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We propose a new model-agnostic search strategy for physics beyond the standard model (BSM) at the
LHC, based on a novel application of neural density estimation to anomaly detection. Our approach, which
we call classifying anomalies through outer density estimation (CATHODE), assumes the BSM signal is
localized in a signal region (defined e.g., using invariant mass). By training a conditional density estimator
on a collection of additional features outside the signal region, interpolating it into the signal region, and
sampling from it, we produce a collection of events that follow the background model. We can then train a
classifier to distinguish the data from the events sampled from the background model, thereby approaching
the optimal anomaly detector. Using the LHC Olympics R&D dataset, we demonstrate that CATHODE

nearly saturates the best possible performance, and significantly outperforms other approaches that aim to
enhance the bump hunt (CWOLA hunting and ANODE). Finally, we demonstrate that CATHODE is very robust
against correlations between the features and maintains nearly optimal performance even in this more
challenging setting.
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I. INTRODUCTION

While there is compelling theoretical and experimental
motivation for new physics to be discovered at the Large
Hadron Collider (LHC), it is not possible to perform a
dedicated search for every conceivable scenario. The
ATLAS [1–3], CMS [4–6], and LHCb [7] collaborations
have extensive search programs for new physics, but there
are more models to search for than can be covered by
individual analyses. Even searches for pairs of particles are

largely unexplored [8,9], in part because of the theory space
priors guiding analysis development. The lack of discov-
eries thus far could therefore be because existing searches
do not cover the anomalous regions of phase space. As a
result, it is essential to complement the search program with
methods that are more model agnostic.
While some traditional searches for physics beyond the

standard model (BSM) provide an interpretation with little
dependence on a particular signal model, most searches
are optimized with a limited set of benchmarks. Only a
relatively small number of searches are signal model
independent from the start, including analyses that focus
on single features (e.g., bump hunts) and more multivariate
searches that compare data with simulation in a large
number of signal regions [10–23].
Recent innovations in machine learning have resulted in

powerful new techniques for model agnostic searches in
high energy physics.1 These anomaly detection approaches
employ a variety of strategies to be broadly sensitive to new
physics with varying methods for modeling the standard
model background. In addition to community challenges
such as the LHC Olympics [59] and DarkMachines [70],
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these tools have also been applied for the first time to
collider data by the ATLAS collaboration [74].
An important class of anomaly detection strategies builds

on the bump hunt. The traditional bump hunt assumes that a
potential signal is localized in one known feature m (often
an invariant mass) and then uses data away from the signal
(sideband region or SB) to estimate the background. This
setup is sketched in Fig. 1. The exact location of the signal
(signal region or SR) is scanned over m. While broadly
sensitive to new physics models with the targeted resonance
and nearly independent of simulation for the background
modeling, bump hunts are not particularly sensitive to any
BSMmodel. Machine learning approaches that enhance the
bump hunt use features x other than m to automatically
amplify the presence of a potential signal. The ultimate goal
is to approximate the likelihood ratio between the back-
ground and the data in the signal region,

RðxÞ ¼ pdataðxÞ
pbgðxÞ

ð1Þ

as this is the optimal test statistic for a data-versus-back-
ground hypothesis test [75].
Multiple strategies have been proposed for this task. One

approach is based on the classification without labels
(CWOLA) protocol [25,26,76] in which one trains a clas-
sifier to distinguish the SR and SB data. One of the biggest
challenges with the CWOLA hunting approach is its high
sensitivity to correlations between the features x and m.
Multiple variations of CWOLA hunting have been proposed
to circumvent the correlation challenge, such as simulation
assisted likelihood-free anomaly detection (SALAD) [38]
and simulation-assisted decorrelation for resonant anomaly
detection (SA-CWOLA) [52].

An alternative approach is to learn the two likelihoods
directly and then take the ratio. This is the core idea behind
anomaly detection with density estimation (ANODE) [39].
The SB is used to estimate pbgðxjmÞ for the background
(assuming little signal contamination outside the SR). This
likelihood is then interpolated into the SR. Combined with
an estimate of pdataðxjmÞ trained in the SR, one can
construct an estimate of the likelihood ratio. The SB
interpolation makes ANODE robust to correlations between
x and m, although density estimation is inherently more
challenging than classification.
In this paper, we propose a new method which combines

the best of CWOLA hunting and ANODE. With classifying
anomalies through outer density estimation (CATHODE), we
train a density estimator to learn the (usually smooth)
background distribution in the SB which we refer to as the
“outer” region. Then we interpolate it into the SR, but
rather than directly constructing the likelihood ratio as in
ANODE [which would require us to also separately learn
pdataðxjmÞ in the SR], we instead generate sample events
from the trained, interpolated background density estima-
tor. These sample events should follow pbgðxjmÞ in the SR.
Finally, we train a classifier (as in CWOLA hunting) to
distinguish pdataðxjmÞ from pbgðxjmÞ in the SR.
Using the R&D dataset [77] from the LHC Olympics

(LHCO) [59], we will show that CATHODE achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWOLA

hunting and ANODE, across a wide range of signal cross
sections. CATHODE easily outperforms ANODE because it
does not have to directly learn pdata in the SR, and in
particular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features.
Meanwhile, it outperforms CWOLA hunting because of a
combination of two effects: one is that in CATHODE, we can
oversample the outer density estimator, leading to more
background events than CWOLA hunting has access to
(CWOLA hunting is limited to the actual data events in
the sideband region), and yielding a more powerful
classifier. Second, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWOLA hunting, while CATHODE is
robust.
We also compare CATHODE to a fully supervised

classifier (i.e., trained on labeled signal and background
events) and an “idealized anomaly detector” (trained on
data vs perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how CATHODE essentially saturates its performance. This
means that for the first time, a fully simulation-independent
anomaly detection method has been demonstrated to
achieve the theoretical upper bound in sensitivity to new
physics. The CATHODE method is basically the best that it
could possibly be.

FIG. 1. Schematic view of the bump hunt. The signal (blue) is
localized in the signal region (SR). The background (red) is
estimated from a sideband region (SB).
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Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two of
the features in x. Again we show that CATHODE (like
ANODE, and unlike CWOLA hunting) is largely robust
against such correlations, and continues to match the
performance of the idealized anomaly detector.
In this work, we will concern ourselves solely with signal

sensitivity, and reserve the problem of background estima-
tion for future study. As long as the CATHODE classifier does
not sculpt features into the invariant mass spectrum, it
should be straightforward to combine it with a bump hunt
in m.
This paper is organized as follows: Section II briefly

introduces the LHCO dataset and our treatment of it, and
Sec. III describes the steps of the CATHODE approach in
detail. Results are given in Sec. IV and we conclude with
Sec. V. In Appendix A, we provide details of the other
approaches (CWOLA hunting, ANODE, idealized anomaly
detector and fully supervised classifier) considered in this
paper. A further study of correlated features is given in
Appendix B.

II. THE DATASET

For the most part, our treatment of the data (background
and signal processes, features, signal and sideband regions)
follows [39] closely. Here we will briefly review these
choices and also highlight some important differences.
We use QCD dijet events as SM background and

W0 → Xð→ qqÞYð→ qqÞ events as signal, where mW0 ¼
3.5 TeV, mX ¼ 500 GeV, and mY ¼ 100 GeV. These are
taken from the original LHCO R&D dataset [77]. They are
simulated using PYTHIA8 [78,79] and DELPHES3.4.1 [80–82].
The reconstructed particles of each event are clustered into
R ¼ 1 anti-kT [83] jets using FASTJET [84,85]; all events are
required to satisfy a single pT > 1.2 TeV jet trigger.
The training features are based on observables con-

structed by the two highest-pT jets. The two jets are sorted
by their invariant mass, such that mJ1 < mJ2 . The input
features used are: the invariant mass of the two jet system
(mJJ), the invariant mass of the lighter jet, the difference
in the invariant masses (ΔmJ ¼ mJ2 −mJ1), and the

n-subjettiness ratios τJ121 and τJ221. The n-subjettiness ratios
are defined as τij ≡ τi=τj [86,87].
The signal and sideband regions for the enhanced bump

hunt will be defined in terms of the invariant mass of the
system:mJJ ∈ ½3.3; 3.7� TeV for the signal region (SR) and
its complement mJJ ∉ ½3.3; 3.7� TeV for the sideband (SB)
region. For simplicity, we will specialize to a single mJJ
window in this paper, optimally centered on the location of
the signal. In practice, as with any other (enhanced) bump
hunt method, one would imagine scanning the SR across
the entire mJJ range and including appropriate trial factors.
In this work we will compare the CATHODE method

against a variety of both simulation-independent anomaly

detection (CWOLA hunting, ANODE) and simulation-
dependent methods. The simulation-dependent methods
will be highly idealized, in the sense that our simulations of
background and signal will be assumed to be perfect.
Accordingly, we must be very careful about the separation
between what we consider as the “data,” i.e., events
that would come from an experiment in an actual appli-
cation of the methods, vs the “simulation,” i.e., events that
would be simulated even in a real world application.
Figure 2 visualizes our datasets (see also Table I for more
details).

(i) For the mock data, we use all of the 1 000 000 SM
background events, together with 1 000 (or fewer)
signal events, from the original LHCO R&D dataset.
All of the simulation-independent anomaly detection
methods will be trained and validated (model se-
lection) using the mock data alone.

(ii) Of the remaining 99 000 signal events in the original
LHCO R&D dataset, approximately 75 000 lie
within the SR. For simulation events, we reserved
55 000 of these. For background, we generated an
additional 272 000 QCD dijet events specifically in
the SR (so with mJJ ∈ ½3.3; 3.7� TeV) using the
same settings, trigger and data format as the original
LHCO R&D dataset. The fully supervised classifier
uses both signal and background simulation events,

FIG. 2. Visualization of the events and how they are split into
datasets. The number of signal (sg) and background (bg) events in
each dataset is given. Note that “simulation” and “evaluation” are
only in the SR, so there are some signal events in the SB that are
not used at all.
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while the idealized anomaly detector only uses
background.

(iii) Finally we set aside some signal and background
events for the common evaluation of all of the
methods. These events were not touched during
the training or validation of any of the methods. We
used the remaining 20 000 SR signal events from the
original LHCO R&D dataset, together with an
additionally generated set of 340 000 QCD dijet
events in the SR.

For our primary benchmark mock dataset (1M back-
ground events and 1k signal events), there are 121 352
background events and 772 signal events in the signal
region, corresponding to an initial S=B ¼ 6 × 10−3 and
S=

ffiffiffiffi

B
p ¼ 2.2. This is the same benchmark studied in [39]

and approximately the same signal vs background compo-
sition as Black Box 1 of the LHC Olympics 2020 [59]. The
purpose of this choice is to ensure that (a) the signal is not
too numerous such that a conventional bump hunt in mJJ
would already result in a discovery of the signal (obviating
the need for any sophisticated anomaly detection method);
yet (b) not too few that no anomaly detection method
would ever succeed in discovering the signal amongst the
background.
In order to probe this most interesting regime of signal

strengths relevant for anomaly detection techniques, we
will also perform a scan over different levels of S=B in this
work, and we will see the point at which all of the anomaly
detection methods fail.

III. THE CATHODE METHOD

A. Conditional density estimation

The first step of the CATHODE method is to train a
conditional density estimator on the outer data. Assuming
the signal is mostly contained in the SR (as it is here),
then the density estimator will learn pdataðxjm ∉ SRÞ≈
pbgðxjm ∉ SRÞ, where m ¼ mJJ and x ¼ ðmJ1 ;ΔmJ;

τJ121; τ
J2
21Þ.

In this work, we focus on a single baseline density
estimator: the masked autoregressive flow (MAF) with
affine transformations [88]. This was used previously in
Ref. [39] and was found to perform well on the LHCO
R&D dataset. (See also Ref. [58] for another density
estimator that performed well on this dataset.) As in
[39], we will use a base distribution consisting of the unit
normal. In a subsequent publication [89] we will compare
and contrast different methods for conditional density
estimation. For a description of MAFs and normalizing
flows more generally, we refer the reader to Refs. [39,90] or
to reviews in the ML literature [91,92].
As in Ref. [39], the features are shifted and scaled to

the range x ∈ ð0; 1Þ, logit transformed,2 and finally

standardized by subtracting the mean and dividing by
the standard deviation of the training set before being
passed to the density estimator. This transformation was
chosen since it improves the accuracy of the density
estimator by turning regions of difficulty (typically sharp
edges) into smooth tails, which are easier to learn.
The mock data in the SB region is split into a training set

consisting of 500 000 events, and a validation set consisting
of the remaining SB events in the mock data (378 876 to be
precise). The validation set is reserved for model selection.
The MAF density estimator3 is trained using PYTORCH

[93] in the SB region for 100 epochs with the Adam
optimizer [94], a learning rate 10−4, batch size 256, and
batch normalization with a momentum of 1.0. It consists of
15MADE blocks, with each block consisting of one hidden
layer of 128 nodes. This is the same configuration as used
in [39]. The training loss and validation loss are tracked
throughout training for each epoch. The ten epochs (model
states) with the lowest validation loss are selected for the
next step of the CATHODE method (interpolation and
sampling). Since the global minima are used, these ten
epochs do not need to be consecutive.
The loss curves for one such MAF training are shown as

dotted lines in Fig. 3, with the moving averages of five
epochs in solid lines.

B. Interpolation and sampling

The next step of the CATHODE method is to interpolate
the conditional density estimator trained on the SB region
into the SR and then sample events from it.4 We now
describe this process in more detail.
Exactly the same as in the ANODE method [39], this

interpolation is automatically handled by the MAF. While
the MAF was trained on events with m ∉ SR to learn a

FIG. 3. Training and validation loss for the MAF (dotted lines)
and the five epoch moving average (solid lines).

2logitðxÞ ¼ lnð x
1−xÞ.

3This was derived from the implementation of https://github
.com/ikostrikov/pytorch-flows.

4See Ref. [95] for another ML-based template method.
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bijective, invertible map z ¼ fðx;mÞ between the 4d
features x and latent space z following the base distribution
(unit normal), this function can be queried for any value of
m, including m ∈ SR. In ANODE, f was used for density
estimation, but here we use its inverse x ¼ f−1ðz;mÞ to
produce samples in x following the background distribution
in the SR.
A sample of N events is generated from each of the ten

chosen model states. The events are then combined and
shuffled into a set of 10N sample points. This ensembling
procedure gives a more representative set of samples than a
single model would.5 In Sec. IV D, we will explore the role
that N plays in the quality of the anomaly detection task,
and the potential benefits of oversampling the background
model in the SR.
Since we want the sampled synthetic background data to

follow the actual data distribution as closely as possible,
when sampling we use a matching set of 10N m values
drawn from the same distribution as the data. To learn them
distribution of the SR data, we perform a kernel density
estimate (KDE) fit to the m values in the training set. The
KDE was implemented using the Scikit-learn library [97]
with a Gaussian kernel and a bandwidth of 0.01. To be fully
explicit, every sample we produce proceeds from f−1ðz;mÞ
with z ∼N ð0; 1Þ4 and m ∼ pKDEðmÞ.
Since the mock data is logit transformed and standard-

ized before being passed to the density estimator, the
sampled events are also produced in this transformed
and standardized space. They are brought back to the
physical space by applying the inverses of the standardi-
zation and logit transform, using the SB model parameters
(as these were the parameters used by the density estima-
tor). Note that the physical space here refers to the 4d
feature space x ¼ ðmJ1 ;ΔmJ; τ

J1
21; τ

J2
21Þ and does not include

m by construction; sampling from m occurs through the
separate KDE step described above.
The resulting distributions of the sampled events and the

mock data background in the validation dataset are shown
in Fig. 4. One can see that there is a notable overlap
between the two distributions in all auxiliary features, as
well as on the m distribution drawn from the KDE fit.

C. Classifier

The third step of the CATHODE method is to train a
classifier to distinguish the generated sample events (that
should follow the background distribution in the SR) from
the mock data (that follow the background plus signal
distribution in the SR). For all the variations wewill explore
(including CWOLA hunting), we will use the same classifier
architecture. This consists of three hidden layers with 64
nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with PYTORCH

[93], is trained for 100 epochs with a batch size of 128,
using the Adam [94] optimizer with a learning rate of 10−3.
When the classes are imbalanced (as will be the case when
we oversample the background model), they are reweighted
in the loss computation accordingly, such that they con-
tribute equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.
For this step, we divide the mock data in the SR in half,

reserving 60 000 events for training the classifier and the
remaining 60 000 events for validation (model selection).
In a real-life application one would want to perform k-fold
cross validation so as to not throw away half of the events.
However, as this is a proof of concept we do not employ
this here.
Unless stated otherwise, we sample in total 400 000

events from the MAF generative model (so N ¼ 40 000 in
the description of Sec. III B), which are distributed equally
(200 000 each) into the training and validation set for
the classifier. Different choices will then be compared in
Sec. IV D.
Before the mock data and sampled events are passed on

to the classifier, the features are restandardized, this time

FIG. 4. Normalized distributions of the features of the actual
background and of the synthetic samples.

5See Ref. [96] for the impact of ensembling on generative
statistics.
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using the mean and standard deviation of the SR data
features. Here, a logit transformation is not used as it has
consistently resulted in suboptimal anomaly detection
performance.
During training, the loss is recorded on the validation set,

as shown in Fig. 5. The model states of the ten epochs with
the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensemble,
these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to labels
indicating whether a data point is from mock data or
sampled events, this approach does not rely on any truth
information pertaining to the anomaly.

D. Anomaly detection

The final step of CATHODE is to apply the trained
classifier to the data in the SR. Recall from the discussion
in the Introduction that the ultimate goal of an optimal
anomaly detector is to learn the likelihood ratio RðxÞ
between the data and background, see Eq. (1). In the
presence of an anomaly, we will have

pdataðxÞ ¼ fbgpbgðxÞ þ fsigpsigðxÞ; ð2Þ

with a fsig ¼ 1 − fbg ≪ fbg signal (anomaly) fraction.
Although this signal fraction is unknown [along with
the form of psigðxÞ], the likelihood ratio RðxÞ ¼
pdataðxÞ=pbgðxÞ is nevertheless monotonic with the signal-
to-background likelihood ratio. Therefore, if the CATHODE

method works, the events that are tagged by the classifier
as “data-like” should be signal enriched, regardless of the
signal.

In the following section, we will demonstrate the efficacy
of the CATHODE method on the LHCO R&D dataset. Our
performance metric will be the significance improvement
characteristic (SIC). The SIC curve is defined as the signal
efficiency (ϵS) divided by the square root of the background
efficiency (ϵB), plotted versus the signal efficiency. The
background and signal efficiencies are defined based off
of a cut on the classifier score. It is important to note
that obtaining the SIC curve is only possible through the
use of the underlying truth labels available in the
LHCO R&D dataset. Thus, this performance metric is only
a means to demonstrate the ability to find a signal in the
data if it were present. In practice, onewould have to calculate
the p value under the background-only hypothesis, while
selecting events through the use of CATHODE and a suitable
background estimation procedure (e.g., sideband interpola-
tion as in the bump hunt).
As described in Sec. II, in order to improve the statistical

significance of these efficiencies, we choose to evaluate all
methods on a common test set consisting of 340 000
background events and 20 000 signal events in the SR.
This test set is reserved from the outset of the analysis and
is never used for the training or validation of any of the
methods.

IV. RESULTS

We first present the results of the CATHODE method on
the original LHCO features, and then we examine the effect
of additional correlations between the features.
Besides CATHODE, we will also include the performance

of several other methods: CWOLA hunting [25,26]; ANODE
[39]; an “idealized” anomaly detector and a fully super-
vised classifier. For more details of these methods, see
the descriptions in the Introduction and in Appendix A. The
idealized anomaly detector, being a classifier between the
data and a perfectly simulated background model, sets an
upper bound on the performance of any weakly supervised
anomaly detection method that attempts to learn the
likelihood ratio between data and background events.
Meanwhile, the supervised classifier is trained on labeled
background vs signal events. This method sets an absolute
upper bound on the performance of any search strategy
focused on this signal hypothesis.

A. Performance on the original LHCO R&D dataset

Figure 6 shows the receiver operating characteristic
(ROC) curves and the SIC curves of the different anomaly
detection methods trained on our baseline dataset. As
described in Sec. II, this consists of 1000 signal events
injected into the full background sample, of which 772 are
in the SR. The curves in Fig. 6 show the median value and
68% confidence bands of ten independent trainings, where
all steps of each method (e.g., both density estimator and
classifier for CATHODE) have been reinitialized in each run.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the five epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of low
signal contamination should oscillate around 0.5 if the two
classes are indistinguishable.
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Note that, at this stage, we do not explore the variance due
to different realizations of the signal or background events
(e.g., different choices of the 1000 signal events in the
mock data); later in this section, when we explore the
performance at smaller S=B, the effect of this variation will
be included.
We see that overall, CATHODE outperforms the other

weakly supervised methods across a wide range of signal
efficiencies—a factor of more than 2 compared to ANODE

and a factor of 1.3–2 compared to CWOLA hunting. At lower
signal efficiencies, CATHODE reaches a maximum SIC of
14, which represents a significant improvement compared
to ANODE’s 6.5 and CWOLA hunting’s 11. A more detailed
comparison of CATHODE with the other methods is as
follows:

(i) Both CATHODE and ANODE need to learn the
smoothly varying background. However, ANODE

must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” density
estimator trained on the SR). This results in a
degradation of the ANODE anomaly detection
method and worse performance than CATHODE and
CWOLA hunting.

(ii) As for how CATHODE is able to outperform CWOLA

hunting, there are two reasons. First, there is a
correlation at the percent level between the chosen
features in x within the original LHCO R&D dataset
with the search variable (mJJ). Since CWOLA hunting
is very sensitive to correlations, this small correla-
tion is sufficient to degrade the performance com-
pared to that of CATHODE. Details of the correlation
study can be found in Sec. IV C. Second, CWOLA

hunting is limited to only using the events within the
sidebands to train the classifier (approximately 65
000 events), while CATHODE is able to oversample
events from the background model (here 200 000

events are used). These additional events for training
allow for a significant performance enhancement of
the CATHODE method. Further details on the effects
of oversampling are studied in Sec. IV D.

(iii) Next we turn to the comparison between CATHODE

and the simulation-dependent methods. Recall that
the idealized anomaly detector is meant to provide
an upper bound on the performance of any data vs
background anomaly detection method. Therefore, it
is remarkable that CATHODE achieves essentially
the same performance as the idealized anomaly
detector. The nearly optimal sensitivity of the
CATHODE method to the signal in the LHCO R&D
dataset indicates that interpolated density estimator
is modeling the background in the SR with very high
fidelity.

(iv) Finally, we see from Fig. 6 that while CATHODE and
the idealized anomaly detector are outperformed by
the supervised classifier everywhere (as is to be
expected), the difference is larger at higher signal
efficiencies. This may be explained by the fact that at
higher signal efficiencies, there is simply too much
background to find the signal; meanwhile, at lower
signal efficiency, the signal is sufficiently localized
and the background is sufficiently reduced that the
idealized anomaly detector and CATHODE are more
easily able to pick it out.

B. Performance at lower signal strengths

Thus far, the number of signal events injected into the
background was fixed at 1000 events (S=B ≈ 0.6% and
S=

ffiffiffiffi

B
p

≈ 2.2). To study the impact of the signal strength in
terms of signal improvement, lower signal rates are injected
into the background. The injection is done 10 times for
each model at each signal rate, and the maximum

FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of the signal
efficiency. The solid lines are deduced from a median value of ten fully independent trainings on the same training, validation and
evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset and are defined such that
they contain 68% of the runs around the median.
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significance improvement is recorded. Each iteration uses a
different random separation into training, validation, and
evaluation sets for the signal and background events. The
results are shown in Fig. 7.
Above a signal fraction of 0.25%, CATHODE has the

highest significance improvement amongst the different
anomaly detection methods. In the region below
0.25%, none of the methods are able to obtain a total
significance of at least 3σ. We also see that across the
entire range of relevant S=B values, CATHODE saturates the
upper threshold set by the idealized anomaly detector.
This demonstrates the robustness of the CATHODE

method across a varying level of signal. In particular,
the degradation in CATHODE performance as S=B
decreases also occurs for the idealized anomaly detector,
so this cannot be attributed to a deficiency in the CATHODE

method.

C. Performance in the presence of correlations

In a realistic application of anomaly detection, the
signal and its properties are unknown. Therefore, one
needs to be able to choose the set of auxiliary variables x
as arbitrarily as possible, in order to gain generic dis-
crimination power through them. However, some anomaly
detection algorithms (e.g., CWOLA hunting) are known
to break down once there are significant correlations
between x and mJJ, thus limiting the choice of candidates
for x.
As in [39], we test this effect by introducing an artificial

correlation between x and mJJ via shifting the features mJ1
and Δm in each event according to

mJ1 → mJ1 þ 0.1mJJ

Δm → Δmþ 0.1mJJ: ð3Þ

The CATHODE method is applied to the shifted dataset in
the otherwise same setup as described in Sec. III. The same
benchmark methods as in Fig. 6 are tested on this shifted
data analogously and compared in Fig. 8.
We see that to varying degrees, each of the different

anomaly detection methods (as well as the supervised
classifier) suffer from a performance loss due to the shift.
In more detail:
(1) Most notably, the CWOLA hunting performance

breaks down completely. This is completely ex-
pected, because the classifier can trivially deduce
from the difference in mJJ distribution whether a
data point comes from the signal region or sideband,
rather than learning the desired likelihood ratio.

(2) Interestingly, the performances of the idealized
anomaly detector and the supervised classifier also
degrade due to the shift in x, with the degradation
somewhat larger at lower signal efficiencies. We
surmise that this is due to the fact that the classifiers
are trained on x alone and not mJJ; adding mJJ to x
then is effectively like smearing x by another
independent random variable. This in turn makes
the signal less localized relative to background,
which would degrade the performance of even an
optimal classifier—especially at lower signal effi-
ciencies where the classifier is benefitting most
from the localization of the signal relative to the
background.

FIG. 7. Left: median maximum significance improvement of each method with ten different signal injections (leading to a different
split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios. Here, the 68% hatched
uncertainty bands quantify the variance (around the median) from both retrainings of the NN and random realizations of the training and
validation data, including different realizations of the 1 000 injected signal events. Right: achieved maximum significance, which is
computed by multiplying the uncut significance by the maximum significance improvement. Both plots feature the significance without
any cut applied in the upper horizontal axis. The dotted lines on the right-hand side denote 3 and 5σ significance values.
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(3) The ANODE method involves density estimation
alone and not the classifier, which means that it
does not have the same sensitivities to correlations
that CWOLA hunting does. However, we see from
Fig. 8 (right) that there is a drop in the performance
of ANODE due to the shifted features, primarily at
higher signal efficiencies. We attribute this to a
combination of a more smeared out and difficult-to-
find signal (as in the previous case), as well as worse
density estimation in the presence of correlated or
noisy features.

(4) Finally, we come to the CATHODE method. Since
CATHODE involves both density estimation and
classification, we can think of it as a hybrid of
ANODE and the idealized anomaly detector. From
Fig. 8 (left), we see that at lower signal efficiencies,
CATHODE is still comparable to the idealized
anomaly detector and supervised classifier. There-
fore, whatever is degrading the performances of the
latter two is also affecting CATHODE in a similar way.
Meanwhile, at higher signal efficiencies, CATHODE is
noticeably worse than the idealized anomaly detec-
tor and seems to be tracking ANODE instead. Here we
may be seeing the additional effect of poorer density
estimation as for ANODE.

In Appendix B, we provide further evidence that the
classifiers used in CATHODE and the idealized anomaly
detector are suffering from smearing x by the random
variable mJJ, by adding mJJ to the set of classifier inputs
and showing that we more or less recover the lost
performance that way.

D. Benefits from oversampling the background model

Finally, we turn to a discussion of the benefits of
oversampling events from the background model, a unique

advantage of the CATHODE method. For a more general
discussion of the statistical properties of oversampled
generative models, see Ref. [98].
In Fig. 9 (left), we show the SIC curves for CATHODE

classifiers trained with different numbers of sampled back-
ground events, against a baseline CATHODE classifier
trained on 60 000 sampled background events. This base-
line is chosen to correspond to the (fixed) number of mock
data background events used in the training in the SR.
As the size of the background sample set is increased

from 60 000 to 200 000, the performance improves sig-
nificantly, especially at lower signal efficiencies. Increasing
it further to 800 000 does not provide additional improve-
ment, so we settled on using 200 000 sampled events in the
performance plots above.
In Fig. 9 (left), we also include the CWOLA hunting’s SIC

curve for the sake of comparison. We see that even though
CWOLA hunting was trained with a comparable number
(approximately 65 000) of background events in the short
sideband region (see Appendix A 2), its performance is
slightly worse than the 60 000 CATHODE baseline. As
discussed in Sec. IVA, this is likely due to small correlations
between x and mJJ in the original LHCO R&D dataset.
Finally, Fig. 9 (right) shows the impact of varying the

sample size for CATHODE when running on correlated
features. Increasing the sample size here yields a modest
(but significant) gain in performance.

E. Background estimation

While the SIC and ROC curves represent useful metrics
to assess the performance of different methods, they cannot
be used in an actual particle physics experiment, since
signal and background labels are not available. Instead,
one must combine the anomaly score of CATHODE, which
achieves near-optimal signal sensitivity, with a precise

FIG. 8. Left: significance improvement of the various anomaly classifiers as a function of the signal efficiency on the shifted dataset.
The solid lines are deduced from a median value of ten fully independent trainings on the same training, validation and evaluation set.
The uncertainty bands are defined the same way as in Fig. 6. Right: the ratio between the significance improvement with and without the
shift on the data applied.
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method of background estimation, in order to build a
complete search for new physics.
In this subsection we will present some preliminary

explorations of some background estimation methods that
could be combined with CATHODE. A complete treatment of
backgrounds, including the calculation of a calibrated p
value, would be well beyond the scope of this proof-of-
concept study; we leave it for future work (or for the actual
experimental analyses).

Probably the most robust way to combine CATHODE with
background estimation would be to perform a “bump hunt”
and scan several signal region bins that cover the wholemjj
mass range. For each of the signal regions, a fit of a
parametric background shape to the mjj distribution of
events passing a cut on the anomaly score would be
performed. Using this fit and its respective uncertainties,
one can extract a p value that reflects whether a significant
excess is observed.

FIG. 9. The effect of increasing the number of sampled events when training the classifier. The total number of mock data events in the
training set is fixed at 60 000 while the number of sampled events is varied. Left: for the nonshifted data, the performance is boosted by
increasing the sample size to 200 000. Increasing the sample size to 800 000 does not provide any further improvement. CWOLA hunting,
which has access to approximately 65 000 background events in the data, is slightly worse than CATHODE running on 60 000 samples.
Right: for the correlated dataset, increasing the number of sampled events also yields a performance improvement. The solid lines are
deduced from a median value of ten fully independent trainings on the same training, validation and evaluation set. The uncertainty
bands in both plots are defined the same way as in Fig. 6.

FIG. 10. Investigation of background sculpting. Results for training only on background events from the mock data. Left: mjj
distributions of background events passing a cut on the classifier output, corresponding to the indicated selection efficiencies. No
significant sculpting of features into the background distribution can be observed. Right: ratio of artificial samples and mock data
background events from the signal region passing cut thresholds on the classifier output. There is no significant bias in the background
density learned by the density estimator, as the number of events passing a cut on a given threshold is the same (within uncertainties) for
background and artificial samples. The uncertainty bands reflect the statistical uncertainty on the number of data and artificial samples,
propagated to the ratio.
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In order for CATHODE to be used in such a way, it must be
able to learn an unbiased estimate of the background
density inside the signal region and not sculpt any features
into the mass spectrum that could be accidentally found as
excesses in a bump hunt. To study this, we trained CATHODE

again on the mock data but this time only using background
events and then selected events based on the anomaly
score of the model. The anomaly score for background
events outside the SR is acquired by simply evaluating
these events on the classifier that has been trained to
learn the likelihood ratio (up to a transformation)
RðxÞ ¼ pdataðxÞ=pbgðxÞ. Since the likelihood ratio only
depends on the auxiliary features x and not on mjj, this
model extends to events from the SBs as well. The dijet
invariant mass distributions for the respective selection
efficiencies of 20% and 5% can be seen in Fig. 10 (left). For
reference, the full data distribution is also added. The plot
clearly shows that cutting on the CATHODE model score
does not introduce any artificial bumps or features into the
mjj distribution and thus it can be used in a bump hunting
scenario.
Alternatively, one could imagine another background

estimation method where one uses the learned density
pbgðxÞ in the SR to directly estimate the background.
Versions of this approach were studied in [39] (“direct
integration” and “importance sampling”), and here we
present a simpler and more accurate version of this method:
sampling from pbgðxÞ in the SR and measuring the back-
ground efficiency after a cut on the anomaly score. If
CATHODE is able to learn an unbiased estimate of the
background density in the signal region, a cut on the model
output should select as many artificial samples as actual
background events. Figure 10 (right) shows the ratio of the
number of artificial samples and background events being
selected from these cuts as a function again of the selected
background events. This figure illustrates that no signifi-
cant bias of the model can be observed, since the ratio is
around the ideal value of 1 for almost all selection
efficiencies and deviations are seen only in regions with
low statistics as reflected by the error bands. Comparing
with the analogous plot (Fig. 8) in [39], we see that
CATHODE presents a much more unbiased background
estimate than ANODE, especially aboveOð102Þ background
events. This is a reflection of the fact that the likelihood
ratio learned by the CATHODE classifier is much closer to
unity on background events than the likelihood ratio
constructed in the ANODE method.

V. CONCLUSIONS

CATHODE is a new method for anomaly detection which
is model agnostic beyond the assumption of the existence
of a bump. One can think of the CATHODE protocol as
combining the best of the CWOLA hunting and ANODE

algorithms. Similar to these two methods, we first partition

data into the signal region and sideband according to one
feature (typically an invariant mass). As in ANODE, a
conditional density estimator is trained to learn the dis-
tribution of sideband data which is assumed to consist
purely of background events. This density estimator is then
used to generate new background-like events in the signal
region. As in CWOLA hunting, a classifier is trained to
distinguish actual events in the signal region from the
background-like events. However, since the background-
like events are first transported via the conditional density
estimator into the signal region, the result is (as opposed to
the result of CWOLA hunting) expected to be robust against
correlations between features used to define the signal
region (m) and features used to train the classifier (x).
As a benchmark, the LHCO R&D dataset is used to

compare the different anomaly detection algorithms. We
find that the CATHODE method obtains near optimal
performance as defined by the idealized anomaly detector.
This performance is significantly better than the previous
methods of CWOLA hunting and ANODE. In our test point of
S=B ¼ 0.6%, CATHODE has a maximal SIC of 14, while
CWOLA hunting peaks at 11 and ANODE at 6.5. While all
anomaly detection algorithms degrade as S=B decreases,
CATHODE is able to achieve a significance of at least 3σ
until S=B ≈ 0.25%.
While only one new physics model was used to bench-

mark the anomaly detection methods, we expect good
generalization of CATHODE to other resonances as the
construction only relies on the quality of background
estimation from the sideband regions.
We also explicitly verified that CATHODE is less sensitive

to correlations than other approaches. When artificially
increasing the correlation between input features and the
mass variable, the CATHODE performance decreases to a
maximum SIC of around 10 while CWOLA hunting com-
pletely loses discrimination power. However, the artificially
increased correlation entangles several issues, including
potential information loss and a more difficult task for the
density estimator and therefore overestimates the impact of
correlation effects. The enhanced performance in the pres-
ence of correlations and the ability to oversample lead to the
overall gains from CATHODE relative to other methods.
Robust model-agnostic anomaly detection methods are

of particular experimental interest. The improvements of
CATHODE over previous approaches should directly trans-
late into more sensitive searches.

The code for this paper can be found in Ref. [99]. The
LHC Olympics R&D dataset can be found in Ref. [100].
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APPENDIX A: OTHER METHODS

In this appendix, we provide more details about the
implementation of the various other anomaly detection
methods used in the paper. For a summary of the number of
events used in each method, see Table I.

1. Idealized anomaly detector

We start by describing our implementation of the
idealized anomaly detector, since all of the other anomaly
detection approaches considered in this paper are approx-
imations of it.
In the idealized anomaly detector, we train a classifier to

distinguish the data in the SR from events taken from a
perfectly simulated background model. An optimal classi-
fier will approach the likelihood ratio,

RidealðxÞ ¼
pdataðxÞ
pbgðxÞ

¼ fbg þ fsig
psigðxÞ
pbgðxÞ

; ðA1Þ

where in the second equality we have used Eq. (2). Since
this is monotonic with the signal-background likelihood
ratio, events with high RidealðxÞ will also be more likely to
be signal than background.

The classifier for the idealized anomaly detector was
built using the same network as the CATHODE classifier,
using the same loss, learning rate, and optimizer. For the
data class, we use the same training and validation split as
for the other anomaly detection methods (60 000 events in
the SR each for training and validation). For the “back-
ground” class, we divide up the 272 000 simulation back-
ground events evenly into training and validation sets.

2. CWOLA hunting

In the CWOLA hunting approach [25,26], one attempts
to approximate the likelihood ratio (A1) by training a
classifier to distinguish the events in the SR from the events
in a control region (CR) which are assumed to be all
background. The network learns (a monotonic function of)
the likelihood ratio given a set of observables (x) as

RCWOLAðxÞ ¼
pðxjSRÞ
pðxjCRÞ : ðA2Þ

Under the further assumption that the distribution of
background events in the CR is the same as that of the
SR, we have

pðxjSRÞ ¼ fsigpðxjsigÞ þ fbgpðxjbgÞ
pðxjCRÞ ¼ pðxjbgÞ ðA3Þ

and we approach Rideal.
To enable comparison to CATHODE, we trained the

CWOLA hunting network using the same network archi-
tecture, loss, learning rate, and optimizer as the CATHODE

classifer. For the SR we take the same mJJ window as all
the other methods, and analogously to previous applica-
tions on the same dataset [39], only the sidebands within
200 GeV wide strips adjacent to the SR in mJJ are used for
the CR. We will refer to the CR for CWOLA hunting as the
short sideband (SSB) to distinguish this from the CR used

TABLE I. Numbers of events (rounded to the nearest 1 000) used for training, model selection, and evaluation for each method. All
methods are evaluated on the same events.

Method Type Train Validation (model selection) Evaluation

CATHODE Density estimator 500k SB data 380k SB data 340k SR background
20k SR signalClassifier 200k SR background

samples 60k SR data
200k SR background
samples 60k SR data

ANODE Density estimator 500k SB data 380k SB data
60k SR data 60k SR data

CWOLA hunting Classifier 65k SSB data 65k SSB data
60k SR data 60k SR data

Idealized AD Classifier 136k SR background 136k SR background
60k SR data 60k SR data

Fully supervised Classifier 136k SR background 136k SR background
27k SR signal 27k SR signal
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for ANODE and CATHODE. This results in a total number of
130 232 background-like events before splitting them
equally into training and validation sets. During training,
the upper and lower SSB events are reweighted such that
they contribute equally to the training and together they
have the same total weight as the SR.

3. ANODE

TheANODE approach [39] uses the same interpolated outer
density estimator as CATHODE for the background model.
Unlike CATHODE, it also trains an inner density estimator on
the events in the SR. Then it explicitly constructs the
likelihood ratio using the two separate density estimators:

RANODEðxjm ∈ SRÞ ¼ pinnerðxjm ∈ SRÞ
pouterðxjm ∈ SRÞ : ðA4Þ

If the density estimation and interpolation are successful,
then pinner ¼ pdata and pouter ¼ pbg, and we again approach
Rideal.
For comparison to CATHODE, we trained the ANODE

network using the same MAF architecture as used for
CATHODE, with the same loss, learning rate, and optimizer
as well. The split of the mock data into training and
validation was 50=50 in both the SR and SB, just as in
CATHODE.

4. Supervised classifier

Finally, to understand the absolute best possible signal vs
background discrimination one could ever hope to obtain,
we consider the case of labeled data and train a supervised
classifier to distinguish directly between signal and back-
ground events. The supervised network used here is
identical to the CATHODE classifier network, including
the loss, learning rate, and optimizer. We used 55 000

signal events and 272 000 background events in the SR,
split equally for training and validation.

APPENDIX B: ADDING mJJ AS A
CLASSIFIER INPUT

In the main body of the paper, the approaches all use the
features x for data vs background classification, but they do
not use mJJ. In this Appendix, we will explore the effect of
adding mJJ as a classifier input in CATHODE, the idealized
anomaly detector, and the fully supervised classifier.
Figure 11 (left) illustrates the effect of adding mJJ as an

input to the fully supervised classifier trained on the
unshifted and the shifted data. We see that the degradation
in the fully supervised classifier performance induced by
the shifted data is fully recovered by including mJJ as an
input feature. This shows that the fully supervised classifier
is able to learn to undo the shift of x by mJJ. In fact,
including mJJ as an input even allows the fully supervised
classifier to surpass its original performance, indicating that
mJJ does have some (very mild) discriminating ability
between signal and background in the signal region.
The story is a bit more complicated for the idealized

anomaly detector. In Fig. 11 (right), we find that—unlike
for the fully supervised classifier—adding mJJ as an input
feature to the unshifted data actually degrades the perfor-
mance of the idealized anomaly detector (dashed gray). In
the signal region, the mJJ distributions are very similar
between data and background, plus they are largely
uncorrelated with the features x. Therefore, including
mJJ as an input feature to the idealized anomaly detector
is like including the same random noise variable with data
and background. In the ideal case, one might expect the
classifier can learn to shut off the random input, but in
practice, given limited training data and low S=B, adding
random noise to the anomaly detection classifier can
degrade the performance. In Fig. 11 (right) we confirm

FIG. 11. Median significance improvement, deduced from ten fully independent trainings on the same training, validation and
evaluation set, of a supervised training (left) and the idealized anomaly detector (right) in various configurations: using the LHCO R&D
dataset in its default and shifted form, both with and without mJJ as an additional classifier input feature. Moreover, an evaluation on an
additional Gaussian noise input feature to the classifier is shown for comparison.
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the hypothesis that mJJ is like random noise by actually
training the classifier with an additional Gaussian random
noise input instead of mJJ (gray dotted line). We find that
the degradation in performance is nearly identical to
training with mJJ.
Meanwhile, the situation is quite different in the shifted

case. Here mJJ is no longer functioning like uncorrelated
random noise (since mJ1 and Δm are shifted linearly by
mJJ). Correspondingly, training with mJJ input does offer
some benefit to the idealized anomaly detector (dashed
turquoise vs solid turquoise). Interestingly, though, it is
more or less capped by the unshifted case (dashed gray).
Evidently, the classifier here can learn to undo the shift in x,
but it still cannot learn to completely shut off the inputmJJ.
Finally, in Fig. 12 we exhibit the effects of includingmJJ

in the case of CATHODE, and we see the behavior is
qualitatively very similar to the idealized anomaly detector
in nearly all cases. Here the effect of adding Gaussian noise
input to CATHODE trained on the shifted data is to degrade
the performance even more, whereas adding mJJ input
improves the performance, illustrating further how mJJ is
not just random noise for the shifted data.
In summary, we find that adding mJJ to the classifier

inputs can have a clear benefit for anomaly detection
performance when features are significantly correlated with
mJJ; however in the absence of correlations addingmJJ can

degrade performance if it offers very little discriminating
power. Clearly, the issue of feature selection for data vs
background anomaly detection is a very important and
possibly delicate one, and the story is far from settled on
this front.
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