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We explore higher-derivative terms in the low-energy effective action for the dilaton, the Goldstone
boson of spontaneously broken scale invariance. Focusing on the simplest holographic realization of
spontaneously broken scale invariance, the Randall-Sundrum (RS) scenario, we identify the nonlinear
action for the RS dilaton by integrating out Kaluza-Klein graviton modes. The coefficient of a particular
fourth-derivative dilaton self-interaction can be identified with the Weyl a-anomaly of the dual conformal
field theory, which we use to verify anomaly matching arguments. We also find novel, a-dependent
couplings of the dilaton to light matter fields. These anomalous interactions can have a significant effect on
the collider phenomenology and the cosmology, potentially allowing us to probe the structure of the
underlying conformal sector via low-energy physics. The dilaton effective theory also serves as an
interesting scalar analog of gravity, and we study solutions to the equation of motion that parallel black
holes and cosmologies.
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I. INTRODUCTION

Many extensions of the Standard Model (SM) involve a
spontaneously broken conformal sector. These include
holographic composite Higgs models [1] (see [2–4] for
reviews), dark matter models from a hidden conformal
sector [5–8], continuum dark matter [9,10] and continuum
naturalness [11], crunching solutions to the cosmological
constant problem or hierarchy problem [12,13], etc. One of
the most important characteristics of such models is the
appearance of a dilatonlike particle, the Goldstone boson
associated with broken scale invariance, which would
clearly signal the presence of the underlying conformal
sector.1 Understanding the detailed properties of such a

dilaton could therefore play an important role in identifying
the properties of the conformal sector.
In this work, we focus on the role that anomalies play in

shaping the interactions of the low-energy dilaton theory.
There is historical precedence; in the chiral Lagrangian,
decay of the neutral pion mainly proceeds through
anomalous violation of the Uð1ÞA symmetry. Computation
of the anomaly predicted a decay width of Γðπ0 → γγÞ ¼
α2

576π
m3

π

f2π
N2

C. This provided an experimental probe of an

aspect of the UV theory, the number of QCD colors, from
IR physics. The anomaly also shed light on the η − η0

puzzle. We are interested in whether there are similar low-
energy probes of near-conformal sectors, where inter-
actions of the dilaton offer insight into physics of the
high-energy conformal sector.
In holographic duals based on Randall-Sundrum (RS)-

type [16] warped extra dimensions, the dilaton is identified
with the radion field [17–19]. The radion is massless in the
original RS model, corresponding to purely spontaneous
symmetry breaking. The leading properties of the radion
were discussed in [18–21], while the holographic inter-
pretation was given in [22,23]. Most of the experimentally
relevant couplings of the dilaton/radion to other particles
follow from a spurion analysis, and lead to verifiable
predictions for the various couplings [24,25]. These are
the so-called “low-energy theorems” for the dilaton.
However, the pure dilaton Lagrangian is less trivial; it

involves a tree-level quartic, which, unlike for other
Goldstone bosons, is not forbidden by the global symmetry
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1For our purposes, we will only be concerned with scale-
invariant theories that are also conformally invariant. Hence, we
have no need to distinguish scale and conformal symmetries. See
[14,15] for discussion of what conditions are necessary for scale
invariance to imply conformal invariance.
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[26–28]. This would generically destabilize the dilaton
potential, and hence a realistic model can only be obtained
if another potential term—corresponding to some explicit
breaking of the scale symmetry—balances the quartic,
giving rise to a finite dilaton vacuum expectation value
(VEV) and positive mass squared (e.g. the Goldberger-
Wise mechanism [17]). The dilaton is less mysterious in the
context of string theory; the effective action for probe
D3-branes in warped throat spacetimes, corresponding to
the Coulomb branch of the 4D dual theory, has been studied
extensively [29–34]. One finds a Dirac-Born-Infeld (DBI)-
type kinetic term (see Ref. [35] for a mapping of the DBI
action to the standard parametrization of nonlinearly
realized conformal symmetry), while the D3-brane poten-
tial receives contributions from the brane-antibrane
Coulomb interaction, modulus stablization, and compacti-
fication effects [31–34].
The aim of this paper is to start exploring the higher-

derivative terms in the dilaton action, and to understand
what information they contain about the underlying con-
formal field theory (CFT). We focus on the lowest-order
term allowed by scale invariance

Lanomaly ¼ 2að∂τÞ4; ð1:1Þ

where τ is the dimensionless dilaton. The coefficient a of
this operator is closely related to the famous a-anomaly
featured in the a-theorem of Komargodski and Schwimmer
[36]. The a-anomaly has been studied extensively in
unbroken CFTs; this has been especially productive in the
case of supersymmetric CFTs and in holography [37–42].
Wewill argue that the ð∂τÞ4 term, and thus the anomaly, can
actually be calculated for any given holographic model of
spontaneously broken scale invariance. Hence, measuring
this coupling could provide additional important informa-
tion about the structure of the underlying CFT. We
concentrate on the RS scenario, the simplest holographic
model of a spontaneously broken CFT. To our knowledge,
the existence of the ð∂τÞ4 term and other anomalous
interactions in such models, although quite evident, has
not been appreciated in previous studies.
The paper is organized as follows. We begin by review-

ing some aspects of dilaton effective actions in Sec. II,
emphasizing the relationship between the dilaton and the
a-anomaly. This sets the stage for the holographic compu-
tation of the dilaton effective action and the a-anomaly in
the RS scenario in Sec. III (we defer calculational details to
Appendix A). We find

aRS ¼
1

8κ2k3
; ð1:2Þ

where κ is related to the 5D Planck scale via 1=ð2κ2Þ ¼ M3
5,

and k is the inverse anti–de Sitter (AdS) curvature.
Comparing this result to the a-anomaly in the unbroken

phase of the theory, we verify anomaly matching argu-
ments. We discuss corrections to our result from explicit
breaking effects and higher-curvature terms (with detailed
computations in Appendix B), the latter encoding sublead-
ing terms in the 1=N expansion. In addition to the ð∂τÞ4
term, we also find a-dependent couplings of the dilaton to
matter. In Sec. IV we comment on the resulting implica-
tions of the a-anomalous interactions for collider phenom-
enology and cosmology. The dilaton also serves as an
interesting scalar analog of gravity, which we explore
in Sec. V.

II. EFFECTIVE THEORY OF THE DILATON

When spacetime symmetries are spontaneously broken,
there are Goldstone bosons associated to the broken
symmetry generators. The dilaton is the sole Goldstone
boson of spontaneously broken conformal symmetry.2

There is a useful method to write effective actions for the
dilaton τ [36], which we review here. We define the
effective metric g̃μν ¼ e−2τgμν, where gμν is the background
metric. Under a Weyl transformation, gμν → e2αgμν and the
dilaton shifts as τ → τ þ α. Then any diffeomorphism-
invariant action constructed from g̃ is automatically con-
formally invariant. Building an action in this way is
equivalent to coset construction methods. The simplest
action we can write using this method is just the Einstein-
Hilbert action,

S ¼ f2

12

Z
d4x

ffiffiffiffiffi
jg̃j

p
ðR̃þ 2ΛÞ; ð2:1Þ

where R̃ denotes the Ricci scalar constructed from the
effective metric g̃, and f may be associated to the scale of
spontaneous symmetry breaking. In a Minkowski back-
ground gμν ¼ ημν, Eq. (2.1) is given in terms of τ by

S ¼ f2

12

Z
d4x½6e−2τð∂τÞ2 þ 2Λe−4τ�: ð2:2Þ

This can be put into a more familiar form by a field
redefinition ϕ ¼ fe−τ, setting Λ ¼ λ=4f2, and then
expanding ϕ about a symmetry-breaking VEV ϕ ¼ f − φ,
leading to

S ¼
Z

d4x
�
1

2
ð∂φÞ2 þ λ

24
f4
�
1 −

φ

f

�
4
�
: ð2:3Þ

These are just the usual dilaton kinetic and quartic terms
permitted by scale invariance.

2There is only one Goldstone boson, as the number of
Goldstones can be smaller than the number of broken generators,
unlike the breaking of internal symmetries. This is due to a
redundancy in parametrizing fluctuations of the order parameter
with elements of the coset [43,44].
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λ > 0 would drive f to 0, corresponding to τ → ∞;
λ < 0 would lead to a runaway potential for f. These
scenarios can only be stabilized by an explicit breaking of
scale invariance, as for example in the Goldberger-Wise
mechanism [17]. In this case, nonquartic potential terms
can fix the breaking scale f. Hence, if the conformal
symmetry is truly spontaneously broken, the “cosmological
constant” term in Eq. (2.1) must vanish. This leads to the
equation of motion ð∂τÞ2 ¼ □τ (or equivalently, □ϕ ¼ 0),
up to higher-derivative terms.
Terms with more derivatives arise from introducing

higher-order curvature terms to Eq. (2.1), such as R̃2.
We note, however, that all the possible fourth-derivative
terms that can be constructed in this way vanish on the
second-derivative equation of motion.
Next we consider the anomaly terms. In general, a field

theory that enjoys conformal symmetry in a flat spacetime
background does not preserve its conformal invariance in a

curved background. At the quantum level this gives rise to
trace anomalies, manifesting in a nonvanishing expectation
value for the trace of the stress-energy tensor. In four
dimensions, the most general form of the anomaly is [45]

hTμ
μi ¼ cW2

μνρσ − aðR2
μνρσ − 4R2

μν þ R2Þ − a0∇2R: ð2:4Þ

The c-anomaly term is proportional to the square of the
Weyl tensor Wμνρσ, and the a-anomaly term is proportional
to the Euler density. The a0 term is not of interest because it
can be removed by adding a finite, local counterterm to the
action.
The a-anomaly manifests as a term in the effective

dilaton action that cannot be written in terms of g̃μν, but
is nevertheless conformally invariant. This takes the form
[46–48]

Sa ¼ a
Z

d4x
ffiffiffiffiffi
jgj

p
½−τðR2

μνρσ − 4R2
μν þ R2Þ − 4Gμν

∂μτ∂ντ þ 4ð∂τÞ2□τ − 2ð∂τÞ4�

⟶
Minkowski

2a
Z

d4xð∂τÞ4ðþ higher-derivative termsÞ: ð2:5Þ

The first line holds in an arbitrary curved spacetime, and
one can check that its variation under a conformal trans-
formation yields precisely the a-anomaly term in Eq. (2.4).
In the second line we specify to a Minkowski background
and use the equation of motion for τ. The essential point is
that the a-anomaly can be determined by computing the
ð∂τÞ4 term in the effective action.

III. EFFECTIVE THEORY OF THE
HOLOGRAPHIC DILATON

In the 5D RS I geometry [16], the presence of an IR brane
that ends the extra spatial dimension leads to the existence of
a “radion”mode corresponding to fluctuations of that brane.
The AdS=CFT duality relates this radion to the dilaton of
spontaneously broken conformal invariance. The IR brane,
essentially the vacuum expectation value of the radion,
corresponds to a VEV of operators in the dual CFT that
spontaneously break the conformal symmetry [22,23].
Motivated by the duality, in this section we aim to

compute the RS radion effective action directly from the 5D
gravity theory and match it onto the dilaton effective theory
outlined in Sec. II. Working in a derivative expansion up to
order ∂

4, we integrate out Kaluza-Klein (KK) graviton
modes at tree-level, yielding a low-energy effective action
for the radion. We can then read off the a-anomaly from the
coefficient of the ð∂τÞ4 term. The AdS=CFT correspon-
dence converts the difficult problem of computing the
a-anomaly in a strongly coupled CFT into a perturbative
5D gravitational calculation.

In previous work, the radion was identified by working
perturbatively in the field fluctuations and reading off the
spectrum. We will shortly see that the derivative expansion
we employ is more closely connected to the procedure of
integrating out KK gravitons. To our knowledge, our action
at the second-derivative level comprises the first calculation
of the RS radion kinetic term at all orders in the field
fluctuations. We also remark that the fourth-derivative
terms in the action correspond precisely to the anomalous
dilaton interactions in Eq. (2.5), along with the correspond-
ing dilaton-matter and matter-matter interactions.

A. Setting up the holographic dilaton action

Our starting point is a 5D gravity theory compactified on
an interval y ∈ ½y0; y1� with negative bulk cosmological
constant. For now we consider only Einstein-Hilbert terms,
and consider modifications of the gravity theory at the end
of this Section. The action is

S¼−
1

2κ2

Z
d5x

ffiffiffi
g

p ðRþ2ΛÞ−
X
i¼0;1

1

κ2

Z
d4x

ffiffiffiffi
hi

p
ðKiþλiÞ;

ð3:1Þ

with Λ ¼ −6k2, where k will be identified with the inverse
AdS curvature. The induced metric on and extrinsic
curvature of the y0 (UV) and y1 (IR) branes are denoted
by hi and Ki respectively, and give the Gibbons-Hawking-
York contributions to the compactified gravity theory.
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The λi are the tensions of the branes which terminate the
geometry. Note that in our parametrization, the locations
of the branes are fixed, and the radion lives entirely in the
5D metric.
We also include a simplified model for interactions with

light matter (m≲ f), which we take to be completely
localized on the IR brane and minimally coupled to gravity.
More realistic scenarios involve bulk fields, but have
couplings to the dilaton which differ only by order one
factors from our simpler model. The matter action is

Smatter ¼
Z

d4x
ffiffiffiffiffi
h1

p
Lðh1; fψ lightgÞ: ð3:2Þ

In principle one could also include nonminimal couplings
to gravity, which would generate additional, calculable
dilaton-matter couplings. For example, a

ffiffiffiffiffi
h1

p
R1ψ

2
light term

would induce a dilaton-matter coupling at Oð∂2Þ.
We can parametrize the 5D metric in a gauge where we

fix gμ5 ¼ 0. The metric then decomposes as a traceless 4D
tensor, hμν, and a scalar dilaton mode A,

ds2¼e−2Aðx;yÞðημνþhμνðx;yÞÞdxμdxν−B2ðx;yÞdy2: ð3:3Þ

The function B can be related to the other degrees of
freedom through the extradimensional Einstein equations,
while hμν parametrizes the tensor fluctuations. We will
integrate out these modes to obtain the low-energy effective
action for the holographic dilaton.
When we integrate out the tensor by solving its equation

of motion, hμν will be a function of the only remaining light
bulk field, the scalar mode A. Thus, hμν will contain at least
two 4D derivatives of A to have the right transformation
properties under the 4D Lorentz group. Also, as long as
there is no mixing between A and hμν (which just amounts
to solving the linearized Einstein equations), the action will
be quadratic in hμν.
From these arguments, it follows that the action at the

second-derivative level is just the one with hμν set to zero.
At the next order in integrating out hμν, we obtain the
fourth-derivative effective action. In the remainder of this
section we compute the action at Oð∂2Þ and then at Oð∂4Þ.

B. Power counting for the derivative expansion

It is instructive to first get an expectation for the
coefficients of the higher-derivative terms by doing a
power counting in the 5D parameters. From holography,
and from the fact that the dimensionless hμν must scale as
h ∼ ð∂Ak Þ2, we can expect that from expanding perturba-
tively in hμν, the effective Lagrangian will ultimately be of
the scale-invariant form

L ¼ e−4AIRΛþ k
κ2

�
α2e−2AIR

�
∂AIR

k

�
2

þ α4

�
∂AIR

k

�
4

þ α6e2AIR

�
∂AIR

k

�
6

þ � � �
�
; ð3:4Þ

where AIR is the metric function evaluated at y1, and the αi
are Oð1Þ parameters obtained by expanding the action and
performing integrals over the extra dimension. We have
neglected contributions from the UV brane, which will add
various conformal symmetry-breaking terms to the effec-
tive action. We can put the action into canonical form with

the field redefinition ϕ ¼
ffiffiffiffiffi
2α2
κ2k

q
e−AIR , yielding

L¼ Λ̃ϕ4þ1

2
ð∂ϕÞ2þ α4

κ2k3
ð∂ϕÞ4
ϕ4

þ 2α2α6
ðκ2k3Þ2

ð∂ϕÞ6
ϕ8

þ��� ð3:5Þ

with each term in the series being enhanced by additional
factors of the number of colors N of the dual CFT. We
assume the matching relation N2 ¼ 16π2=ð2κ2k3Þ [1,2,49],
derived from the exact AdS=CFT duality involving Type
IIB string theory on AdS5 × S5, holds. Notably, the
coefficient of the a-anomaly term is expected to be of
order N2

8π2
.

Finally, we write the action in perhaps a more familar
form for phenomenology by expanding ϕ about a VEV f,
ϕ ¼ fð1 − φ=fÞ, and with the identification of the KK

scale MKK ¼ ke−hAIRi ¼
ffiffiffiffiffiffiffi
κ2k3
2α2

q
f,

L ¼ Λ̃f4ð1 − φ=fÞ4 þ 1

2
ð∂φÞ2 þ α4

4α22

κ2k3

M4
KK

ð∂φÞ4
ð1 − φ=fÞ4

þ α6
8α32

ðκ2k3Þ2
M8

KK

ð∂φÞ6
ð1 − φ=fÞ8 þ � � � ð3:6Þ

Note that if the mass scale of the extradimensional
resonances is held fixed while varying the N of the dual
CFT, the tower of operators is suppressed by factors of
1=N2. This is due to the usual hierarchy between the dilaton
decay constant and the scale of composite resonances,
which grows linearly with N.
Here we have neglected light matter fields, with mass

≲f, that source the KK gravitons. Including them ensures
the higher-derivative terms will be accompanied by inser-
tions of the stress-energy tensor of those fields, since via its
equation of motion, we expect hμν ∋ f 1

k2 ð∂AIRÞ2; κ2k Tμνg.

C. Oð∂2Þ: The kinetic term

With hμν → 0, the y − y Einstein equation relates the B
and A functions, such that at order ∂2 we have

ds2¼ e−2Aημνdxμdxν−
A02

k2− 1
2
e2A½□A− ð∂AÞ2�dy

2: ð3:7Þ
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The action Eq. (3.1) is seen to be a total y-derivative after
expanding with this metric ansatz, allowing us to trivially
perform the integral over y. This leads to the effective RS
radion action

Sradion¼
3

κ2k

Z
d4xe−2Að∂AÞ2jy1y0

−
Z

d4x

�
λ1þ

6k
κ2

�
e−4AIR −

�
λ0−

6k
κ2

�
e−4AUV ; ð3:8Þ

where AUV=IR ¼ Aðy0;1Þ. We present the full details of this
calculation in Appendix A.
Two tunings, λ0 ¼ 6k=κ2 and λ1 ¼ −6k=κ2, set respec-

tively the cosmological constant and the scale-invariant
quartic to zero, and admit static solutions to the equations
of motion.
The radion action above is not in a conformally invariant

form because the UV brane explicitly breaks scale invari-
ance. Suppose one tunes the UV brane tension to remove
the bare cosmological constant, setting λ0 ¼ 6k=κ2. Then
the potential is of the desired form e−4τ, with τ≡ AIR − A1

(we define A0;1 ¼ hAðy0;1Þi, the background values of A on
the branes), and arises completely from the IR brane term.
However, the kinetic term is not in a manifestly scale-
invariant form due to the contribution from the UV brane.
In terms of τ and A0;1,

Lkin ≈
3

κ2k
e−2A1e−2τð∂τÞ2½1 − e2ðA0−A1Þe−2τ�; ð3:9Þ

where we have neglected terms with additional factors of
e−2ðA1−A0Þ. One could perform a field redefinition to put the
kinetic term into the desired form, but then the other terms
in the dilaton action would not be manifestly scale-
invariant. This remains the case even if we were to further
tune λ1 to remove the IR quartic, since the dilaton action
also includes higher-derivative terms.
We conclude that the radion action is only scale-invariant

in the limit that A1 − A0 → ∞, which corresponds to
sending the UV brane to the AdS boundary. In this case,
one is left with the simpler action

Sradion ¼
Z

d4x
1

2
f2e−2τð∂τÞ2 − λf4e−4τ ð3:10Þ

which takes the desired form with τ being the dilaton. The
dilaton decay constant f is given by f2 ¼ 6

κ2k e
−2A1.

Lastly, we identify the matter couplings by expanding
the matter action Eq. (3.2) with the metric ansatz, leading to

Sradion ¼
Z

d4x
1

2
f2e−2τð∂τÞ2 − λf4e−4τ þ τTμ

μ; ð3:11Þ

where Tμν is the matter stress-energy tensor. This is our
final result for the radion action at order ∂2.

Take note that the Einstein equations are not yet fully
solved if the limit hμν ¼ 0 is taken. In particular, the μ − ν
equations have terms that are quadratic in derivatives,
and which can only be balanced by contributions from
the tensor, hμν. If we continue to work in the limit
A1 − A0 → ∞, solving for the tensor amounts to integrating
out the massive graviton KK modes. There is no graviton
zero mode since, in this conformal limit, the massless 4D
graviton decouples (or equivalently becomes non-normal-
izable). Including interactions of the massless graviton
would generate additional violations of conformal invari-
ance, due to introduction of the effective 4D Planck scale.

D. Oð∂4Þ: The a-anomaly

To obtain the holographic action at four derivatives, we
integrate out the KK gravitons at tree level. As explained
above, this amounts to solving the classical equation of
motion for the 4D tensor hμν at order ∂2. We then substitute
this solution back into the action, expanding to order h2μν
(corresponding to order ∂

4), and integrate out the extra
dimension. Again, we present the full details of this
calculation in Appendix A.
Expanding the 5D action [Eqs. (3.1) and (3.2)] using the

metric ansatz Eq. (3.3) yields the following equation of
motion for hμν at the level of two derivatives,

∂y

�
e−4A

A0 h0μν

�
¼ 2

k2
∂y

�
e−2A

�
∂μ∂νAþ ∂μA∂νA

þ 1

2
ημνðð∂AÞ2 − 2□AÞ

��
≡ 2∂yJμν;

ð3:12Þ

subject to the boundary condition

e−4A

A0 h0μνjy1 ¼
3

2k2
e−2AIRð□AIR − ð∂AIRÞ2Þημν −

κ2

k
Tμν;

ð3:13Þ

where Tμν is the stress-energy tensor associated to the
matter action. The solution to this is

h0μν ¼ A0e4A
�
2Jμνðy1Þ − 2JμνðyÞ −

κ2

k

�
Tμν −

1

4
ημνT

��
:

ð3:14Þ

The quadratic action for hμν (including Einstein-Hilbert,
Gibbons-Hawking-York, and brane tension terms) comes
out to be
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Stensor ¼ −
k
4κ2

Z
d5x

�
e−4A

A0 ðh0μνÞ2 þ 4hμν∂yJμν

�

þ 1

2

Z
d4xhμνTμνjy¼y1 : ð3:15Þ

Using the above solution for h0μν and the radion equation of
motion, and integrating by parts, one can rewrite this as a
total y-derivative. Performing the trivial integral over y then
leads to

Stensor ¼
1

4κ2k3

Z
d4x

�
ð∂AIRÞ4 þ κ2ke2AIR∂μAIR∂νAIR

×

�
Tμν −

1

6
ημνT

�

þ 1

4
κ4k2e4AIR

�
Tμν −

1

4
ημνT

�
2
�
: ð3:16Þ

With the identification AIR ¼ A1 þ τ, and the dilaton
decay constant f2 ¼ 6

κ2k e
−2A1 , we can now summarize our

low-energy effective action for the RS radion coupled to
IR-localized matter, complete to fourth order in a derivative
expansion,

Sradion ¼
Z

d4x
f2

2
e−2τð∂τÞ2 − λf4e−4τ þ τTμ

μ

þ 1

4κ2k3

��
∂μτ∂ντ þ

3e2τ

f2

�
Tμν −

1

4
ημνT

��
2

þ e2τ

2f2
ð∂τÞ2T

�
: ð3:17Þ

We now read off the dimensionless a-anomaly from the
coefficient of the ð∂τÞ4 term, and relate it to parameters
associated with the dual CFT,

aRS ¼
1

8κ2k3
¼ N2

4ð16π2Þ : ð3:18Þ

We can connect this result to previous holographic
calculations of the a-anomaly in the unbroken phase,
where the theory is dual to the full AdS spacetime without
the IR brane. The a-anomaly has been long known in this
scenario [37,39] and, as expected from anomaly matching
arguments [46], equals our result (3.18).

E. Explicit breaking and 1=N corrections

We emphasize again that there are subleading, conformal
symmetry-breaking corrections to our result. These cor-
rections could arise from explicit symmetry breaking by a
UV brane, or by bulk effects that deform the AdS geometry,
like a kink over which the bulk curvature evolves from
k0 → k. These effects are suppressed by powers of eA0−A1 ,
where A0 is taken to correspond to the warp factor at the

UV brane (or wherever the explicit breaking occurs). This
is as expected—symmetry-breaking effects in the UV from
heavy modes at the scaleM manifest as higher-dimensional
operators suppressed by powers of M. Those terms in the
dilaton effective action are suppressed relative to the
conformally-invariant ones by powers of f=M ≈ eA0−A1 .
An important conclusion here is that the anomaly term in
the radion effective theory is a function of the AdS
curvature in the IR region of the space-time.3

The anomaly coefficient in Eq. (3.18) is the difference
between the a-anomaly in the conformal unbroken phase of
the theory and in the EFT where conformal invariance is
realized nonlinearly by the dilaton. The latter receives
contributions from all the particles in the effective theory
(namely, the light IR-localized matter and the dilaton),
which are Oð1Þ in the 1=N expansion.
The dilaton effective action is also affected by 5D gravity

loop effects and the contributions of higher-dimensional
operators that serve as the counter-terms in their renorm-
alization. So long as M5=k (and thus the N of the CFT) is
large, these effects will be subleading in power counting.
To see this in more detail, consider adding a fourth-
derivative curvature term to the bulk action. In
Appendix B, we argue that a generic fourth-derivative
term can be rewritten as a Gauss-Bonnet term using field
redefinitions. Hence we add to the bulk action

SGB;bulk¼
λGB
2κ2k2

�
2κ2k3

24π3

�
2=3Z

d5x
ffiffiffi
g

p ðR2−4R2
abþR2

abcdÞ;

ð3:19Þ

where λGB is a dimensionless constant. The suppression
factor of

�
2κ2k3

24π3

�
2=3

¼
�

2

3πN2

�
2=3

ð3:20Þ

arises from naïve dimensional analysis with 5D cutoff scale
Λ3
5 ¼ 24π3=ð2κ2Þ. In Appendix B we compute the resulting

modification to the a-anomaly, finding

aGB ¼ aRS

�
1 − 12λGB

�
2κ2k3

24π3

�
2=3

�
: ð3:21Þ

This correction from the Gauss-Bonnet term is manifestly
subleading in the 1=N expansion. It is also in agreement
with holographic a-anomaly calculations in the unbroken
phase, consistent with anomaly matching [42,50].

3If explicit conformal symmetry breaking occurs instead over a
range of energy scales due to slow running of near-marginal
operators, the story may be quite different. Symmetry-breaking
operators will show up in the effective theory with factors of
logA1=A0. An example of this occurs in the Goldberger-Wise
stabilization mechanism.
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IV. PHENOMENOLOGY

We now comment on the potential for the a-anomaly
term to contribute nontrivially to both collider physics and
cosmology. For these purposes, it is helpful to see the
radion action in a form more convenient for phenomenol-
ogy, where we have performed a field redefinition
ϕ ¼ fe−τ, and expressed f in terms of the KK mass scale,
f2 ¼ 6

κ2k3 M
2
KK,

Sradion¼
Z

d4x
1

2
ð∂ϕÞ2−λϕ4− log

�
ϕ

f

�
Tμ
μ

þ κ2k3

144M4
KK

�
f
ϕ

�
4
��

∂μϕ∂νϕþ3

�
Tμν−

1

4
ημνT

��
2

þ1

2
ð∂ϕÞ2T

�
: ð4:1Þ

If we were to expand around a radion VEV, ϕ ¼ f − φ, the
a-anomaly term becomes a series of dimension-eight and
higher operators in the 4D effective theory (valid to scale
∼4πf). There are also new interactions with light
composite matter, suppressed by the dilaton decay constant,
along with new self-interactions of the matter fields.

A. Collider probes of the a-anomaly

We introduced this work with a description of how the
anomalous decay of the neutral pion gave information on
the number of colors in QCD. We now have a similar
answer to what information about the UV theory we may
glean from measuring the anomalous four-radion interac-
tion. Measuring a gives access to the number of colors N in
the CFT; importantly, if a is large, it signifies that the CFT
has a weakly-coupled 5D gravitational description.
The four-dilaton interaction would be difficult to mea-

sure, but thankfully the a-anomaly also manifests in
couplings of the dilaton to matter fields. Expanding
Eq. (4.1) around a dilaton VEV ϕ ¼ f − φ, we can read
off the leading (dimension-eight) dilaton-matter couplings

κ2k3

24M4
KK

∂
μφ∂νφ

�
Tμν −

1

6
ημνT

�

¼ π2

3N2M4
KK

∂
μφ∂νφ

�
Tμν −

1

6
ημνT

�
: ð4:2Þ

In principle, one can probe the value of N by measuring the
value of this coupling from, for example, radion production
cross sections at colliders.
We remark that the dilaton already couples to the trace of

the stress-energy tensor via the dimension-five operator φT.
Hence, the ð∂φÞ2T coupling occurring in Eq. (4.2) is not
especially novel. However, the ∂μφ∂νφTμν coupling is very
interesting. This term induces an a-dependent contact
interaction between the radion and matter fields, including

classically scale-invariant fields such as the gluon and
photon. In contrast, the dimension-five coupling φT only
generates couplings to classically scale-invariant operators
at loop level via the trace anomaly, since their Tμ

μ vanishes
at tree level. This contact interaction could be important for,
say, radion production via gluon fusion at hadron colliders.
We leave a detailed study of such effects for future work.

B. Cosmology of a rolling dilaton

Next we consider the cosmology of a universe dominated
by the dilaton. While this is not a fully realistic model, it is
ideal for showing the important effects that the a-term can
have. Here we will be agnostic about the UV completion,
and we do not assume we are working in the context of the
holographic dilaton, but rather with the dilaton of a generic
spontaneously broken CFT. Particularly, we are interested
in models where the anomaly term dominates over some
range of field configurations, and its coefficient is enhanced
relative to other higher-dimensional operators in the dila-
ton EFT.
Assuming a flat FRW metric, we show numerical

solutions to the dilaton equation of motion in Fig. 1 when
the dilaton quartic is taken to be positive. A Hubble friction
term is generated by the coupling to gravity. The a-anomaly
term, 2að∂ϕÞ4=ϕ4, acts like a field-dependent viscosity
term, generating an “anomaly drag” that becomes impor-
tant at small values of ϕ.
In the absence of the anomaly term, the 4D Einstein

equations and dilaton equation of motion lead to

ϕ̈þ 3 _ϕffiffiffi
6

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ 2λϕ4

q
þ 4λϕ3 ¼ 0: ð4:3Þ

The dilaton rolls from its initial condition ϕð0Þ ¼ ϕ0,
_ϕð0Þ ¼ 0 down to the origin ϕ ¼ 0 over a time of order
t�=

ffiffiffi
λ

p
, where t� depends on ϕ0 and t� → ∞ as ϕ0 → 0;∞

(the parametric dependence on ϕ0 will be unimportant for
the following discussion). At t ∼ t�=

ffiffiffi
λ

p
unbroken con-

formal symmetry is restored, and in principle we must
specify details of the full CFT (or its 5D dual) to take the
story further; ϕ → 0 is a singularity of the EFT.
To see this in more detail, note that near ϕ ¼ 0,

where the field slowly changes, we can approximate
_ϕðtÞ ∼ 1

t which, together with Eq. (4.3), gives ϕðtÞ∼
−

ffiffiffiffiffiffiffiffi
2=3

p
MPl logðt

ffiffiffi
λ

p
=t�Þ. It is clear that derivatives do

not vanish at finite times, while the field does vanish
logarithmically. This means that higher-derivative opera-
tors (possibly including those that explicitly break scale
invariance) might be more important than the terms
retained in Eq. (4.1), which signals a breakdown of the
EFT.
Adding a nonzero value of a dramatically changes this

behavior, as shown in Fig. 1. It prevents ϕ from reaching
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the origin in finite time, thereby smoothing out the
singularity and giving the cosmology a soft exit.
Note that from naïve dimensional analysis with the 5D

cutoff scale Λ3
5 ¼ 24π3=ð2κ2Þ, we expect the next higher-

derivative term in the action to be at least of the order

1

π4

�
2a2

3

�
1=3 ð∂ϕÞ6

ϕ8
: ð4:4Þ

Our calculation can no longer be trusted once this is
comparable to the a-anomaly term. We have indicated this
by dashed lines in Fig. 1, assuming a quartic λ ¼ 1.
Fig. 1 also shows the evolution of the dilaton equation of

state parameter w ¼ p=ρ, given by

w ¼
_ϕ2=2 − λϕ4 þ 2a _ϕ4=ϕ4

_ϕ2=2þ λϕ4 þ 6a _ϕ4=ϕ4
ð4:5Þ

where dots denote time derivatives. At early times, the
equation of state is inflationary, with w ≈ −1. In the
presence of a nonzero a-term, the dilaton evolves towards
w ¼ 1=3, corresponding to pure radiation, in contrast to the
w → 1 behavior when a ¼ 0. Eventually, we expect that
higher-derivative terms will decrease w from 1=3 to 0.
We remark that if the dilaton is reponsible for inflation,

the a-anomaly naturally provides a graceful exit in the
form of a smooth transition from w ¼ −1 at early times to
w ¼ 1=3 at late times. However, the number of inflationary
e-folds for the parameters chosen in Fig. 1 range from ∼1
for the λa ¼ 1 curve to ∼10 for the λa ¼ 100 curve. Super-
Planckian field values of order ϕ0 ≈ 10MP are needed to
generate the required amount of e-folds, which is typical of
quartic inflation. We cannot expect the effective theory of
spontaneously broken scale invariance to be valid above an

explicit symmetry-breaking scale (in the 5D picture this
would correspond to the IR brane having crossed past the
UV brane).
We have emphasized above why this is a toy example -

the cosmological history does not correspond to our own,
and we have ignored the effects of higher-derivative and
explicit symmetry-breaking terms. Nevertheless, our dis-
cussion here makes it clear that the a-anomaly and other
higher-derivative terms may lead to a qualitative change in
the time evolution of the dilaton field, with potentially
interesting ramifications for cosmology.
In our example we have focused on a situation where the

dilaton dominates the energy density of the Universe.
Because there was no background spacetime curvature
we did not need to include the anomalous dilaton-curvature
couplings in Eq. (2.5). Another interesting direction, which
is beyond the scope of this paper, is to explore the role of
the anomaly term in a universe where some background
field drives the cosmological expansion. This would
amount to studying the dilaton equation of motion in an
FLRW metric, carefully including the couplings of the
dilaton to the background field as well as the dilaton-
curvature couplings.

V. THE a-ANOMALY AND DILATON “GRAVITY”

As a scalar fieldwhich couples to the stress-energy tensor,
the dilaton provides an analog to gravity with solutions that
parallel those in the Einstein theory. This analogy was first
explored in detail in [51], which contains relevant back-
ground on the topic. The analogy is a good one since the
dilaton EFT in 4D flat space is derived by compensating
the Minkowski metric with the dilaton, gμν ¼ ðϕ=fÞ2ημν.
Conformally flat solutions to 4D gravity have analogous
solutions in theories with spontaneously-broken conformal

FIG. 1. Time evolution (left) and equation of state parameter (right) of a spatially homogeneous dilaton field ϕðtÞ with a positive
quartic term, subject to the initial conditions ϕ0 ≡ ϕð0Þ ¼ MPl and _ϕð0Þ ¼ 0. When a ¼ 0 (black curve), the dilaton field reaches the
origin in finite time. With any nonzero anomaly term (blue, green, and red curves), ϕ never reaches 0, and the equation of state
approaches w ¼ 1=3. The dashing in the blue curve indicates where the effect of higher-derivative terms would be important in the naïve
dimensional analysis limit, assuming λ ¼ 1.
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invariance; for example there are dilaton cosmologies
and dilaton “black holes”. This model of scalar “gravity”
can be thought of as a simpler laboratory in which to
study puzzles associated with its Einstein counterpart. In
addition, the role of the dilaton in gravity and cosmology has
attracted considerable attention in recent years, particularly
in the context of the d → 4 limit of Einstein-Gauss-Bonnet
gravity [52–56].
Nonrenormalizable terms in the dilaton effective action

reflect properties of the underlying UV completion, hinting
at how such puzzles may be resolved in dilaton gravity. For
this reason, in this section we consider the role of the
a-anomaly term in dilatonic black holes and cosmologies.
We continue to remain agnostic about the structure of
higher-derivative terms.
Ignoring matter couplings now, we can express the

dilaton Lagrangian as

Ldilaton ¼
1

2
ð∂ϕÞ2 þ 2a

ð∂ϕÞ4
ϕ4

− λϕ4: ð5:1Þ

Evolution of the dilaton in time or space can drive the
dilaton towards the EFT singularity at ϕ ¼ 0, where higher-
derivative terms like the a-anomaly interaction become
important.

A. Dilatonic “black holes”

Spherically symmetric solutions to the dilaton equation
of motion have a structure that mimics aspects of black
holes in Einstein gravity. In the absence of the a-anomaly
term (and with λ ¼ 0) the dilaton profile obeys the Laplace
equation for a free scalar, and a point mass creates a dilaton
field profile given by

ϕ ¼ f −
α

r
: ð5:2Þ

f is the background VEVof the dilaton far from the point
source, and α is proportional to the mass of the source.
There is an EFT singularity at rh ¼ α=f, where ϕ ¼ 0. This
is somewhat analogous to a black hole with Schwarzschild
radius rh. In fact, holographically this solution would
correspond to a 5D black hole with some extradimensional
profile localized on the IR brane. The full 4D CFT (or a 5D
holographic dual) is presumably needed to describe the
interior structure beyond the horizon.
Braneworld black holes have received a large amount of

attention in the literature, and there are no known spheri-
cally symmetric, static solutions to the 5D Einstein equa-
tions in the model with only an IR brane [57–62]. It is
worth revisiting this in the context of the dilaton effective
theory with the higher-dimensional operators taken into
account.
Inclusion of the a-anomaly interaction modifies

the equation of motion, and spherically symmetric

solutions obey (where primes denote derivatives with
respect to r)

ϕ00
�
1−24a

ϕ02

ϕ4

�
þ2

r
ϕ0
�
1−8a

ϕ02

ϕ4

�
þ24a

ϕ04

ϕ5
−4λϕ3¼0:

ð5:3Þ

When ϕ becomes small, the equation hits singularities in
the approach to the would be horizon due to the minus
signs associated with the anomaly terms in parentheses.
This happens precisely when other higher-derivative terms
will also be playing a significant role, so the analysis here
is not conclusive—the complete tower of operators arising
from integrating out the UV CFT perhaps resolves this
issue. However, it is curious to note that the a-anomaly
term can generate a kinetic instability in a spatially
varying dilaton background in this same region of field
space. Expanding ϕ as ΦðrÞ þ φðr; tÞ, the a-term con-
tributes to the Lagrangian the term

2a
ð∂ϕÞ4
ϕ4

∋ −4a _φ2
Φ02

Φ4
ð5:4Þ

which can dominate over the usual kinetic term near the
dilaton horizon.
Both of these issues occur when the anomaly term begins

to dominate over the kinetic term. Feeding in the a ¼ 0
solution to the a-anomaly term, we find that this occurs at a

radius r� ∼ rh þ ða r2h
f2Þ

1=4
, signifying a breakdown of the

EFT in the approach to the horizon.
So either the full CFT dynamics is needed to resolve the

issue, or the kinetic instability persists, with the a-term
giving the first hint that there are no time-independent
“black hole” solutions to the dilaton equation of motion. In
the context of black hole studies of the 5D dual picture,
there is indication that the latter explanation may be the
correct one [58].

B. A dilatonic “universe”

We now study a scalar analog of cosmology where we
associate ϕwith the cosmological scale factor in conformal
coordinates. In this context, the dilaton quartic is akin to a
cosmological constant. Without the a-anomaly the “geom-
etry,” obtained by solving the scalar equation of motion, has
dS4 (for λ < 0) or AdS4 (for λ > 0) solutions.
We first note that inclusion of the a-anomaly term still

admits dS4/AdS4 solutions (as guaranteed by scale invari-
ance), althoughwith a different,a-dependent curvature scale,

ϕ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ96að−λÞ

p
4ð−λÞ

r
1
t λ < 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ96aλ
p
4λ

q
1
z λ > 0

; ð5:5Þ
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where t and z are 4D time and one of the spatial coordinates,
respectively.We note that for a large a-anomaly, correspond-
ing to large N, the curvature scales differently with the
quartic, going like ðjλj=aÞ1=4 rather than like

ffiffiffiffiffijλjp
. An

enhanced a-anomaly appears to suppress the geometric
effects of the cosmological constant term.
In the absence of the a-term, the dilaton equation of

motion admits oscillatory solutions for λ > 0. But since the
EFT breaks down at ϕ ¼ 0, the solution is a half-cycle of
this oscillation. There is a “big bang” following by a “big
crunch”, with the UV completion describing the dynamics
before and after these singularities. We show a cartoon of
this in Fig. 2, with the black curve characterizing solutions
with a ¼ 0.
The introduction of a nonzero a modifies the equation of

motion to

ϕ̈

�
1þ 24a

_ϕ2

ϕ4

�
− 24a

_ϕ4

ϕ5
þ 4λϕ3 ¼ 0; ð5:6Þ

which has an important effect near the singularities.
Solving the equation taking ϕð0Þ ¼ ϕ0 and _ϕð0Þ ¼ 0,
we find that instead of reaching the origin in finite time,
the solution scales exponentially at early and late times,
ϕðjtj ≫ 1Þ ∝ e−ð 1

6λaÞ1=4jtj. This is depicted by the blue curve
in Fig. 2.
Again, it is crucial to note that there will generally

be other higher-dimensional operators in the dilaton
EFT, which will be important at large times as ϕ → 0.
Still, it is interesting to note that a scalar analog of a
puzzle in quantum gravity appears to be resolved by
inclusion of the contribution from the conformal
anomaly.

VI. CONCLUSIONS

We have taken a holographic approach to studying the
dilaton effective action and the a-anomaly in spontaneously
broken CFTs. Central to our approach was studying the
action in a derivative expansion, rather than an expansion in
the fields. By integrating out KK gravitons in the RS
model, we computed the radion effective action up to order
∂
4. At the second-derivative level we obtained the radion
kinetic and quartic terms. At the fourth-derivative level we
identified the ð∂τÞ4 term as well as novel couplings of the
radion to light matter fields.
We identified the a-anomaly from the coefficient of the

ð∂τÞ4 term. As expected from anomaly matching argu-
ments, our calculation of a agrees with previous holo-
graphic computations of the a-anomaly in pure AdS
without branes, in the large N limit. We have also
investigated the leading corrections to our result in the
1=N expansion, which correspond in the 5D picture to
higher-curvature terms in the action. Again we found
agreement with expectations from anomaly matching.
Another holographic setting in which one could explore

the radion effective action is the “soft wall” background
studied in Refs. [28,63], involving a bulk scalar field with a
flat potential. Like RS, this model spontaneously breaks
scale invariance, so the low-energy effective action can
likely be studied with the same techniques.
Notably, the dilaton effective action also includes

a-dependent couplings of the dilaton to matter fields.
These couplings are easier to measure at colliders than the
four dilaton self-interaction but, like the ð∂τÞ4 term, they too
probe theN of the CFT. In particular, we found a dimension-8
coupling of the form Tμν

∂μτ∂ντ. The usual nonanomalous
interactions of the dilaton only include couplings to the trace
of the stress-energy tensor (like τT); the anomaly term
induces a coupling to the traceless part of Tμν.
The anomaly term may also impact dilaton cosmology.

We considered a toy model with a positive quartic dilaton
potential, which pushes the dilaton field towards ϕ ¼ 0

(corresponding to τ → ∞, and a restoration of unbroken
conformal symmetry). The ð∂τÞ4 term induces an “anomaly
drag” that prevents the dilaton field from rolling down to its
minimum, fundamentally affecting the cosmology.
The dilaton effective theory provides an interesting

scalar analog of gravity, as discussed in Ref. [51], admitting
dilatonic black hole solutions and cosmologies. In the
presence of the a-anomaly, we find the effective theory
breaks down in the approach to the black hole horizon. This
issue may or may not persist in the UV completion of the
CFT; if it does, the a-anomaly is providing an indication
that there are no time-independent dilatonic black holes.
Dilaton cosmologies are modified by the a-term as well;
without the a-anomaly, the equations of motion admit
solutions where ϕ hits 0 in finite time, but including the
a-anomaly smooths out these singularities.

FIG. 2. A cartoon of a dilaton cosmology with positive quartic.
The a-anomaly interaction with positive coefficient renders the
solution sensible in the context of the EFT.
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In this work, we have focused our attention on a very
simple 5D model of spontaneous breaking of scale invari-
ance. In particular we have not included any radius
stabilization mechanism, and we have only considered
matter fields localized purely on the IR brane. A more
realistic model would include a stabilization mechanism
and bulk fields, both of which would introduce explicit
violation of conformal symmetry and deform the 5D
geometry away from AdS. We expect that including these
effects would not change the ð∂τÞ4 term, since that is fixed
by the a-anomaly, but the other terms in the effective action
could be modified, and new explicit symmetry-breaking
terms would arise.
Nevertheless, we have learned some general lessons

from our results that should carry over, at the qualitative
level, to more sophisticated models:

(i) The dilaton effective action contains a-anomalous
interactions that show up at the fourth-derivative
level.

(ii) The a-anomalous interactions include the four-
dilaton self-interaction as well as dilaton-matter
couplings.

(iii) These interactions have implications for collider
phenomenology and cosmology.
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APPENDIX A: RS RADION ACTION
DERIVATION

Here we provide the details of the calculations leading to
the RS radion effective action in Sec. III.

1. Order ∂
2

The basic idea is to expand the 5D gravitational action
using the metric ansatz in Eq. (3.7),

ds2¼e−2Aημνdxμdxν−
A02

k2− 1
2
e2A½□A−ð∂AÞ2�dy

2: ðA1Þ

We first expand the bulk Einstein-Hilbert action using
this ansatz, assuming a cosmological constant Λ ¼ −6k2,

Sbulk ¼ −
1

2κ2

Z
d5x

ffiffiffi
g

p ðRþ 2ΛÞ

¼ 1

κ2k

Z
d5xe−2A½A0ð□A− ð∂AÞ2Þ þ 2∂A · ∂A0 −□A0�

− 4k2A0e−4A: ðA2Þ

After integrating the boxes by parts, the Lagrangian density
is seen to be a total y-derivative,

Sbulk ¼
1

κ2k

Z
d5x∂y

�
k2e−4A −

1

2
e−2Að∂AÞ2

�
: ðA3Þ

We can choose to either compactify the extra dimension
on an interval ½y0; y1�, or on a circle with the identification
y ⇔ −y. (Recall that in our parametrization of the metric,
the branes are held fixed at y0 and y1.) These approaches
differ by a factor of 2. Here we compactify on the interval
and therefore we must include Gibbons-Hawking-York
boundary terms,

SGHY ¼ −
1

κ2

Z
d4x

ffiffiffiffiffi
h0

p
K0 −

1

κ2

Z
d4x

ffiffiffiffiffi
h1

p
K1; ðA4Þ

where hi is the determinant of the induced metric on the
brane at yi, and Ki is the scalar extrinsic curvature, related
to the unit outward normal to the brane η by K ¼ hAB∇AηB.
This gives

SGHY ¼ 1

κ2k

Z
d4x½−4k2e−4A þ 2e−2Að∂AÞ2�

				
y1

y0

: ðA5Þ

If we chose instead to compactify on the full circle, these
terms would appear in Sbulk, arising from the discontinuity
in A0 at y0;1.
The off-diagonal μ − ν Einstein equations are not yet

satisfied at the linearized level. To enforce these removes
mixing with the tensor fluctuations hμν, and isolates the
scalar degree of freedom. The off-diagonal μ − ν equations
yield

∂μ∂ν∂ye−2A þ terms quadratic in fluctuations ¼ 0: ðA6Þ

Diagonalization is thus achieved by taking e−AUV ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2AIR þ e−2A0 − e−2A1

p
, where A0;1 ¼ hAðy0;1Þi are the

background values of the warp factor on the branes. More
familiarly, in terms of a background hAi ¼ ky, and the
linearized radion fluctuation, Fðx; yÞ ¼ Aðx; yÞ − ky≈
fðyÞrðxÞ, the μ − ν equation above gives the usual equation
for the radion wave function, ∂yðe−2kyfðyÞÞ ¼ 0.
Lastly, we add brane tensions λ0 and λ1, leading to the

brane-localized action
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Sbrane ¼ −
Z

d4x
ffiffiffiffiffi
h0

p
λ0 −

Z
d4x

ffiffiffiffiffi
h1

p
λ1

¼ −
Z

d4x½λ0e−4AUV þ λ1e−4AIR �: ðA7Þ

The effective action at order ∂
2 is then, as quoted in

Eq. (3.8),

Sradion ¼ 2Sbulkþ 2SGHYþSbrane

¼ 3

κ2k

Z
d4xe−2Að∂AÞ2jy1y0

−
Z

d4x

�
λ1þ

6k
κ2

�
e−4AIR −

�
λ0−

6k
κ2

�
e−4AUV : ðA8Þ

Note the factors of two which ensure agreement with the
theory compactified on the full circle.

2. Order ∂
4

At the next order in derivatives we must include the
tensor fluctuation in the metric ansatz, that is,

ds2¼e−2Aðx;yÞðημνþhμνðx;yÞÞdxμdxν−B2ðx;yÞdy2: ðA9Þ

We now proceed to solve the classical equation of motion
for hμν up to order ∂2, which corresponds to linear order
in hμν.
Recall the y − y component of the Einstein equations

relates A and B by ðA0=BÞ2 ¼ k2 − 1
2
e2A½□A − ð∂AÞ2�. The

μ − ν Einstein equations including the tensor at leading
order are a total y-derivative. This leads to an equation of
motion for the tensor,

∂y

�
e−4A

A0 h0μν

�
¼ 2

k2
∂y

�
e−2A

�
∂μ∂νAþ∂μA∂νA

þ1

2
ημνðð∂AÞ2−2□AÞ

��
≡2∂yJμν: ðA10Þ

This equation is exact at second order in the derivative
expansion.
The boundary condition on hμν is determined by the

requirement that the variation of the boundary terms in the
action (namely, the Gibbons-Hawking-York term and
the matter action) vanishes. We find

e−4A

A0 h0μνjy1 ¼
3

2k2
e−2AIRð□AIR−ð∂AIRÞ2Þημν−

κ2

k
Tμν: ðA11Þ

Taking the trace of the boundary condition and using the
fact that hμν is traceless yields the radion equation of
motion at two derivatives,

e−2AIRð□AIR − ð∂AIRÞ2Þ ¼
κ2k
6

T: ðA12Þ

To determine the effective action after integrating out the
tensor, which is equivalent to summing over the KK
graviton excitations, we expand the action to second order
in hμν. As we are concerned only with terms with four
derivatives or less, we do not consider terms containing 4D
derivatives of h. We add together the contributions from the
bulk Einstein-Hilbert action, the Gibbons-Hawking-York
boundary terms, the brane tension, and the matter action.
This final action is given by

Stensor ¼ −
k
4κ2

Z
d5x

�
e−4A

A0 ðh0μνÞ2 þ 4hμν∂yJμν

�

þ 1

4

�
6k
κ2

þ λ1

�Z
d4xe−4AIRðhμνÞ2

−
1

2

Z
d4xhμν

�
Tμν −

1

4
ημνT

�
; ðA13Þ

where indices are raised and lowered with the Minkowski
metric.
It is easy to solve for h0 using Eq. (A10) and Eq. (A11),

h0μν ¼ A0e4A
�
2Jμνðy1Þ − 2JμνðyÞ −

κ2

k

�
Tμν −

1

4
ημνT

��
:

ðA14Þ

Substituting this solution back into the action and integrat-
ing by parts then leads to

Stensor ¼
k
4κ2

Z
d5xe4AA0

�
2Jμνðy1Þ − 2JμνðyÞ

−
κ2

k

�
Tμν −

1

4
ημνT

��
2

: ðA15Þ

Expanding this in terms of A, integrating by parts with
respect to the 4D derivatives, and employing the two-
derivative radion equation of motion, this expression
reduces to a pure boundary term,

Stensor ¼
1

4κ2k3

Z
d5x∂y

�
ð∂AÞ4 þ κ2ke2A∂μA∂νA

×

�
Tμν −

1

6
ημνT

��

þ κ2

16k

Z
d4x

�
Tμν −

1

4
ημνT

�
2

: ðA16Þ

Upon performing the integral over y, we obtain
Eq. (3.16).
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APPENDIX B: SUBLEADING BULK
CONTRIBUTIONS TO THE
HOLOGRAPHIC ACTION

Here we provide the details of including higher-
derivative terms in the bulk action and the resulting effects
on the a-anomaly. The most general fourth-derivative bulk
Lagrangian is

c1R2 þ c2R2
ab þ c3R2

abcd; ðB1Þ

where we are ignoring a possible ∇2R term because it is a
total derivative. One can perform a field redefinition of the
metric to arbitrarily shift c1 and c2 (but not c3) [64]. In this
way, the Lagrangian can be put into the form

c3ðR2 − 4R2
ab þ R2

abcdÞ: ðB2Þ

The quantity in brackets is a Gauss–Bonnet term, the
generalization of the 4D Euler density. This parametrization
of the fourth-derivative terms is especially convenient for
our purposes.

The field redefinition needed to put the fourth-derivative
Lagrangian in the form of Eq. (B2) necessarily introduces
new couplings of the form T2

ab. However, since we are
concerned with a bulk theory with no matter except for a
cosmological constant, we have Tab ∝ gab. Hence T2

ab is
just a constant, which may be absorbed into a shift of the
cosmological constant.
Motivated by the discussion above, we add to the bulk

action a Gauss-Bonnet term

SGB;bulk ¼
λGB
2κ2k2

�
2κ2k3

24π3

�
2=3 Z

d5x
ffiffiffi
g

p ðR2 − 4R2
ab þ R2

abcdÞ

ðB3Þ

with λGB is a dimensionless constant. Recall the overall
coefficient is expected from naïve dimensional analysis.
Expanding the bulk Gauss-Bonnet term to order ∂4 using
the metric ansatz Eq. (A1), we find

SGB;bulk ¼
4λGB
κ2k3

�
2κ2k3

24π3

�
2=3 Z

d5x 15k4A0e−4A þ 15

4
e−2Ak2A0ð□A − ð∂AÞ2Þ

þ A0½−2∂μA∂νA∂μ∂νA − ð∂AÞ2□Aþ ð□AÞ2 − ð∂μ∂νAÞ2� þ ð∂AÞ2□A0 þ 2∂A · ∂A0
□A − 2□A□A0

þ 4∂μA0
∂
νA∂μ∂νAþ 2∂μA∂νA∂μ∂νA0 þ 2∂μ∂νA∂μ∂νA0: ðB4Þ

This turns out to be a total y-derivative after integrating the boxes by parts. Performing the integral over y and assuming the
UV brane has been sent to the AdS boundary, we find

SGB;bulk ¼
λGB
κ2k3

�
2κ2k3

24π3

�
2=3 Z

d4x

�
15k4e−4AIR −

15

2
k2e−2AIRð∂AIRÞ2 þ ð∂AIRÞ4 þ 4∂μAIR∂

νAIR∂μ∂νAIR

�
: ðB5Þ

One can use integration by parts and the equation of motion to show the last term can be replaced by −2ð∂AIRÞ4, at the
fourth-derivative level.
We must also include the appropriate Gibbons-Hawking-York boundary term [65],

SGB;GHY ¼ −
2λGB
κ2k2

�
2κ2k3

24π3

�
2=3 Z

d4x
ffiffiffiffiffi
h1

p �
2GABKAB þ 1

3
ðK3 − 3KK2

AB þ 2KB
AK

C
BK

A
CÞ
�
; ðB6Þ

where GAB is the Einstein tensor computed from the induced metric on the boundary. After an integration by parts, one
obtains

SGB;GHY ¼ λGB
κ2k3

�
2κ2k3

24π3

�
2=3 Z

d4x½−16k4e−4AIR þ 36k2e−2AIRð∂AIRÞ2�: ðB7Þ

Hence, the Gauss–Bonnet term contributes to the effective radion action as

2SGB;bulk þ 2SGB;GHY ¼ λGB
κ2k3

�
2κ2k3

24π3

�
2=3 Z

d4x½−2k4e−4AIR þ 57k2e−2AIRð∂AIRÞ2 − 2ð∂AIRÞ4�: ðB8Þ
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Recall the factors of two ensure agreement with the theory
compactified on the full circle.
There are three ramifications of the Gauss-Bonnet term,

exemplified by Eq. (B8). First, there is a contribution to the
radion quartic. One can restore the tuning of the quartic by
shifting the IR brane tension as τIR → τIR þ ΔτIR, where

ΔτIR ¼ −
2λGBk
κ2

�
2κ2k3

24π3

�
2=3

: ðB9Þ

Second, the Gauss-Bonnet term modifies the dilaton decay
constant,

Δf2 ¼ e−2A1
57λGB
κ2k

�
2κ2k3

24π3

�
2=3

: ðB10Þ

Most importantly, we see from Eq. (B8) that there is a direct
contribution to the a-anomaly,

Δa ¼ −
λGB
κ2k3

�
2κ2k3

24π3

�
2=3

: ðB11Þ

However, the new a-anomaly is not simply Eq. (3.18) plus
Δa. This is because the effective quadratic action for the
graviton is also modified by the Gauss-Bonnet term, which
alters the contribution to the a-anomaly obtained from
integrating out KK gravitons.
To understand this further, we write the field equations

(including the Gauss-Bonnet term) as 0 ¼ Gmn − κ2Tmn−
λGB
k2 ½2κ

2k3

24π3
�2=3Imn, where

Imn ¼ −
1

2
ðR2 − 4R2

ab þ R2
abcdÞgmn − 4Ra

mRna

þ 2RRmn − 4RabRmanb þ 2Rabc
m Rnabc: ðB12Þ

It is easy to see that these field equations admit AdS vacua
(corresponding to e.g. hAi ¼ ky), with a bulk cosmological
constant

Λ ¼ −6k2
�
1 − 2λGB

�
2κ2k3

24π3

�
2=3

�
: ðB13Þ

The presence of the Gauss–Bonnet term shifts the cosmo-
logical constant. As in the Einstein gravity case, one solves
for the radion wave function and then the KK gravitons. We
find that the radion wave function is unchanged, that is,
Aðx; yÞ ≈ kyþ e2kyrðxÞ. The graviton equation of motion
is also unchanged from Eq. (A10), up to source terms with
four derivatives, which cannot affect the a-anomaly term.
Hence, the solution for hμν [Eq. (A14)] is unchanged by the
presence of the Gauss-Bonnet term. After expanding the
action to quadratic order in the graviton, one finds that it is
of the same form as Eq. (A15), but with an additional
factor of 1 − 4λGB½2κ2k324π3

�2=3. Then the contribution to the
a-anomaly from integrating out KK gravitons is

aKK ¼ 1

8κ2k3

�
1 − 4λGB

�
2κ2k3

24π3

�
2=3

�
: ðB14Þ

Adding this to the direct contribution in Eq. (B11), we find
the a-anomaly with the Gauss-Bonnet term included is

aGB ¼ aRS

�
1 − 12λGB

�
2κ2k3

24π3

�
2=3

�
; ðB15Þ

where aRS ¼ 1=ð8κ2k3Þ is the a-anomaly without the
Gauss-Bonnet term.
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