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Efficient quantum simulation protocols for any quantum theories demand efficient protection protocols
for its underlying symmetries. This task is nontrivial for gauge theories as it involves local symmetry/
invariance. For non-Abelian gauge theories, protecting all the symmetries generated by a set of mutually
noncommuting generators, is particularly difficult. In this paper, a global symmetry-protection protocol is
proposed. Using the novel loop-string-hadron formalism of non-Abelian lattice gauge theory, we
numerically demonstrate that all of the local symmetries get protected even for large time by this global
symmetry protection scheme. With suitable protection strength, the dynamics of a (1þ 1)-dimensional
SU(2) lattice gauge theory remains confined in the physical Hilbert space of the theory even in presence of
explicit local symmetry violating terms in the Hamiltonian that may occur in both analog and digital
simulation schemes as an error. The whole scheme holds for SU(3) gauge theory as well.
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I. INTRODUCTION

Gauge theories form the backbone of most of modern
physics, ranging from the standard model of particle physics
to condensed matter systems [1,2]. Typical calculations/
computations for these theories are done via the path-integral
approach that suits both analytical and numerical studies.
Lattice regularized versions of gauge theories [3] provide
an extremely useful platform to perform nonperturbative
calculations using Monte-Carlo simulation toward under-
standing the strong interaction described by quantum
chromodynamics (QCD) [4]. Despite its usefulness, the
numerical lattice-QCD program faces a roadblock due to
sign problem toward certain aspects of computation, such as
computing dynamics or exploring the full phase diagram of
QCD [5]. Of late, an interdisciplinary community has
ramped up efforts to combine aspects of quantum technol-
ogy with that of lattice gauge theories to tackle some of these
outstanding problems [6–14]. There have been significant
efforts to find suitable reformulations of lattice gauge
theories within the Hamiltonian formulations to make them
amenable to quantum simulations in noisy intermediate scale
quantum (NISQ) era [15] devices and beyond [16–37].
Concurrently, there have been efforts for both digital and

analog quantum simulations of LGT’s on currently available
technologies as well as proposals for the same attainable in
near future [11,22,38–68].
The natural framework to study dynamics of gauge

theories without any sign problem is a canonical/
Hamiltonian framework. The Hamiltonian description of
lattice gauge theories, put forth by Kogut and Susskind [69],
provide such a framework. However, the exponentially
growing dimension of the Hilbert space with lattice size,
is not suitable for classical computation, and that is where
quantum simulation/computation is expected to be useful.
However, one additional complication that accompanies the
gauge theory Hamiltonian is the local constraints that
generate the gauge transformation. Preserving the gauge
invariance of the simulated theory with state of the art
quantum hardware is a major challenge in quantum sim-
ulating lattice gauge theories unless the gauge invariance
arise naturally for a particular simulation protocol as in
[18,48,62]. This article presents a protocol to protect the
gauge invariance for two dimensional gauge field theories
with a continuous non-Abelian gauge group such as SU(2)
such that quantum simulation of the same is possible
without imposing any additional symmetry that mimics
gauge invariance.
Protecting all of the symmetries of the theory should

lead to an efficient quantum simulation for the same [70].
The physical or gauge invariant Hilbert space for a gauge
theory is defined to satisfy a set of local constraints, known
as the Gauss law constraints. The Hamiltonian being gauge
invariant, commutes with these constraints, keeping the
dynamics confined in the physical Hilbert space.
Construction of the gauge invariant Hilbert space of a
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gauge theory is a nontrivial task and becomes particularly
involved/expensive for non-Abelian gauge groups. In
Hamiltonian simulation on a classical computer, this results
in an exponential rise in computational complexities [28].
Alternatively, there have been proposals to obtain alternate
frameworks that utilize the Gauss law constraints in elimi-
nation of fermionic matter fields [35,37,44]. In terms of
analog quantum simulation, imposing the Gauss law con-
straint is an additional burden in the simulation protocol
[18,34,40,71,72] as the local constraints are not necessarily
manifested in the simulating quantum mechanical
Hamiltonian. Besides gauge invariance, a theory can have
several global symmetries respected by the Hamiltonian, and
the dynamics remain confined in each superselection sectors
[56]. Restricting the dynamics in the physical Hilbert space
as well as in a particular superselection sector is essential, yet
a challenging task in the NISQ era quantum simulations due
to the erroneous quantum hardware [22,46,56,59,65,73–78].
This has sparked a sharp interest in the past years to find

out symmetry protection protocols in a quantum simu-
lation [70,79–81] that is crucial for experimental demon-
stration of simulating a gauge theory, achieved over the
past half a decade [54,61–64,67,68,82] and many more to
be achieved in future. Recently, there have been proposals
of studying breaking of gauge-invariance in Abelian gauge
theories [81]. Halimeh et al. studied Z2 and U(1) gauge
theory, whose theoretical and numerical modelling was
based on an experimental realization of the same theory
[82]. Furthermore, a non-Abelian study of gauge breaking
was also proposed [80] that involves a single body
protection protocol. In this work, we demonstrate that the
complete symmetry protection in the dynamics of 1þ 1
dimensional non-Abelian gauge theories can indeed be
achieved using a comparatively less involved, namely a
global protection protocol.
The original Kogut-Susskind Hamiltonian for SU(2)

gauge theory has been recently mapped to a novel loop-
string-hadron (LSH) framework [21] without losing any
generality. The corresponding Hilbert space is spanned by a
set of locally defined LSH basis vectors characterized by
manifestly SU(2) invariant local quantum numbers. The
Hamiltonian contains both diagonal and ladder operators
acting locally on the LSH states. The LSH basis, being
gauge-invariant as well as one-sparse, significantly reduces
the computational cost in Hamiltonian simulation [28] and
has been found to act as a suitable framework for quantum
simulation using both analog [60] and digital schemes [59]
in the recent past. Albeit being local and SU(2) invariant, the
notion of nonlocality of the physical observables of a gauge
theory, such as loops or strings, is still contained in the LSH
framework in terms of a set of “on-link” constraints that is
referred as Abelian Gauss law (AGL) constraints in the
literature. The physical Hilbert space of the SU(2) gauge
theory is thus constructed by local (on-site) LSH states
weaved by local (on-link) AGL constraits.

The Hamiltonian simulation, based on the LSH frame-
work, hence requires imposing local AGL constraints in
order to confine dynamics within the physical Hilbert space
[59,60]. Following the work of Halimeh et al. [81], we
propose a AGL protection term for the LSH Hamiltonian,
and explore its implications. Interestingly, the results of this
paper demonstrates that, for two dimensional non-Abelian
gauge theories, protecting a single Abelian global sym-
metry results in the complete protection of all of the local
symmetries generated by AGL.
The organization of the paper is as follows: The

consecutive sections describe the Hamiltonian, Hilbert
space and the symmetries of the theory. A symmetry
violating term in the Hamiltonian is introduced next and
it is discussed how one can protect the symmetry. The
protection scheme is validated by numerical evidences of
protecting all the symmetries of the theory within this
protocol. This work contains explicit results for SU(2), that
can be generalized to SU(3).

II. HAMILTONIAN FRAMEWORKS
FOR GAUGE THEORIES

The core ingredients necessary to study dynamics of a
theory is a Hamiltonian and the Hilbert space. Lattice
regularized version of gauge theories [3] provide a con-
venient path integral framework defined on a discretized
space-time lattice that allows numerical simulation in order
to go beyond the analytically solvable regime of the theory.
However, an equivalent Hamiltonian simulation is more
natural with the aim of computing real time dynamics of the
theory without any sign problem. The Hamiltonian frame-
work developed by Kogut and Susskind [69] provides a
framework for such study.

A. Gauge symmetries and physical Hilbert space

The Hamiltonian is obtained from the Lagrangian by a
temporal gauge fixing (A0ðxÞ ¼ 0; ∀x) that results in
temporal direction to be continuum while the spatial
directions remain discretized. An additional structure that
is associated with the Hamiltonian due to this particular
gauge fixing is a constraint, namely the Gauss law con-
straints. These constraints are defined at every spatial point,
for each color degrees of freedom for a gauge theory. In this
work, we consider a SU(2) gauge group, that comes with
three color degrees of freedom and hence there exists three
Gauss law constraints GaðxÞ for a ¼ 1, 2, 3 and for all site
x. These Gauss law constraints are actually generators of the
gauge transformation at each spatial point. By construction
the Hamiltonian must commute with the constraints, i.e.,

½H;GaðxÞ� ¼ 0; ∀ a; x: ð1Þ
The above relation stands truly nontrivial for a non-Abelian
group such as SU(2) where all of the generators are mutually
noncommuting. The physical Hilbert space of the theory
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consists of states, those are annihilated by the Gauss law
constraints, i.e.,

GaðxÞjΨi ¼ 0 ⇒ jΨi ∈ Hphys; ∀ a; x: ð2Þ

The above two relations automatically suggest that if one
prepares the initial state to lie in Hphys, the dynamics of the
theory will remain confined in Hphys, that is a constrained
sector of the whole gauge theory Hilbert space.

B. Hamiltonian dynamics: The challenges in simulation

The details of the Hamiltonian is discussed in
Appendix A. Here we only highlight the important features
of the same. The canonical conjugate variables in Kogut-
Susskind Hamiltonian formulation are the three components
of SU(2) colored electric fields Ea

L=RðxÞ defined at both the
ends L=R of a lattice and a holonomy or link operator
UαβðxÞ responsible for the parallel transport of gauge fields
on a link connecting site x and xþ î in spatial direction i.
The link operators are group elements, that is written in the
fundamental representation, as a 2 × 2 matrix for SU(2).
The canonical commutation relations of these variables are
given in Appendix A.
The principle of gauge invariance implies each term

of the Hamiltonian to be color singlet. The electric
field operators, being in the adjoint representation are
combined asX

a¼1;2;3

Ea
LðxÞEa

LðxÞ ¼
X

a¼1;2;3

Ea
RðxÞEa

RðxÞ ¼ E2ðxÞ ð3Þ

that provides the local contribution to the electric term of the
Hamiltonian. The link operator, being in the fundamental
representation can be coupled to the fundamental matter
fields present at each lattice site to construct the matter-
gauge interaction terms in the K-S Hamiltonian. In higher
dimension, there exists further scope of forming gauge
singlet operators by considering path ordered product of
holonomies around a closed path and taking trace of the
same, that is known as the Wilson loop operators. The
smallest Wilson loop operator, i.e., loop around a plaquette,
is the smallest possible closed path contribution to the
Hamiltonian. However, as we are confined to only one
spatial dimension for this work, this particular term do not
appear in the Hamiltonian.
It also turns out to be a consequence of the principle of

local gauge invariance that, all of the gauge invariant
operators such as Wilson loops/ strings discussed above,
are nonlocal. The gauge invariant states, defined by the
action of such operators on “vacuum” are also nonlocal.
Hence, one major obstacle to study Hamiltonian dynamics
of a gauge theory is the fact that the physical Hilbert space is
spanned by nonlocal basis vectors that is also over-complete.
This has been one of the major obstacle in performing
dynamical calculations of gauge theory, apart from the fact

that the Hilbert space grows exponentially with the system
size. For both the reasons, classical computers fail to provide
enough resource. With the advent of quantum technology,
handling exponential growth of the Hilbert space dimension
in a quantum simulation seems feasible.
In order to quantum simulate only the physical dynam-

ics, imposing the gauge symmetries is an essential task in
terms of state preparation as well as error mitigation.
Primarily, simulating physical dynamics involves working
with nonlocal basis vectors comprising of the Wilson loops
and strings as described earlier, and is indeed nontrivial. It
is precisely the reason behind the loop approach to gauge
theory [83] being not very successful. In addition to this,
preparing gauge invariant state and maintaining gauge
invariance (that involves preserving gauge symmetry at
each spatial point of the system at all time steps) at each
stage of the simulation is another difficult task especially in
the NISQ era. In this work, we propose an effective solution
to both of these issues.

C. A suitable framework: Loop-string-hadron
framework

As mentioned earlier, the gauge invariant operators and
states of a gauge theory are nonlocal. A series of develop-
ments in reformulating Hamiltonian lattice gauge theories
in terms of prepotential operators over the past two decades
[84–91] has led to an efficient and novel framework for
calculating Hamiltonian dynamics in terms of the minimal
and physical degrees of freedom that are local. Skipping all
the microdetails of the construction, a part of which has
been summarized in Appendix B, we make an effort to
highlight the essential features of the loop-string-hadron
(LSH) framework [21].
(1) The LSH states are defined locally at each lattice site

and are manifestly gauge invariant. A local state, at a
particular site is nothing but an on-site snapshot of
the loops and strings passing through that site and
are part of a global configuration of gauge invariant
states of the lattice.

(2) A generic local snapshot may contain flow of
electric flux from any direction to any direction of
the lattice. The total flux flowing along any such
direction is an integer multiple of j ¼ 1=2 unit of
flux for SU(2) gauge theory. Hence, a local loop can
be characterized by a set of integers (¼ 2j) for each
pair of directions on the lattice. For one spatial
dimension, there will be only one such direction and
hence only one loop quantum number nl ∈ ð0;ZþÞ.

(3) Presence of fermions at each site in a gauge invariant
way can occur in the following general cases:
(a) A string, coming from any direction can start or

end at a site and the string end can couple to the
fermion to form a singlet that satisfy Gauss law.
For non-Abelian gauge theory this involves form-
ing an intertwiner involving j ¼ 1=2 unit of flux
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and a two component fermion. For one spatial
dimension, there can only be an incoming string
end or an outgoing string end located at each site.

(b) Two fermions located at each site can form a
gauge singlet object that is a hadron at each site.
In the LSH framework, the simultaneous pres-
ence of an incoming and an outgoing string at a
site is equivalent to having a hadron [21].

(4) The collection of local snapshots of loops, strings
and hadrons taken at each site would correspond to a
valid global gauge invariant configuration of Wilson
loops and strings if and only if there is a continuity of
bosonic flux across neighboring sites. Hence, the
total bosonic flux coming out of a site in any
direction should equal to the total incoming bosonic
flux at the next lattice site along that direction.
Satisfying this conditions leads to a set of Abelian
constraints between the LSH states across the links
that is called the Abelian Gauss law constraints. This
is discussed in detail in the later part of the work.

The goal of this work is to find a symmetry protection
protocol in simulating the dynamics of gauge theories. As
discussed above, doing the same in the original framework
amounts to constructing the loop space and calculating the
dynamics within the space of nonlocal loops. This is a
nontrivial task for non-Abelian gauge theories. The LSH
framework discussed above is expected to solve an array of
difficulties in the same. We illustrate that for d ¼ 1 case in
the rest of the paper.

D. Loop-string-hadron dynamics

As mentioned earlier, the local LSH state captures the
on-site snapshot of Wilson loops-strings and hadrons. For
one spatial direction, the flux can only flow in one
direction, the quanta of which is denoted by a positive
semidefinite integer nl. There can be a possible incoming
and outgoing string end present on that site that correspond
to (0,1) values for each of the two quantum numbers ni, no.
The LSH Hilbert space is thus characterized by the local
basis states

jnl; ni; n0iðxÞ ∀ x ð4Þ
where 0 ≤ nl ≤ ∞;ni; no ∈ f0; 1g, designating the loop
quantum number nl to be bosonic and string quantum
numbers ni, no to be fermionic. Presence of a hadron is
denoted by nonzero values of both the string quantum
numbers in the LSH basis [21]. It is important to note that,
the LSH basis is exactly equivalent to the particular linear
combination of the angular momentum states at each site
that satisfy the Gauss law constraints [28].
The global LSH Hilbert space, however is not a direct

product of the local Hilbert spaces at each site. In order to
identify the global LSH Hilbert space to contain physical
states such as Wilson loops and strings, a constrained
projection is considered. For SU(2) gauge theory, one

single Abelian constraint per link serves the purpose and
in one spatial dimension, that is given by:

nl þ noð1 − niÞjx ¼ nl þ nið1 − noÞjxþ1 ð5Þ

where, nl, ni, no on both sides of the above equation are the
LSH quantum numbers at site x and xþ 1 respectively.
The development of the LSH framework has led to the

original KS Hamiltonian written in the LSH basis. As
described earlier, the Hamiltonian of the theory in 1þ 1
dimension involve the terms:

H ¼ Helectric þHmass þHinteraction ð6Þ
that correspond to the contributions from total color-electric
flux flowing in the lattice, mass of staggered fermions
and matter-gauge interactions respectively. The details of
the LSH Hamiltonian can be found in [21] and also in
Appendix B.
The original KS Hamiltonian is local, i.e., each of the

terms of the Hamiltonian has a contribution from each
lattice site, and the full Hamiltonian is sum of all the on-site
Hamiltonian terms. This fits into the LSH framework
perfectly. A set of LSH operators are defined at each site
that include: (i) LSH occupation number operators, and
(ii) LSH ladder operators that acting on a LSH state,
changes the LSH quantum numbers by �1 unit. The
electric and mass terms are diagonal in the LSH basis,
and is equivalent to a combination of LSH occupation
number operators as given in (B26) and (B27). The matter
gauge interaction term for 1-d spatial lattice is responsible
for interesting dynamics of the theory. This particular term,
being gauge invariant, acting on the strong coupling
vacuum (a gauge invariant state) build up the gauge
invariant Hilbert space. This term within the LSH frame-
work [21] consists of local SU(2) invariant creation/
annihilation operators corresponding to “string-ends”
located at nearest neighbor sites.

Hint¼ x0
X
x

η̂ðxÞ
�X
σ¼�

Sþ;σ
out ðxÞSσ;−

in ðxþ1Þ
�
η̂ðxþ1ÞþH:c:;

ð7Þ
where, x0 is a dimensionless coupling and η̂ðxÞ are diagonal
operators in the LSH basis and is function of the LSH
occupation number operators Nl, Ni, No defined in the
Appendix B.
The string-end operators S�;σ

out ðxÞ and Sσ;�
in ðxÞ are man-

ifestly SU(2) singlet operators with both bosonic and
fermionic field content that denote start/end of a string
(out/in). These string-end operators create/annihilate (�) a
fermionic field at both its ends and changes the electric flux
on both ends of the link connecting neighboring sites in
order to preserve local SU(2) invariance. The string end
operators again factorize in terms of the LSH ladder
operators as shown in (B19)–(B22). Acting on LSH states,
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the interaction Hamiltonian changes the LSH quantum
numbers at two neighboring sites as described in detail in
the appendix. However, such interaction must preserve
continuation of the bosonic flux lines across neighboring
sites aka the AGL given in (5). In (7), this is guaranteed by
the same σ index in both the string end terms located at sites
x and xþ 1. The index σ ¼ � denotes creation/annihilation
of one unit of electric flux along the link connecting sites x
and xþ 1. As a consequence of (7) satisfying the AGL,
the functions η̂ðxÞ and η̂ðxþ 1Þ, being functions of the
diagonal or occupation number LSH operators, yield
identical eigenvalues while acting on a AGL satisfying
state, and does not cause any violation of AGL.

III. THE SYMMETRIES

The primary symmetry that a gauge theory must satisfy is
the gauge symmetry, imposed by a set of local constraints.
For SU(2) gauge theory, the LSH framework preserves the
local SU(2) symmetry by its manifestly SU(2) invariant
operators and Hilbert space construction. However, as
discussed earlier, the LSH Hamiltonian in 1þ 1-d contains
the following additional symmetries listed below:
(1) Local symmetries imposed by AGL: The LSH

dynamics must satisfy the local “on-link” constraint:

noutðxÞ ¼ ninðxþ 1Þ ð8Þ

where, nout=inðxÞ denotes the eigenvalues of the total
bosonic occupation numbers (defined as N L and
N R for a link connecting x and xþ 1 in Appendix B)
at outgoing/ incoming links at a site x. In terms of the
local LSH quantum numbers fnlðxÞ; niðxÞ; noðxÞg,
these are obtained as:

noutðxÞ ¼ nlðxÞ þ noðxÞð1 − niðxÞÞ; ð9Þ

ninðxÞ ¼ nlðxÞ þ niðxÞð1 − noðxÞÞ: ð10Þ

(2) Global symmetries: In addition to the SU(2) gauge
symmetries, any gauge theory also admits a set of
global symmetries governed by a global SU(2)
group. Being a non-Abelian group, the generators
of SU(2) do not commute. The complete set of
commuting observable (CSCO) for SU(2) contains
two operators, namely the total angular momentum
and the z-component of angular momentum in the
angular momentum representation for the same. The
LSH Hamiltonian, discussed before also admits a set
of global SU(2) symmetries [28] and hence a global
LSH state is characterized by two global quantum
numbers corresponding to the CSCO of global
SU(2). In the LSH framework, these two global
quantum numbers are given by:

(a) Total fermionic occupation number:

Q ¼
XN−1

x¼0

½niðxÞ þ noðxÞ� ð11Þ

For a N-site lattice, the value of Q can be any
integer between ½0; 2N�.

(b) The imbalance between incoming and outgoing
strings: relates to the boundary fluxes

q ¼
XN−1

x¼0

½n0ðxÞ − niðxÞ� ð12Þ

For a particular Q value, q can take any value
from −Q to þQ and defines different discon-
nected sectors of the larger gauge-invariant LSH
Hilbert space.

The LSH Hamiltonian obeys both the Q, q symmetries and
in turn results in a block diagonalized structure. The
dynamics of the theory remain confined within each block,
enabling computational benefit [28].
(3) Charge conjugation symmetry: The particle antipar-

ticle symmetry of the theory identifies ðQ; qÞ sector
of the Hamiltonian to the ðQ;−qÞ sector.

A. An observation: Relating local
and global symmetries

The electric and mass term of the LSH Hamiltonian are
local as well as diagonal in the LSH basis, implying that
they preserve all the local and global symmetries of the
Hamiltonian discussed before. As previously mentioned,
the AGL invariance of the LSH Hamiltonian is manifested
by the same σ indices for both the ends of the string operator
in (7). Appendix B contains the details of expressing the
interaction Hamiltonian in terms of normalized ladder
operators corresponding to the LSH quantum numbers
nl, ni, no at each site. Interestingly the fermionic content
of the particular combination of string end operators at two
neighboring sites x, xþ 1 is obtained as:

Sþþ
out ðxÞSþ−

in ðxþ 1Þ ≈ χ†oðxÞχoðxþ 1Þ ð13Þ

Sþ−
out ðxÞS−−

in ðxþ 1Þ ≈ χ†i ðxÞχiðxþ 1Þ ð14Þ

where, the action of the normalized ladder operators on the
local LSH quantum numbers are realized as1:

1In (13), (14), the left- and right-hand sides are related by ≈, as
the full equality includes suitable ladder operators in the loop
quantum number nl as well as normalization factors as given in
(B19)–(B22). The approximated form, illustrating the fermionic
content is sufficient for understanding the symmetry protection
protocol developed in this work. However, the numerical calcu-
lations use the exact expression.
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χ†i jnl; ni; noi ¼ ð1 − niÞjnl; ni þ 1; noi ð15Þ
χijnl; ni; noi ¼ nijnl; ni − 1; noi ð16Þ

χ†ojnl; ni; noi ¼ ð1 − noÞjnl; ni; no þ 1i ð17Þ

χojnl; ni; noi ¼ nojnl; ni; no − 1i ð18Þ

From the above set of equations, one can readily suggest
that the pairwise presence of the outgoing string operator at
site x and the incoming string operator at site xþ 1, with
the same σ index, i.e., σ ¼ þ for (13) and σ ¼ − for (14) in
effect preserves the total number of no excitation and ni
excitation respectively on a pair of neighboring sites. The
entire Hamiltonian, with interaction terms present for each
and every neighboring site, that satisfy the AGL, in turn
preserves the global quantum numbers

P
x niðxÞ andP

x noðxÞ for the lattice.

IV. VIOLATING THE SYMMETRIES

The symmetries of the SU(2) gauge theory, as discussed
before includes the local as well as the global SU(2)
symmetries as described above. The LSH framework
manifestly solves the local SU(2) Gauss law constraints
and is left with a local Abelian symmetry designated as the
AGL mentioned before. Even though working within
the LSH framework guarantees the complete protection
of the non-Abelian gauge symmetries, the remnant AGLs
are still prone to violation from several possible sources of
error that is present for both analog and digital simulation
schemes. Hence, those errors would definitely take the
dynamics away from the physical Hilbert space. As an
example, the analog simulation scheme of simulating LSH
dynamics (as in [60]), where the two fermionic LSH
degrees of freedom are mapped to up/down spins of the
neutral atoms respectively may experience spin-flip error,
which would result in violation of AGL in the dynamics as
well as would couple multiple superselection sectors of the
theory. For a digital simulation scheme, bit-flip errors
would also cause a similar AGL violation. Such a con-
sideration for a digital simulation has previously led to the
construction of Gauss law oracles [59,73] to check for such
error. We model this particular error by adding an extra
term in the LSH Hamiltonian that would always violate the
AGL and drag the dynamics away from the physical
Hilbert space.
A term that would not satisfy AGL can be the same

interaction Hamiltonian (7), but not necessarily with the
same σ index as given below:

Ĥ0
int ¼ x0

X
x

η̂ðxÞ
" X
σ;σ0¼�

Sþ;σ
out ðxÞSσ0;−

in ðxþ 1Þ
#
η̂ðxþ 1Þ

þ H:c: ð19Þ

Note that, violation of AGL would imply the eigenvalues of
the diagonal operators η̂ðxÞ and η̂ðxþ 1Þ can be different,
unlike the case in (7). With this particular interaction
Hamiltonian, acting on the strong coupling vacuum, a
local SU(2) invariant Hilbert space would be created.
However, the global Hilbert space would rather be a tensor
product space of individual on-site Hilbert spaces and the
dynamics would be spanned all over that space. However,
as mentioned before, the physical Hilbert space is only a
constrained surface of the tensor-product space that satisfy
AGL on each and every link. Note that, (19) contains the
desired AGL preserving interaction (7) as well as terms that
violate AGL with equal weight, but can be tuned separately
to model individual cases as per the simulation schemes. In
the next subsection we will illustrate a scheme for protect-
ing the local symmetries of the theory generated by the
AGL. In other words, we propose a scheme to simulate the
constrained gauge theory dynamics on a tensor product
Hilbert space without imposing any local constraint.

V. PROTECTING THE SYMMETRY

As elaborated in Sec. III A, the realization of AGLs in the
LSH frameowrk in effect leads to the conservation of global
quantities

P
niðxÞ and

P
noðxÞ, that are the linear combi-

nation of global conserved quantities mentioned in (11) and
(12). The aim of this work is to exploit this. We propose a
symmetry protection protocol that protects the AGL in the
dynamics. The global symmetry sectors of the theory results
in a block diagonal structure for the Hamiltonian matrix
written in a basis, such as the LSH basis and the dynamics in
each sector remain confined in the same as long as the
global symmetry is protected. The symmetry protection
protocol presented in this work, projects the dynamics in
one of the global symmetry sectors of the theory and in turn
the AGL is also protected in the dynamics happening in that
sector.
The interaction Hamiltonian given in (19) contains (7)

that preserves AGL, but also contain contributions (for
σ ≠ σ0) that violates the same. As argued in Sec. III A, the
AGL violation can also be related to global symmetry
violation and it would result in mixing of the superselection
sectors of the theory. This can indeed be realized if one
expresses the AGL violating contributions in (19) in terms
of the normalized ladder operators given in (15)–(18) as:

Sþþ
out ðxÞS−−

in ðxþ 1Þ ≈ χ†oðxÞχiðxþ 1Þ ð20Þ

Sþ−
out ðxÞSþ−

in ðxþ 1Þ ≈ χ†i ðxÞχoðxþ 1Þ: ð21Þ

From (20) and (21), it is evident that the quantities
P

x niðxÞ
and

P
x noðxÞ are not being conserved in presence of the

interaction Hamiltonian (19).
It is also evident that, among the two globally conserved

quantities defined in (11) and (12), these AGL violating
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terms still preserve the global quantityQ likewise (7) as per
(13), (14), (20), (21) and (15)–(18).
Hence, we relate that the violation of all of the local

constraints is practically equivalent to violation of the
global q symmetry given in (12).
In this regard, we propose that the dynamics of an

erroneous Hamiltonian given by:

H0 ¼ Helectric þHmass þH0
interaction

can be made to remain confined in the physical subspace
consisting of Wilson loops, strings and hadrons by adding
the following global protection term that protects the q
symmetry to the above Hamiltonian:

Hq
protect ¼ Λ

�
q −

XN−1

x¼0

ðNiðxÞ − NoðxÞÞ
�
; ð22Þ

where, q can be any integer in ½−Q;Q�. In general, the
erroneous Hamiltonian that is more realistic does not have
any block diagonal structure in terms of q. However, with
this particular protection scheme, the dynamics is made to
occur in each of those superselection sectors as determined
by the protection term. The bonus of projecting the
dynamics to any of the particular Q, q sector is the
automatic validation of the AGL constraints throughout
the lattice as demonstrated by the numerical results in the
next section.
Note that, the whole protection scheme is based on the

principle of using Lagrange multipliers to find the low
energy sector of the theory. The dynamics at larger is
expected to get more contribution from the lower energy
sprctrum. We demonstrate this to be the case through
numerical calculation and establish effective dynamical
protection of symmetries under the scheme described above
in the next section.

VI. NUMERICAL DEMONSTRATION OF THE
SYMMETRY PROTECTION PROTOCOL

Numerical benchmarking of the symmetry protection
scheme described above is carried out using exact diago-
nalization on a 4-site lattice. The time evolution of a
physical state under the erroneous Hamiltonian H0 along
with the protection term, i.e.,

H̃ ¼ H0 þHq
protect ð23Þ

is studied for different ratios of the dimensionless couplings
x0=Λ, where, x0 is the dimensionless coupling coefficient
with the interaction Hamiltonian in (19) and Λ is the
dimensionless protection parameter in (22).
The following two observable are considered:

(1) Global observable:

qðtÞ ¼ hΨðtÞj
XN−1

x¼0

½NiðxÞ − NoðxÞ�jΨðtÞi

(2) Local observable, that measures AGL for each link
connecting sites x and xþ 1:

AGLx;xþ1ðtÞ ¼ hψðtÞj½N LðxÞ −N Rðxþ 1Þ�jψðtÞi
ð24Þ

where,

N LðxÞjnl; ni; noix
¼ ½nl þ noð1 − niÞ�xjnl; ni; noix
N Rðxþ 1Þjnl; ni; noixþ1

¼ ½nl þ nið1 − noÞ�xþ1jnl; ni; noixþ1

by exact diagonalization technique for a 4-site lattice, and
the time evolution of these two observable is studied using
QuSpin [92,93] for sufficiently large time T at small
intervals of 0.0001T. The results presented are for open
boundary condition, with zero incoming flux at the 0th

lattice site.
The numerical result is summarized below:
(i) Figure 1 demonstrates that hqðtÞi, time average of

the global quantum number q converges to the value
hqðtÞi ¼ q by using protection Hamiltonian Hq

protect

with increasing protection strength, (i.e., decreasing
x0=Λ) for q ¼ 0, 2, 4.

(ii) Figure 2 demonstrates that hAGLx;xþ1ðtÞi, time
average of the AGL quantum number for each link
ðx; xþ 1Þ converges to the value 0 by using pro-
tection Hamiltonian Hq

protect with increasing protec-
tion strength, (i.e., decreasing x0=Λ) for all the
values of q ¼ 0, 2, 4.

The erroneous Hamiltonian H0 considered here does not
possess any q-symmetry nor is it block-diagonalized for
different q sector. The protection term in the Hamiltonian,
determines the q value of the low energy sectors of the
theory. Note that, in practice, the dynamics of all the states
in the direct product Hilbert space is being projected to each
superselection sectors defined by a common q-value. The
numerical demonstration of this is presented in Fig. 1,
where the time averaged value of the global observable is
shown to approach the exact value q with increasing
protection strength. Figure 2 does not require any additional
numerical computation. The same calculation demonstrat-
ing q-protection yields simultaneous demonstration of
observing AGL conservation in the simulation. For this
purpose, the time averaged value of the AGL is measured on
each link and for each of the q-protection. Figure 2,
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FIG. 1. Time average (for long time) of the global quantum number q ¼ P
xðnoðxÞ − niðxÞÞ is plotted against the ratio of x0, the

dimensionless couplings that come with the symmetry violating interaction, and Λ the coupling with the symmetry protection term. The
error bar denotes the deviation of the observed value from the mean time averaged value throughout the dynamics. With stronger
protection strength, i.e., x0Λ → 0 the global symmetry is better protected as manifested in the zoomed in region shown in the inset. The plots
illustrate that the dynamics is successfully projected within each global symmetry sector q ¼ 0, 2, 4 with each protection term Hq

protect.

FIG. 2. The time averaged value of the AGL observables AGLx;xþ1 on each link of the 4 site lattice, while time evolved with the
Hamiltonian that contains local AGL violating interaction terms with strength x0 and global symmetry protection term with strength Λ,
is plotted against x0=Λ. For any q-sector of the protected global symmetry, the Abelian Gauss laws on all of the links are perfectly
protected with increasing protection strength. The error bars denote the fluctuation of the observables from its mean value during the
evolution. The second row of plots demonstrate systematically better protection (including systematic decrease in fluctuations as well)
of all of the Abelian Gauss laws as x0=Λ is decreased up to 1=100 for a 4-site lattice.
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demonstrates that, irrespective of the chosen q-sector, the
AGL is thoroughly protected by the global q-protection
scheme with sufficiently large protection strength. Hence, a
simulation of the Hamiltonian without any local constraint
yields the dynamics of the physical observables with the
proposed protection scheme.

VII. CONCLUSION AND OUTLOOK

This article presents a novel idea of simulating the
physical dynamics of a non-Abelian gauge theory in two
dimensions described by a local Hamiltonian without
imposing any local constraints. This was only made
possible within the LSH framework, where the complete
Abelianization of SU(2) gauge symmetries have been
performed without introducing any nonlocal interaction.
For 1þ 1 dimensional case, the whole set of local Abelian
symmetries has been made captured by a single global
symmetry that is manifested in the LSH Hamiltonian
construction as well. The whole study of protecting the
symmetry is based on the idea of imposing a constraint in
Hamiltonian dynamics with a large value of Lagrange
multiplier. The current study on small lattice can be easily
generalized to use state-of-the-art tensor network techniques
to probe for larger system [94]. Tensor network ansatz can
approximate ground states for 1D lattice theories [95].
Several efforts have been put toward that direction in
context of Abelian and non-Abelian gauge theories that
includes but does not exhaust [23,96–100]. Encoding global
symmetries within the tensor network formulation is pos-
sible, and since gauge breaking in the LSH formulation is a
global symmetry violation, it is possible to use the tensor
network formulation to study these dynamics. It might even
be possible to explore larger lattice sizes so that one can
study the scaling effect of the protection strength.
This particular study removes a vast set of the difficulties

(regarding imposing all the constraints) in quantum simu-
lating non-Abelian gauge theories in lower dimension within
the scope of NISQ era devices and also for tensor network
calculations as the framework becomes free of local sym-
metries and yet the interactions remain local. A similar
global protection scheme for a SU(3) gauge theory [87,91] is
also possible to construct, provided there exists a LSH
framework for SU(3) as well. Another important aspect of
this study is to provide clear insight into the entanglement
structure for a 1þ 1-dimensional non-Abelian gauge theory.
Works are in progress in these directions and will be reported
shortly.
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APPENDIX A: KOGUT-SUSSKIND
FORMULATION

The Hamiltonian formulation of lattice gauge theory
was first put forth by Kogut and Susskind [69]. Here, the
temporal direction is taken to be continuous while the
spatial directions are discretized. The Hamiltonian for
SU(2) LGT in 1þ 1 D consists of the following terms:

HKS ¼ HI þHE þHM ðA1Þ

Here, the HI denotes the interaction term between the
fermionic matter and the gauge degrees of freedom. The
fermionic content is split into staggered sites, with matter
and antimatter fields occupying even and odd sites respec-
tively. The interaction part is of the following form

HI ¼ x0
XN−2

x¼0

½Ψ†ðxÞUðxÞΨðxþ 1Þ þ H:c:� ðA2Þ

where x0 is a dimensionless parameter related to the lattice
spacing the coupling constant g. The fermionic field is in
the fundamental representation of SU(2) and consists of
two components Ψ ¼ ðΨ1

Ψ2Þ. The gauge link operator U is a
2 × 2 unitary matrix operator starting from site x and
ending at site xþ 1. A temporal gauge is chosen such
that the link operator along the time-direction is set to unity.
The second term in the KG HamiltonianHE corresponds to
the energy stored in the color electric fields

HE ¼
XN−1

x¼0

E2ðxÞ ðA3Þ

Furthermore, E2 ¼ ðE1Þ2 þ ðE2Þ2 þ ðE3Þ2 ≡ E2
L ¼ E2

R.
EL and ER are the left and right color electric field operators
that satisfy the SU(2) Lie algebra at each site:

½Ea
L; E

b
L� ¼ −iϵabcEc

L

½Ea
R; E

b
R� ¼ iϵabcEc

R

½Ea
L; E

b
R� ¼ 0 ðA4Þ

where ϵabc is the Levi-Cevita tensor. The gauge fields
and the electric fields satisfy the canonical commutation
relations on each link:

½Ea
L;U� ¼ TaU

½Ea
R;U� ¼ UTa ðA5Þ

where Ta ¼ 1
2
τa and τa is the ath Pauli matrix.
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The final term in the KG Hamiltonian is the staggered
mass term:

HM ¼ μ
XN−1

x¼0

½ð−1ÞxΨ†ðxÞ · ΨðxÞ� ðA6Þ

with μ being the dimensionless mass parameter.
The fermion charge density operator defined at each site

is as follows:

ρaðxÞ≡Ψ†ðxÞTaΨðxÞ ðA7Þ

which satisfies the SU(2) Lie algebra. Furthermore, the
following commutator is also satisfied at each sites:

½ρa;Ψ� ¼ −TaΨ ðA8Þ

The charge operator also commutes with the color electric
field and the gauge link operator. Using all these commu-
tation relations, it can be shown that the following operator
commutes with the Hamiltonian:

GaðxÞ ¼ −Ea
LðxÞ þ Ea

Rðx − 1Þ þ ρaðxÞ ðA9Þ

The Hilbert space of this theory is then separated into
different sectors which corresponds to the eigenvalues of
the Gauss law operator Ga, and the physical sector
corresponds to the zero eigenvalue of Ga.

APPENDIX B: LOOP-STRING-HADRON
FRAMEWORK

The gauge invariant states of the Kogut-Susskind theory
are the nonlocal Wilson loops and string. The idea behind
the LSH formulation is to form a local description of the
same. In order to do this, the color electric fields E and the
gauge link operator U are described in terms of bilinears
of harmonic oscillator doublets, dubbed as Schwinger
bosons or prepotentials [89]. The electric field operators
then become

Ea
L ≡ a†ðLÞTaaðLÞ

Ea
R ≡ a†ðRÞTaaðRÞ ðB1Þ

Here, the harmonic oscillator doublets obey the following
commutation relation at each site:

½aαðlÞ; a†βðl0Þ� ¼ δαβδll0 ðB2Þ

where, α, β ¼ 1, 2 and l; l0 ¼ L, R. One can also define the
number operators for the harmonic oscillator doublets

N L ¼ a†ðLÞ:aðLÞ ðB3Þ

N R ¼ a†ðRÞ:aðRÞ ðB4Þ

with eigenvalues nL=R. From the condition that the left and
right Casimirs of theory being equal, i.e., E2

L ¼ E2
R, we

find an Abelian Gauss law relating the number operators at
the end of each link.

nLðxÞ ≈ nRðxþ 1Þ ðB5Þ

where, ≈ denotes this to be true only for number operators
N L=R acting on a “physical state.” The link operator U, is
defined on a link connecting site x denoted by L and xþ 1
denoted by R. In terms of the prepotentials, the same is
reconstructed with the prepotentials at the L=R-end of the
link and is given by:

U≡ ULUR ðB6Þ

UL ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N L þ 1

p �
a†2ðLÞ a1ðLÞ
−a†1ðLÞ a2ðLÞ

�
ðB7Þ

UR ≡
�

a†1ðRÞ a†2ðRÞ
−a2ðRÞ a1ðRÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N R þ 1
p ðB8Þ

The above constructions also satisfy the Abelian Gauss
law (B5). Incorporating this particular form of U in the
interaction Hamiltonian given in (A2) one obtains local
SU(2) invariant building blocks that are glued by the AGL
along neighboring sites. One can actually write down the
entire set of gauge-invariant SU(2) operators [21]. Using
these one can directly transform the Kogut-Susskind
Hamiltonian into the loop-string-hadron Hamiltonian,
where the entire Hamiltonian is expressed in terms of
local SU(2)-singlet operators and commute with the AGLs
on each and every link of the lattice.
The electric part of the Hamiltonian in the LSH formal-

ism is as follows:

HKG
E → HLSH

E ≡X
x

�
1

2
N RðxÞ

�
1

2
N RðxÞ þ 1

�

þ 1

2
N LðxÞ

�
1

2
N LðxÞ þ 1

��
ðB9Þ

Where N L=R are the total Schwinger boson occupation
number defined in (B3), (B4).
The staggered mass term is written in terms of the quark

number operator, N Ψ ¼ Ψ† · Ψ

HKG
M → HLSH

M ≡ μ
X
x

ð−1ÞxN ΨðxÞ ðB10Þ

And finally, using the definition of the link operator in
terms of the left and right harmonic oscillator doublets, we
can see that

Ψ†ðxÞUΨðxÞ → Ψ†ðxÞULURΨðxÞ: ðB11Þ
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Using Eq. (B6), we arrive at

Ψ†ðxÞULðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N LðxÞ þ 1
p ðSþþ

out ðxÞ Sþ−
out ðxÞ Þ; ðB12Þ

URðxÞΨðxÞ ¼
�
Sþ−
in ðxÞ

S−−
in ðxÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N RðxÞ þ 1
p : ðB13Þ

Finally, the interaction term can be summarized
succinctly as:

HKG
I → HLSH

I ðB14Þ

≡ x0
X
x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N LðxÞ þ 1

p ½Sþþ
out ðxÞSþ−

in ðxþ 1Þ

þ Sþ−
out ðxÞS−−

in ðxþ 1Þ� × 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Rðxþ 1Þ þ 1

p
þ
X
x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Rðxþ 1Þ þ 1

p ½S−þ
in ðxþ 1ÞS−−

outðxÞ

þ Sþþ
in ðxþ 1ÞS−þ

out ðxÞ� ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N LðxÞ þ 1
p ðB15Þ

Here, Sσ;σ
0

in=out are the string operators. They consist of pairs
of fermionic/bosonic creation and annihilation operators.
Up until this point, the basis of the LSH hamiltonian has
not be described clearly. The natural choice would be to
use the occupation number basis, i.e., considering N R,
N L, N Ψ as the complete set of commuting operators.
However, we define a loop-string-hadron basis [21] that is
more useful. The LSH basis is characterized by quantum
numbers nl, ni, n0, which are defined as the eigenvalues of
the LSH occupation numbers N l, N i, N o. nl, ni, n0
denotes the occupation number for each individual mode
of loop-string “quanta” present at each lattice site.
The details of this basis construction can be found in
[21]. The relations between the LSH quantum numbers to
bosonic-fermionic occupation numbers are as follows:

nΨ ¼ ni þ no ðB16Þ

nL ¼ nl þ noð1 − niÞ ðB17Þ

nR ¼ nl þ nið1 − noÞ ðB18Þ

at any particular site x (index omitted in the above
equation).
An entire dictionary of normalized ladder operators has

been constructed, which when acting on the LSH basis,
gives back normalized states. This second layer of operator
redefinition ensures that the states generated after sequential
action of these operators remain normalized at all times, with
the appropriate cofactors hidden in the operator definitions.
The explicit form of the interaction Hamiltonian in terms of
the fundamental bosonic/fermionic operators and the newly

defined normalized operators is as follows:

Sþþ
out ðxÞSþ−

in ðxþ 1Þ
¼ ½χ†o�x½χo�xþ1

× ½ð1 −N iÞ þ ΛþN i�x½N i þ Λþð1 −N iÞ�xþ1

× ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l −N i þ 2

p
�x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l − ð1 −N iÞ þ 2

q
�xþ1; ðB19Þ

S−−
out ðxÞS−þ

in ðxþ 1Þ
¼ ½χo�x½χ†0�xþ1

× ½ð1 −N iÞ þ Λ−N i�x½N i þ Λ−ð1 −N i�xþ1

× ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l þ 2ð1 −N iÞ

q
�x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l þ 2N i

p
�xþ1 ðB20Þ

Sþ−
out ðxÞS−−

in ðxþ 1Þ
¼ ½χ†i �x½χi�xþ1

× ½N o þ Λ−ð1 −N oÞ�x½ð1 −N oÞ þ Λ−N o�xþ1

× ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l þ 2N o

p
�x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l þ 2ð1 −N oÞ

q
�xþ1; ðB21Þ

S−þ
out ðxÞSþþ

in ðxþ1Þ
¼ ½χi�x½χ†i �xþ1

× ½N oþΛþð1−N o�x½ð1−N oÞþΛþN o�xþ1

× ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lþN oþ1

p
�x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lþð1−N oÞþ1

q
�xþ1 ðB22Þ

Here, we have only shown the different two body string
operator terms. The full interaction term would include
these operators sandwiched between the N L=R operators.
The χi;o are the SU(2) invariant fermionic modes, which act
as ladder operators on the LSH basis states. The (i,o) denote
incoming and outgoing modes

fχq0 ; χqg ¼ fχ†q0 ; χ†qg ¼ 0 ðq ¼ i; oÞ ðB23Þ

fχq0 ; χ†qg ¼ δq0q ðB24Þ

and Λ� are the loop quantum number (nl) ladder operators,
defined as:

Λ�≡L�� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN lþ1

2
�1

2
ÞðN lþ3

2
�1

2
þðN i⊕N oÞÞ

q : ðB25Þ

Briefly, the above defined χi;o act as ladder operators for the
ni, no quantum numbers and Λ� act as ladder operator for
the nl quantum number. One can also substitute the
definitions given in (B16) into the definitions of the electric
(B9) and mass part (B10) of the LSH Hamiltonian to
construct their corresponding form in terms of the N l, N i,
N o operators as follows:
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HE ¼ g20
4

X
x

��
1

2
ðN l þN oð1 −N iÞÞ

�
x

×

�
1

2
ðN l þN oð1 −N iÞÞ þ 1

�
x

þ
�
1

2
ðN l þN ið1 −N oÞÞ

�
x

×

�
1

2
ðN l þN ið1 −N oÞÞ þ 1

�
x

�
: ðB26Þ

The mass term is given by:

HM ¼ m0

X
x

ð−ÞxðN iðxÞ þN oðxÞÞ: ðB27Þ

This completes the construction of the LSH Hamiltonian in
an explicitly gauge-invariant form.
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