¼ 0Þ ð28Þ

can be constructed that relates the momentum-contracted
amplitude for an on-shell external gauge boson Aμ with
momentum kμ with the same amplitude, MðG0; ξ ¼ 0Þ,
for the Goldstone boson in Landau gauge. In the limit of
large momentum jk⃗j ≫ mX, ϵμLðAÞ ≃ kμ=mX, giving the
Goldstone boson equivalence theorem

ϵμLðAÞMμðAÞ ⟶
jk⃗j≫mX

iMðG0; ξ ¼ 0Þ ð29Þ

for a single on-shell, longitudinally polarized gauge boson.
For the massive Stückelberg vector boson, there is no

(generalized or other) Ward identity since there is no gauge
symmetry and thus no conserved local current associated
with Xμ. This means

kμ

mX
MμðXÞ ≠ 0: ð30Þ

At large momentum jk⃗j ≫ mX, ϵ
μ
LðXÞ ≃ kμ=mX, and so this

is simply a statement that the longitudinal mode of a
Stückelberg vector field couples with a strength of kμ=mX.
What if we follow Secs. II B and II C and decompose the

Stückelberg vector field into a fake gauge boson Aμ and
scalar field π and use the fake gauge invariance and Rξ

gauge fixing to remove the Aμ
∂μπ mixing terms? Here, the

gauge redundancy of Aμ and π implies that there is no
gauge-independent identification of Xμ

L with Aμ
L and/or π.

Consider the two-point functions Eq. (21) and Eq. (23). As
we have discussed, the sum of the polarizations of Xμ is
gauge independent. We can match the sum of the polar-
izations of Xμ to that of a massive gauge field Aμ by going
to unitary gauge, ξ → ∞. In unitary gauge, π does not play
a dynamical role because m2

π ¼ ξm2
X → ∞, and so

ϵμLðXÞ ¼ ϵμLðA; ξ → ∞Þ. By contrast, in Landau gauge
(ξ ¼ 0) the sum of the polarizations of the two-point
function of Aμ is purely transverse, matching that of a

massless gauge theory that has only two propagating DOF.
Hence, in Landau gauge, the longitudinal polarization Xμ

L is
fully captured by ∂μπ=mX. This is the same result found in a
spontaneously broken gauge theory in Landau gauge,
where the longitudinal polarization of a massive gauge
field is fully captured by ∂

μG0=mX for the eaten Goldstone
scalar field.
Therefore, analogously to Eq. (29) for a spontaneously

broken theory, in Landau gauge at large momentum
jk⃗j ≫ mX, we can identify

0 ≠ ϵμLðkÞMμðXÞ ⟶
jk⃗j≫mX kμ

mX
MμðXÞ ¼ iMðπ; ξ¼ 0Þ: ð31Þ

This is the longitudinal equivalence theorem: the leading
behavior for on-shell, external Xμ

L interactions can be found
by replacing Xμ

L with ∂
μπ=mX. For Stückelberg theories,

longitudinal equivalence arises as a consequence of the
invariance of Green’s functions under BRST transforma-
tions (Slavnov-Taylor identities) carried out on the
Aμ − ∂μπ=mX formulation. Following Eq. (26), BRST
invariance holds for Stückelberg theories regardless of
whether Aμ − ∂μπ=mX couples to conserved currents.
Goldstone equivalence in a Higgsed Uð1Þ theory can
also be formulated from BRST invariance (assuming
∂μj

μ
ferm ¼ 0); however, it is more commonly derived using

the generalized Ward identities fromUð1Þ gauge invariance
(gauge fields coupling to conserved currents).4 Moreover,
we can also identify the leading behavior of the off-shell
two-point function [65],

hXμðkÞXνð−kÞi ≃
k2≫m2

X kμkν

m2
X
hπðkÞπð−kÞ; ξ ¼ 0i: ð32Þ

The Stückelberg formalism makes clear that the large-
momentum behavior found by using Eqs. (31) and (32)
yields nonrenormalizable interactions of the longitudinal
mode π suppressed by powers ofmX. Below, we will utilize
these results in our discussions of the leading behavior of
interactions and scattering amplitudes at large momentum.
We note that Lagrangians involving Xμ do not necessarily
contain interactions of the longitudinal mode π. For
example, one special case is the Proca Lagrangian Eq. (4)

−
1

4
FX;μνF

μν
X þ 1

2
m2

XXμXμ ⟶
k2≫m2

X 1

2
∂μπ∂

μπ; ð33Þ

i.e., by the equivalence above, the Proca Lagrangian for a
free massive Stückelberg vector field becomes the
Lagrangian for a free massless scalar field π.

4See Refs. [63,64] for more details on the relation between the
BRST Slavnov-Taylor identities and the generalized Ward
identity in this regard.
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We now turn to considering interactions of Xμ with itself
or with the SM, identifying those interactions that couple to
the longitudinal mode, and discussing the consequences for
the effective field theory.

B. Conserved vector current

Consider the interaction

gXXμj
μ
V; ð34Þ

in which the Stückelberg vector field couples to a con-
served vector current jμV with strength gX. For the purposes
of this section, the current is assumed to be exactly
conserved, ∂μj

μ
V ¼ 0. (The anomalous case that leads to

one-loop couplings will be discussed in detail in Sec. IV.)
Using the equivalence Xμ ≡ Aμ − ∂

μπ=mX, it is clear that
the longitudinal component π decouples from the con-
served vector current, since under integration by parts (IBP)

1

mX
ð∂μπÞjμV → −

π

mX
∂μj

μ
V → 0: ð35Þ

This is the famous example of a dark photon kinetically
mixed with electromagnetism, namely jμV ¼ jμem, with
coupling strength gX ¼ ϵe [19]. This coupling is equivalent
to a kinetically mixed Stückelberg field with the electro-
magnetic field strength using the EOM jμem ¼ ∂ρF

ρμ
em and

IBPİn the electroweak theory, jμV ¼ jμY , with coupling
strength gX ¼ ϵg0=cW , where cW is the cosine of the
Weinberg angle. While jμY is no longer a pure vector
current, it of course remains anomaly-free. (The couplings
of X to the axial vector part of hypercharge will be
discussed in the next section.)
While kinetic mixing ϵFX;μνF

μν
V is equivalent to

ϵgVXμj
μ
V , it is worth emphasizing that the inverse need

not be true. The Stückelberg vector field Xμ can be coupled
to a conserved current that is purely global and not gauged.
For example, in the SM the global current jμB−L is exactly
conserved,5 and so the interaction

gXXμj
μ
B−L ð36Þ

can be written without explicitly gauging B − L. This has
fascinating consequences when one imagines Xμ coupling
to a linear combination of both jμem and jμB−L [66].
These statements also hold for Stückelberg vector fields

coupled to currents of hidden (dark) fermions, which are
commonly found in the literature. In this scenario, it is often
assumed that Xμ is the gauge boson of a new Uð1Þ and that
the hidden fermions are charged under this symmetry.
However, provided the hidden current coupling to Xμ is
vectorlike and conserved, this need not be the case—the
interaction is indistinguishable from a Stückelberg vector
field coupled to a global (hidden fermion) current.

C. Axial-vector current

Next, consider an interaction of Xμ with an axial current,

gXXμj
μ
A: ð37Þ

Unlike the case of the global vector current, the global
axial-vector current is not, in general, conserved already at
tree-level. This is simply because an axial-vector current is
explicitly violated by fermion masses (within the SM or
beyond).
The consequences of the axial-vector current violation

by fermion mass is most easily seen by focusing on the
longitudinal component of the Stückelberg vector field, Xμ

L,
or equivalently −∂μπ=mX following Eq. (8). For an axial
current of fermions jμA ¼ f̄γμγ5f, the π field is derivatively
coupled, so the longitudinal part of Eq. (37) becomes

gXXL;μj
μ
A → −

gX
mX

∂μπðf̄γμγ5fÞ →
gX
mX

π∂μðf̄γμγ5fÞ

¼ 2igXmf

mX
πðf̄γ5fÞ; ð38Þ

proportional to the fermion mass.
We can use this result to illustrate the high energy

behavior of Xμ in several scattering processes that have
axial-vector couplings including ff̄ → XX, XX → ff̄, and
fX → fX as shown in Fig. 1.

(a) (b) (c)

FIG. 1. Diagrams for 2–2 scattering amplitudes with two fermions and two gauge bosons: (a) XX → ff̄; (b) ff̄ → XX; (c) fX → fX.
[We have omitted the u-channel diagrams for (a), (b).] When ∂μj

μ
A ≠ 0 due to the explicit violation of the global axial current by the

fermion mass, the amplitudes for the longitudinally-polarized X field grow with energy proportional to mf
ffiffiffi
s

p
=m2

X .

5The global Uð1Þ3B−L and Uð1ÞB−LðgravÞ2 anomalies vanish in
the presence of three right-handed neutrinos, though this is not
critical to our argument.
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The full expression for the scattering amplitude follows
by using the vector-boson polarization tensor for the
external boson Xμ. Since we are interested in the high-
energy behavior of the amplitude, we can focus on just the
longitudinal part using Eq. (38). Using this effective
interaction, and taking the limit of s ≫ m2

X;m
2
f with t

fixed in the amplitude squared, we find that XLXL → f̄f is

jMj2 ¼ 32g4Xm
4
fs

m4
Xðm2

f − tÞ þ � � � ð39Þ

where � � � stands for terms with subdominant energy
growth. We see that the amplitude grows with energy
proportional to mf

ffiffiffi
s

p
=m2

X.
We can obtain a crude estimate of the scale at which

perturbative unitarity is violated by setting t → 0 (forward
scattering) and jMj2 ¼ 1,

ffiffiffiffiffiffiffiffiffi
smax

p
∼

1

4
ffiffiffi
2

p m2
X

g2Xmf
: ð40Þ

The effective theory for a Stückelberg vector field has a
cutoff scale that is parametrically above mX only when
mf ≪ mX. This is fully equivalent to the Appelquist-
Chanowitz bound on scattering amplitudes involving
longitudinal electroweak gauge bosons and SM fermions
when the Higgs is decoupled from the SM [67].
If instead the fermions are much heavier than the

scattering energy, m2
f ≫ s ≫ m2

X, the fermions can be
integrated out, generating an effective ðXμXμÞ2 quartic
interaction at one-loop order that will also lead to ampli-
tudes that grow with energy. This is investigated below in
Sec. III E.
The coupling of Xμ to an axial-vector current is equiv-

alent to a dimension-4 Higgs-derivative interaction with Xμ

iH†D
↔

μHXμ; ð41Þ

where we remind the reader that H†D
↔

μH ¼ H†ðDμHÞ −
ðDμH†ÞH is a SM gauge singlet with fully contracted
SUð2ÞL ×Uð1ÞY indices. Focusing on the longitudinal
part,

iH†D
↔

μHXμ
L → −iH†D

↔

μH
∂
μπ

mX
: ð42Þ

Using IBP, the longitudinal coupling becomes

i
π

mX
∂
μðH†D

↔

μHÞ ¼ i
π

mX
½H†D2H − ðD2H†ÞH�: ð43Þ

In the last line, we are free to promote the partial derivative
to a covariant derivative since the additional SM vector

boson terms needed to covariantize the left-hand side of

Eq. (43) vanish under D
↔
. Applying the EOM of the Higgs

field, the Higgs mass and quartic will cancel, leaving just
the π coupling to a pseudoscalar current proportional to
Yukawa couplings,

→ −i
π

mX
πðf̄LyffR − f̄Ry

†
ffLÞ

ðvþ hÞffiffiffi
2

p : ð44Þ

For the leptons and one type of quark, we can diagonalize
the Yukawas so their entries are real and positive. In this
case,

→ −iyf
ðvþ hÞffiffiffi

2
p π

mX
ðf̄γ5fÞ: ð45Þ

We can convert this into an axial current by using the EOM
for the fermions and IBP once more. Starting with Eq. (43),

i
π

mX
ð−ēRy†eðH†LÞ þ ðL̄HÞyeeR þ � � �Þ

¼ i
π

mX
ð−ēRi=DeR þ L̄i=DLþ � � �Þ

¼ −
∂μπ

mX
ðēRγμeR − L̄γμLþ � � �Þ

¼ ∂μπ

mX
ðf̄γμγ5fÞ: ð46Þ

Hence, the Higgs-derivative interaction can be rewritten as
axial-vector couplings of the SM fermions with Xμ, and
thus have the same energy growth in the amplitudes.
If we do not immediately focus on the longitudinal piece

of Xμ, the operator iH†D
↔

μHXμ contains a mass mixing
between the X and Z and appears to lead to longitudinally
enhanced h → XZ decays (assuming light X). However, as
shown in Ref. [68], once the mass mixing is removed all
purely bosonic, longitudinally enhanced interactions are
eliminated. The only longitudinally enhanced amplitudes
come from SM axial current couplings to X that arise as a
consequence of the X − Z mixing, in agreement with our
result in Eq. (46).
While Xμf̄γμγ5f and iH†D

↔

μHXμ separately lead to
amplitudes that grow with energy, a carefully chosen
combination of the two terms will not. This is precisely
what occurs for Xμ coupling to the axial part of the
hypercharge current [68]. Explicitly,

Xμj
μ
A;Y → i

X
f

yfðvþhÞffiffiffi
2

p
mX

ððYfR −YfLÞ�YHÞπðf̄γ5fÞ ð47Þ

after carrying out the manipulations in Eq. (38) to Eq. (46)
and focusing on the longitudinal piece of Xμ. Here YfL; YfR
are the hypercharges for fL and fR, respectively, YH is the
Higgs hypercharge, and the þð−Þ sign holds for leptons
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and down-type quarks (up-type quarks). Inserting the
hypercharges for SM matter, Eq. (47) vanishes. Thus,
Xμj

μ
A;Y does not induce any amplitudes that grow with

energy.

D. Higgs portal

At the renormalizable level, there is one independent
Higgs interaction with Xμ,

1

2
λ2jHj2XμXμ: ð48Þ

Inserting the Higgs vacuum expectation value (vev), this
leads to an additional contribution to the mass of
Stückelberg vector field. The shifted mass is

m̃2
X ¼ m2

X þ λ2v2

2
: ð49Þ

The interactions of the longitudinal component are iden-
tified as

1

2
λ2jHj2XμXμ →

1

2m̃2
X
λ2jHj2ð∂μπ∂μπÞ: ð50Þ

This yields dimension-5 and dimension-6 interactions of
the longitudinal mode π with the Higgs field

λ2ð2vhþ h2Þ
2m̃2

X
ð∂μπ∂μπÞ ð51Þ

that lead to scattering amplitudes that grow with powers offfiffiffi
s

p
=mX. Explicitly, examining the process XX → hh and

using jMj2 ¼ 1 as the criterion for the perturbative

unitarity limit, we find
ffiffiffiffiffiffiffiffiffi
smax

p ∼
ffiffiffi
2
λ2

q
m̃X.

If Xμ were to acquire its mass mostly through this
interaction (i.e., m̃2

X ≃ λ2v2=2), the strength of the coupling
λ2 cancels out in Eq. (51). In this case, the Stückelberg
vector boson amplitudes grow with energy above the
electroweak-breaking scale independently of the mass of
the Stückelberg vector boson.
Finally, we note that this operator is familiar from the

scenario of a Uð1Þ gauge field spontaneously broken by a
complex scalar, in which case λ2 would be identified with
g2, the square of the Uð1Þ gauge coupling. This suggests
that λ2 < 0 is highly suspect: in particular, the positivity of
λ2 is mandatory in the case where the mass of the
Stückelberg field is obtained from this operator.

E. Quartic self-interaction

At the renormalizable level, there is one operator that
leads to a self-interaction of the Stückelberg vector field:

1

4!
λ4ðXμXμÞ2: ð52Þ

For the longitudinal component this becomes

λ4
4!m4

X
ð∂μπ∂μπÞ2: ð53Þ

In the presence of this quartic self-interaction, the 2–2
scattering amplitude with Stückelberg vector bosons grows
with energy as

AðXLXL → XLXLÞ ∼ λ4
s2

m4
X

ð54Þ

due to the couplings of the longitudinal mode. The s2=m4
X

growth of the four-point amplitude is the same as that
encountered in the SM arising from (just) the four-point
interaction of longitudinalW gauge bosons. Of course, this
energy growth is famously canceled in the SM by Z and h
exchange diagrams.
The breakdown of the effective theory from this

operator can be obtained by performing a rough estimate
of the maximum allowed energy as in the previous
subsection,

ffiffiffiffiffiffiffiffiffi
smax

p ≲ mX

λ1=44

: ð55Þ

Separating
ffiffiffiffiffiffiffiffiffi
smax

p
and mX requires λ4 ≪ 1.6

However, restricting to just the interactions of the normal
dark photon model, ðXμXμÞ2 is not generated radiatively.
The coupling λ4 is multiplicatively renormalized and thus
technically natural if set to an exceptionally small number
(including zero). It is well known that the sign of λ4 must be
positive to ensure UV analyticity [69]. Moreover, ðXμXμÞ2
is generated—even in the dark photon model—if we appeal
to the usual lore that quantum gravity generates all possible
higher dimensional operators (suppressed by powers of
MPl). Specifically, we expect the operator

ðH†HÞðXμXμÞ2
M2

Pl

; ð56Þ

which, below the scale of EWSB, leads to an effective
quartic λ4;eff ∼ v2=M2

Pl. The growth of AðXLXL → XLXLÞ
is so rapid that even such a minuscule λ4;eff ∼Oð10−32Þ
can lead to perturbative unitarity violation at low scales
(meaning well within the energy range we have
probed experimentally) when mX is small. Explicitly,

6For vector-boson dark matter with mX ∼ 10−5 eV [13] and
requiring the cutoff scale to be Λ ¼ MPl, we find an exceptionally
small bound on the coupling λ4 ≲ 10−129.
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plugging this “gravity-generated” λ4;eff into Eq. (55) we
find

ffiffiffiffiffiffiffiffiffi
smax

p ∼ 108mX.
7

In the case of a HiggsedUð1Þ theory in which the vector-
boson mass is acquired through SSB, the energy growth of
XX → XX scattering is tamed by the Higgs exchange
diagram. In the low-energy effective theory below the
mass of the Higgs (but above mX), this interaction is
generated with a coefficient λ4 ¼ 6g4v2=m2

h where
mX ¼ gv=2, m2

h ¼ 2λhv2, giving AðXX → XXÞ ∼ 1
λh

s2

v4. In
other words, the scattering of vector bosons in a sponta-
neously broken Uð1Þ theory has an amplitude that grows
with energy until the vev v, where the EFT must be
supplemented by the Higgs boson.

IV. COUPLINGA STÜCKELBERGVECTOR FIELD
TO AN ANOMALOUS VECTOR CURRENT

Perhaps the most intriguing interaction that a
Stückelberg vector field could have is Xμj

μ
anom, a coupling

to an anomalous current. In this section we will mainly
focus on coupling to an anomalous vector current, since we
already showed in Sec. III C that a tree-level coupling to an
axial current generically leads to amplitudes that grow with
energy.
For a gauge field, Aμj

μ
anom gauges what is a globally

anomalous Uð1Þ current associated with jμanom. In the
presence of just one Uð1Þ gauge interaction, this leads
to the usual Uð1Þ3 anomaly. When the fermions contrib-
uting to the current jμanom also transform under other gauge
symmetries, such as the SM, this leads to the mixed
anomalies ðSMÞ2Uð1Þ. The presence of the gauge anoma-
lies leads to radiative corrections to the mass of the Uð1Þ
gauge boson and to certain scattering amplitudes growing
with energy [35,47].
In [45], a detailed analysis of a light Uð1Þ gauge boson

coupled to an anomalous current was carried out. Their
focus was on baryon number, which has the mixed
anomalies ½Uð1ÞY �2Uð1ÞB and ½SUð2ÞL�2Uð1ÞB. The inter-
action Aμj

μ
B leads to couplings of the longitudinal mode of

Aμ with the (anomalous) baryon current. The consequences
of this nonzero coupling emphasized in [45] are longitu-
dinally enhanced interactions, including Z → Aγ and other
anomaly-induced decays. A careful analysis of the loop
functions leading to this decay was carried out in [50].
But now there is a puzzle. The Stückelberg vector field

interaction Xμj
μ
anom appears to lead to an anomalous

fermion triangle loop, and yet, Xμ is not a gauge field.
There cannot be Uð1Þ3 or ðSMÞ2Uð1Þ mixed gauge
anomalies because there is no Uð1Þ gauge symmetry
associated with Xμ.

In this section, we resolve this puzzle and, in the course of
our analysis, find several consequences for theories with a
Stückelberg vector boson. When we first introduce the fake
gauge symmetry of Eq. (9), the mystery seems to deepen
further because now Aμ would, in fact, appear to gauge an
anomalous current.Wewill see that the term ð∂μπ=mXÞjμanom
precisely cancels the gauge anomaly that arises from
Aμj

μ
anom. The mechanism responsible for canceling the

anomaly can be understood essentially by IBP,

−
∂μπ

mX
jμanom →

π

mX
∂μj

μ
anom ∝

π

mX
FμνF̃μν; ð57Þ

where F̃μν ≡ 1
2
ϵαβμνFαβ, and we recognize that the partial

derivative of the anomalous current ∂μj
μ
anom is proportional to

FμνF̃μν, the Chern-Pontryagin density. The resulting dimen-
sion-5 interaction on the right-hand side of Eq. (57) is referred
to as the Peccei-Quinn term8 (for any of thegauge symmetries
of the SM, not just QCD). When this term is combined with
suitable Wess-Zumino terms9 (coupling a gauge/vector field
to a Chern-Simons class10 [55,70]) with appropriate choices
of coefficients to restore gauge invariance, wewill see that the
Ward identities can be satisfied for all symmetries, verifying
that Aμ does not have a gauge anomaly.11

We now turn to considering the coupling of a vector field
to an anomalous symmetry current, jμanom ¼ P

ψ q
ψψ†σ̄μψ ,

where qψ are the fermion charges under the symmetry. We
wish to explicitly calculate the fermion loop attaching an
external Aμ to two gauged vector bosons Bν and Cρ. Our
discussion will apply to both a gauged vector field coupled

7Higher-dimensional operators formed from Xμ alone will also
be generated by the same argument. Forming amplitudes from
these, i.e., AðXLXL → 4XLÞ from ðXμXμÞ3=M2

Pl, we find a
similar, but weaker bound on

ffiffiffiffiffiffiffiffiffi
smax

p
.

8This is also referred to as a “Green-Schwarz term” in some of
the literature, e.g., [40].

9These are also referred to as “generalized Chern-Simons
terms” in the literature, e.g., [40,46].

10The Chern-Simons class for a non-Abelian gauge field is (the
second term is zero for the Abelian case)

Ωμ ¼ ϵμνλρ
�
Aa
νFa

λρ −
1

3
fabcAa

νAb
λA

c
ρ

�
⇒ ∂μΩμ ¼ 1

2
ϵμνλρFa

μνFa
λρ:

ð58Þ
11Coupling Aμ and ∂μπ, the two “components” of Xμ, sepa-

rately to the Chern-Simons class for an unbroken gauge sym-
metry Ωμ

B yields

AμΩ
μ
B ¼ AμϵμνλρBνFλρ

B ; ð59Þ

the dimension-4 Wess-Zumino term used to cancel the mixed
anomaly, and

∂μπ

mX
Ωμ

B ¼ −
π

mX
∂μΩ

μ
B ¼ −

π

mX
FBμνF̃

μν
B ; ð60Þ

the dimension-5 Peccei-Quinn term. As we will see in Sec. IV C,
the four-dimensional Green-Schwarz mechanism combines these
two types of terms to cancel anomalies.
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to an anomalous local symmetry current, as well as a
Stückelberg vector field Xμ coupled to an anomalous
global symmetry current. For the Stückelberg vector
field, however, we will do this by first decomposing
Xμ ¼ Aμ − ∂

μπ=mX, carrying out the calculation of the
contribution to the gauge anomaly from Aμ, and then add
back in the contribution from ∂

μπ=mX.

A. Triple-gauge vertex from a single fermion loop

Consider the triangle diagrams that contribute to the
anomaly with general vector bosons A, B, C as shown in
Fig. 2. By power counting, their amplitudes are linearly
divergent and thus not uniquely defined. This can be
encoded by including arbitrary four-momentum shifts a
and b in the fermion loops in the left- and right-hand side
diagrams, respectively. We will see that these arbitrary
shifts are restricted by physical requirements, e.g., gauge
invariance of either B or C.
Our convention for the amplitude of the sum of the

triangle diagrams in Fig. 2 is

Δ̃ρμν
frgðp; q;mψ ;a; bÞ ¼ gr1C g

r2
A g

r3
B Γ̃

ρμν
frgðp; q;mψ ; a; bÞ; ð61Þ

where the indices ri ∈ fA;Vg indicate axial or vector
couplings, respectively, of the boson with corresponding
Lorentz superscript index in the same order, and mψ is the
mass of the fermion ψ circulating in the loop. For now, all
fermion charges have been subsumed into the couplings, so
one should view gr1;2;3A;B;C as specific to the particular fermion
in the loop, i.e., the interaction term in the Lagrangian for
this fermion is

Lint ¼ ψ̄γμðgVC − gACγ5ÞψCμ þ ðC → A; BÞ: ð62Þ

Focusing for example on the case
r1 ¼ A; r2 ¼ V; r3 ¼ V, the amplitudes for the (cou-
pling-stripped) triangle diagrams are:

Γ̃ρμν
AVVðp; q;mψ ; a; bÞ ¼

Z
l
Tr

�
γ5γ

ρ 1

=lþ =a − =p −mψ
γμ

1

=lþ =a −mψ
γν

1

=lþ =aþ =q −mψ

þ γ5γ
ρ 1

=lþ =b − =q −mψ
γν

1

=lþ =b −mψ
γμ

1

=lþ =bþ =p −mψ

�
; ð63Þ

where

Z
l
≡
Z

ddl
ð2πÞd : ð64Þ

For the VAVand VVA amplitudes, we move the γ5 matrix in
front of γμ or γν, respectively. To avoid nonchiral anoma-
lies, we set b ¼ −a [71–73]. In terms of the external
momenta p, q, we can then express the arbitrary shift a ¼
zpþ wq using two real parameters z, w. The amplitude can
be written in the Rosenberg parametrization as [50,71]

Γ̃ρμν
frgðp;q;z;wÞ¼

1

π2
fG1

frgðp;q;wÞϵρμν;pþG2
frgðp;q;zÞϵρμν;q

þðF3ðp;qÞpμþF4ðp;qÞqμÞϵρν;pq
þðF5ðp;qÞpνþF6ðp;qÞqνÞϵρμ;pqg; ð65Þ

where ϵρμν;q ≡ ϵρμναqα and we have made implicit the
fermion mass dependence. The form factors Fi are finite
and independent of frg, whereas G1, G2 are dependent on
the momentum shift a (or the parameters w, z) as a
consequence of the linear divergences of the triangle
diagrams.
Full details of computing the form factors is given in

Appendix A. We quote here the final expressions for the
AVV and VAV cases that we will use in the following

FIG. 2. Triangle diagrams responsible for the coupling of Aμ (decomposed from Xμ ¼ Aμ − ∂
μπ=mX) to two gauge bosons Bν and Cρ.

We have labeled Lorentz indices and directions of four-momenta according to their use in the main text.
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sections. Employing Eq. (A8) to eliminate F5, we obtain
for the AVV and VAV cases:

G1
AVV ¼ 1

4
ðzþ 1Þ þ p2F3 − p · qF4;

G2
AVV ¼ 1

4
ðw − 1Þ þ q2F6 þ p · qF4; ð66Þ

G1
VAV ¼ 1

4
ðzþ 1Þ þ p2F3 − p · qF4;

G2
VAV ¼ 1

4
ðw − 1Þ þ q2F6 þ p · qF4 −m2

ψC0ðm2
ψ Þ: ð67Þ

B. Momentum-contracted vertex functions

Now that we have established how the triple-gauge
vertex can be manipulated into purely finite terms—form
factors F3…6 plus the momentum-shift parameters w, z—
we turn to its phenomenological consequences. The most
interesting quantity is not the triple-gauge vertex itself, but
what happens when the triple-gauge vertex is contracted
with a longitudinally polarized A, B, or C: as explained in
Sec. III A, the longitudinal polarizations are proportional to
momenta in the large-momentum limit, and these can lead
to scattering or decay amplitudes that grow with energy.
The relevant quantities are the momentum-contracted
vertex functions (MCVF)

ðpþ qÞρΔ̃ρμν; pμΔ̃ρμν; qνΔ̃ρμν; ð68Þ

which are exactly the quantities we calculated in
Appendix A to eliminate G1;2

frg.
In fact, the MCVF are the starting points for the

calculation of the Ward identities for this vertex, e.g., for
A this is pμMμðAÞ ¼ pμΔ̃ρμν. For a vertex that respects all
of the symmetries, ðpþ qÞρΔ̃ρμν ¼ pμΔ̃ρμν ¼ qνΔ̃ρμν ¼ 0,
while for anomalous fermion content, one or more of these
Ward identities is nonvanishing. Contracting the momen-
tum of a massive gauge boson with the vertex function also
yields a nonzero result, hence the Ward identity is also not
satisfied. However, as we discussed in Sec. III A, one can
construct a generalized Ward identity for a massive gauge
boson that relates the MCVF of the massive gauge boson
with that having the massive gauge bosons swapped with
the Goldstone boson (for a spontaneously broken gauge
symmetry) or the longitudinal mode (for a Stückelberg
vector field).
Employing the procedure described in the previous

subsection, we can compute ðpþ qÞρΔ̃ρμν, pμΔ̃ρμν,
qνΔ̃ρμν for C, A, B, respectively, with arbitrary combination
of V, A couplings to the fermions in the loop. For the
remainder of the paper, however, we will make the
simplification that one of the vector fields, which we take
(without loss of generality) to be B, has purely vectorial
couplings. This is because the phenomenological examples
we will examine in Sec. V all share this property. The
MCVF simplify to [50]:

ðpþ qÞρΔ̃ρμν ¼ gVB
4π2

ϵμν;pqfðw − zÞðgVCgAA þ gACg
V
AÞ þ 4m2

ψC0ðm2
ψÞ · gACgVAg;

−pμΔ̃ρμν ¼ gVB
4π2

ϵρν;pqfðw − 1ÞðgVCgAA þ gACg
V
AÞ − 4m2

ψC0ðm2
ψÞ · gVCgAAg;

−qνΔ̃ρμν ¼ gVB
4π2

ϵρμ;pqfðzþ 1ÞðgVCgAA þ gACg
V
AÞg; ð69Þ

where

Δ̃ρμν ¼
X

r1;r2∈fA;Vg
Δ̃ρμν

r1r2V
; ð70Þ

and C0 is a special case of the three-point Passarino-
Veltman scalar function

C0ðm2
ψÞ ¼ C0ðq2; ðpþ qÞ2; p2;mψ ; mψ ; mψÞ

¼ −
Z

1

0

dx
Z

1−x

0

dyΔ−1; ð71Þ

with Δ from Eq. (A3). Two relevant limits are

lim
m2

ψ→∞
m2

ψC0ðm2
ψÞ → −

1

2
;

lim
m2

ψ→0
m2

ψC0ðm2
ψÞ → 0: ð72Þ

More precisely, these are limits of m2
ψ with respect to the

other scales p2; ðpþ qÞ2; q2 that appear in Eq. (A3).
In a theory with a fermion content that is nonanomalous,

obviously all of the MCVF in Eq. (69) vanish independ-
ently of the presence or absence of masses for the vector
bosons. When the fermion content is anomalous, i.e., with
respect to A and/or C (recall that we take B to couple
vectorially), the MCVF are not uniquely determined due to
the freedom to choose the coefficients of the most general
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momentum shift a ¼ zpþ wq in the vertex function. This
allows for several possibilities. One possible choice of
coefficients results in all three MCVF being equal,

ðpþ qÞρΔ̃μνρ ¼ pμΔ̃μνρ ¼ qνΔ̃μνρ ≠ 0; ð73Þ

a configuration referred to as the “consistent anomaly”
[74–76]. This choice is convenient from an EFT perspec-
tive: we view the contributions to the gauge anomaly as
arising from the SM plus a contact term that, for instance,
arises from some heavy fermions that maintain anomaly
cancellation. In the consistent picture, all gauge symmetries
are violated, so integrating out UV physics can generate
gauge-violating operators. Combining these gauge-
violating operators with the SM loop (also gauge-violating
in the consistent picture) and choosing its coefficient
appropriately, we can cancel all anomalies.12

A second possibility is to utilize momentum shifts such
that the anomaly resides in only a single gauge interaction,
the so-called “covariant anomaly” [75,76]. Gauge-
variant Wess-Zumino effective operators of the form
ϵμνρσAμCνFB;ρσ can be added to the Lagrangian to shift
from the consistent to covariant picture. This approach is
often employed for calculations with two gauge bosons,
B, C, with anomaly-free couplings and one (massive)
gauge boson, A, that has anomalous couplings. By taking
w ¼ z ¼ −1 in Eq. (69), the terms that are independent of
fermion mass appear only in the MCVF for A

ðpþ qÞρΔ̃ρμν ¼ gVB
π2

ϵμν;pqm2
ψC0ðm2

ψÞ · gACgVA;

−pμΔ̃ρμν ¼ −
gVB
2π2

ϵρν;pqfðgVCgAA þ gACg
V
AÞ

þ 2m2
ψC0ðm2

ψÞ · gVCgAAg;
−qνΔ̃ρμν ¼ 0: ð74Þ

Notice that the fermion mass-dependent terms in the first
two expressions above come with different coupling
structures: if the fermions have purely axial couplings to
A (VAV structure), the mass-dependent term vanishes from
the first line, while if the couplings to C are purely axial
(AVV structure), the mass-dependent term vanishes from
the second line.

C. Anomaly cancellation, Ward identities, and π

We are now in a position to clarify the role that the
longitudinal mode π plays in anomaly cancellation.
Consider a theory with massless fermions in which the
vector field Aμ has anomalous couplings. For a single
massless fermion ψ , the MCVF become

ðpþ qÞρΔ̃ρμν ¼ 0;

−pμΔ̃ρμν ¼ −
gCgXgBq

ψ
B

2π2
ϵρν;pqðqV;ψC qA;ψX þ qA;ψC qV;ψX Þ;

−qνΔ̃ρμν ¼ 0; ð75Þ

where from Eq. (72), m2
ψC0ðm2

ψ Þ → 0 in the massless
fermion limit. Here, we have also separated the coupling
constants gX;B;C from the individual fermion charges qψX;B;C
by writing

gVA ¼ gXq
V;ψ
X ; gAA ¼ gXq

A;ψ
X

gVB ¼ gBq
ψ
B; gAB ¼ 0;

gVC ¼ gCq
V;ψ
C ; gAC ¼ gCq

A;ψ
C : ð76Þ

In this limit, the only nonvanishing MCVF is the one
involving the Aμ. If we sum over several massless fermions,
this becomes

−pμΔ̃ρμν ¼ −AX
gCgXgB
2π2

ϵρν;pq ð77Þ

in terms of the Aμ anomaly coefficient

AX ≡X
ψ

qV;ψB ðqV;ψC qA;ψX þ qA;ψC qV;ψX Þ: ð78Þ

From the start of Sec. IVA until now, we have focused
solely on the contribution to the MCVF from a vector field
Aμ. Aside from forming the MCVF in Eq. (77) by
contracting the momentum of Aμ onto the vertex, we have
not specified whether Aμ is massive or massless. In
addition, there is no distinction between whether Aμ is a
gauge field that gauges the fermion current to which it
couples with strength gX or is in fact a Stückelberg vector
field Xμ that couples to a global fermion current with
strength gX.
Below, we identify three distinct cases.
(1) Aμ is a massless gauge field: In this case, Eq. (77)

manifestly violates the Ward identity, and so either
Aμ must acquire a mass or the theory contains
multiple massless fermions with charges chosen
such that, while the contribution from any single
(Weyl) fermion is nonzero, the sum in Eq. (78)
vanishes.

(2) Aμ represents Xμ, the massive Stückelberg vector
field: In this case, Eq. (77) is the final result for the

12In the covariant picture, discussed below, the issue in the
EFT is that integrating out UV physics can only change the
coefficients of SM terms, or generate new, higher-dimensional
terms that respect the UV symmetries. As there is no B- or C-
invariant, A-violating term, there is no coefficient to change, and
the power counting for higher-dimensional terms will not work
out correctly to cancel the anomaly. Therefore, working in the
covariant picture requires doing calculations in the full UV
theory, keeping both SM and UV physics and not taking the
low-energy limit of SMþ effective operators.
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MCVF that connectsXμ with the gauge fieldsCρ and
Bν through a loop of massless fermions. There is no
(generalized or other) Ward identity since there is no
symmetry or conserved current associated with Xμ.

(3) Aμ represents a massive gauge field arising from a
spontaneously brokenUð1Þ gauge symmetry: This is
the conventional case, which requires additional
massive fermions, “anomalons,” to cancel the
anomaly. The presence of anomalons is the key
distinction from case 2.

We now want to compare and contrast cases 2 and 3, but we
first need to resolve the puzzle of decomposing
Xμ ¼ Aμ − ∂

μπ=mX. In this decomposition, Aμ is a gauge
field, and so Aμj

μ
anom necessarily gauges the anomalous

current jμanom; however, Xμj
μ
anom is simply an interaction of a

vector field with a globally anomalous current jμanom. How
can Aμ be anomalous under its gauge symmetry while Xμ

has nothing to do with a gauge symmetry or a gauge
anomaly?
The resolution is found by considering the additional

contribution from the scalar field π. The Lagrangian
contains

−gX
∂μπ

mX
jμanom ¼ gX

π

mX
∂μj

μ
anom; ð79Þ

where we have used IBP to get the right-hand side. The
divergence of the anomalous current is given by

gX∂μj
μ
anom ¼ AX

gCgXgB
4π2

FC;μνF̃
μν
B ; ð80Þ

and so the scalar field contributes a dimension-5 Peccei-
Quinn term in the Lagrangian,

AX
gCgXgB
4π2

π

mX
FC;μνF̃

μν
B : ð81Þ

In momentum space, this interaction becomes

imXΔ̃ρνðπÞ ¼ AX
gCgXgB
2π2

ϵρν;pq; ð82Þ

namely a dimension-5 three-point vertex among π, Cρ, and
Bν in the effective theory. We can combine Eq. (77) with
Eq. (82) as

pμΔ̃ρμνðAÞ − imXΔ̃ρνðπÞ ¼ 0: ð83Þ

This is the generalized Ward identity from Sec. III A for Aμ

applied to the fermion triangle diagram. That is, so long as
the dimension-5 Peccei-Quinn term has the specific
coefficient given in Eq. (81), Aμ satisfies the generalized
Ward identity. The specific coefficient that is required is
precisely the one that permits the combination of the
renormalizable Aμj

μ
anom and the dimension-5 interaction

−∂μπj
μ
anom=mX to be written as Xμj

μ
anom; in other words, the

combination of Aμ and ð∂μπÞ=mX must maintain the fake
gauge invariance. This is otherwise known as the
four-dimensional Green-Schwarz anomaly cancellation
mechanism [29,35,36,54,77].
Since Aμ as part of Xμ is not an external state, we remark

that Eq. (83), the generalized Ward identity, is not a
statement about longitudinal equivalence. Contracting an
on-shell external Xμ with Δ̃ρμν in the high-momentum limit
jk⃗j ≫ mX gives Eq. (77), which we can equivalently
calculate using an external on-shell π and the longitudinal
equivalence theorem in Eq. (31). That is, Aμ and π
“conspire” to satisfy the generalized Ward identity while
there is no analogue of this for Xμ.
Finally, it is interesting to compare and contrast what

happens in a theory with a massive Abelian gauge boson in
which the anomalous contribution is canceled by anom-
alons. The general case, with arbitrary vector and axial
couplings for Aμ and Cρ, can be worked out straightfor-
wardly from Eq. (69). For the purposes of this discussion,
however, we simply illustrate the similarities and
differences in the case where the massless fermions
contributing to the anomaly have purely vector interactions
to Aμ and Bν and purely axial interactions to Cρ, in which
case Eq. (78) simplifies to

AX ¼
X
ψ

qV;ψB qA;ψC qV;ψX : ð84Þ

The massive anomalons have purely axial interactions to Aμ

and purely vector interactions to Bν and Cρ,

Aanom
X ¼

X
ψ

qV;ψB qV;ψC qA;ψX : ð85Þ

Anomaly cancellation requires that the sum of the charges
of the anomalons under the gauge symmetries satisfy

Aanom
X ¼ −AX; ð86Þ

such that Eq. (78) vanishes.
However, for massive anomalons, there are additional

contributions to the momentum-contracted vertex function
from the C0 functions in Eq. (69). We further simplify this
discussion by taking all of the anomalons to have the same
mass mψ . For the specific choices in Eqs. (84) and (85), the
only nonzero MCVF is

−pμΔ̃ρμν¼−
gCgXgB
2π2

ϵρν;pq½AX−Aanom
X ð1þ2m2

ψC0ðm2
ψ ÞÞ�

¼Aanom
X

gCgXgB
π2

ϵρν;pqm2
ψC0ðm2

ψ Þ; ð87Þ

where we used the anomaly cancellation condition Eq. (86)
to get the second line. If the anomalons were massless, the
right-hand side above would vanish using Eq. (72); this is
as expected since by definition the theory would then be
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anomaly-free and the Ward identities satisfied. If the
anomalons are infinitely massive, the term in parentheses
on the first line multiplying Aanom

A vanishes using Eq. (72),
leaving the right-hand side nonzero and equal to Eq. (77),
i.e., back to where we started.
With nonzero anomalon masses, Eq. (87) does not

vanish. Following our discussion in Sec. III A, we can
again construct a generalized Ward identity such that

pμMμðAÞ − imXMðG0Þ ¼ 0: ð88Þ

where, for this discussion, G0 is the Goldstone boson
absorbed to make Aμ massive. Applying this to the MCVF
for the fermion triangle diagram,

pμΔ̃ρμν − imXΔ̃ρνðG0Þ ¼ 0: ð89Þ

From this we can deduce the required interaction that the
Goldstone boson must have with the MCVF,

iΔ̃ρνðG0Þ ¼ Aanom
X

gCgXgB
π2

ϵρν;pq
m2

ψ

mX
C0ðm2

ψ Þ: ð90Þ

Here, we finally see the key difference between the case of
a Stückelberg vector field and a spontaneously broken
massive Abelian gauge field. In the specific example above,
the anomalons have axial interactions with Aμ, implying the
anomalons are chiral with respect to the gauge symmetry
associated with Aμ. The only way to give mass to these
chiral fermions without explicitly breaking the symmetry is
to write Yukawa interactions with the Higgs field whose
vev spontaneously breaks the gauge symmetry associated
with Aμ. This means that, with conventional normalizations
mψ ¼ yψv=

ffiffiffi
2

p
and mX ¼ gv=2, one power of the vev

drops out in Eq. (90). Hence we see that the generalized
Ward identity can be satisfied with renormalizable Yukawa
interactions of the Goldstone mode with the fermions. This
key difference is what permits a spontaneously broken
gauge symmetry with anomalous fermion content (and a
separate set of anomalons with heavier masses) to be at
least possibly viable without a divergence in the UV
leading to a cutoff scale. The caveat is that this requires
Yukawa couplings to be perturbative (i.e., less than order
one) in order to avoid Landau poles.

V. APPLICATIONS TO BARYON NUMBER

We now consider specific cases where the Stückelberg
vector field Xμ couples to a globally anomalous current in
order to investigate the phenomenological consequences.
One of the most interesting possibilities is Xμ coupling to
baryon number. Baryon number is anomalous in the SM,
but anomaly-free with respect to SUð3Þc ×Uð1Þem below
the electroweak scale. Here, our focus is to investigate the
observable consequences of the longitudinal enhancements

that occur in the presence of Xμj
μ
B, specifically three

observables: Z → Xγ, ff̄ → Xγ, and Zγ → Zγ. These
depend on the electroweak scale and disappear in the limit
v → ∞. We compare and contrast our results with those
when baryon number is gauged [45,50], identifying the
similarities and differences for the case of a Stückelberg
vector field. In the discussion below, we take all SM
fermions to be massless; however, it is straightforward to
reintroduce SM fermion mass dependence (e.g., [50]). In
reality, only the top quark significantly invalidates this
assumption, causing the baryon anomaly coefficient to be
slightly smaller than what we have assumed below.

A. Prelude: Z → Aγ with gauged baryon number

As a prelude to the results in subsequent sections, we
want to review the calculation of Z → Aγ, where Aμ is
the gauge field associated with gauged baryon number
[78–80]; we reserve Xμ to refer to the Stückelberg vector
field. However, we will use mX, gX, and qX to refer to the
mass, coupling, and charges of the (gauged or ungauged)
vector field coupled to the baryon current.
In the SM, the baryon current is anomalous with respect

to the mixed anomalies Uð1Þ2YUð1ÞB and SUð2Þ2LUð1ÞB in
the specific combination [45]

∂μj
μ
B ¼ AB

8π2
ðg02BμνB̃μν − g2WμνW̃μνÞ: ð91Þ

Here AB is the anomaly coefficient

AB ¼
X
f∈SM

QfqV;fX qA;fZ ; ð92Þ

where the sum is over all of the fermions f in the SM with
electric charge Qf, baryon number qfB, and axial coupling
qA;fZ ¼ Tf

3=2 ¼ �1=4 to the Z. This is equivalent to the
anomaly coefficient for just SUð2Þ2LUð1ÞB or (the negative
of) Uð1Þ2YUð1ÞB since Uð1Þ2emUð1ÞB vanishes. Three gen-
erations of massless SM fermions give AB ¼ 3=4.
As we have learned from Sec. IV B, we are free to

choose a set of Wess-Zumino terms such that the only
nonzero MCVF is

−pμ

X
f

Δ̃ρμν
SM ¼ −AB

eggX
2π2cW

ϵρν;pq; ð93Þ

following Eq. (69) with the specific choices w ¼ z ¼ −1.13

Baryon number can be made anomaly-free by extending
the SM with anomalons ψ with charges such that, when
they are included in the sum Eq. (92), the net result is zero.

13Had we included nonzero SM fermion masses, the first line
of Eq. (69) would also be nonzero. Adding mZ times the Zρ
Goldstone contribution, a ϕZ − A − γ vertex, to the first line
would yield zero.
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For certain choices of their SUð2ÞL ×Uð1ÞY charges, these
anomalons can obtain masses independently of the electro-
weak vev and therefore can be much heavier than the SM
fermions. The full result for the decay rate Z → Aγ
including both SM fermions and a set of massive anom-
alons was given in [50]. However, for our purposes, it is
more convenient to separate the contributions to the triangle
loop from the SM, Eq. (93), and the massive anomalons.
Defining Δ̃ρμν

anom as the contribution to the vertex function
from the anomalons, and making the same choice
w ¼ z ¼ −1, the additional contribution to the MCVF
can again be easily obtained from Eq. (69),

−pμ

X
ψ

Δ̃ρμν
anom ¼ AB

eggX
2π2cW

ϵρν;pqð1þ 2m2
ψC0ðm2

ψÞÞ: ð94Þ

To cancel the anomaly and obtain mass without electro-
weak symmetry breaking, these anomalons have pure
vector couplings to Z and pure axial couplings to A such
that

X
ψ

QψqA;ψX qV;ψZ ¼ −AB: ð95Þ

This is the same situation we encountered in Sec. IV C—
the anomalon mass only appears in the MCVF in Eq. (94).
If we were instead to take mψ → 0 (and therefore

degenerate with the SM), the two sectors would cancel
exactly, as required of an anomaly-free theory. For nonzero
anomalon masses, the cancellation between the two sectors
is inexact, leaving

−pμ

X
f;ψ

Δ̃ρμν
tot ¼ AB

eggX
π2cW

ϵρν;pqm2
ψC0ðm2

ψÞ; ð96Þ

as in Eq. (87). It is interesting to consider anomalons that
are much heavier than the Z boson.14 Then the right-hand
side simplifies to

−pμ

X
f;ψ

Δ̃ρμν
tot ¼ −AB

eggX
2π2cW

ϵρν;pq; ð97Þ

which up to corrections of Oðm2
Z=m

2
ψÞ reduces to just the

original SM-only contribution in Eq. (93). Dividing both
sides by mX, the above equation becomes the amplitude for
Z → ALγ, where AL is the longitudinal polarization.
Squaring, we can convert this to a decay rate (again, in

the limit that the SM fields are massless and the anomalons
are infinitely heavy)

ΓðZ → AγÞ ≃
mX≪mZ ΓðZ → ALγÞ ≃

3

32π2
α2emαX
c2Ws

2
W

m3
Z

m2
X
; ð98Þ

where sW is the sine of the Weinberg angle and we have
used AB ¼ 3=4.
As emphasized in [45], the m2

Z=m
2
X longitudinal

enhancement implies the decay width is unbounded in
the limit mX ≪ mZ. For the effective theory to be valid,
ΓðZ → AγÞ < mZ, which implies a lower bound on mX of

mX >
ffiffiffiffiffiffi
6π

p
×

eggX
64π3cW

×mZ: ð99Þ

Up to an irrelevant numerical prefactor, this is the same
bound obtained by Preskill [35] for an anomalous gauge
theory by requiring the divergent three-loop contribution to
the (anomalous) gauge boson mass not exceed its bare

mass. More precisely, Preskill derived an expression Λ ¼
64π3cW
eggX

mX for the cutoff scale Λ of the effective theory that
has the same scaling as Eq. (99) when we reinterpret the
cutoff scale Λ to be mZ.
What happens when mX is lowered below the bound

given in Eq. (99)? In a theory with anomalons, it is no
longer possible to take their massmψ to be much larger than
mZ. Approximating the results in [50] in the limit mX ≪
mψ ≪ mZ (with massless SM fermions), we find

ΓðZ → AγÞ ≃ 3

32π2
α2emαX
c2Ws

2
W

×mZ ×
m4

ψ

m2
Xm

2
Z
log4

m2
ψ

m2
Z
; ð100Þ

where now the EFT requirement ΓðZ → AγÞ < mZ implies
the lower bound on mX is modified to

mX >
ffiffiffiffiffiffi
6π

p
×

eggX
64π3cW

×mψ ×
mψ

mZ
log2

m2
ψ

m2
Z
: ð101Þ

This implies that we can lower the mass for mX at the price
of reducing the anomalon masses below mZ. However, the
additional suppression factor mψ=mZ log2m2

ψ=m2
Z on the

right-hand side in Eq. (101) relative to the result in Eq. (99)
implies that the separation betweenmX andmψ can become
increasingly large as mψ is lowered below mZ.

B. Z → Xγ with global baryon number

Now we are in a position to evaluate Z → Xγ when X is a
Stückelberg vector field with coupling gXXμj

μ
B to the

global, anomalous baryon current of the SM. The contri-
bution to the Zρ − Xμ − γν vertex coming from loops of SM
fermions is identical to the gauged case in the last section.
Therefore, the nonzero MCVF is

14To play a role in the anomaly, the anomalons must receive
some of their mass from the same SSB that gives mass to A and
therefore mψ ∼ yvX, where mX ∼ gXvX and y is some Yukawa
coupling. A large hierarchy between the anomalons and X
requires taking gX ≪ y, with the validity of perturbation theory
limiting ymax ∼ 4π. More discussion on the phenomenological
implications of this “maximum hierarchy” between ψ and X can
be found in [50].
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−pμ

X
f

Δ̃ρμν
SM ¼ −

AB

2π2
eggX
cW

ϵρν;pq: ð102Þ

This is the total contribution since there are no anomalons
present.
Using this vertex to calculate Z → Xγ, we find

ΓðZ → XγÞ ≃
mX≪mZ ΓðZ → XLγÞ ≃

3

32π2
α2emαX
c2Ws

2
W

m3
Z

m2
X
; ð103Þ

exactly the same result as Eq. (98), the case where Uð1ÞB is
gauged and made anomaly-free via infinitely heavy anom-
alons. We remark that the same result could also have been
obtained using the longitudinal equivalence theorem to
relate ϵμLΔ̃

ρμνðXÞ to Δ̃ρνðπÞ in Landau gauge at large
momentum jk⃗j ≫ mX.
Thus we see that the gauging of the would-be anomalous

baryon number symmetry is irrelevant to the presence of
the physically observable decay process Z → Xγ. It is the
presence of the global baryon number anomaly that is
essential for this decay to proceed. Said differently, our
results show that the decay rate alone cannot differentiate
between the scenarios of a gauge boson accompanied by
heavy anomalons and a Stückelberg field coupled to a
global current—a perspective emphasized in [73].
The presence of the Peccei-Quinn term, a dimension-5

operator in the Stückelberg EFT, implies a UV cutoff that
cannot be taken arbitrarily large. Applying Eq. (81) to the
specific case of the anomalous baryon current, the dimen-
sion-5 operator is

AB
eggX
4π2cW

π

mX
FZ;μνF̃

μν
em; ð104Þ

and requiring the coefficient of this operator be less than
4π, we obtain a cutoff scale of order

ffiffiffiffiffiffiffiffiffi
smax

p
∼
16π3cWmX

ABeggX
: ð105Þ

The existence of a cutoff scale is not surprising because we
previously discovered in Eq. (99) that we could not
arbitrarily separate mX from mZ while allowing the decay
rate ΓðZ → XγÞ to remain perturbative. Both bounds scale
similarly (up to numerical coefficients) with couplings and
mass. What we see is that a Stückelberg vector field
coupled to a globally anomalous current has a nonrenor-
malizable interaction signaling the existence of amplitudes
that can grow with energy. This is explicitly seen in the
decay rate Z → Xγ, and as we will see below, also occurs
for processes that have one or more factors of Δ̃ρμν with an
odd number of axial couplings embedded in the amplitude.
For finite mψ ≫ mZ, there will be corrections in Eq. (98)

of Oðm2
Z=m

2
ψÞ that are absent in Eq. (103). It is tempting to

think that these corrections would be observable given

sufficiently accurate measurements of mX and ΓðZ → XγÞ.
However, this is premature, since in the case of a
Stückelberg vector field, there are additional higher-
dimensional operators suppressed by Λ that can contribute
to the decay process. Hence, in the absence of direct
observations (on-shell production) of anomalons and/or a
Higgs boson, there is no way to unambiguously determine
whether the decay process signals the existence of gauged
baryon number, or instead, a Stückelberg vector field
coupled to global baryon number.

C. f f̄ → Xγ

Attaching the Zρ leg of the Zρ − Xμ − γν vertex to a
fermion current, we can explore how the longitudinal
enhancement of the vertex manifests in ff̄ → Xγ, where
f is a SM fermion. This calculation is interesting because it
allows us to probe the triple-gauge vertex and its longi-
tudinal enhancement at a wider range of energies than in Z
decay. In particular, we can consider limits such as
m2

X ≪ s ≪ m2
Z, where the Z has been integrated out.

The diagrams for ff̄ → Xγ are shown above in Fig. 3; an
s-channel diagram proceeding through the triple-gauge
vertex Δ̃ρμν, plus t- and u-channel diagrams. The t- and
u-channel diagrams involve only vectorial couplings and
lead to the usual collinear divergences in the cross section.
However, at least in the limit that the SM fermions are
massless, they do not couple to the longitudinal part of X
and thus do not grow with s (for a fixed scattering angle).15

Therefore, we will ignore these diagrams and focus on the
s-channel piece, deferring a more general calculation to
Appendix B. Furthermore, we will focus on the XL piece of
the amplitude, as this contains the leading dependence on s:

iMðf̄f → XLγÞ ¼
ig
cW

1

s −m2
Z
v̄ðk2Þγρ

× ðqV;fZ − qA;fZ γ5Þuðk1ÞΔ̃ρμν
tot

pμ

mX
ϵ�νðqÞ;

ð106Þ

where qV;fZ ðqA;fZ Þ are the vectorial (axial) couplings of
fermion f to the Z and Δ̃ρμν

tot is the triple-gauge vertex after
summing over all fermions—SM and beyond—in the loop.
Here we have used ϵμLðXÞ → pμ=mX for large jp⃗j ≫ mX,

FIG. 3. Diagrams for ff̄ → Xγ, with f an SM fermion: if only
anomalons ψ couple to X, only the left diagram is relevant;
otherwise, if f also couples to X, there are the t- and u-channel
diagrams as well (cross diagrams not shown).
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and so we are implicitly imagining a scenario where
ffiffiffi
s

p
of

the process is large compared to mX. Note that only the
transverse part of the Z propagator enters, since
ðpþ qÞρΔ̃ρμν

tot ¼ 0.
As shown in previous sections, pμΔ̃

ρμν
tot has the same

value whether we consider a Stückelberg vector field
coupled to global baryon number or a gauged baryon
number with anomalons much heavier than all of the other
physical scales in the process. Thus we can evaluate pμΔ̃

ρμν
tot

via Eq. (102) or Eq. (97), yielding

iMðff̄→XLγÞ¼
ig
cW

ABeggX
2π2cW

1

mX

1

s−m2
Z
v̄ðk2Þγρ

×ðqV;fZ −qA;fZ γ5Þuðk1Þϵρν;pqϵ�νðqÞ: ð107Þ

The details of the calculation of the leading behavior of
the squared, polarization-summed and initial-state spin-
averaged amplitude are given in Appendix B. We employ
Eq. (B14) with only the AVV terms in the second line and
the massless fermion limit of Eq. (B15) to obtain

¯jM2j ∼ 1

4ðNcÞ2π4
��

g
cW

�
2

gXe

�
2 ðqV;fZ Þ2 þ ðqA;fZ Þ2

ðs −m2
ZÞ2

·
s2

4rX

�
1 −

2tu
s2

�
·

�X
q
κqQqqA;qZ

�
2

; ð108Þ

where Nc is the number of colors of the initial-state
fermions, κV;q ¼ κq ¼ 1=3 is the baryon number of the
quarks, and Qq is the electromagnetic charge of the quark
q. For up- and down-type quarks, qA;qZ ¼ T3=2, so
QuqA;uZ ¼ 1=6 and QdqA;dZ ¼ 1=12. The entire squared-
sum on the right-hand side evaluates to 1=16 for one
generation (including the color factor); there is an addi-
tional factor of 9 for three generations. This agrees with
A2

B ¼ 9=16. The cross section resulting from this ampli-
tude is

σðff̄ → XLγÞ ¼
3

8π

1

N2
c

α3emαX
c4Ws

4
W
ððqV;fZ Þ2

þ ðqA;fZ Þ2Þ ðs −m2
XÞ2

m2
Xðs −m2

ZÞ2
: ð109Þ

This expression already assumes s ≫ m2
X (and in the

case of gauged baryon number, the masses of any anom-
alons are much greater thanmZ and

ffiffiffi
s

p
); however, there are

a couple of further limits that are interesting to explore.
First, consider s ≫ m2

Z, with the hierarchy of scales
m2

X ≪ m2
Z ≪ s. In this case, the cross section becomes a

constant

σðff̄ → XLγÞs≫m2
Z
¼ 3

8π

1

N2
c

α3emαX
c4Ws

4
W
ððqV;fZ Þ2 þ ðqA;fZ Þ2Þ 1

m2
X
:

ð110Þ
A 2–2 scattering cross section constant in energy implies an
amplitude squared that grows as s, so an amplitude that
grows linearly with energy.
A more interesting limit is s ≪ m2

Z, with the hierarchy of
scales m2

X ≪ s ≪ m2
Z. In this limit,

σðff̄ → XLγÞm2
X≪s≪m2

Z
¼ 3

8π

1

N2
c

α3emαX
c4Ws

4
W
ððqV;fZ Þ2

þ ðqA;fZ Þ2Þ s2

m4
Z

1

m2
X
: ð111Þ

This cross section implies an amplitude squared ∝ s3, so an
amplitude ∝ s3=2. To see why this limit is intriguing, let us
write the amplitude squared as ∝ s2

m4
Z

s
m2

X
. If we use the

condition jMj2 ¼ 1 to set a limit on the cutoff of the theory,
we find

ffiffiffiffiffiffiffiffiffi
smax

p
∼

1

α1=2em α1=6X

�
mX

mZ

�
1=3

mZ: ð112Þ

We contrast the above with the result from a four-fermion
interaction in the Fermi theory. There, the amplitude
Mðff̄ → ff̄Þ ∼ s

m2
Z
(using mZ instead of v to make the

comparison easier and neglecting couplings and numerical
factors), implying

ffiffiffiffiffiffiffiffiffi
smax

p ∼mZ—a cutoff at the scale of
particles we have integrated out. Compared to this, the limit
from ff̄ → XLγ is smaller by a factor of ðmX=mZÞ1=3. We
remark in passing that in Eq. (112), it is curious that the
cutoff scale of the theory scales as m1=3

X in the same way as
the weak gravity conjecture suggests when mZ is replaced
with MPl [47].
The situation becomes even more intriguing once we

recall that the SM below the weak scale is purely vectorial.
The triple-gauge vertices formed from loops of fermions
with vectorial couplings (VVV in the language introduced
in Sec. IV) are zero—stated in the language of gauge
anomalies, the theory is anomaly-free. As such, ff̄ → Xγ
cannot exhibit any pathological scaling with respect to s in
the limit that we take the weak scale to be infinitely heavy.
The 1=m4

Z scaling on the right-hand side of Eq. (111)
satisfies this requirement; however, unusually, it predicts
the scale where perturbative unitarity is violated (using
jMj2 ≤ 1) to be parametrically lower than the weak scale.
If we require that ff̄ → Xγ remain valid at least until mZ,
this sets a lower limit on the mass of X,

mX;min ∼
4½3α3emαXððqV;fZ Þ2 þ ðqA;fZ Þ2Þ�1=2

c2Ws
2
W

mZ: ð113Þ

Taking f to be a charged lepton,mX;min ∼ 6 × 10−3
ffiffiffiffiffiffi
αX

p
mZ.

15Additionally, the interference between the t- and u-channel
diagrams and the s-channel diagram is zero.
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The above bound is a function of αX, so it can be made
arbitrarily small by sending αX ≪ 1; in other words, for
αX ≪ 1, the EFT cutoff implied by Eq. (112) can be pushed
above the scale of current experiments. It is an interesting
and open question as to whether processes such as ff̄ →
Xγ could place bounds on ðαX;mXÞ that are competitive
with bounds from Z → Xγ and other electroweak scale
processes.

D. Zγ → Zγ via X exchange

The final amplitude we calculate using the triple-gauge
vertex involves a so-called “BIM” process [81], the
scattering of gauge fields off each other through
the exchange of an off-shell Stückelberg vector field.
The original BIM calculation considered the scattering
of massless bosons through a (massive) Stückelberg vector
field. For consistency with previous sections, here we
specialize the calculation to the case of a Stückelberg
vector field coupling to global baryon number, and so we
consider Zγ → Zγ through an s-channel X. The diagrams
involving X are shown in Fig. 4.
There are, of course, additional diagrams from boxes of

fermions orW bosons, but these are independent of gX. If all
loop fermions ψ are heavy relative to

ffiffiffi
s

p
, we recover the

Euler-Heisenberg Lagrangian from the box diagrams, with
MðZγ → ZγÞ ∼ s2

m4
ψ
. Here we focus on the same scenario

considered in the previous subsections, with only massless
SM fermions in the loop. (We would obtain the same result
with gauged baryon number so long as the anomalon masses
are taken to be much heavier than all other scales). Together
with the limit s ≫ m2

W , the box diagrams involving W
bosons have no bad s behavior16 [82,83], so we will neglect
them and focus on the contributions from X exchange.
The X exchange occurs through a single diagram stitching

together two Z − γ − X vertices. However, if we write Xμ as
Aμ − ∂

μπ=mX and employ gauge fixing as described in
Sec. II C, there appear to be two diagrams as in Fig. 4—one
from π exchange and one from A exchange, each with gauge
dependence. Feynman rules for these diagrams can be
derived from the Lagrangian in Appendix C.

The A exchange piece for Zρðp1Þγνðq1Þ →
Zρ0 ðp2Þγν0 ðq2Þ, coming from loops of SM fermions
alone, is

−i
s −m2

X
Δ̃μρν

SM

�
gμμ

0 − ð1 − ξÞ ðp1 þ q1Þμðp2 þ q2Þμ0
s − ξm2

X

�
Δ̃ρ0μ0ν0

SM ;

ð114Þ

while the π piece is

i
s − ξm2

X

�
AB

2π2
eggX
cWmX

�
2

ϵρν;p1q1ϵρ
0ν0;p2q2 : ð115Þ

Evaluating the gauge-dependent piece of Eq. (114) using
Eq. (93) with appropriate modifications, then its sum with
the π exchange term,

�
i

s−m2
X

ð1−ξÞ
s−ξm2

X
þ i
m2

Xðs−ξm2
XÞ
��

AB

2π2
eggX
cW

�
2

ϵρν;p1q1ϵρ
0ν0;p2q2

¼
�
AB

2π2
eggX
cW

�
2

ϵρν;p1q1ϵρ
0ν0;p2q2

i
s−ξm2

X

�ð1−ξÞ
s−m2

X
þ 1

m2
X

�

¼
�
AB

2π2
eggX
cW

�
2

ϵρν;p1q1ϵρ
0ν0;p2q2

i
m2

Xðs−m2
XÞ
; ð116Þ

we see that the ξ dependence cancels. Notice that the final
result of Eq. (116) is the same as just π exchange given
by Eq. (115) in the limit s ≫ m2

X in Landau gauge (ξ ¼ 0),
as required by the longitudinal equivalence theorem
in Eq. (32).
Assuming s ≫ m2

Z;m
2
X, we can neglect the other terms

and use Eq. (116) as an approximation to the full amplitude,
deferring a more complete and general calculation to
Appendix C. Forming a cross section from Eq. (116)
and taking the large-s limit, we find:

σðZγ → ZγÞ ≃ 27

128π3
α4emα

2
X

c4Ws
4
W

s
m4

X
þ � � � ð117Þ

where the � � � indicates terms subleading in s.
While the diagrams in Fig. 4 are reminiscent of longi-

tudinal W scattering in the SM, we emphasize that the
external γ, Z fields in the BIM process are purely trans-
verse. In the large-s limit, contracting the vertices above
with longitudinal Z polarizations yields zero (for massless
SM fermions) via the MCVF.

FIG. 4. Zγ → Zγ scattering through an s-channel π (left) or A (right, with 3 cross diagrams not pictured).

16Here we are referring to ðs=MÞn behavior at fixed scattering
angle, where M is some other mass scale in the problem, and not
to divergences in the limit of forward or backward scattering. The
latter manifest as ratios of Mandelstam invariants.
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VI. DISCUSSION

We have investigated theories with a Stückelberg vector
field, emphasizing the systematic approach to constructing
an effective field theory involvingXμ.We considered several
possible interactions of the Stückelberg vector field with the
SM or with itself, identifying the couplings of the longi-
tudinal mode that lead to scattering amplitudes that grow
with energy. At tree-level these involve the operators
ðXμXμÞ2, H†HXμXμ and H†DμHXμ, while the interaction
Xμj

μ
anom (with jμanom an anomalous global current) induces

one-loop amplitudes that grow with energy. The energy
growth implies an EFT with one of these interactions
requires a UV cutoff scale that appears above mX by an
amount that is parametrically 1=ðcouplingÞ of the interac-
tion. In the specific case of Xμ coupled to the global baryon
current, we demonstrated that the finite contribution to the
fermion triangle diagram leads to a variety of processes that
have longitudinal enhancements in the small mX limit,
including Z → Xγ, ff̄ → Xγ and Zγ → Zγ.17

We performed a detailed analysis of the operator
Xμj

μ
anom. This interaction is, at first, somewhat puzzling

since Xμ is not a gauge boson and yet it suggests Xμ is
gauging an anomalous current. Preskill [35] demonstrated
that anomalous gauge theories are simply effective theories
with a narrow range of scales where the EFT is valid. His
analysis emphasized the UV divergent contributions to the
two-point function, leading to maximum separation
between the mass of the gauge boson of an anomalous
theory and the cutoff scale of the theory. As we have seen,
this result holds for theories with a Stückelberg vector field
that has no gauge symmetry. In particular, we demonstrated
that the generalized Ward identity is satisfied if and only if
the contributions from both Aμ, the (fake) gauge boson
associated with a (fake) gauge symmetry, and ∂

μπ=mX
appear in the specific gauge-invariant combination
Aμ − ∂

μπ=mX. Our analysis demonstrates that it is the
existence of the global anomaly, not the gauging of it,
that leads to the physical consequence of scattering
amplitudes that grow with energy in the UV. This is
reminiscent of [84] and may lead to a different interpre-
tation of anomalies when expressed directly in terms of on-
shell scattering amplitudes. For example, [85] recasts the
constraints from anomaly cancellation in terms of on-shell
amplitudes that satisfy unitarity and locality.
As we have seen throughout the paper, the interactions of

a Stückelberg vector field that grow with energy can and do
arise from a spontaneously broken Uð1Þ gauge theory with
a dark Higgs sector. In each case, the coefficient of the
corresponding operator depends explicitly on powers of gX,

the Uð1Þ gauge coupling. The cutoff scale of the EFT with
the vector boson is resolved by dark Higgs exchange, in
analogy with the growth of the scattering of longitudinally-
polarized electroweak gauge bosons in the SM. UV
completing an EFT with a Stückelberg vector boson using
a dark Higgs sector, in which the vector boson mass is
much smaller than the dark Higgs mass, requires
gX ≪

ffiffiffiffiffi
λh

p
. In a Uð1Þ gauge theory in which all Uð1Þ

field charges are order one, this implies that all interactions
are suppressed by powers of the small gauge coupling gX,
and in particular, kinetic mixing arising from integrating
out matter that is charged under the dark Uð1Þ andUð1ÞY is
also bounded by ϵ≲ gXe.
A Stückelberg vector field can be obtained by ungauging a

Higgsed theory while holding mX fixed, that is, by sending
gX → 0 and thus taking vX → ∞. This is distinct from
spontaneously-broken gauge theories: the limit mX → 0;
gX → 0 with the ratio vX ¼ mX=gX held constant does not
exist, demonstrating that a strict interpretationof a theorywith
a Stückelberg vector boson does not have anything to dowith
SSB. There is no Higgs mechanism, no Higgs boson, and so
the interactions that lead to longitudinally enhanced scattering
amplitudes that grow with energy have arbitrary coefficients.
Consequently, a UV cutoff scale of the EFT is inevitable.
Reece [22] has suggested that weak gravity conjecture
arguments [86] prevent an arbitrarily small Stückelberg mass
since the limitmX → 0 lies at infinite distance in field space. It
would be interesting to further investigate the constraints on
other parameters of the effective theory of Stückelberg vector
bosons using arguments based on embedding the theory into
quantum gravity [87,88].
In the SUð3Þc ×Uð1Þem effective theory below the

electroweak scale, all fermion currents are vectorial with
no (gauge or global) anomalies. Naively, there are no
restrictions on coupling an arbitrarily light Stückelberg
vector field to any linear combination of these currents. Of
course, the weak interaction explicitly violates some global
symmetries, such as baryon number, so the interactions of
X with SM fermion currents are not purely vectorial.
Hence, X will have scattering amplitudes that grow with
powers of

ffiffiffi
s

p
=mX.

18 One might think this growth is the
same as four-fermion interactions that also scale with
s=m2

W , such that the cutoff scale of the theory is the
electroweak breaking scale. This is not true. Consider
ff̄ → Xγ with X coupling to baryon number. While there
is s=m2

Z suppression in the amplitude from Z exchange,
there is also

ffiffiffi
s

p
=mX enhancement from producing a

longitudinally polarized X. By observing this energy
growth in the cross section (at energies well below the
electroweak scale), one could determine whether or not a
vector boson has longitudinally enhanced couplings.

17The importance of Z → Xγ for gauged baryon number was
emphasized in [43,50] along with other FCNC processes involv-
ing K → πX and B → KX meson decays [43]. Constraints on
other Uð1Þ s were discussed in [48].

18An alternative approach in which a vector field interacts only
through higher-dimensional operators was discussed in [89].
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Finally, we should discuss the status of dark photons that
partly motivated our study of Stückelberg vector fields. In
theories where the dark photon Lagrangian arises from a
spontaneously broken Uð1Þ gauge symmetry by a dark
Higgs field, some discussion of the dark Higgs scalar has
appeared (e.g., [5,7,90–95]). Instead, we proclaim that the
time is ripe to consider a general set of interactions that a
Stückelberg vector field can have with coefficients that are
not dictated by a darkHiggs sector. Longitudinally enhanced
interactions imply the theory will have a cutoff scale: within
the validity of the effective theory (i.e.,

ffiffiffi
s

p
less than the

cutoff scale as determined by the longitudinally enhanced
scattering processes), what phenomenological conse-
quences can arise in the presence of these interactions?
This is an interesting question to explore for more general
vector boson dark matter as well as for dark photon models.
Ultimately our discussion of a Stückelberg vector field

reiterates the lesson of the precarious nature of vector fields
in quantum field theory whose mass is not associated with
SSB. The longitudinal component generically couples to
itself or to the SM, and the presence of these couplings
leads to amplitudes that grow with energy and thus require
a cutoff scale for the EFT. There are only two resolutions:
craft the effective theory to have no couplings of the
longitudinal mode, i.e., X coupled only to an anomaly-free
global current, or introduce a Higgs mechanism with a
Higgs boson to restore unitarity of longitudinal vector
boson interactions. If evidence of a new vector boson were
uncovered in data, we hope our analysis provides a
framework to characterize the effective field theory com-
prising the leading interactions of the vector boson inde-
pendent of its ultimate UV origin.
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APPENDIX A: FORM FACTORS IN THE
ROSENBERG PARAMETRIZATION OF THE

TRIANGLE DIAGRAMS

In this appendix, we detail the computation of the
amplitude of the triple-gauge boson triangle diagrams of
Fig. 2. Factoring out couplings, the relevant expressions are
of the type in Eq. (63). To compute the finite form
factors F3;…;6, we follow the procedure of [40]. The
denominators on the first and second lines of Eq. (63)
can be combined as

½ððl� qÞ2 −m2
ψÞÞðl2 −m2

ψÞððl ∓ pÞ2 −m2
ψÞ�−1

¼ Γð3Þ
Z

1

0

dx
Z

1−x

0

dy½l2 � 2l · kþ xq2

þ yp2 −m2
ψ þ iε�−3; ðA1Þ

where k ¼ xq − yp; since we are only interested in the
finite form factors, we can make the change of loop
momentum l → l ∓ k. The numerators have terms with
up to three powers of l: the terms proportional to l3;l2

will contribute only to G1;2, and those linear in l vanish
because they are odd under integration. We use the AVV
case as a prototype, finding

Γρμν
AVVjfinite ¼

Z
1

0

dx
Z

1−x

0

dyΓð3Þ
Z
l

4i
ðl2 − ΔÞ3

ðfð1 − x − 3yÞkμ − 2ypμgϵρν;pq
þ fð1 − 3x − yÞkν − 2xqνgϵρμ;pq
− fðx − yÞkρ þ ypρ þ xqρgϵμν;pqÞ; ðA2Þ

where

Δ ¼ m2
ψ − xð1 − xÞq2 − yð1 − yÞp2 − 2xyp · q − iε: ðA3Þ

The loop integral evaluates to

Z
l

1

ðl2 − ΔÞ3 ¼ −
i

ð4πÞ2
1

Γð3ÞΔ
−1: ðA4Þ

To match Eq. (A2) to the Rosenberg parameterization in
Eq. (65), we apply the Schouten identity

kρϵμναβ þ kμϵναβρ þ kνϵαβρμ þ kαϵβρμν þ kβϵρμνα ¼ 0 ðA5Þ

to the last line, which becomes

fðx − yÞkμ − ypμ − xqμgϵρν;pq
− fðx − yÞkν − ypν − xqνgϵρμ;pq þ ðterms in G1;2

AVVÞ:
ðA6Þ

The above lead to
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F3 ¼ −
Z

1

0

dx
Z

1−x

0

dyyð1 − yÞΔ−1;

F4 ¼ −
Z

1

0

dx
Z

1−x

0

dyxyΔ−1;

F5 ¼
Z

1

0

dx
Z

1−x

0

dyxyΔ−1;

F6 ¼
Z

1

0

dx
Z

1−x

0

dyxð1 − xÞΔ−1; ðA7Þ

from which we see that

F3ðp; qÞ ¼ −F6ðq; pÞ;
F4ðp; qÞ ¼ −F5ðp; qÞ: ðA8Þ

With the F3;…;6 set,
19 the next step is to expressG1,G2 in

terms of F3;…;6 so that the vertex function can be written in
terms of the finite form factors.20 To relateG1,G2 to F3;…;6,
we contract Γ̃ with the momenta of A;B; or C—respec-
tively, pμ; qν; or ðpþ qÞρ. From the Rosenberg paramet-
rization of Eq. (65), we obtain the following expressions
for the momentum-contracted coupling-stripped vertex
functions:

ðpþ qÞρΓ̃ρμν
frg ¼ 1

π2
ðG2

frg −G1
frgÞϵμν;pq;

−pμΓ̃
ρμν
frg ¼ 1

π2
ðG2

frg − p2F3 − p · qF4Þϵρν;pq;

−qνΓ̃
ρμν
frg ¼ 1

π2
ðG1

frg − p · qF5 − q2F6Þϵρμ;pq: ðA9Þ

However, we know thatG1,G2 are not uniquely defined. To
isolate their ambiguities, we first define the triangle vertex
function with unshifted loop momentum (i.e., when a ¼
b ¼ 0 in Fig. 2)

Γρμν
frgðp; qÞ≡ Γ̃ρμν

frgðp; q; z ¼ 0; w ¼ 0Þ: ðA10Þ

The difference Γ̃ − Γ encapsulates the ambiguity from
shifting the momentum, and for any frg with an odd
number of axial couplings, evaluates to [40]

½Γ̃ − Γ�ρμνfrg ¼
Z
l
aτ∂lτF

ρμν
frgðlÞ ¼

2iπ2

ð2πÞ4 a
τ lim
l→∞

l2lτF
ρμν
frgðlÞ

¼ 1

4π2
ϵρμνδaδ ¼ 1

4π2
ϵρμνδðzpδ þ wqδÞ; ðA11Þ

where F ρμν
frg is the integrand in, e.g., Eq. (63) for the

AVV case.
We proceed to directly calculate the left-hand sides of

Eq. (A9) using the explicit form in Eq. (63). The integrands
in each of these contractions can be massaged into terms
differing only by a shift in loop momentum, which can
then be evaluated using the analog of Eq. (A11). For
example:

qνΓ
ρμν
AVV ¼

Z
l
Tr

�
γ5γρ

1

=l − =p −mψ
γμ

1

=l −mψ
− γ5γρ

1

=l −mψ
γμ

1

=lþ =p −mψ

þ γ5γρ
1

=l − =q −mψ
γμ

1

=lþ =p −mψ
− γ5γρ

1

=l − =p −mψ
γμ

1

=lþ =q −mψ

�

¼ 2iπ2

ð2πÞ4 lim
l→∞

�
pτl2lτTr

�
γ5γρ

1

=l
γμ

1

=lþ =p

�
þ ðp − qÞτl2lτTr

�
γ5γρ

1

=l − =p
γμ

1

=lþ =q

��

¼ 1

2π2
lim
l→∞

1

l2
½pτlτϵ

μρ;lp þ ðp − qÞτlτðϵμρ;lp þ ϵμρ;lq − ϵμρ;pqÞ þOðm2
ψÞ�

¼ −
ϵρμ;pq

4π2
; ðA12Þ

where we have used lαlβ → l2ηαβ=4 to simplify the

penultimate line, and the ϵμρ;pq term has only one power

of l in the numerator and therefore vanishes when we take

l → ∞.
Below, we list the complete sets of expressions for the

AVV case,

19Recall, F3;…;6 are independent of the ri ∈ fA;Vg, so the
results of Eq. (A7) hold in general and are not specific to the AVV
example.

20In the case of massless loop fermions, we note that F3 [F6]
suffers infrared divergences if p2 ¼ 0 [q2 ¼ 0]. This can be seen
from Eqs. (A3) and (A7).
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ðpþ qÞρΓρμν
AVV ¼ ϵμν;pq

4π2
4m2

ψC0ðm2
ψÞ;

−pμΓ
ρμν
AVV ¼ −

ϵρν;pq

4π2
;

−qνΓ
ρμν
AVV ¼ ϵρμ;pq

4π2
; ðA13Þ

and the VAV case,

ðpþ qÞρΓρμν
VAV ¼ 0;

−pμΓ
ρμν
VAV ¼ −

ϵρν;pq

4π2
ð1þ 4m2

ψC0ðm2
ψÞÞ;

−qνΓ
ρμν
VAV ¼ ϵρμ;pq

4π2
: ðA14Þ

Finally, we can fix G1;2
frg by combining Eq. (A11) and the

above contractions of ðpþ qÞρ; pμ; qν with unshifted Γρμν
frg ,

then equating the sum with Eq. (A9).

APPENDIX B: GENERALIZED f f̄ → Xγ

We examine the amplitude for the s-channel (left-hand
side) diagram of Fig. 3:

iMμν
s ¼ v̄ðk2Þ

�
ig
cW

γσðqV;fZ − qA;fZ γ5Þ
−i

s −m2
Z
ðΠ∞

Z Þσρ

þ ieQfγσ
−i
s
gσρ

�
uðk1Þ · Δ̃ρμν; ðB1Þ

where Qf is the electromagnetic charge of f, ðqV;fZ ; qA;fZ Þ
are the (vector, axial) charges of f to Z, and the Z
propagator in unitary gauge is

ðΠ∞
Z Þσρ ¼ gσρ −

ðk1 þ k2Þσðpþ qÞρ
m2

Z
: ðB2Þ

The coupling ψ must be vectorlike.
Let us isolate the contribution from the intermediate Z:

Mμν
s;Z ¼ −i

g
cW

1

s −m2
Z
Δ̃ρμν · v̄ðk2Þ

�
γρðqV;fZ − qA;fZ γ5Þ

þ 2mfðpþ qÞρ
m2

Z
qA;fZ γ5

�
uðk1Þ: ðB3Þ

As expected, in the case of the ff̄Z vector coupling, only
the transverse part of the Z propagator contributes.
Moreover, we focus on the two cases for which we expect
a diverging amplitude: the AVV and VAV parts of the
triangle vertex functions, i.e., an axial Z coupling and a
vector X coupling or vice versa. Then

Δ̃ρμν→
g
cW

gXeQψfqV;ψZ κA;ψ Γ̃ρμν
VAVþqA;ψZ κV;ψ Γ̃ρμν

AVVg; ðB4Þ

with qψZ; κ
ψ the charge of the fermion ψ to Z, X

respectively.
Squaring the amplitude, summing over final polariza-

tions, and averaging over initial spins and fermion colors
Nc, we find21

jMs;Zj2 ¼
1

4ðNcÞ2
��

g
cW

�
2

gXe

�
2 1

ðs −m2
ZÞ2

�
gμ1μ2 −

pμ1pμ2

m2
X

�
gν1ν2ðQψ Þ2fqV;ψZ κA;ψ Γ̃ρμ1ν1

VAV þ qA;ψZ κV;ψ Γ̃ρμ1ν1
AVV g

fqV;ψZ κA;ψ Γ̃σμ2ν2
VAV þ qA;ψZ κV;ψ Γ̃σμ2ν2

AVV gTρσ; ðB5Þ

where Tρσ is the trace over the external fermion part of the squared-amplitude,

Tρσ ¼ ððqV;fZ Þ2 þ ðqA;fZ Þ2Þ · 4
�
fk1ρk2σ þ k1σk2ρg −

s
2
gρσ

�
þ qV;fZ qA;fZ · 8iϵρσ;k1k2

þ ðqA;fZ Þ2 · 16rf
�
s
2
gρσ þ

s
m2

Z

�
1þ 1

2

s
m2

Z

�
ðpþ qÞρðpþ qÞσ

�
; ðB6Þ

with ri ¼ m2
i =s. We can also simplify the contraction of the external polarization tensors and the triangle vertex functions:

21Below, we have assumed that the coupling-stripped vertex functions are real, i.e., that F3;…;6 and C0ðm2
ψ Þ are real. For our purposes,

we ignore the imaginary parts of these functions, which originate from the possibility of pair production of fermions appearing in the
loop. They can be calculated using the Sokhotski–Plemelj formula applied to the integrands of Eqs. (A7) and (71) with Δ from Eq. (A3).
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π4gμ1μ2gν1ν2Γ
ρμ1ν1
frg Γσμ2ν2

fr0g ¼ F T

�
1

4rX
ð1 − rXÞ2sgρσ −

1

2rX
ð1 − rXÞfpρqσ þ qρpσg þ qρqσ

�

− ð2rXG1
frgG

1
fr0g þ ð1 − rXÞfG1

frgG
2
fr0g þ G2

frgG
1
fr0ggÞsgρσ

þ 2G1
frgG

2
fr0gq

ρpσ þ 2G2
frgG

1
fr0gp

ρqσ þ 2G1
frgG

1
fr0gp

ρpσ þ 2G2
frgG

2
fr0gq

ρqσ; ðB7Þ

−π4
pμ1pμ2

m2
X

gν1ν2Γ
ρμ1ν1
frg Γσμ2ν2

fr0g ¼ ðFL − G2
frgG

2
fr0gÞ

�
1

4rX
ð1 − rXÞ2sgρσ −

1

2rX
ð1 − rXÞfpρqσ þ qρpσg þ qρqσ

�
; ðB8Þ

where F T;L contain products of Fi and G1;2
frg;fr0g, and

frg; fr0g ∈ fAVV;VAVg.
In addition to Eqs. (A8), (66), and (67), we have an

additional relation between the form factors in the
Rosenberg parametrization by using Eq. (A9) and either
Eq. (A13) or Eq. (A14):

rX · sF3 ¼
1

2
þm2

ψC0ðm2
ψÞ − ð1 − rXÞsF4; ðB9Þ

We can use this relation to simplify the expressions forG1;2

in this case:

G1
AVV ¼ 1

4
ðzþ 1Þ − 1 − rX

2
sF4;

G2
AVV ¼ 1

4
ðwþ 1Þ − 1 − rX

2
sF4 þm2

ψC0ðm2
ψ Þ; ðB10Þ

G1
VAV ¼ 1

4
ðzþ 1Þ − 1 − rX

2
sF4;

G2
VAV ¼ 1

4
ðwþ 1Þ − 1 − rX

2
sF4: ðB11Þ

Then only F4;6 andm2
ψC0ðm2

ψÞ are independent. In terms of
the these functions, the two quantities F T;L in Eqs. (B7)
and (B8) can then be written as

F T ¼
�
1

2
þm2

ψC0ðm2
ψ Þ
��

1

2
þm2

ψC0ðm2
ψÞ−sF4

�

þrXsF4

�
1

2
þm2

ψC0ðm2
ψ Þ−sF6

�

þr2XsF4ðsF4þsF6ÞþrXðsF4−sF6ÞðG1
frgþG1

fr0gÞ

−
�
1

2
þm2

ψC0ðm2
ψÞ−ð1−2rXÞsF4

�
ðG2

frgþG2
fr0gÞ;

ðB12Þ

FL¼−
�
1

2
þm2

ψC0ðm2
ψ Þ−

�
G2

frgþ
1−rX
2

sF4

��

×

�
1

2
þm2

ψC0ðm2
ψÞ−

�
G2

fr0g þ
1−rX
2

sF4

��
: ðB13Þ

We contract Eq. (B6) with Eqs. (B7) and (B8) and take
the limit of massless initial-state fermions, rf → 0.
Inserting these results back into Eq. (B5), we obtain the
expression at leading-order in rX ≪ 1:

jMs;Zj2 ∼
1

4N2
cπ

4

��
g
cW

�
2

gXe
�

2 1

ðs −m2
ZÞ2

· ððqV;fZ Þ2 þ ðqA;fZ Þ2Þ s2

4rX

�
1 −

2tu
s2

�

· ðQψ Þ2
�X

r∈fAVV;VAVgq
r1;ψ
Z κr2;ψð2G2

frg − sF4Þ
�
2

: ðB14Þ

Of the two loop momentum shift parameters, we see from Eqs. (B10) and (B11) that only w appears in the second line. In
order that theWard identities for the photon and Z boson be satisfied, we must havew ¼ z ¼ −1. Examining the form factor
combinations on the second line in the two limits m2

ψ → 0 and m2
ψ → ∞, we find:

2G2
AVV − sF4 →

�− 1
2

m2
ψ → ∞

−1 m2
ψ → 0

;

2G2
VAV − sF4 →

�
0 m2

ψ → ∞

−1 m2
ψ → 0

: ðB15Þ

For completeness, we provide expressions for the form factors in the following two limits. If the loop fermions are
infinitely heavy, then at leading order we can discard the p2 ¼ m2

X term appearing in Eq. (A3), such that
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rψ → ∞∶

8>>>>><
>>>>>:

m2
ψC0ðm2

ψ Þ → −rψ
�
Li2

	
2

1þi
ffiffiffiffiffiffiffiffiffi
4rψ−1

p


þ Li2

	
2

1−i
ffiffiffiffiffiffiffiffiffi
4rψ−1

p

�

→ − 1
2

sF4 →
1
2
þm2

ψC0ðm2
ψÞ → 0

sF6 → 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rψ − 1

p
arccotð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4rψ − 1
p Þ → 0

; ðB16Þ

where Li2 is the dilogarithm function. If the loop fermions are massless, then F6 suffers an infrared divergence22:

rψ → 0∶

8>>><
>>>:

m2
ψC0ðm2

ψÞ → 0

sF4 →
1−rXþrX logðrXÞ

2ð1−rXÞ2

sF6 →
1
4
ð1þ 2 log εÞ ðrX → 0Þ

: ðB17Þ

APPENDIX C: OFF-SHELL X-EXCHANGE
AMPLITUDES

In this appendix, we compute the amplitude for BB →
BB scattering (the BIM amplitude after [81]), for which the
diagrams are shown in Fig. 4. This calculation illustrates
the impact of longitudinal enhancement from the triple-
gauge vertex when the Stückelberg field is off-shell, and it
is analogous to WW scattering in the SM.
A simple setup that accommodates this process is the

“A–B” model from [38]: this consists of a single Dirac
fermion ψ with an axial-vector interaction to A and a
vectorlike interaction to B. The vector field A has a
Stückelberg-like mass term. In order to cancel anomalies,
the model includes dimension-5 Peccei–Quinn local coun-
terterms coupling the Stückelberg scalar field π to Chern–
Pontryagin densities. The Lagrangian after performing the
Rξ gauge fixing procedure as in Eq. (18) is

L ¼ −
1

4
BμνBμν −

1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2 þ 1

2
m2

XAμAμ

þ ψ̄ið=∂þ ie=Bþ ig=Aγ5Þψ −mψ ψ̄ψ

þ CA

2mX
πFμν

A F̃Aμν þ
CB

2mX
πBμνB̃μν: ðC1Þ

An example Feynman diagram for the Peccei–Quinn terms
in the last line of Eq. (C1) is displayed in Fig. 5.23

The diagram on the left-hand side of Fig. 4 with s-
channel π exchange evaluates to

iMμ1μ2ν1ν2
1 ¼ i

CB

mX
ϵμ1α1μ2α2ð−ip1;α1Þð−ip2;α2Þ

·
i

s − ξm2
X
· i

CB

mX
ϵν1β1ν2β2ðiq1;β1Þðiq2;β2Þ

Mμ1μ2ν1ν2
1 ¼ −

1

s − ξm2
X

C2
B

m2
X
ϵμ1μ2;p1p2ϵν1ν2;q1q2 : ðC2Þ

For the diagram on the right-hand side, we are interested in
the part of the amplitude that involves axial couplings of the
loop fermions to A,

iMμ1μ2ν1ν2
2 ¼ Δ̃λμ1μ2

AVV ð−p1;−p2Þ·
−i

s−m2
X
ðΠξ

XÞλρ ·Δ̃ρν1ν2
AVV ðq1;q2Þ;

ðΠξ
XÞλρ¼gλρ−ð1−ξÞðp1þp2Þλðq1þq2Þρ

s−ξm2
X

: ðC3Þ

Rewriting the Rξ gauge propagator as in the second line
of Eq. (23), we can evaluate the ξ-dependent longitudinal
terms using the MCVF of Eq. (69) with C → A; A → B,

Mμ1μ2ν1ν2
2 jξ ¼

1

s − ξm2
X

1

m2
X
ϵμ1μ2;p1p2ϵν1ν2;q1q2

·

�
e2g
4π2

�
2

fðw − zÞ þ 4m2
ψC0ðm2

ψÞg2: ðC4Þ

For the gauge dependence to cancel, we must have

CB ¼ � e2g
4π2

ðw − zÞ: ðC5Þ

To satisfy the anomaly-free Ward identities in Eq. (69) for
the B vector bosons, we must choose w ¼ 1; z ¼ −1. The
remaining ξ-independent amplitude is M2 with the inter-
mediate A propagator in “unitary” gauge:

22As previously mentioned, sF6 also has imaginary part π=4.
23We can assume that e ≪ g such that these diagrams dominate

over the standard contribution from one-loop box diagrams of
fermions in, e.g., light-by-light scattering.
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Mμ1μ2ν1ν2 ¼ Δλμ1μ2
AVV ð−p1;−p2Þ

·
−1

s −m2
X
ðΠ∞

X Þλρ · Δ̃ρν1ν2
AVV ðq1; q2Þ; ðC6Þ

which can be broken up into its transverse and longitudinal
parts as

Mμ1μ2ν1ν2
T ¼ −

ðe2gÞ2
s −m2

X
Γ̃λμ1μ2ð−p1;−p2ÞΓ̃ν1ν2

λ ðq1; q2Þ;

Mμ1μ2ν1ν2
L ¼ −

1

s −m2
X

C2
B

m2
X
ϵμ1μ2;p1p2ϵν1ν2;q1q2 : ðC7Þ

where the subscript AVV is implicit. The squared ampli-
tude, averaged and summed over initial and final states, is

jMT j2 ¼
1

4

� ðe2gÞ2
s −m2

X

�
2

Γ̃λμ1μ2ð−p1;−p2ÞΓ̃ρ
μ1μ2ð−p1;−p2ÞΓ̃ν1ν2

λ ðq1; q2ÞΓ̃ρν1ν2ðq1; q2Þ;

jMLj2 ¼
1

4

�
1

s −m2
X

C2
B

m2
X

�
2

ϵμ1μ2;p1p2ϵν1ν2;q1q2ϵμ1μ2;p1p2
ϵν1ν2;q1q2 ;

2ReðM�
LMTÞ ¼

1

2

�
1

s −m2
X

�
2

ðe2gÞ2 C
2
B

m2
X
ϵμ1μ2;p1p2 Γ̃λμ1μ2ð−p1;−p2Þϵν1ν2;q1q2 Γ̃ν1ν2

λ ðq1; q2Þ: ðC8Þ

Since p2 ¼ q2 ¼ 0, the evaluation of the vertex func-
tions is simple in the BIM case. From Eq. (A8), we have
both F5 ¼ −F4; F3 ¼ −F6. Then from Eq. (B10),

G2
AVVjp2¼q2¼0 ¼ −G1

AVVjp2¼q2¼0 ¼
1

2
sF4: ðC9Þ

Finally, if we have massless loop fermions, then Eq. (B17)
implies

sF4jm2
ψ¼0 ¼

1 − rX þ rX logðrXÞ
2ð1 − rXÞ2

: ðC10Þ

Then

jMT j2 ¼
ðe2gÞ4
16

1

ð1 − rXÞ2
ðsF4Þ4 →

�
e2g
4

�
4

;

jMLj2 ¼
C4
B

16

1

r2Xð1 − rXÞ2
→

�
e2g
4π2

�
4 1

r2X
;

Reð2M�
LMTÞ ¼

ðe2gÞ2C2
B

4

1

rXð1 − rXÞ2

×

�
2G1G2 þ t

s
ðG1 þG2Þ2

�

→ −
�
e2g
2π

�
4 1

8rX
: ðC11Þ

where arrows indicate the limit rX → 0 and we omitted the
AVV subscript in the interference term for clarity.

Let us consider adding Wess-Zumino terms to the
Lagrangian of Eq. (C1). These are

1

2
ϵμνλρAμBνðC0

AF
λρ
A þ C0

BF
λρ
B Þ

¼ −ϵμνλρAμBνðC0
A∂

ρAλ þ C0
B∂

ρBλÞ: ðC12Þ

For the BB → BB process, only the C0
B coefficient is

relevant; the amplitude is shown in Fig. 6. Along
with Fig. 4, we have three additional diagrams where
one or both fermion triangle loops in the diagram on the
right-hand side of Fig. 4 is replaced with a three-boson
vertex from Fig. 6.

FIG. 6. Feynman amplitude for Wess-Zumino term in
Eq. (C12).

FIG. 5. Example diagram from dimension-5 counterterms in
last line of Eq. (C1) model.
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We then have

iMμ1μ2ν1ν2
3 ¼ C0

Be
2gfϵλμ1μ2αðp1 − p2ÞαΓ̃ρν1ν2ðq1; q2Þ þ Γ̃λμ1μ2ð−p1;−p2Þϵρν1ν2βðq1 − q2Þβg ·

−i
s −m2

X
ðΠξ

XÞλρ;

iMμ1μ2ν1ν2
4 ¼ −ðC0

BÞ2ϵλμ1μ2αðp1 − p2Þαϵρν1ν2βðq1 − q2Þβ ·
−i

s −m2
X
ðΠξ

XÞλρ: ðC13Þ

Again decomposing the Rξ propagator as in Eq. (23), we find a modified cancellation condition for gauge independence

C2
B ¼

�
e2g
4π2

fðw − zÞ þ 4m2
ψC0ðm2

ψÞg − 2C0
B

�
2

: ðC14Þ

We are left to calculate the squared amplitude that is the sum of Eqs. (C7) and (C13), the latter with the replacement
Πξ

X → Π∞
X . Examining the longitudinal pieces as in the second line of Eq. (C7), we find after using the gauge independence

condition above

Mμ1μ2ν1ν2
L ¼ −

1

s −m2
X

C2
B − 4ðC0

BÞ2 þ 4C0
Bð�CB þ 2C0

BÞ
m2

X
ϵμ1μ2;p1p2ϵν1ν2;q1q2 ; ðC15Þ

which yields the same result as in Eq. (C11) in the relevant limit.
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