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We propose a novel scenario to explain the small cosmological constant (CC) by a peculiar inflaton
potential. The shape almost satisfies the following conditions: The inflation is eternal if the CC is positive
and not eternal if the CC is negative. Although realizing the peculiar shape has a similar amount of fine-
tuning as the CC, the shape can be made stable under radiative corrections in the effective theory. By
introducing a slowly varying CC from a positive value to a negative value, the dominant volume of the
Universe after the inflation turns out to have a vanishingly small CC. The scenario does not require eternal
inflation, but the e-folding number is exponentially large, and the inflation scale is low. The Hubble
parameter during inflation, Hinf , is required to be smaller than the present CC scale, and, thus, the CC
relaxed during inflation with the low renormalization scale, ∼Hinf , is safe from the radiative corrections
from the standard model particles. The scenario can have a consistent thermal history, but the present
equation of state of the Universe is predicted to slightly differ from the one for the ΛCDMmodel. In a time-
varying CC model, CC can be relaxed from ð103 GeVÞ4, and in a model with a light scalar field scanning
the CC during inflation, CC can be relaxed from ð10 MeVÞ4.
DOI: 10.1103/PhysRevD.106.055014

I. INTRODUCTION

One of the long-standing theoretical problems in particle
theory and cosmology is the fine-tuning of the cosmologi-
cal constant (CC) [1,2], which is measured as [3]

ΛC ≃ 2.2 × 10−3 eV: ð1Þ

The CC problem should be solved by IR dynamics, because
even the QCD contribution ð1 GeVÞ4=ð16π2Þ to the CC
should be somehow canceled, which results in an amount
of tuning of Oð10−45Þ. For this, nontrivial dynamics
should happen when the Universe is much colder than
the QCD scale.
Aside from the anthropic solution [1,2] (and also works

relevant to it [4–6]), there have been several proposals to
relax the tuning around the present Universe. Since a
vanishing CC is a critical point for the empty Universe
to inflate and contract, it was studied in, e.g., Refs. [7,8]
and recently in Ref. [9] that a slowly varying scalar field
can drive the Universe at around the critical point. Although
such a scenario typically predicts an empty Universe, which
may be inconsistent with the big bang cosmology, the
authors in Ref. [9] showed that the Universe can be

reheated by the scalar field in the contracting Universe
and discussed that the produced plasma induces a bounce
of the Universe to get the standard cosmology.
The inflation paradigm, on the other hand, is widely

accepted as a central part of modern cosmology [10–14].
The inflation is driven by a real scalar field, which slow
rolls around a pseudoflat direction of the potential. The
almost constant potential energy induces an exponential
expansion of the spatial volume of the Universe. The slow-
roll inflation predicts a flat, homogeneous, and slight
anisotropic Universe, which has been confirmed from
the cosmic microwave background (CMB) data [15].
The inflationary period is cold. since the Gibbons-
Hawking temperature Hinf=ð2πÞ [16] is Planck scale sup-
pressed compared to the (false) vacuum energy scale of the
Universe. In this paper, we focus on the inflationary period
to relax the CC.
The quantum diffusion also traps the inflaton in the

pseudoflat regime in a probabilistic way. If the typical
rate for finishing the inflation in a single Hubble patch is
smaller than the expansion rate, there are always volumes
that are inflating. Thus, inflation never ends in the entire
Universe. This is known as eternal inflation [17–22]
(see also [23–25]). In the eternally inflating Universe,
due to the infinities, there could be ambiguities in defin-
ing the probabilities, which depend on the choice of
measures. With certain measures and dynamical CCs,
the explanation of the CC during the eternal inflation
has been discussed [4,26]. (See also [27] for other attempts
relevant to inflation.)

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 055014 (2022)

2470-0010=2022=106(5)=055014(11) 055014-1 Published by the American Physical Society

https://orcid.org/0000-0001-8785-6351
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.055014&domain=pdf&date_stamp=2022-09-13
https://doi.org/10.1103/PhysRevD.106.055014
https://doi.org/10.1103/PhysRevD.106.055014
https://doi.org/10.1103/PhysRevD.106.055014
https://doi.org/10.1103/PhysRevD.106.055014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this paper, we propose an alternative possibility that
the CC is relaxed during noneternal inflation with the
inflationary Hubble parameterHinf ≪ ΛC. The basic idea is
as follows. First, we assume that the inflation potential is
around such a critical point that if the minimum of the
potential, i.e., the CC, has a positive value, eternal inflation
would occur. If negative, the inflation period would be
finite. The inflaton potential shape around such criticality is
as tuned as the CC, but we can make it stable under
radiative corrections, which is different from the original
CC tuning. Second, we assume that the CC decreases from
a large and positive value. Since the inflaton potential is
around the criticality, most volume of the Universe finishes
inflation when the CC crosses zero. Consequently, a small
CC is exponentially favored in a probabilistic way. A
standard reheating and big bang cosmology start irrelevant
of the measure we choose.
As a concrete quantum field theory model, we introduce

a scalar field to scan the CC by taking account of the
quantum diffusion of the inflaton and the scanning field.
We confirm the validity of the scenario analytically in the
main part and numerically by solving the Fokker-Planck
equation with the termination effect of inflation in
Appendix B.

II. ETERNAL, NONETERNAL, AND CRITICAL
ETERNAL INFLATION

A. Review on eternal and noneternal inflation

For illustrative purposes, let us consider the following
form of the potential for the inflaton ϕ:

V ¼ Vϕ½ϕ� þ VC; ð2Þ

where we separate the CC, VC, from the dynamical part of
the potential, and, thus, Vϕ has a vanishing minimum value,
Vϕ½ϕmin� ¼ 0. In this review part, we take VC as a constant,
but it will depend on time and space later.
Let us focus on the hilltop of the potential. The Taylor

series is given by

Vϕ½ϕ� ¼ V0 þ V 00
ϕ

ϕ2

2
þOðϕ3Þ: ð3Þ

Without loss of generality, we have taken the hilltop as the
origin ofϕ;V 00

ϕð< 0Þ is the curvature;V0 is defined so that the
potential minimum is vanishing. There are various models
with successful cosmology to get this kind of potential top:
modified quartic hilltop inflation, e.g., [28–30], multinatural
inflation [31–37], axionlike particle inflation [38–40], or
heavy QCD axion inflation [41], etc. As we will see, the
inflation scale should be too low for the natural inflation
[42,43] and other simple hilltop inflation [13,14] to provide
consistent CMB data [15] in this scenario unless there is

another inflaton or curvaton [44–46] for explaining the
CMB data.
The potential top is so flat that inflation can take place.

The eternal inflation may or may not take place depending
on the potential shape. The inflationary volume inflates,
and the scale factor R increases with

R3 ∝ e
R

3dtHinf : ð4Þ

Here, Hinf ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=3M2

pl

q
jϕ≃0 is the Hubble expansion rate.

The inflaton cannot stay exactly on the hilltop due to the
quantum diffusion in the de Sitter space-time. The inflaton
undergoes random walks. By neglecting the curvature
compared with Hinf , the random walks follow

_hΔϕ2i ∼ H3
inf

ð2πÞ2 ; ð5Þ

where _X denotes the (cosmic) time derivative of X. Because
of the diffusion effect, the classical value of the inflaton
field has a probabilistic distribution. If the inflationary
regime (or, more precisely, the stochastic regime of ϕ)
which is defined by jϕj < ϕinf has a sufficiently flat
potential, the distribution of ϕ during inflation approaches
to a constant, ∼1=ϕinf . The inflaton rolls out of the
inflationary range at a rate _ϕ=ϕinf ∼ V 00

ϕ=3Hinf . Thus, we
get the probability that ϕ remains in jϕj ≤ ϕinf :

P ∝ e
R

dtC
V00
ϕ

3Hinf : ð6Þ

Here, the decay rate in the exponent depends on a model-
dependent parameter C ¼ Oð1Þ. As a result, we find that
the inflating volume L3

inf satisfies

L3
inf ∝ P · R3 ∝ e

R �
3HinfþC

V00
ϕ

3Hinf

�
dt
: ð7Þ

If the exponent increases with time,1

3Hinf > C
jV00

ϕj
3Hinf

½eternal inflation�; ð8Þ

i.e., the second slow-roll condition, η≲ 1, is satisfied at the
top, the inflating volume increases eternally. This is the
well-known condition for eternal inflation. It is also known
that it may be difficult to discuss the probabilities during
the eternal inflation due to the infinities.
If the exponent decreases in time, on the other hand, the

total volume decreases:

1Strictly speaking, the volume distribution 1=ϕinf in this
regime may be incorrect, since the difference of Hubble rate
within jϕj≲ ϕinf may be important for very long inflation.
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3Hinf < C
jV 00

ϕj
3Hinf

½noneternal inflation�: ð9Þ

Although we need to tune the conditions for inflation to
occur at some Hubble patches, the entire Universe finishes
the inflation within a finite e-folding. The cosmic timescale
for the termination is ∼1=ð−3Hinf þ CjV 00

ϕj=ð3HinfÞÞ. We
note that, even if the inflation is noneternal at the hilltop, the
CMBdata can be explained due to a finite period of inflation,
such as in the inflectionally point inflation [40,47].

B. Critical eternal inflation and fine-tunings

We expect that there is a critical point between the eternal
and noneternal regimes by decreasing VC þ V0, and thus
Hinf , with fixed V 00

ϕ:
2

3Hinf ¼ C
jV 00

ϕj
3Hinf

½critical eternal inflation�: ð10Þ

At the criticality, the inflation does not end, but the total
volume of the inflating Universe does not change. As a
consequence, the volume of the Universe after inflation
approaches infinity, but the inflating volume is kept finite.
We call this kind of inflation critical eternal inflation.
In the following, we focus on the possibility that Vϕ (but

not V) almost satisfies the condition for the critical eternal
inflation at VC → 0:

3Hinf jV¼Vc
ϕ
¼ C

jV 00
ϕj

3Hinf

����
V¼Vc

ϕ

½inflaton potential at the criticality�: ð11Þ

Here and hereafter, Xc denotes the parameter or quantity at
the criticality.

1. Technical naturalness

The near-criticality condition is realized by tuning the
potential shape, while symmetry can stabilize the tuned
condition from radiative corrections. For instance, the
inflaton may enjoy a discrete shift symmetry:

ϕ → ϕþ 2πfϕ; ð12Þ

which may imply that the inflaton is a pseudo-Nambu-
Goldstone boson with fϕ being the decay constant. The

potential has a generic form from nonperturbative effects
given by

Vϕ ¼
X
n¼0

Λ4
n cos

�
nϕ
fϕ

þ θn

�
ð13Þ

with n being the integer and θn a relativistic phase.Λ4
i is the

order parameter that explicitly breaks the continuous shift
symmetry to the discrete one. Λ4

0 is the constant term that
makes the potential vanishing at the potential minimum
according to our notation (2). We can tune Λ4

n and θn to get
the potential around the criticality. For instance, we have
only a single cosine termwithn ¼ 1; the criticality condition
suggestsC=ðfcϕÞ2 ¼ 6=M2

pl and ðΛc
0Þ4 ¼ ðΛc

1Þ4 ¼ arbitrary.
In addition, the inflaton can have sizable derivative coupling
to the SM particles to successfully reheat the Universe.
To discuss whether the radiative correction will spoil the

criticality, we can estimate the 1PI effective potential.
Coleman-Weinberg corrections involving only the deriva-
tive couplings to the SM particles do not exist. From
dimensional regularization,3 the leading contribution is [48]

VCW ≈
1

64π2
V00
ϕ½ϕ�2

�
ln
jV 00

ϕj
μ2RG

− 3=2

�
; ð14Þ

where μRG is the renormalization scale. Since VCW ∼
OðH4

inf=ð8πÞ2Þ at around the inflationary regime due to
the slow-roll condition, the near-criticality condition is
technically natural with4

jV0 − Vc
0j≳ H4

inf

ð8πÞ2 : ð15Þ

As we will see, this quality is enough for our mechanism
to work.
We note that this stability under the radiative corrections

is guaranteed in the effective theory. Depending on the UV
models, the stability may not be guaranteed. Therefore, we
describe this stability to be technically natural (such a
technical naturalness, or stability under radiative correc-
tions, is used in various studies, especially in the context of
the hierarchy problems).

2. Initial condition for inflation

Before ending this section, we also comment on the
tuning for the initial condition for the inflaton field to have

2To determine the precise value of C, we need the higher-order
terms of ϕ in Vϕ as well as the detailed study on the quantum
diffusion during inflation with H2

inf ∼ jV 00
ϕj. As long as there is a

fixed value of C for the criticality, our conclusion does not
change. The determination of C in a specific model will be
studied elsewhere.

3We use the regularization scheme that the discrete shift
symmetry is maintained. Note that, in any case, the quadratic
divergence to the potential is absent due to the symmetry.

4This criticality is expected to exist in, e.g., the multinatural
inflation models [31–41] which are stable under radiative
correction thanks to a discrete shift symmetry. As argued in
Ref. [40], the eternal inflation and noneternal inflation both exist
in parameter regimes which are continuously connected.
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inflation. A conservative estimation on the field range for
the inflation may be [49] jV 0

ϕj < H3
inf , which is the region

where the classical motion is smaller than the quantum

diffusion. This gives ϕinf ∼
H3

inf
V 00
ϕ
. We have to set the inflaton

field to be within this range, jϕj < ϕinf , as the initial
condition, which requires a certain amount of tuning. If
the inflation lasts long enough, this tuning can be com-
pensated by the expanding volume. In fact, initial tuning for
inflation as precise as e−10

Oð10−100Þ
can be compensated when

our mechanism works (e.g., Fig. 3).5 This is also explicitly
shown in Fig. 2 in the next section. When the initial
condition is not tuned within the stochastic regime of ϕ, the
inflation soon ends and the volume at the end-of-inflation
boundary is suppressed.

III. RELAXING CC DURING INFLATION

In the following, we use the previously discussed
inflaton potential at the criticality to relax the CC by
considering a time-varying CC. This time-varying CC turns
the eternal inflation into noneternal, which avoids the
measure problem. In this section, our inflation will be
noneternal.

A. Relaxing CC by a generic time-varying CC

To present the idea and to provide model-independent
conditions for the mechanism, let us first assume that VC
decreases slowly in time but it is a constant in space
coordinate, i.e., VC ¼ VC½t�. We take VC ¼ Vi

C > 0 and
jϕj < ϕinf initially. We assume for a while that Vϕ ¼ Vc

ϕ for
an illustrative purpose. We will come back to relax this
assumption. For simplicity of analysis, let us focus on the
regime jVCj ≪ Vc

ϕ½0� throughout this paper. Then, we can
expand

Hinf ≈Hc
inf þ

VC½t�
6M2

plH
c
inf

: ð16Þ

The spatial volume escaping from the ϕ-stochastic regime
is produced at a rate

d
dt

L3
end ∼ C

jV 00
ϕj

3Hinf
L3
inf ½t� ∝ exp

�Z
t
dt0

VC½t0�
M2

plH
c
inf

	
: ð17Þ

We note that the leading term in Eq. (16) is canceled
between the expansion rate and the “decay” rate in Eq. (7),
due to the requirement (11). Since VC decreases in time,
VC and time have one-to-one correspondence. Defining
κ ≡ d

dt VCð< 0Þ, we obtain

d
dVC

L3
end ∝ jκ−1½VC�j exp

�Z
VC

Vi
C

dx
κ−1½x�x
M2

plH
c
inf

	
: ð18Þ

This gives the differential distribution of the CC for the
Universe finishing the inflation. If we can approximate κ to
be a constant, we obtain

d
dVC

L3
end ∝ exp

�
−

V2
C

2jκjM2
plH

c
inf

	
: ð19Þ

Interestingly, this is a normal distribution which is peaked
at VC ¼ 0 with a variance of

σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

plH
c
inf jκj

q
: ð20Þ

σ should be the typical value of VC in the Universe. We get
thevariance because thee-fold to end the inflation isΔNend ∼
M2

plðHc
infÞ2=ðVCÞ during which VC still changes. The vari-

ance σ can be also estimated from VC ∼ jκΔNend=Hc
infj. The

timescale to end the inflation is estimated as

ΔNend ∼ κ−1=2MplðHc
infÞ3=2 ∼

M2
plðHc

infÞ2
σ

: ð21Þ

The e-folds also represent the timescale that the difference of
VC by σ affects the distribution of a via different Hinf .

6 We
can relax the CC to the desired value if

σ ≲ Λ4
C: ð22Þ

This is the case VC varies so slow that κ ≲ Λ8
C=ðM2

plH
c
infÞ.

So far, we have assumed Vϕ ¼ Vc
ϕ for simplicity. When

Vϕ is slightly away from Vc
ϕ by fixing ðVc

ϕÞ00 ¼ V 00
ϕ, the

deviation V0 − Vc
0 > 0 (< 0) would change the center

value of the distribution (18) and bias the cosmological
constant to a negative (positive) value. Therefore, we need

jV0 − Vc
0j≲ Λ4

C: ð23Þ

In addition, ϕ diffusion can change the typical energy of the
inflaton potential by ðVc

ϕÞ00ðϕc
infÞ2. Requiring this around or

smaller than the CC, we get

3H4
inf

ð2πÞ2 ≲ Λ4
C: ð24Þ

Thus, a model-independent bound on the inflation scale is
obtained: V0 ≲ ð4 TeVÞ4. In other words, the Gibbons-
Hawking temperature should be ≲ΛC. Once Eq. (24) is

5In addition, there are several mechanisms to set the correct
initial condition [13,14,38,50].

6The relation may be understood similarly to the uncertainty
principle. If we would like to measure the Hubble expansion rate
with an extremely good precision (σ → 0), we need extremely
large e-folds (ΔNend → ∞).
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satisfied, we get the technically natural parameter region
with H4

inf=ð8πÞ2 ≲ jV − Vc
0j≲ Λ4

C.
In other words, if there is no other contribution, our

mechanism naturally predicts the CC of

jΛ4
Cj ∼max

�
σ;
3H4

inf

ð2πÞ2 ; jV
c
0 − V0j

	
ð25Þ

with jVc
0 − V0j ≳ H4

inf
ð8πÞ2 for a technical naturalness.

B. Relaxing CC by a scalar field

To have a slowly time-varying VC, we may introduce a
dynamical field a, which slow rolls during the inflation
by ϕ:

VC ¼ VC½a�: ð26Þ

In this case, we should take account of a dynamics to
check whether it spoils our previous discussion. To slow
roll, a has a very flat potential due to an approximate
continuous shift symmetry. We assume again that Vϕ ¼ Vc

ϕ

for illustrative purpose.
Since the potential is extremely flat, we can expand it

around any field value. In general, the leading term for a a
linear term is

VC ¼ V 0
Ca; ð27Þ

where VC½0� ¼ 0 is obtained via a field redefinition
a → aþ const. Let us take a½0� ¼ aið> 0Þ as the initial
condition at t ¼ 0, and, thus, V 0

C > 0 for our mechanism
to work.
Then, a undergoes the slow roll with the classical

motion acl½t� ≈ −tV 0
C=3Hinf þ ai. VC rolls down to ∼0 at

a timescale

ΔNslowroll½Vi
C� ∼

3ðHc
infÞ2Vi

C

ðV 0
CÞ2

; ð28Þ

which will be the longest timescale in this scenario. We

obtain κ ≈ − V 02
C

3Hc
inf
, σ ≃ jV 0

CjMplffiffi
6

p , and

ΔNend ≃
ffiffiffi
6

p ðHc
infÞ2Mpl

jV 0
Cj

: ð29Þ

In this model, we have various additional constraints
from the quantum diffusion of a. (The following results
relevant to the quantum diffusion are numerically checked
by solving the Fokker-Planck equation. See Appendix B.)
As ϕ, a undergoes random walks around the trajectory of
the classical motion

Δa2½t�≡ hða − aclÞ2i ≃ t
H3

inf

ð2πÞ2 : ð30Þ

Here, we have assumed that, at the beginning, all the
inflating Universe has a ¼ ai. Then, we get the distribution
function of a as

f½a; t� ∝ e
−ða−acl ½t�Þ2

2Δa2 ½t� : ð31Þ

Notice that this can be obtained when the contribution to
Hinf from the quantum diffusion is neglected. Since
classical motion dominates over the quantum diffusion at

the timescale ΔNdiffuse ∼
9H6

inf
ð2πÞ2ðV 0

CÞ2
, we need

ΔNend ≫ ΔNdiffuse ð32Þ

so that the inflation volume is not sensitive to the quantum
diffusion.
With this condition satisfied, we can obtain the volume

distribution (see Appendix B for the derivation by the
Fokker-Planck equation and its more accurate numerical
solution)

∂VC
L3
inf ½t� ∝ ∂aL3

inf ½t� ∝ P½a; t� · R3½a; t� · f½a; t�

∝ e
t

V0
C
a

M2
pl
Hc
inf

−ða−acl ½t�Þ2
2Δa2 : ð33Þ

At a ¼ ai we get ∂aL3
inf ½t�ja¼ai ∝ e

½ V0
C
ai

M2
pl
Hc
inf

−
ðV0

C
Þ2

9H5
inf

=ð2πÞ2�t. To avoid
the inflating volume at a ¼ ai from dominating over the
Universe, and thus to evade eternal inflation, we need

ðV 0
CÞ2

9ðHc
infÞ5=ð2πÞ2

≳ Vi
C

M2
plH

c
inf

: ð34Þ

This gives

Vi
C ≲ ð10 keVÞ4

�
1 GeV4

V0

�
2
�

V 0
C

10−66 GeV

�
2

: ð35Þ

This can be also obtained by requiring that the diffusionffiffiffiffiffiffiffiffi
Δa2

p
is smaller than σ when acl crosses zero:

V 0
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nslowroll

p H0
inf
2π ≲ σ. Thus, for the inflation scale,

V1=4
0 ∼MeV, GeV, 100 GeV, we can relax the tuning of

the cosmological constant by Vi
C=Λ4

C ∼ 1050; 1026; 1010

with V 0
C ¼ 10−66 GeV, which is around the experimental

bound as will be explained.
The parameter region in Hinf − V 0

C plane is shown in
Fig. 1. The contours denote maxðVi

C=Λ4
CÞ, i.e., the maximal

amount of the relaxation (35). In the lower gray region,
Eq. (32) is not satisfied and our estimation is invalid. In the
upper green region, the slow roll is too fast and σ > Λ4

C.
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The pink region below the lowest dashed contour cannot
have Vi

C > Λ4
C. Here, we takeH

c
inf > 2 × 10−23 GeV in the

figure so that the reheating temperature of the Universe,
assuming instantaneous reheating, is larger than 10 MeV,
which is favored for a successful big bang nucleosynthesis.
A prediction of this scenario is that the CC is time vary-

ing, which leads to the equation of state w ≈ _a2ρ−1c −
1 ≈ V 02

C

9H2
0

ρ−1c − 1, with ρc being the critical density of the

Universe. To be consistent with the equation of state [51],
w < −0.95ð95%C:L:Þ, we obtain

jV 0
Cj≲ 0.6 × 10−65 GeV3: ð36Þ

Interestingly, this bound is close to the theoretical bound
σ ≲ Λ4

C → jV 0
Cj≲ 2 × 10−65 GeV3 (see Appendix A for a

discussion that σ ∼ Λ4
C is favored). In particular, the

experimental precision will be improved in the Euclid
CMBmission [52], Rubin observatory [53], and DESI [54],
which may probe the scenario.
In any case, if the inflation scale is low enough, we can

obtain Vi
C as large as Vi

C ∼ 1040–50Λ4
C. In this case, a MeV-

GeV scale inflation is required [40,55]. Since the total
e-fold ΔNslowroll is exponentially large, even very light
particles due to an approximate shift symmetry reach the
equilibrium distribution during the inflation with the energy
density of 3H4

inf=ð2πÞ2 [29,56,57]. Since this is much
smaller than Λ4

C, they cannot be the dominant dark matter.
On the other hand, axion dark matter can be produced via
mixing with axionic inflaton especially if the light axions
are at equilibrium distribution [50,58], or it can be
produced from inflaton decay [59,60]. Baryogenesis is
also possible due to the inflaton decay with higher-
dimensional operators that are baryon number violating
while a proton is stabilized by a parity [61].

C. An alternative view of the mechanism
as a summary

Let us summarize the mechanism so far from a schematic
discussion. In this part, we investigate the inflationary
boundaries and trajectories in ϕ; a field space (a should be
replaced to be VC to apply to the generic time-varying
scenario; in this case, the eternal inflation constraint may
not apply). The boundaries as well as trajectories are shown
in Fig. 2 in the ϕ − a plane. Above the gray line, eternal
inflation takes place due to the a diffusion. We avoid this
region by setting the bound of Eq. (35). Thus, the a
classical motion is always dominant, i.e., a always slow-
rolls, and it does not jump to a positive a direction. Thus,
the cosmic time t has a one-to-one correspondence to a or
VC value by approximating Hinf ¼ Hc

inf . The blue dashed
line denotes the end-of-inflation boundary; i.e., below the
line, the slow-roll condition of ϕ is violated.7 The tuning at
the criticality can be seen that the a ¼ 0 line almost touches
the lower bound of the blue dashed line. The two black
vertical lines denote �ϕinf ¼ OðHinfÞ, defined in the last
paragraph in Sec. II. Between the two lines, the ϕmotion is
dominated by the random walk, while amotion is classical.
This is the stochastic region of ϕ that we have focused on.
In the stochastic region of ϕ, we have used the ϕ-model-

independent form of the escaping rate CV 00
ϕ=ð3HinfÞ and the

expansion rate Hinf¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVϕð0ÞþVC½a�Þ=3M2

pl

q
to describe

the system. The escaping rate is derived by assuming an
equilibrium flat distribution in jϕj < ϕinf . The reasons that
the microscopic ϕ motion is irrelevant are as follows.

(i) The difference of the ϕ value in the range jϕj ≪ ϕinf
contributes to the energy density by at most
H2

infϕ
2
inf ; m

2
ϕϕ

2
inf ∼H4

inf . The first (second) term
comes from the kinetic (mass) term. The error of
the approximation neglecting those contributions
of the escaping rate or expansion rate is
≲H4

inf=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vϕ½0�Mpl

p
. Since we focus on the regime

H4
inf ≪ Λ4

C, this error does not change our conclu-
sions. The motion of ϕ in this range is negligible.

(ii) Because of the small field range of jϕj < ϕinf ∼
Oð1ÞHinf , the ϕ distribution approaches to a flat one
within Oð1Þ e-folds, which is much shorter than the
typical timescale ΔNend ¼ 10Oð10Þ. In the timescale
of our interest, we can safely average possible ϕ
values according to the flat distribution. The possible
error to the escaping rate may be a difference by a
factor of e−ΔNefold=Oð1Þ, which is the probability that
the equilibrium distribution is not reached.

(iii) There is no direct interaction between ϕ and a.

FIG. 1. The contours ofmaxVi
C=Λ4

C in theHinf − V 0
C plane. This

is the most efficient relaxation without eternal inflation. In the
lower gray region, our estimation is invalid. In the upper green
region, the slow roll is too fast, and the resolution of the relaxation
mechanism is worse than Λ4

C. The purple region above the dotted
line represents the current bound for the slow-rolling a. The pink
region below the lowest dashed contour cannot have Vi

C > Λ4
C.

7Here, we have assumed the quadratic potential of ϕ to present
this line for illustrative purpose, i.e., a ∝ ϕ2 that represents the
constant second slow-roll parameter. In a realistic case, by
requiring the fitting of the CMB data, this boundary will be
modified. Our discussion does not change.
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Then, whether a trajectory of the coarse-grained fields
moves out of the stochastic regime of ϕ is probabilistic. The
probability was calculated analytically so far (and con-
firmed numerically in Appendix B). By focusing on this
stochastic range of ϕ, we have shown that the largest
volume that finishes the inflation has a vanishingly small
cosmological constant.8 This can also be found in Fig. 2.
The trajectory of B (black arrow from a square) is shorter
than A (red arrow from a circle) in the a direction. Since the
inflationary time or the e-folds for each trajectory corre-
sponds to the a excursion in the jϕj < ϕinf regime, A
experiences exponentially larger e-folds than B. Namely,
the volume at the end of inflation for trajectory A is
exponentially larger than that for B. In general, given a set
of initial field values satisfying jϕj < ϕinf and a > 0, the
trajectory with the longest a excursion, or, equivalently,
the largest volume at the end of inflation, approaches
to aðVCÞ ≈ 0.

The reason that our mechanism is insensitive to the other
regime of jϕj ≫ ϕinf is as follows. Out of the two vertical
black solid lines, both fields evolve following the classical
motion. In particular, above the blue dashed line, both
fields slow roll. Since the ϕ direction is much steeper than
the a direction, the slow roll is mostly in the ϕ direction.
Once the trajectory is out of the jϕj < ϕinf regime, it soon
reaches the end-of-inflation boundary within a few e-folds
≪ ΔNend. We can neglect the expansion in this period
compared to the exponentially large ΔNend ¼ 10Oð10Þ
which is the typical timescale for the dynamics of
jϕj < ϕinf . This discussion applies not only to the case
that the trajectory diffuses out of the ϕ-stochastic regime
(trajectory B), but also to the case that the fields are initially
in the slow-roll regime, e.g., trajectory C (green arrow from
a diamond). Thus, the trajectory of C at the end-of-inflation
boundary has a suppressed volume distribution, which is
negligible compared to that of A or B. This corresponds to
what we have discussed at the end of Sec. II. We argued that
the long inflation compensates for the tuning of the initial
condition. This is why the finely tuned initial value of ϕ for
the A trajectory is preferred in the end.

IV. CONCLUSIONS AND DISCUSSION

We have shown that if the inflaton potential has a specific
form, and if the CC is time varying, the CC can be relaxed
during inflation. The price to pay was the tuning, which can
be made technically natural, to realize the peculiar inflaton
potential. This potential drives inflation when CC is
positive, while it ends when CC is negative. The resulting
Universe is filled by a landscape of the CC with a normal
distribution peaked around zero. The time-varying CC, if it
persists until today, leads to a deviation of the equation of
state of the Universe and can be searched for in the future.
In particular, if the measured CC is around the variance of
the distribution, the equation of state is predicted to differ
from −1 by Oð1–10Þ%. In a time-varying CC model, the
CC can be relaxed from ð103 GeVÞ4, and in a slow-rolling
scalar model, the CC can be relaxed from ð10 MeVÞ4.
Let us recall some comments on the fine-tuning of our

proposal compared with the conventional inflation models.
In general, realistic inflation models have three kinds of
fine-tunings: the inflaton potential shape to satisfy the slow-
roll conditions, the tuning for the initial conditions,
including the metric, inflaton field value, and the homo-
geneity over a Hubble patch, and the tuning of the
cosmological constant. The initial conditions’ tunings are
compensated by the inflation volume. In the context of
conventional hilltop inflation, the initial homogenous field
value ϕwithin the range jϕj < ϕinf may be preferred so that
inflation lasts eternally, although there is a measure
problem. In our case, the initial condition of jϕj < ϕinf
is also preferred due to very long inflation, but it is not
eternal thanks to the time-varying CC.

FIG. 2. Possible trajectories of coarse-grained fields in the
ϕ − a (or VC) plane. Above the gray line, eternal inflation takes
place due to the a diffusion, which we do not consider (this
condition may not needed when we consider generic time-
dependent VC). The blue dashed line denotes the end-of-inflation
boundary; i.e., below the line, the slow-roll condition of ϕ is
violated. We require the blue dashed line to touch the a ¼ 0 line
by tuning the ϕ potential height. The two black vertical lines
denote �ϕinf . Between the two lines, the ϕ motion is dominated
by the quantum diffusion. Trajectories A, B, and C have different
initial conditions and ϕ diffusion (see the main text). Among the
three trajectories, A, which ends at VC ∝ a ≈ 0, has the longest
inflationary period. Thus, the volume at the end-of-inflation
boundary exponentially dominates over B and C.

8We have neglected the e-folds after the trajectory diffuses
out of the stochastic range (see the justification in the next
paragraph).
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We would like to emphasize that the total amount of the
other two tunings for our scenario can be smaller than
conventional inflation models with a similar inflation scale.
The requirement of criticality, which has a similar amount
of tuning of the CC, includes the tuning for the slow-roll
conditions of the ϕ potential and reduces the tuning of the
CC by the same amount. As a result, the tuning in total may
be less severe than conventional cases in which tunings are
required for explaining the slow-roll conditions and the CC.
We also remind that the tuning can be made technically
natural.
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APPENDIX A: SECOND INFLATION BY a

In the main part, we have focused on the inflation driven
by ϕ and its termination. We found that most of the
Universe finishing the ϕ inflation has the CC almost zero
by assuming that ϕ has a peculiar potential form and the CC
is time varying.
To obtain a consistent CC, we need a small enough jV 0

Cj.
On the other hand, the small jV 0

Cj can drive second inflation
by a if the slow-roll condition

εðaÞ ≃M2
pl

2

�
V 0
C

V

�
2

≪ 1 ðA1Þ

is satisfied. When the first inflation ends with Ṽi
C ≫ Λ4

C by

chance, V ≃ Ṽi
C ≳ Λ4

C. Since σ ≃ jV 0
CjMplffiffi
6

p ≲ Λ4
C in our sce-

nario, the second inflation has to take place.9 When VC
decreases to ∼σ, the second inflation ends, and then the
empty Universe starts to contract. This Universe may be
difficult to have a consistent cosmology unless Ṽi

C ≲ Λ4
C.

Here, let us estimate the volume distribution of the empty
Universe. The timescale of the second inflation can be
obtained by solving the slow-roll equation

ΔN2nd
slowroll½Ṽi

C� ≃
1

2

ðṼi
CÞ2

ðV 0
CÞ2M2

pl

: ðA2Þ

Therefore, the volume produced at t satisfying VC½t� ≃ Ṽi
C

increases exponentially by

Δ logL3
inf;2nd ∼ 3ΔN2nd

slowroll½Ṽi
C� ∼

3

2

�
Ṽi
C

V 0
CMpl

�
2

ðA3Þ

due to the second inflation by a. On the other hand, the
volume undergoing the first inflation also exponentially
increases by

Δ logL3
inf;1st∼

3

2

�
2Ṽi

C

ðV 0
CÞ2

ðV0−Vc
0Þ

M2
pl

þ
�

Ṽi
C

V 0
CMpl

�
2
�
: ðA4Þ

The second term is the same as Eq. (A3). The empty
Universe should be subdominant compared to the Universe
with a consistent cosmology. Thus, we need V0 − Vc

0 ≥ 0.
However, this leads to the negative central value of the CC
[see the discussion around Eq. (23)]. Therefore, to explain
the size of the CC, we need other contributions. A
candidate is σ ∼ Λ4

C from Eq. (25) in the main part, which
predicts the current equation of state differing from −1
by Oð1–10Þ%.10

We can alternatively have a positive CC if the Vi
C is close

to the upper bound of the contours in Fig. 1. In this case, we
have checked numerically that the distribution of a gets
broadened due to the expansion effect (see Appendix B).
Also, many light particles can contribute to the positive CC
and further relax the CC (see Appendix C).

APPENDIX B: SOLUTIONS TO THE
FOKKER-PLANCK EQUATION

Let us explain the dynamics of a during the critical
eternal inflation more systematically. To this end, we
assume that Hinf does not change over ΔNdiffuse and
estimate the distribution for the ultralight field a, whose
mass can be neglected. The evolution of the classical
motion of a is described by the Langevin equation

_a ¼ −
1

3Hinf
V 0
CðaÞ þ fðx⃗; tÞ; ðB1Þ

where VðaÞ is the potential for a and the dot and prime
represent the derivative with respect to the cosmic time t
and a, respectively. fðx⃗; tÞ satisfies

hfðx⃗; t1Þfðx⃗; t2Þi ¼
H3

inf

4π2
δðt1 − t2Þ; ðB2Þ

9The first inflation reheats the Universe, but soon VC
dominates the Universe. The timescale for the matter- or
radiation-dominated Universe can be neglected compared with
the inflationary timescales.

10This may be slightly in tension with the current CMB data,
but the Hubble parameter itself may have Oð10%Þ tension
between the early and late measurements [62], which may require
certain physics beyond the standard model (BSM) to explain it. In
certain BSM models, it may be consistent or even better to have a
slow-roll scalar to further reduce the Hubble parameter at late
time [63]. Alternatively, the change of the equation of state is
suppressed if a couples to (dark) particles in the Universe. Then,
the matter effect easily gives a friction for a [9,64–67]. Such a
light field then can mediate force and can be tested phenom-
enologically if it couples to the SM matter or its spin [68,69] and
if it couples to both SM matter’s spin and dark matter [70]. The
friction is not important during inflation, since the (dark) matter is
absent there.
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where h� � �i represents the stochastic average that includes
the short-wavelength modes. The corresponding Fokker-
Planck equation can be derived as [71,72]

∂Pða; tÞ
∂t

¼ 1

3Hinf

∂

∂a
ðV 0

CPða; tÞÞ þ
H3

inf

8π2
∂
2Pða; tÞ
∂a2

; ðB3Þ

where Pða; tÞ denotes the probability distribution for the
coarse-grained field a in a Hubble patch. This equation
describes the time evolution of Pða; tÞ within the timescale
Δt, satisfying ΔNend > ΔtHinf . By assuming a constant
V 0
C, we can solve this equation with an initial condition

Pða; 0Þ ¼ δða − aiÞ as

P̂ða; t; aiÞ ¼
1

Nt
exp

�
−
ða − acl½t; ai�Þ2

2Δa½t�2
�
: ðB4Þ

Here, acl ≡ −t V 0
C

3Hinf
þ ai and Δa2 ≡ tH3

inf=ð2πÞ2, and Nt ≡ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔa2

p
is the normalization factor. With a general initial

distribution Pða; 0Þ, the solution can be obtained from

Pða; tÞ ¼
Z

daiP̂ða; t; aiÞPðai; 0Þ: ðB5Þ

Let us consider t ≪ ΔNend=Hinf, where we have to take
account of the backreaction from the inflaton sector. Then,
it is convenient to follow the volume distribution L3½a; t�.
This is usually considered for the inflaton field [73–76].
A similar effect was discussed in Ref. [56] for estimating
the validity for the estimation of the axion abundance from
inflationary equilibrium distribution [29,56]. Here, we use
the evolution equation of the inflating volume by taking
into account both the inflationary expansion and the
terminating probability for the inflation:

∂L3½a; t�
∂t

≈
�
3Hinf þ C

V 00
ϕ

3Hinf

�
L3½a; t�

þ ∂

∂a

�
V 0
C

3Hinf
L3ða; tÞ þH3=2

inf

8π2
∂H3=2

inf L
3ða; tÞ

∂a

�
;

ðB6Þ

where L3½a; t� ¼ ∂aL3
inf ½t� is defined in Eq. (33). The first

term denotes the Hubble expansion minus the rate to end
the inflation due to the ϕ dynamics discussed in Sec. II A.
We can solve the equation numerically. In Fig. 3, we show

the solution of the inflating volume logL3½a; t�with starting
from a normal distribution L3½a; t� ¼ 1

H3
inf

1ffiffiffiffiffiffiffiffi
2πσ2ini

p e
−ða−aiÞ2

2σ2
ini with

a variance σini ¼ Mpl=
ffiffiffi
8

p
. Here, the initial volume is taken

to be a Hubble volume 1=H3
inf . V

i
C ¼ 2 × 1016Λ4

C, V
0
C ¼

10−68 GeV3, and Hinf ¼ 10−19 GeV are taken for a
sample set of parameters satisfying the conditions we have

discussed in themain part.We have checked numerically that
logL3½a; t� becomes the largest, and, thus, the inflationary
volumeL3½a; t� becomes exponentially largest at jVCj < Λ4

C,
in the whole integration time t.
In Fig. 4, we take Vi

C ¼ 1026Λ4
C with other parameters

unchanged from Fig. 3. This does not satisfy Eq. (35) in the
main part. The inflationary volume is favored at larger VC
as we have explained intuitively and analytically in the
main part. Our mechanism does not work in this region.
We did not take σini much smaller than Mpl to have a

delta function due to a numerical limitation. Because of the
numerical power, we have directly checked the inequality
(35) in the main part within a few orders of magnitude. On
the other hand, we have checked that the mechanism does
(not) work if σini ≲ ð≳ÞOð1Þσ with Vi

C ¼ Oð1Þσ. This is an
analytically equivalent condition to Eq. (35) [see the
discussion below Eq. (35)].

FIG. 3. The solution of the Fokker-Planck equation at several t
for the solid lines. Vi

C ¼ 2 × 1016Λ4
C, V

0
C ¼ 10−68 GeV3, and

Hinf ¼ 10−19 GeV are taken. The initial distribution is taken as a
normal distribution with a variance of V 0

CMpl=
ffiffiffi
8

p
. The dotted

line represents the maximum of the distribution at different t.
These parameter choices satisfy the conditions we have discussed
in the main part.

FIG. 4. The same as Fig. 3 except for Vi
C ¼ 1026Λ4

C, which
does not satisfy Eq. (35).
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APPENDIX C: SMALL CC
FROM MANY SCALARS

We have shown that a single scalar and an inflaton for
ultralow-scale inflation can relax the CC by 1040–50. We
may introduce other particles or interactions to increase the
inflation scale or further relax the CC.
One possible extension of the model is to consider N

light particles aα (α ¼ 1…N) whose potential is given by
Vα. The vacuum energy is given by VC ¼ P

α Vα.
We would not obtain a further relaxation of the CC if
V 0
αð>0Þ were a constant. This is because the system is

equivalent to a single slow-roll field with the linear
potential satisfying

V 0
C;eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
α¼1

ðV 0
αÞ2

vuut : ðC1Þ

In other words, all the discussed conditions and constraints
apply to the single slow-roll field in the direction of
−V⃗ 0

α. However, in a realistic system, a potential Vα should
have a minimum. Thus, the slow roll of aα will end when
it rolls down and settle into the minimum aα ¼ amin

α at
which V 0

α½amin
α � ¼ 0 but with nonvanishing mass m2

α ¼
V 00
α½amin

α � > 0.

For concreteness, let us assume that Vi
α − Vαðamin

α Þ ¼
OðVi

αÞ is the same order as Vi
α ∼ Vi

β ¼ Λ̃4ð> 0Þ and V 0
α ≫

V 0
αþ1 > 0 at the beginning. Then, a1 soon slowly rolls to the

minimum. When this happens, the total potential energy VC

decreases by OðΛ̃4Þ from Vi
C ¼ NOðΛ̃4Þ. After the stabi-

lization of a1, the effective linear potential has V 0
C;effð1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
α¼2ðV 0

αÞ2
p

∼ V 0
2. This process recursively takes place

until VC ¼ OðΛ̃4Þ, which crosses zero during the slow roll
along the direction∼anþ1. We can neglect the timescales for
the stabilization of aα≤n compared to the slow-roll timescale
of anþ1 because of our assumption V 0

α ≫ V 0
αþ1.

At the last slow roll, V 0
C;effðnÞ ∼ V 0

nþ1, VC ∼OðΛ̃4Þ.
Therefore, we can use the main part discussion with the
replacement of V 0

C → V 0
nþ1 and Vi

C → OðΛ̃4Þ. For in-
stance, with Hinf ∼ 10−18 GeV, V 0

nþ1 ¼ 10−66 GeV, and
n ∼ 4 × 1024, we can relax the CC by 1048 by assuming
Vi
C ¼ NOðΛ̃4Þ ∼ nOðΛ̃4Þ < V0. We also take into account

the equilibrium distribution contribution of aα≤n around the
minimum. Every a (which is light enough) settled into the
minimum forms the equilibrium distribution if mα ≪ Hinf .
Thus, the energy density is probabilistic with a typical
value around n×3H4

inf=ð2πÞ2. We need n×3H4
inf=ð2πÞ2≲σ

to prevent the fluctuation of the vacuum energy contrib-
uting the volume distribution.
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