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In this paper, a novel discrete algebra is presented which follows by combining the SU(2) Lie-Poisson
bracket with the discrete Frenet equation. Physically, the construction describes a discrete piecewise linear
string in R3. The starting point of our derivation is the discrete Frenet frame assigned at each vertex of the
string. Then the link vector that connects the neighboring vertices is assigned the SU(2) Lie-Poisson
bracket. Moreover, the same bracket defines the transfer matrices of the discrete Frenet equation which
relates two neighboring frames along the string. The procedure extends in a self-similar manner to an
infinite hierarchy of Poisson structures. As an example, the first descendant of the SU(2) Lie-Poisson
structure is presented in detail. For this, the spinor representation of the discrete Frenet equation is
employed, as it converts the brackets into a computationally more manageable form. The final result is a
nonlinear, nontrivial, and novel Poisson structure that engages four neighboring vertices.

DOI: 10.1103/PhysRevD.106.054514

I. INTRODUCTION

The Poisson structure [1] is a widely investigated
concept that has both physical and mathematical relevance.
The concept originates from Poisson’s research on analytic
mechanics, which now provides a very general and
solid framework for describing Hamiltonian dynamics.
Mathematically, a Poisson structure associates to every
smooth functionH on a smooth manifoldM, a vector field
XH. This vector field determines Hamilton’s equation of
motion, while the function H is the so-called Hamiltonian.
Whenever the pertinent Poisson bracket is also a Lie
bracket, it ensures the validity of Poisson’s theorem that
states that the Poisson bracket of two constants of motion is
itself a constant of motion.
The SU(2) Lie-Poisson bracket is a classic example of a

Poisson bracket structure, originally introduced by Lie [2].
However, its systematic investigations camemuch later, and

started with the seminal work by Lichnerowicz [3] who also
introduced the concept of a Poisson structure. Important
early contributions to the development of Poisson structures
were made by Kirillov [4] and in particular byWeinstein [5]
who also initiated the development of Poisson geometry
(see also [6]). The concept of a Poisson structure has
subsequently found numerous applications beyond the
original focus that was on classical mechanics and differ-
ential geometry. Poisson structures now appear in a large
variety of contexts starting from string theory, topological
and conformal field theory, and integrable systems [7,8],
extending to deformation quantization and noncommuta-
tive geometry, and all the way to algebraic geometry,
representation theory, and abstract algebra [1].
In this paper we show that a Poisson structure and in

particular the SU(2) Lie-Poisson bracket can also be
relevant to the development of effective theory descriptions
of discrete stringlike objects. Discrete piecewise linear
strings embedded in R3 have already appeared in models
of proteins, in terms of the Cα backbone [9]. They have also
important applications to robotics and 3D virtual reality
[10]. Additional applications, with more elaborate ambient
manifolds, include the study of segmented string evolution
in de Sitter and anti–de Sitter spaces [11]; see also [12]
and [13].
The paper is arranged as follows. Initially, the descend-

ants of the SU(2) Lie-Poisson structure that relates to the
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structure of a discrete piecewise linear polygonal string are
considered. In addition, the model space and its reduction
in the case of the standard SU(2) Lie-Poisson bracket is
reviewed. Then the formalism of the discrete Frenet frames
[14] and its self-similar hierarchical structure is presented.
Finally, following the results of [15], the self-similar
structure is converted into a spinor representation, while
the Poisson brackets in terms of the SU(2) Lie-Poisson
structure are introduced. That way, an infinite hierarchy of
Poisson structures can be assigned to piecewise linear
string as descendants of the canonical SU(2) Lie-Poisson
structure. To conclude, an explicit construction of the first
level descendant in this hierarchy is presented in detail.

II. THE MODEL SPACE AND THE
LIE-POISSON STRUCTURE

This preparatory section summarizes known results on the
model space of SU(2) representations and the SU(2) Lie-
Poisson structure. The starting point is a four-dimensional
phase space R4 equipped with a canonical symplectic
structure and Darboux coordinates (q1, p1, q2, p2)

fpα; qβg ¼ −δαβ;

combined into two complex ones

wα ¼ 1ffiffiffi
2

p ðpα þ iqαÞ; ðα ¼ 1; 2Þ: ð1Þ

Their norm is set to be ρ, ie.

jjw1jj2 þ jjw2jj2 ¼ 2ρ; ð2Þ

while the associated Poisson brackets have the simple form

fwα; w̄βg ¼ iδαβ; fwα; wβg ¼ fw̄α; w̄βg ¼ 0: ð3Þ

Next define the three component unit length vector

ta ¼ −
1

2ρ
ðw̄1w̄2Þσa

�
w1

w2

�
; ða ¼ 1; 2; 3Þ; ð4Þ

where σa are the Pauli matrices. Then, the ta components
obey the SU(2) Lie-Poisson bracket

fta; tbg ¼ 1

ρ
ϵabctc; ð5Þ

associated with the identity

fta; ρg ¼ 0: ð6Þ

Therefore, ρ is a Casimir element while the phase space (1)
is a model space of SU(2) representations. Note that

different values of ρ correspond to different representations.
The bracket (5) determines a Poisson structure since:
It is antisymmetric, i.e., any two functions A and B

satisfy

fA; Bg ¼ −fB;Ag: ð7Þ
It obeys both the Jacobi identity

fA; fB;Cgg þ fB; fC;Agg þ fC; fA;Bgg ¼ 0 ð8Þ

and the Leibnitz rule

fA;BCg ¼ fA; BgCþ BfA;Cg: ð9Þ
Note that the Jacobi identity coincides with the Schouten
bracket of the Poisson bivector field

Λ ¼ ϵabctc∂a ∧ ∂b; ð10Þ
from which the Leibnitz rule follows directly.
Since the rank of the antisymmetric matrix ϵabctc is two,

the bracket in (5) does not determine a symplectic structure.
However, the Poisson bracket (3) is symplectic with the
closed and nondegenerate two-form

ω ¼ dp1 ∧ dq1 þ dp2 ∧ dq2

¼ idw1 ∧ dw⋆
1 þ idw2 ∧ dw⋆

2 : ð11Þ

Therefore, a Darboux coordinate representation of (5)
can be derived by introducing the harmonic coordinates

�
w1

w2

�
¼

ffiffiffiffiffi
2ρ

p �
cos θ

2
eiðφþϕÞ=2

sin θ
2
eiðφ−ϕÞ=2

�
; ð12Þ

and thus, the unit length vector (4) simplifies to

t ¼

0
B@

t1

t2

t3

1
CA ¼

0
B@

cosϕ sin θ

sinϕ sin θ

cos θ

1
CA: ð13Þ

These coordinates foliate R4 ∼ R1 × S3 ∼ R1 × S1 × S2

where (φ;ϕ; θ) are the angular coordinates and
ffiffiffiffiffi
2ρ

p
the

radii. That way, the symplectic two-form (11) becomes

ω ¼ dρ ∧ dφþ cos θdρ ∧ dϕþ ρd cos θ ∧ dϕ

≡ dρ ∧ dφþ dðρ cos θÞ ∧ dϕ; ð14Þ

with the only nonvanishing Poisson brackets given by

fρ;φg ¼ −1; fρ cos θ;ϕg ¼ −1: ð15Þ
Finally, by setting

χ ¼ ϵφ; ð16Þ
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and taking the Inönü-Wigner contraction limit (ϵ → 0) of
the system (15), only the second bracket survives. The latter
corresponds to the symplectic Poisson bracket on S2

together with its closed two-form (unique up to coordinate
changes), that coincides with the last term in (14). Note that
the coordinate ρ appears only as a Casimir element of the
Lie-Poisson bracket. Thus, for simplicity, in what fol-
lows ρ ¼ 1.

III. DISCRETE FRENET EQUATION
AND SELF-SIMILARITY

A. Vector representation of the discrete Frenet frames

In this section descendants of the SU(2) Lie-Poisson
bracket defined by (5), that arise in connection of open and
piecewise linear polygonal strings xðsÞ ∈ R3, are con-
structed. To set the stage, let s be the arc length parameter
with values s ∈ ½0; L� while L is the length of the string.
Also, Vi with i ¼ 0;…; n are the vertices that characterize
the string located at the points xðsiÞ ¼ xi. Then, neighbor-
ing vertices are connected by the line segments

xðsÞ ¼ s − si
siþ1 − si

xiþ1 −
s − siþ1

siþ1 − si
xi; s ∈ ðsi; siþ1Þ;

and are separated by the distances

jxiþ1 − xij ¼ siþ1 − si ≡ Δi:

The discrete Frenet frames are defined by the orthogonal
triplets ðt;n;bÞi at the vertices Vi as follows: The unit
length tangent vectors ti point from Vi to Viþ1

ti ¼
1

Δi
ðxiþ1 − xiÞ; ð17Þ

the unit length binormal vectors are

bi ¼
ti−1 × ti
jti−1 × tij

; ð18Þ

and the unit length normal vectors ni are computed from

ni ¼ bi × ti ¼
−ti−1 þ ðti−1 · tiÞti
jti−1 þ ðti−1 · tiÞtij

: ð19Þ

In addition, the transfer matrix Riþ1;i maps the discrete
Frenet frames between the neighboring vertices Vi and Viþ1

0
B@

n

b

t

1
CA

iþ1

¼ Riþ1;i

0
B@

n

b

t

1
CA

i

¼

0
B@

cos τ cos κ sin τ cos κ − sin κ

− sin τ cos τ 0

cos τ sin κ sin τ sin κ cos κ

1
CA

i

0
B@

n

b

t

1
CA

i

:

ð20Þ

Here κiþ1 is the bond angle and τiþ1 is the torsion angle.
[Note that, the transfer matrixRiþ1;i ∈ SOð3Þ engages only
two of the Euler angles ðκ; τÞi since the third Euler angle
becomes removed by the orthogonality of bi and ti−1.]
The torsion and bond angles (κi, τi) are expressible in

terms of the tangent vectors only. This observation follows
directly from Eq. (20) since

cos κi ¼ tiþ1 · ti; ð21Þ

while

cos τi ¼ biþ1 · bi ¼
ti × tiþ1

jti × tiþ1j
·
ti−1 × ti
jti−1 × tij

: ð22Þ

In addition, the bond angle engages three vertices while the
torsion angle engages four vertices along the string.
The aforementioned construction can be extended into

an infinite hierarchy (for an infinite length string) in a self-
similar manner. To do so the transfer matrix (20) is used to
introduce a second level orthonormal triplet of vectors
ðT;N;BÞi. The components of the vector Ti are defined in
terms of the last row of (20)

Ti ¼

0
B@

cos τi sin κi
sin τi sin κi

cos κi

1
CA; ð23Þ

while the corresponding second level binormal and normal
vectors, in analogy with (18) and (19), are defined as

Bi ¼
Ti−1 × Ti

jTi−1 × Tij
; Ni ¼

−Ti−1 þ ðTi−1 · TiÞTi

jTi−1 þ ðTi−1 · TiÞTij
: ð24Þ

Then the corresponding Eq. (20) determines the second
level transfer matrix

0
B@
N

B

T

1
CA

iþ1

¼Riþ1;i

0
B@
N

B

T

1
CA

i

≡
0
B@
cosT cosK sinT cosK −sinK

−sinT cosT 0

cosT sinK sinT sinK cosK

1
CA

i

0
B@
N

B

T

1
CA

i

:

ð25Þ

with ðK; T Þi the second level bond and torsion angles
evaluated in terms of the second level Ti in analogy to
Eqs. (21) and (22).
The construction can be extended to the next level. That

is, using the last row of (25) the formulation (23) is used to
introduce the third level tangent vectors. From these, the
third level vectors (24) and transfer matrix (25) are
obtained. The construction can then be continued to higher
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levels (in a self-similar manner) and thus, an infinite
hierarchy is obtained. In particular, every vector and angle
that appears in this self-similar hierarchy can be expressed
recursively in terms of the initial tangent vectors ti.

B. Spinor representation of the discrete Frenet equation

In this section the spinorial form of the discrete Frenet
equation (20) is presented. To do so, a two component
spinor is assigned to each link that connects the vertices Vi
and Viþ1, that is,

ψ i ¼
�
z1
z2

�i

: ð26Þ

The ziα (for α ¼ 1, 2) are complex variables assigned to the
link. Then, the unit length tangent vectors ti can be
expressed in terms of the spinors from a relation akin to
that in (4)

ψ†
i σ̂ψ i ¼ ffiffiffiffi

gi
p

ti; ð27Þ

where σ̂ ¼ ðσ1; σ2; σ3Þ are the Pauli matrices, ti is the
discrete tangent vector (17), and

ffiffiffiffi
gi

p
is the scale factor,

ffiffiffiffi
gi

p ≡ ðjz1j2 þ jz2j2Þi: ð28Þ

The difference to Eq. (2) should be noted. From the
definition (27) and using (26) one can easily derive that

zi1 ¼
ffiffiffiffi
gi
2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 − it2

p �
1þ t3
1 − t3

�
1=4

�
i
;

zi2 ¼
ffiffiffiffi
gi
2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 þ it2

p �
1 − t3
1þ t3

�
1=4

�
i
; ð29Þ

while in terms of the local coordinates (13) one obtains

�
z1
z2

�i

¼ ffiffiffiffi
gi

p �
cos θ

2
eiϕ=2

sin θ
2
e−iϕ=2

�i

: ð30Þ

In analogy to (12) the value of the overall factor
ffiffiffiffi
gi

p
can be

changed and let us (for simplicity) set gi ¼ 1.
Next the conjugation operation C is introduced to create

the conjugate spinor ψ̄ i,

Cψ i ¼ −iσ2ψ⋆
i ¼

�−z̄2
z̄1

�i

≡ ψ̄ i; ð31Þ

so that

ψ†
i ψ̄ i ¼ 0:

Together the two spinors ψ i and ψ̄ i define the 2 × 2
matrix

ui ¼
�
z1 −z̄2
z2 z̄1

�i

; ð32Þ

where

ψ i ¼ ui

�
1

0

�
; ψ̄ i ¼ ui

�
0

1

�
:

Finally, to derive the spinorial discrete Fernet equation in
a matrix form, a Majorana spinor is constructed from the
two spinors (26) and (31) by setting

Ψi ¼
�−ψ̄

ψ

�i

;

one can now introduce a spinorial transfer matrix U iþ1;i that
relates the Majorana spinors at the neighboring links as

Ψiþ1 ¼ U†
iþ1Ψi: ð33Þ

Equation (33) is the so-called spinorial discrete Frenet
equation. In analogy to (32) the matrix U iþ1;i can be
expressed in terms of the vertex variables Zi

a (for a ¼ 1, 2):

U i ¼
�
Z1 −Z̄2

Z2 Z̄1

�i

: ð34Þ

The link ðz1; z2Þi and the vertex ðZ1; Z2Þi variables are
connected through the discrete Frenet equation (33). In
particular,

Ziþ1
1 ¼ z̄i1z

iþ1
1 þ z̄i2z

iþ1
2 ;

Ziþ1
2 ¼ zi1z

iþ1
2 − zi2z

iþ1
1 : ð35Þ

and the choice
ffiffiffiffi
gi

p ¼ 1 in (28) gives ðjZ1j2 þ jZ2j2Þi ¼ 1.
In analogy with (25), one can introduce a second level

spinor variable, with the ensuing second level spinorial
Frenet equation. The construction can be repeated to higher
levels, in a self-similar manner, to obtain an infinite
hierarchy of spinorial discrete Frenet equations. Notably,
all quantities that appear in this hierarchy can be written in
terms of the complex variables (29), recursively.

IV. DESCENDANTS OF THE SU(2)
LIE-POISSON BRACKET

In the case of the discrete Frenet frames, the entire self-
similar hierarchy can be constructed recursively in terms of
the initial tangent vectors (17). As a consequence, one can
also introduce Poisson structures at all levels of the
hierarchy; recall that the SU(2) Lie-Poisson brackets (5)
imposed on the tangent vectors (17) take the simple form
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ftai ; tbjg ¼ 1

Δi
δijϵ

abctci ; ð36Þ

where Δi are identified as Casimir elements and for
convenience the value Δi ¼ 1 is chosen.
Equivalently, the spinor realization of the hierarchy can be

expressed recursively in terms of the complex link variables
(26). Indeed, from (36) it is straightforward to show that the
link variables (29) satisfy the following algebra:

fziα; z̄jαg ¼ i
4
δij; α ¼ 1; 2;

fzi1; zj2g ¼ −
i
8

�jz1j2 − jz2j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2jz2j2

p
�

i

δij;

fzi1; z̄2jg ¼ −
i
8

1

ðz̄1z2Þi
δij: ð37Þ

While it is clear that the Poisson brackets of all the
quantities that appear in the self-similar hierarchy can be
evaluated recursively in terms of (36), it is not obvious that
the Poisson brackets of all the components of Ti that appear
at a given higher level of the hierarchy, form a closed
algebra. If this is the case, a method is obtained to
systematically generate new Poisson structures, as higher
level descendants of the original SU(2) Lie-Poisson struc-
ture. In what follows, starting from the spinor representa-
tion (37) of the SU(2) Lie-Poisson bracket it is
demonstrated by an explicit computation that this is the
case. To do so, the Poisson brackets of the vertex variables
(35) are evaluated. In particular, they are employed as
coordinates to define a Poisson structure in terms of the
pertinent Poisson bivector, that is,

ΛðZ; Z̄Þ ¼ ΩμνðZα
i ; Z̄

α
i Þ∂μ ∧ ∂ν; μ; ν ∼ ðα; iÞ: ð38Þ

After some lengthy algebra it is found that the only
nonvanishing brackets of the vertex variables (35) are
the following:

fZiþ1
1 ; Zi

1g ¼ i
2
Ziþ1
2 Z̄i

2 −
i
8
ΛiðZiþ1

1 Z̄i
2 − Ziþ1

2 Zi
1Þ;

fZiþ1
1 ; Zi

2g ¼ −
i
2
Ziþ1
2 Z̄i

1 þ
i
8
ΛiðZiþ1

1 Z̄i
1 þ Ziþ1

2 Zi
2Þ;

fZiþ1
1 ; Z̄i

1g ¼ −
i
8
ΛiðZiþ1

1 Zi
2 þ Ziþ1

2 Z̄i
1Þ;

fZiþ1
1 ; Z̄i

2g ¼ −fZiþ1
2 ; Zi

1g;

fZiþ1
2 ; Zi

1g ¼ −
i
8
ΛiðZiþ1

1 Zi
1 − Ziþ1

2 Z̄i
2Þ;

fZiþ1
2 ; Zi

2g ¼ fZiþ1
1 ; Z̄i

1g;

fZiþ1
2 ; Z̄i

1g ¼ i
2
Ziþ1
1 Zi

2 þ
i
8
ΛiðZiþ1

1 Z̄i
1 þ Ziþ1

2 Zi
2Þ;

fZiþ1
2 ; Z̄i

2g ¼ −
i
2
Ziþ1
1 Zi

1 þ
i
8
ΛiðZiþ1

1 Z̄i
2 − Ziþ1

2 Zi
1Þ; ð39Þ

fZ1; Z̄1giþ1 ¼ i
8
ΛiðZ1Z̄2 þ Z̄1Z2Þiþ1

þ i
8
Λiþ1ðZ1Z2 þ Z̄1Z̄2Þiþ1;

fZ1; Z2giþ1 ¼ i
2
ðZ1Z2Þiþ1 −

i
8
Λiþ1 −

i
8
ΛiðZ2

1 − Z2
2Þiþ1;

fZ1; Z̄2giþ1 ¼ −
i
2
ðZ1Z̄2Þiþ1 −

i
8
Λi −

i
8
Λiþ1ðZ2

1 − Z̄2
2Þiþ1;

fZ2; Z̄2giþ1 ¼ ijZiþ1
1 j2 þ i

8
ΛiðZ1Z̄2 þ Z̄1Z2Þiþ1

−
i
8
Λiþ1ðZ1Z2 þ Z̄1Z̄2Þiþ1; ð40Þ

where the parameter Λi is real (i.e., Λi ¼ Λ̄i) and is defined
by the dual form in terms of the vertex variables either at the
ith or at the iþ 1th vertex.1 That is,

Λi ¼
�
Z1

2 − Z2
1 þ Z2

2 − Z2
2

Z̄1Z2 − Z1Z̄2

�i

ð41Þ

¼
�
Z1

2 − Z2
1 − Z2

2 þ Z2
2

Z1Z2 − Z̄1Z̄2

�iþ1

: ð42Þ

Furthermore, one can check that the following identities
are satisfied:

fjZ1j2 þ jZ2j2; Z1gi ¼ fjZ1j2 þ jZ2j2; Z̄1gi ¼ 0;

fjZ1j2 þ jZ2j2; Z2gi ¼ fjZ1j2 þ jZ2j2; Z̄2gi ¼ 0;

fðjZ1j2 þ jZ2j2Þiþ1; Zi
1g ¼ fðjZ1j2 þ jZ2j2Þiþ1; Z̄i

1g ¼ 0;

fðjZ1j2 þ jZ2j2Þiþ1; Zi
2g ¼ fðjZ1j2 þ jZ2j2Þiþ1; Z̄i

2g ¼ 0;

fðjZ1j2 þ jZ2j2Þi; Ziþ1
1 g ¼ fðjZ1j2 þ jZ2j2Þi; Z̄iþ1

1 g ¼ 0;

fðjZ1j2 þ jZ2j2Þi; Ziþ1
2 g ¼ fðjZ1j2 þ jZ2j2Þi; Z̄iþ1

2 g ¼ 0:

Thus jZi
1j2 þ jZi

2j2 are Casimir elements of the derived
algebra (40). [Note that, this result is expected, due to the
form of the vertex variables defined in (35)].
To sum up, the relations (40) determine a closed, albeit

nonlinear, Poisson bracket algebra that obeys the Jacobi
identity and the Leibnitz rule, as can be concluded either by
general arguments or by explicit evaluation of the Schouten
bracket of the pertinent Poisson bivector (38). In particular,
the Poisson brackets (40) determine a Poisson structure that
is a proper descendant of the initial SU(2) Lie-Poisson
structure. The construction can be extended to all levels of
the hierarchy in a self-similar way as explained above.
Therefore, an infinite hierarchy of Poisson structures as
descendants of the SU(2) Lie algebra can be constructed.

1This is proven in the Appendix, due to (A2).
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V. CONCLUDING REMARKS

In conclusion, it has been shown here that in the case of a
piecewise linear polygonal string the SU(2) Lie-Poisson
structure gives rise to an infinite hierarchy of Poisson
structures, as its descendants. Each level of Poisson struc-
tures engages an increasingly number of vertices along the
string, thus they are different. It has been shownby an explicit
construction of the first level descendant, that the spinor
representation of the Lie-Poisson bracket is a computation-
ally tractable realization. The novel Poisson structure that has
been constructed explicitly, engages a chain of four vertices
along the string (three links), and the higher level descend-
ants engage an increasing number of vertices.
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APPENDIX: LINK VS VERTEX VARIABLES

Directly from (35) the following systems are also
satisfied:

ziþ1
1 ¼ zi1Z

iþ1
1 − z̄i2Z

iþ1
2

ziþ1
2 ¼ zi2Z

iþ1
1 þ z̄i1Z

iþ1
2

⇔
zi1 ¼ ðz1Z̄1 þ z̄2Z2Þiþ1

zi2 ¼ ðz2Z̄1 − z̄1Z2Þiþ1
ðA1Þ

where jzi1j2 þ jzi2j2 ¼ 1. Note that, by definition due to (29)
the link variables satisfy the identity ðz1z2Þi ≡ ðz̄1z̄2Þi
which is not true for the vertex variables.
Due to (A1) it is easy to prove that

�jz1j2 − jz2j2
z1z2

�
iþ1

¼
�
Z1

2 − Z2
1 þ Z2

2 − Z2
2

Z̄1Z2 − Z1Z̄2

�iþ1

;

�jz1j2 − jz2j2
z1z2

�
i

¼
�
Z1

2 − Z2
1 − Z2

2 þ Z2
2

Z1Z2 − Z̄1Z̄2

�iþ1

: ðA2Þ
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