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Confinement of quarks due to the strong interaction and the deconfinement at high temperatures and
high densities are a basic paradigm for understanding the nuclear matter. Their simulation, however, is very
challenging for classical computers due to the sign problem of solving equilibrium states of finite-
temperature quantum chromodynamical systems at finite density. In this paper, we propose a variational
approach, using the lattice Schwinger model, to simulate the confinement or deconfinement by
investigating the string tension. We adopt an ansatz that the string tension can be evaluated without
referring to quantum protocols for measuring the entropy in the free energy. Results of numeral simulation
show that the string tension decreases both along the increasing of the temperature and the chemical
potential, which can be an analog of the phase diagram of QCD. Through numerical simulations on the
classical computer, we demonstrate the potential of exploiting near-term quantum computers for
investigating the phase diagram of finite-temperature and finite-density nuclear matters.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
can envelop our understanding on a variety of nuclear
matter system under different conditions [1]. For instance,
the quarks are confined into composite particles like
hadrons due to the strong interaction [2]. At very high
temperature deconfinement occurs and quarks get free,
forming quark-gluon plasma [3]. However, a large regime
of the phase diagram is undetermined and its completion is
one of the main challenges in physics. The challenge lies in
the intrinsic difficulty for classical computers to solve the
finite-temperature QCD system at finite density [4]. The
prevalent quantum Monte Carlo method can solve QCD
problems at near-vanishing density, but it will meet the
notorious sign problem at finite density [5,6]. Tensor
networks can be free of the sign problem and achieve
many meaningful results in the field of quantum many-
body physics. But to avoid a blowup of the computational

cost (exponentially in N), we need to truncate the matrices
to a moderate bond dimension which introduces a trunca-
tion error [7].
With rapid advances of quantum hardware, the promise

of solving quantum many-body problems by quantum
computing becomes increasingly within reach [8–11].
Notably, there are some progresses in exploiting quantum
computing for solving nuclear physics that will be intrinsic
hard with classical methods, such as real-time evolution
[12], evaluation of parton distribution function [13,14], and
so on [15–21]. The Schwinger model is remarkable as a
playground for simulating nuclear physics on the current
quantum processors [9,22–25]. As a model for the 1þ 1D
quantum electrodynamics, the Schwinger model exhibits
many interesting phenomena in common with QCD, such
as confinement [26], chiral symmetry breaking [27], charge
shielding [28], and so on [29–31]. In Ref. [26], a tensor
network approach has been adopted for studying the
confinement properties of the Schwinger model at finite
temperature and zero chemical potential, which can mimic
the confinement of QCD but can be much simpler for
quantum simulation.*dbzhang@m.scnu.edu.cn
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Investigation thermodynamics of the Schwinger model
under varied temperatures and densities, as an analog to the
phase diagram of QCD, can be feasible with thermal
quantum simulation (TQS) [32–36]. The TQS aims to
simulate finite-temperature quantum systems with quantum
computers. The key of TQS is to prepare the Gibbs
(thermal) state describing the equilibrium state of a quan-
tum system at a temperature. This can be achieved either by
generating a purified thermal state [35–37], or preparing a
density matrix as a mixing of pure states with a classical
probability distribution [34,38,39]. For the purpose of
illuminating the feature of confinement or deconfinement,
one can evaluate the string tension as a characteristic of the
confinement strength. To calculate the string tension,
however, relies on accessing to the free energy and thus
the von Neumann entropy which is nontrivial to extract on a
quantum computer [34,39]. In this regard, a choice of TQS
method convenient for calculating the entropy is necessary.
In this paper, we adopt a variational quantum algorithm

(VQA) to investigate the lattice Schwinger model at varied
temperatures and densities by evaluation of the string
tension. The string tension is calculated as free energy
difference with/without a pair of opposite charges at two
ends of the chain. We use an ansatz convenient to calculate
the free energy and thus the string tension, where the entropy
can be analytically obtained. To illustrate the effectiveness of
VQA, we perform numerical simulations on a classical
computer. After testing the VQA at different temperatures
and system sizes, we adopt the algorithm for exploring the
dependence of string tension with both the temperature and
the chemical potential. The results are consistent with
theoretical predictions. Our work demonstrate the potential
of exploiting near-term quantum computers for investigating
the phase diagram of finite-temperature and finite density for
nuclear matters.
The rest of the paper is organized as follows. We first

introduce the Schwinger model and the concept of string
tension in Sec. II. Then we propose a variational quantum
algorithm for calculating the string tension in Sec. III. The
numeral simulation results are presented in Sec. IV. Finally,
conclusions are made in Sec. V.

II. FINITE-TEMPERATURE SCHWINGER
MODEL AND STRING TENSION

In this section, we first present a lattice version of the
Schwinger model. Then, we introduce the concept of string
tension for the finite-temperature Schwinger model, as well
as its expression by the free energy difference with and
without a pair of trial charges at two ends of the chain.

A. The lattice Schwinger model

The Schwinger model describes the 1þ 1D (one
spatial dimensionþ one time dimension) quantum electro-
dynamics with one flavor fermion. As a simply model of

quantum gauge field theory, the Schwinger model provides
a playground for studying a variety of physics, including
the spontaneous creation of electron-positron pairs from the
vacuum [40], the confinement of quark and antiquark
[41,42], dynamical phase transition [43,44], and so on.
Remarkably, recent years it becomes a standard model for
simulating both dynamical and static physical properties of
lattice gauge theories on quantum computers.
Let us start with a Hamiltonian description of the

Schwinger model by fixing the temporal component of
the vector potential as zero, A0ðxÞ ¼ 0. The Hamiltonian
density is [45],

H ¼
Z

dx

�
Ψ†ðxÞγ0γ1ð−i∂1 þ gÂ1ðxÞÞΨðxÞ

þmΨ†ðxÞγ0ΨðxÞ þ 1

2
Ê2ðxÞ

�
; ð1Þ

where ΨðxÞ is a fermion field, Â1 is the longitudinal vector
potential and m is the fermion mass. In 1þ 1D, the Dirac
matrices read as γ0 ¼ σ̂z and γ1 ¼ iσ̂y. The electric field
satisfies ÊðxÞ ¼ −∂0A1ðxÞ and the commutation relation
½Â1ðxÞ; Êðx0Þ� ¼ −iδðx − x0Þ. By Gauss’ law there is a
constraint between the electric field and the fermion
density, ∂1EðxÞ ¼ gΨðxÞ†ΨðxÞ.
Following Ref. [9], a lattice formula of Eq. (1) can be

obtained by the staggered lattice approach, which respec-
tively recasts the two-component fermionic fields into the
even and odd sites of the lattice, namely Φ̂2j ¼

ffiffiffi
a

p
Ψ̂e−ðx2jÞ

and Φ̂2j−1 ¼
ffiffiffi
a

p
Ψ̂†

eþðx2j−1Þ, where a is the lattice constant
and e∓ represent fermion/antifermion. The gauge fields,
now living on the links on the lattice, become θj;jþ1 ¼
−agAðxj þ a

2
Þ and Lj;jþ1 ¼ 1

g Eðxj þ a
2
Þ, which satisfy the

commutation relation ½θj;jþ1; Lj0;j0þ1� ¼ −iδj;j0 . With the
above recasting, we get the Kogut-Susskind formulation for
the Schwinger model of lattice size N [46],

H ¼ 1

2a

XN−1

j¼1

½Φ̂†
j Ûj;jþ1Φ̂jþ1 þ H:c:�

þm
XN
j¼1

ð−1ÞjΦ̂†
jΦ̂j þ

g2a
2

XN−1

j¼1

L̂2
j;jþ1; ð2Þ

where Ûj;jþ1 ¼ eiθj;jþ1 . Gauss’ law now becomes,

L̂j;jþ1 − L̂j−1;j ¼ Φ̂†
jΦ̂ −

1 − ð−1Þj
2

: ð3Þ

For an open boundary chain with a boundary condition
L̂0;1 ¼ ε, Gauss’ law reads,
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L̂j;jþ1 ¼ εþ
Xj

l¼1

�
Φ̂†

jΦ̂j −
1 − ð−1Þl

2

�
: ð4Þ

This means that the electric field can be determined by the
fermion densities. The ε term can be regarded as a back-
ground electric field. Moreover, with a gauge transforma-
tion of the fermion operators, Φ̂j →

Qj−1
l¼1 Ûj;jþ1Φ̂j, the

Ûj;jþ1 in Eq. (2) can be absorbed and thus will not appear in
the Hamilton. The gauge fields thus can be eliminated from
the Hamiltonian at a price that the Hamiltonian involves
long-range density-density interaction. The Hamiltonian
now can be expressed in terms of fermion degree of
freedom [9],

H ¼ ϖ
XN−1

j¼1

ðΦ̂†
jΦ̂jþ1 þ H:c:Þ þm

XN
j¼1

ð−1ÞjΦ̂†
jΦ̂j

þ g2a
2

XN−1

j¼1

�
εþ

Xj

l¼1

�
Φ̂†

jΦ̂j −
1 − ð−1Þl

2

��
2

; ð5Þ

where ϖ ¼ 1
2a. With a Jordan-Wigner transformation,

Φ̂j ¼
Qj−1

l¼1ðiσzl Þσ−j , where σ� ¼ 1
2
ðσx � iσyÞ, the model

can be mapped to a qubit Hamiltonian,

Hε ¼ ϖ
XN−1

j¼1

½σ̂þj σ̂−jþ1 þ H:c:� þm
2

XN
j¼1

ð−1Þjσ̂zj

þ g2a
2

XN−1

j¼1

�
εþ 1

2

Xj

l¼1

½σ̂zl þ ð−1Þl�
�

2

; ð6Þ

The qubit Hamiltonian in Eq. (6) can be readily inves-
tigated on a quantum computer. It should be stressed that a
complete elimination of the gauge field like the Schwinger
model is not general for gauge theories. This makes the
Schwinger model special as a starting model for studying
lattice gauge theories by quantum computing, avoiding the
issue of dealing with gauge fields which can be resource
demanding.
Moreover, one can study the Schwinger model at finite

chemical potential by adding an extra term −μ
P

N
j¼1 Φ̂

†
jΦ̂j

in the lattice Schwinger model, where μ is the chemistry
potential [47]. This turns the qubit Hamiltonian into a new
Hamiltonian,

GεðμÞ ¼ Hε −
μ

2

XN
j¼1

σ̂zj: ð7Þ

By including the chemical potential term in GεðμÞ, one can
investigate the finite-temperature Schwinger model at finite
densities.

B. String tension

One remarkable feature of the Schwinger model is
confinement: the potential energy between a fermion-
antifermion pair grows linearly with the separation that
no free fermion can be observed in this system [48]. Such
phenomena of confinement can mimic that of quantum
chromodynamics, where a quark-antiquark pair are con-
fined due to the strong interaction. The Schwinger model
can be regarded as a toy model for investigating confine-
ment related physics. A simple picture for understanding
the confinement is to look at the largem limit. If we put one
fermion and one antifermion on the bare vacuum with a
separation r, then there will be an electric field of strength g
between them due to the Gauss law. The potential energy
due to the presence of electric field grows linearly with the
separation, and the force between two fermions thus is a
constant. In general, one may imagine there is a string
connecting two confined fermions, and the strength of the
confinement can be characterized by the string tension. At
finite temperatures, thermal fluctuations of fermion-anti-
fermion pairs will reduce the strength of the string tension
and the confinement will be weakened. For the Schwinger
model, it can be analyzed that the string tension will
diminish exponentially with the temperature [26,49]. This
is different from the QCD, where there is a confinement-
deconfinement transition at a finite temperature [50–53].
The string tension is a static property and its temperature-

dependence can be calculated by quantum statistical
mechanics [27]. Let us consider a chain described by the
Schwinger model at a temperature T. First, put a pair of
fermion and antifermion with trial charge �εg at the left
end of the chain. Then, move the antifermion to the other
end of the chain. The free energy will increase as work has
been done in this process. We can define the string tension
as a force that contributes to the work. For an original
system described by a Hamiltonian in Eq. (6) with ε ¼ 0,
the final Hamiltonian turns to be Hε, where the setup of a
pair of fermion and antifermion at two ends can correspond
to a background electric field εg. Thus, it suffices to
calculate the difference of free energies for H0 and Hε.
In addition, we should subtract a contribution solely from

the trial charges. This can be achieved by dropping terms

only related to ε in Eq. (6), namely fε ¼ g2aðN−1Þ
2

ðε2 − ε
2
Þ.

The string tension can be written as [26],

σεðβÞ ¼
1

Nga
ðFεðβÞ − F0ðβÞ − fεÞ; ð8Þ

where β ¼ 1
T is the inverse temperature and FεðβÞ is the free

energy for the system of Hamiltonian Hε. The same
procedure can also apply for the Schwinger model with
finite chemical potential by replacing Hε with GεðμÞ.
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III. VARIATIONAL QUANTUM ALGORITHM FOR
EVALUATING THE STRING TENSION

We now investigate how the string tension of the finite-
temperature Schwinger model can be evaluated on a
quantum computer. We first discuss the special role of
entropy for quantum simulating finite-temperature quan-
tum systems and then propose a variational quantum
algorithm for evaluating the string tension.

A. Motivation

As seen in Eq. (8), the key of evaluating the string
tension, as a difference of free energies, lies in the capacity
of evaluating the free energy efficiently. In equilibrium
thermodynamics, the system at an inverse temperature β
can be described by a Gibbs (thermal) state [54],

ρðβÞ ¼ 1

ZðβÞ e
−βH; ZðβÞ ¼ Trðe−βHÞ: ð9Þ

Let us writeHjφni ¼ Enjφniwith En the nth eigenvalue for
the corresponding eigenstate jφni. Then the Gibbs state can
be regarded as a mixed state that the finite-temperature has
a classical probability of e−βEn=ZðβÞ in the pure state jφni.
The free energy of the Gibbs state can be expressed

as [54],

FðβÞ ¼ EðβÞ − TSðβÞ; ð10Þ

where EðβÞ ¼ Tr½ρðβÞH� is the average energy and SðβÞ ¼
−Tr½ρðβÞ log ρðβÞ� is the von Neumann entropy. Moreover,
the Gibbs state ρðβÞ minimizes the free energy. In this
regard, the expression of free energy in Eq. (10) sets a
variational principle for preparing the Gibbs state by
minimizing the free energy.
The quantum statistical physics involving preparing the

Gibbs state as well as investigating the thermodynamical
properties in general is hard for classical computers due to the
exponential increasing of Hilbert space [55]. For the phase
diagram of QCD, for instance, it is known that the quantum
Monte Carlo method can apply well for the regime of near-
zero chemical potential at different temperatures [56], but its
accuracy for exploration of a regime of nonzero chemical
potential cannot be guaranteed. By including a nonzero
chemical potential term as in Eq. (7), a nonzero baryon
density will appear and there is an imbalance between quark
and antiquark. Consequently, nonpositive-definiteness of the
weight function will arise in transforming a quantum
problem into a form resembling a classical statistical
mechanics problem, which leads to the sign problem in
quantumMonteCarlomethod [57]. It is aNPhard problem to
solve the sign problem for simulating quantum many-body
systems on a classical computer [6]. This intrinsic difficulty,
however, can be avoided if we use a quantum computer to
simulate quantum many-body systems.

Nevertheless, even with a quantum computer, there is a
subtlety for simulating finite-temperature quantum systems
involving the entropy [58]. As expressed in Eq. (10),
evaluating the free energy requires first to prepare a Gibbs
state and then measure the average energy and the entropy.
Once the Gibbs state is available on a quantum computer, the
average energy can be obtained efficiently by decomposing
the Hamiltonian as a sum of Pauli operators and performing
each Pauli measurement alone. As shown in Eq. (A5), the
number of Pauli operators for the Schwinger model is
proportional to OðN3Þ (see Appendix A for details), which
indicates that the average energy can bemeasured efficiently.
However, estimation of the entropy, which cannot be

taken as a quantum average of an Hermitian operator, meets
a difficulty: in general it requires us to diagonalize the full
density matrix ρðβÞ. While there are some quantum
protocols to calculate the entropy as a function of density
matrix ρ, either with a collective measurement on multiple
copies of ρ [59] or with the random measurements [60],
those protocols access to the trace of a power ρ known as
the Rényi entropy [61]. It is still unknown how to compute
the von Neumann entropy efficiently, although there are
some estimations of the von Neumann entropy with proper
approximations [62–64]. In the next subsection, we will
adopt a variational approach for preparing the Gibbs state,
with an ansatz that the entropy can be readily calculated on
a classical computer.

B. Variational quantum algorithm

The variational principle for preparing a Gibbs state is to
minimize the free energy with regard to the parametrized
mixed state [34]. Let us denote the parametrized mixed
state as ρðωÞ with a parameter set ω. For a given inverse
temperature β, the variational free energy then becomes a
function of ω,

Fðω; βÞ ¼ Tr½ρðωÞH� − β−1SðωÞ; ð11Þ

where the entropy is SðωÞ ¼ −Tr½ρðωÞ log ρðωÞ�. For the
purpose of calculating entropy, we adopt an ansatz to
parametrize the target Gibbs state with a parameter set
ω ¼ ðθ;ϕÞ,

ρðωÞ ¼ UðϕÞρ0ðθÞU†ðϕÞ; ð12Þ

where ρ0ðθÞ is an initial mixed state easy to prepare on the
quantum computer, and UðϕÞ is an unitary implemented
with a parametrized quantum circuit.
As ρ0ðθÞ and ρðωÞ are related by an unitary trans-

formation, the eigenvalues will not change and so as to the
entropy. Thus, the entropy depends only on the parameters
θ. A fully parametrization of the eigenvalues of the Gibbs
state into the initial mixed state ρ0ðθÞ, however, requires an
exponential number of parameters. Nevertheless, the goal is
to prepare the Gibbs state rather than its each component,
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and it is not necessary to access each eigenstate jφni with a
weighting e−βEn=ZðβÞ accurately. Therefore, one can para-
metrize the initial mixed state with much fewer parameters,
e.g., a polynomial of the number of qubits. As shown in the
Fig. 1, We adopt ρ0ðθÞ as the initial state, which is
composed of N subsystems independent with each other.
As the state space of a composite physical system is the
tensor product of the state spaces of the component
physical systems [65], the initial state can be written as
in a form of tensor product

ρ0ðθÞ ¼⊗N
i¼1 ρiðθiÞ; ð13Þ

In Ref. [39], this ansatz, together with the parametrized
unitary in Eq. (12), is called as product spectrum ansatz
(PSA) since it approximates the spectrum of the Gibbs state
with a product structure. The PSA may be justified by the
locality of temperature [66]: correlations between two
regimes of a quantum system decreases significantly with
the separation, and the decreasing is quicker for higher
temperatures. The PSA in Eq. (12) starts in ρ0 with a
completely localized description of temperature and then
encode the correlation by an unitary operator UðϕÞ. In our
numeral simulation, we find that the PSA suffices for
simulating the temperature-dependence string tension of
the finite-temperature Schwinger model.
With an initial state as a product state, the entropy for

both the initial state and the final state ρðωÞ can be
calculated as,

SðρðωÞÞ ¼ Sðρ0ðθÞÞ ¼
XN
i

SiðρiðθiÞÞ; ð14Þ

where each entropy SiðρiðθiÞÞ can be obtained analytically.
Since variational free energy can be readily evaluated,

we can nowminimize the variational free energy in Eq. (10)

by finding the optimized parameter set ω with a hybrid
quantum-classical optimization. An illustration of the
variational quantum algorithm can be found in Fig. 1. In
the below, we outline some details of the ansatz.

1. Preparing the initial state

The initial state ρðθÞ is a product of single-qubit mixed
state and it suffices to illustrate how to prepare a single-
qubit mixed state. This can be achieved by preparing a two-
qubit entangled pure state and trace one of the two qubits.
For this, we adopt an ancilla qubit for a system qubit. With
a circuit illustrated in Fig. 2, the two-qubit entangled state
becomes, cos θij00i þ sin θij11i. By tracing out the first
qubit (by ignoring the first qubit on the quantum computer),
we get a mixed state (see Appendix B for details)

ρiðθiÞ ¼ sin2 θij0ih0j þ cos2 θij1ih1j: ð15Þ

The entropy can be obtained analytically as,

SiðρiðθiÞÞ ¼ − sin2 θi logðsin2 θiÞ − cos2 θi logðcos2 θiÞ:
ð16Þ

For each system ith qubit, we can attach an ancilla qubit
for preparing the initial state ρiðθiÞ. For a system of N
qubits these should beN ancilla qubits. Thus, it requires 2N
qubits to simulate a system of N qubits.

2. Construct the unitary operator UðϕÞ
The unitary operator is parametrized with only local

unitary transformations with one-qubit and two-qubit
rotations [65], as illustrated in Fig. 3. Concisely, the circuit

FIG. 1. A pictorial representation of the variational quantum
algorithm, which can prepare thermal states and compute the
corresponding free energy. In quantum device, we design an
initial product state ρ0ðθÞ and the unitary quantum neural network
UðϕÞ parametrized by a serious of variable parameters. Using
classical computers, the variable parameters ðθ;ϕÞ are updated
and optimized in order to minimize the free energy.

FIG. 2. The circuit of preparing one-qubit mixed state as a
subsystem. RxðθiÞ ¼ eiθiσ

x
i is a one-qubit rotation.

FIG. 3. A depiction of the parametrized unitary for a system of
three qubits in the case p ¼ 2.
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involves p blocks, each block includes two layers of single-
qubit rotations and one layer of two-qubit rotations, namely
(with a parameter set ϕ ¼ ðλ; ζ; αÞ),

UðϕÞ ¼
Yp
l¼1

e−iHzzðαlÞe−iHxðλlÞe−iHzðζlÞ; ð17Þ

where HzðλlÞ¼
P

N
i λl;iZi, HxðζlÞ ¼

P
N
i ζl;iXi, HzzðαlÞ ¼P

N−1
i αl;iZiZiþ1, λl;i, ζl;i and αl;i are parameters at the lth

block. We define p as the circuit depth. In general, the
larger p, the better the expressivity of the unitary operator
for representing the target state.

IV. SIMULATION RESULTS

In order to illustrate the effectiveness of VQA, we
perform numerical simulations on a classical computer.
We now present simulation results for the finite-temper-
ature Schwinger model. Specially, to evaluate the string
tension at a given temperature, one can apply the variational
quantum algorithm to calculate the free energy of the
Schwinger model in Eq. (6) or Eq. (7) both for zero and
nonzero ε ¼ 0. Then the string tension is obtained by the
Eq. (8). The numeral simulation is performed with the open
source package QuTip [67].
We first test the variational quantum algorithm for the

finite-temperature Schwinger model at different system
sizes and with different circuit depth p. The optimal
variational free energies are compared with the exact
values, as shown in Fig. 4. As the depth p of the para-
metrized quantum circuit increases, the optimal free ener-
gies calculated by the quantum variational algorithm will
converge close to the exact values. This can be expected as
the larger p, the more expressive for the parametrized
quantum circuit [68]. By comparing the results at different
temperatures, we find that VQA can achieve more accurate
results with small p at high temperature (β ¼ 0.1) and at
low temperature (β ¼ 10), while at intermediate temper-
atures it requires larger p to make the results converge. The
relatively easier for preparing thermal states at the high-
temperature and the low-temperature limits can be expected
[39]. For the low-temperature limit T < Δ (Δ is the gap of
the system), the distribution concentrates to the ground
state, with a small distribution on a few of low-lying excited
states. With a very small entropy in the initial mixed state
ρ0ðθÞ, the circuit depth p in UðϕÞ is mainly required to
express the ground state faithfully rather than a set of
eigenstates. At the high-temperature limit, the correlation
length becomes very short, and the thermal state can be well
described by the ansatz in Eq. (12) with small p and large
entropy in the initial mixed state ρ0ðθÞ.
We then use the quantum variational algorithm for inves-

tigating the thermodynamical properties of the Schwinger
model by investigating its temperature-dependence of the
string tension. As shown in Fig 5(a), the string tension

decreases quickly at small β, meaning that the string tension
is much weakened due to thermal fluctuation at large
temperatures. The string tension will vanish at T → ∞.
The quick decreasing of string tension with increasing
temperatures holds for different ε. To further reveal the
behavior of decreasing string tension, we redraw the figure in
Fig. 5(b) for a regime of temperatures that the string tension
starts to decrease. It is shown that the decreasing is almost
exponentially, which is more obvious for smaller ε. The
exponentially decreasing behavior is consistent with that of
theoretical results [26].
Finally, we adopt the VQA for calculating the string

tension of the Schwinger model by tuning both the temper-
ature and the chemical potential. In Fig. 6(a), the string
tensions are investigated for different chemical potentials. It
can be seen that the string tension is smaller for larger
chemical potential at the same temperature. The dependence
of the string tension with both the temperature and the

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 4. The free energy of the Schwinger model in the case
m ¼ 1, g ¼ 1, ϖ ¼ 1. Left: the system sizes N ¼ 4. Right: the
system sizes N ¼ 6. As the depth p of the increases, the free
energies calculated by the quantum variational algorithm will
converge close to the exact values.
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chemical potential is then revealed in the Fig. 6(b). The
decreasing of string tension both along the direction of
raising the temperature and the increasing of chemical
potential in a large regime can be an analog to that of the
QCD [50–53]. However, as the string tension only vanishes
atT → ∞, there is noconfinement-deconfinement transitionas
in theQCDphase diagram.Nevertheless, the Schwingermodel
may be regarded as a model that can simulate how physics of
confinement are affected by the temperature and the finite-
density. In addition, the string tension can become negative
whenboth the chemical potential is large and the temperature is
moderate high. In such a regime, there can be a surplus of
fermionswith repulsive interactions, which are screened due to
thermal fluctuation of fermion-antifermion pairs.

V. DISCUSSION AND CONCLUSIONS

We have applied the variational quantum algorithm for
simulating the Schwinger model at finite temperature and
finite density. While the VQA approach can be of general
purpose, an extension of our method for investigating the
QCD phase diagram still requires further developments of

some important ingredients. On one hand, it calls for
efficient schemes for encoding non-Abelian gauge fields
into qubits. While gauge field in 1þ 1D non-Abelian
Schwinger model can still be eliminated [69], at higher
dimensions the elimination (either Abelian or non-Abelian)
is impossible, although the number of qubits may be
reduced by exploiting the Gauss law [70,71]. On the other
hand, the scalability of VQA for large-size quantum
systems should be guaranteed as one expects that the
number of qubits required for studying QCD problems
shall be comparatively large. One obstacle is the problem of
vanishing gradients, known as barren plateaus [72,73], that
prevents efficient optimization for large-size quantum
circuits. Among some solutions to avoid the issue of barren
plateaus [74–78], One notable solution is to design proper
ansatz specific for lattice models involving gauge fields.
In addition, it should be pointed out that we have used a

pair of trial charges at two ends of the chain, which is a bare
fermion pair state, to probe the string tension. A possible
improvement may refer to the pioneering research of K.G.
Wilson [79], which uses expectation value of the Wilson
line to evaluate of the potential (string tension) between the

(a) (b)

FIG. 5. The string tension for different ε in the case m ¼ 1, g ¼ 1, ϖ ¼ 1, N ¼ 6. (a) the string tension as a function of inverse
temperature β. (b) logarithm of the string tension as a function of temperature T.

(a) (b)

FIG. 6. The string tension in the case ε ¼ 0.5, m ¼ 1, g ¼ 1, ϖ ¼ 1, N ¼ 6. (a) At different μ, the string tension as a function of the
temperature T; (b) The string tension as a function of the temperature T and the chemical potential μ.
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heavy quark-antiquark pair. It is expected such an approach
may be adopted on a quantum computer by mapping all to
qubits and evaluating the Wilson line with regard to the
Gibbs state.
In summary, we have applied a VQA to simulate the

lattice Schwinger model at varied temperatures and den-
sities. The physics of confinement and deconfinement has
been investigated by evaluating the string tension, which is
convenient to calculate by using a product-spectrum ansatz.
By numerical simulations on classical computers, we have
tested the VQA at varied system sizes, temperatures and
densities, which fit well with exact diagonalization. Finally,
we obtained by classical numeral simulation the depend-
ence of string tension with temperatures and densities in a
large regime. Our work shows the potential for simulating
the phase diagram of nuclear matters on near-term quantum
processors.
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APPENDIX A: DECOMPOSITION OF THE
SCHWINGER MODEL HAMILTONIAN

From Eq. (6), the Schwinger model Hamiltonian can be
written as

Hε ¼ H1 þH2 þH3 ðA1Þ

where

H1 ¼ ϖ
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So the Schwinger model Hamiltonian can be can be written as

Hε ¼
ϖ

2
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As shown in the Eq. (A5), the Schwinger model Hamiltonian can be written as the sum of local Hamiltonians with the form
of tensor product of Pauli operators of which the expectation can be measured each one alone. The number of local
Hamiltonians is proportional to N3. Therefore, the expectation of the Hamiltonian can be obtained in polynomial time.
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APPENDIX B: THE MIXED STATE OF THE
SUBSYSTEM

As shown in Fig. 2, we prepare jψ0i ¼ j01ij02i as initial
state and apply a RxðθiÞ gate to the first qubit. Because
RxðθiÞ¼eiθiσ

x
i ¼cosθiIþisinθiσxi , RxðθiÞj01i¼cosθij01iþ

isinθij11i. The state of the subsystem becomes

jψ1i ¼ cos θij01ij02i þ i sin θij11ij02i: ðB1Þ
Thenwe apply a CNOTgate to the two qubits, the state of the
subsystem becomes

jψ2i ¼ CNOTjψ1i
¼ cos θij01ij02i þ i sin θij11ij12i: ðB2Þ

So the density operator of the subsystem is

ρ ¼ jψ2ihψ2j
¼ ðcos θij01ij02i þ i sin θij11ij12iÞ
× ðcos θih01jh02j − i sin θih11jh12jÞ: ðB3Þ

Finally, trace out the first qubit, we get the reduced density
operator of the subsystem

ρiðθiÞ ¼ tr1ðρÞ
¼ h01jðcos θij01ij02i þ i sin θij11ij12iÞ
× ðcos θih01jh02j − i sin θih11jh12jÞj01i
þ h11jðcos θij01ij02i þ i sin θij11ij12iÞ
× ðcos θih01jh02j − i sin θih11jh12jÞj11i

¼ cos2 θij02ih02j þ sin2 θij12ih12j: ðB4Þ

According to Eq. (B4), with the circuit in Fig. 2, we get a
mixed state

ρiðθiÞ ¼ cos2 θij0ih0j þ sin2 θij1ih1j: ðB5Þ
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