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Building on the experience of [A. Hietanen et al., Phys. Rev. D 79, 045018 (2009)], we develop a
formalism to construct operators for higher derivatives of the pressure in hot QCD with respect to the quark
chemical potential μ. We provide formulas for the operators up to the sixth derivative, and obtain
continuum-extrapolated results from lattice electrostatic QCD (EQCD) at zero and finite μ and at six
different pairs of temperature T and number of massless quark flavors nf . Our data is benchmarked against
full-QCD lattice and perturbative results, allowing us to judge the quality of the perturbative series
expansion in EQCD and the dimensional reduction procedure as a whole.
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I. INTRODUCTION

It has been discovered at RHIC [1,2] and LHC [3–6] that
the quark-gluon plasma (QGP) behaves effectively as an
almost perfect fluid. Therefore, it seems natural to attempt
modeling the QGP’s dynamics with hydrodynamic equa-
tions [7,8]. Beyond equations of continuity for all con-
served charges and an equation of motion for the velocity
field, a thermodynamic equation of state (EOS) is required.
While experimental measurements of the equation of state
are underway, our work will focus on the theoretical side.
A broad variety of methods has been applied to study the
equation of state of the QGP, i.e. the pressure p as a
function of the temperature T and the quark chemical
potential μ, for instance holographic methods [9], func-
tional methods [10,11], perturbation theory [12,13], and
lattice simulations [14,15]. Our approach will concentrate
on the two latter, methodologically more conservative
approaches.
Perturbation theory relies on the system being weakly

coupled, meaning that the temperature must be much
higher than the renormalization scale Λ. In particular,
the temperature must be far above the pseudocritical
temperature Tc of the predicted crossover between the

hadronic phase of nuclear matter and the QGP phase at
μ ¼ 0. On the other hand, lattice computations tackle the
path integral numerically. For convergence it is important
that the measure of the path integral is strictly positive.
A nonvanishing quark chemical potential, however, man-
ifests in an imaginary part of the action [16]. The measure
of the path integral becomes not strictly positive, and one
runs into the famous sign problem of QCD which makes
direct simulations at μ ≠ 0 in practice impossible.
Numerous ways have been developed to circumvent that
problem, one of which is the Taylor expansion of the
pressure in terms of the quark chemical potential μ around
μ ¼ 0 [17–19]. The Taylor coefficients itself are computed
as increasingly complicated correlation functions at μ ¼ 0.
Currently, there are numerical results up to the sixth order
in μ [20,21]. From the ratio of the coefficients, one can
also estimate the radius of convergence of the Taylor series
and therefore infer a lower bound on the location of the
conjectured tricritical point on the μ-axis of the QCD phase
diagram.
At temperatures of a few times the crossover temperature

Tc, QCD thermodynamics does not yet behave fully
perturbatively. The reason for that are the gluon Matsubara
zero modes which contribute a factor of the inverse strong
coupling constant 1=g to each closed loop and therefore
modify the g2-suppression per loop to g2=g ¼ g [22].
Fortunately, these problematic modes can be separately
treated in a three-dimensional effective theory, “electro-
static QCD” (EQCD) [23–25]. Beyond the advantage of
allowing for a separate treatment and resummation of the
Matsubara zero modes, EQCD also has the upside of a
much milder sign problem. In fact, an analytic continuation
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of the quark chemical potential is possible, enabling us
to solve EQCD directly on the lattice at moderate non-
vanishing μ.
The goal of this work is twofold: First, we compute

Taylor coefficients from EQCD at vanishing chemical
potential in order to compare to both lattice results at
temperatures slightly above Tc and perturbative predictions
at very high temperature. The higher cumulants have
proven to be an especially well-suited quantity to judge
the lower end of the range of validity of EQCD in the past
[26]. As even higher cumulants are expected to be even less
dominated by ultraviolet effects, this should also hold for
the higher cumulants. This part also serves as a crosscheck
of our work. Second, we give numerical values of the quark
number susceptibility up to sixth order directly simulated at
nonvanishing chemical potential μ, a region that is still
inaccessible to traditional lattice simulations.
The paper is organized as follows: We give the formulas

for the dimensional reduction procedure from full QCD
to EQCD in Sec. II and specify our scenarios of interest.
A recipe for the derivation of operators for the higher
cumulants and how to analytically continue them to make
them accessible to lattice simulations is given in Sec. III.
Section IV contains the details of our lattice implementa-
tion, in particular how the operators presented in the
previous section translate to the lattice. Numerical results,
for second to sixth derivatives with respect to the quark
chemical potential μ are given in Sec. V, and compared to
predictions from perturbation theory and four-dimensional
lattice simulations. We conclude with Sec. VI. Appendices
contain a table with our simulation parameters, analytic
continuation of the derivative expressions beyond the third
order, and comprehensive tables with values for all deriv-
atives at all temperatures.

II. THERMODYNAMICS FROM ELECTROSTATIC
QUANTUM CHROMODYNAMICS

At high temperatures thermal four-dimensional QCD
reduces to electrostatic QCD, which only treats the gluonic
Matsubara zero mode dynamically and hides all other
modes—gluonic and fermionic—in effective field theory
parameters. The action of EQCD reads

SEQCD ¼
Z

d3x

�
1

2g23d
TrFijFij þ TrDiΦDiΦ

þm2
DTrΦ2 þ iγTrΦ3 þ λðTrΦ2Þ2

�
; ð2:1Þ

with the now dimensionful gauge coupling g23d. Since all
derivatives in time direction vanish, gauge freedom does not
prevent the former A0 field from acquiring a screening mass
m2

D. Therefore, the zero component of the four-dimensional
gauge field A0 turns into SU(3) adjoint representation

scalar field Φ ¼ ϕaTa, where Ta ¼ λa=2, a ¼ 1…8 are
the Gell-Mann matrices. The gluon self-interaction generates
a four-point interaction proportional to λ. The term cubic inΦ
explicitly violates the otherwise valid mirror symmetry
Φ → −Φ. It can be directly linked to a nonvanishing quark
chemical potential μ in four dimensions.
Due to its three dimensional nature, EQCD is a super-

renormalizable theory, meaning that all correlation func-
tions can be rendered finite at all orders with a finite
number of counterterms. In particular, only the screening
mass m2

D in (2.1) receives counterterms (at 1 and 2 loop
order), which therefore is the only scale-dependent param-
eter. Consequently, one can use the dimensionful gauge
coupling g23d to set the scale and proceed with the
dimensionless ratios

y ¼ m2
D

g43d

����
Λ¼g2

3d

; x ¼ λ

g23d
; z ¼ γ

g33d
: ð2:2Þ

A. EFT parameter matching

The values of the EQCD parameters can be rigorously
derived from a perturbative matching computation
[27,28]. The strategy of the matching is to expand (static)
N-point functions in both, the four dimensional and the
effective three dimensional theory to desired accuracy,
and then choose the parameters of the three dimensional
theory such that both sides agree. In the following, we are
going to omit the technical details of the actual calculation
and only give the end results as far as they concern our
work. The starting point is the 1 loop running coupling of
full QCD

g2 ¼ 24π2

33 − 2nf

T

ln
�

Λ̄g

Λ
MS

� : ð2:3Þ

Consulting the overview over the state of the matching in
Sec. 6.3.1 of [29], we find that the precision bottleneck is
the z-matching, which is only available at Oðg3Þ.
Therefore, we can express the explicit dependence
of the EFT parameters on g2 through x, and truncate
the expansion of the other parameters in powers of x at
OðxÞ, since parametrically x ∼ g4=g2 ¼ g2. As a conse-
quence, only x contains an explicit dependence on the
scale, and all other parameters are only indirectly scale-
dependent. In this approximation, the EFT parameters
read

x ¼ 9 − nf
33 − 2nf

1

ln
�
μ̂μT
Λ
MS

�þOðxÞ ð2:4Þ
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y¼ ð9− nfÞð6þ nfÞ
144π2x

þ
Xnf
i¼1

3ð9− nfÞ
144π2x

μ̄2i

þ 486− 33nf − 11n2f − 2n3f
96π2ð9− nfÞ

þ
Xnf
i¼1

3ð7þ nfÞ
96π2

μ̄2i þOðxÞ

≡ y0 þ y2
Xnf
i¼0

μ̄2i ð2:5Þ

z ¼
Xnf
i¼1

μ̄i
3π

þOðxÞ; ð2:6Þ

where μ̄i ¼ μi=ðπTÞ, and μi is the quark chemical potential
for (massless) quark flavor i. We choose our scale in the
running coupling to relate to the medium temperature via

μT ¼ 4πT exp

�
−3þ 4nf ln 4
66 − 4nf

− γE

�
; ð2:7Þ

with a prefactor

μ̂ ¼ exp

�
ln 4ð36nf − 4n2f Þ − 162þ 30nf þ 4n2f

ð66 − 4nfÞð9 − nfÞ
�
: ð2:8Þ

Note that, aside from the standard MS-setup μT ∝
4πTe−γE , this choice minimizes the scale-dependence.
We set the scale using ΛMS ¼ 341 MeV determined in
[30] for 2þ 1-flavor QCD. We investigate EQCD corre-
sponding to the six scenarios of full QCD in Table I. An
analytic continuation iz → zwill finally allow us to get rid
of the prefactor of i in front of the cubic term in (2.1). This
procedure was found to be highly superior to the more
naive continuation of μ̄ [26], since we only continue the
linear contributions in μ̄, which appear in z, and leave the
quadratic, i.e. real, contributions by μ̄ to y [see (2.5)]
untouched. For the time being, especially for the deriva-
tion of the investigated operators, we keep the cubic term
in its original complex form, and perform the analytic
continuation of action and operators just before discretiz-
ing the theory on the lattice. For each of the scenarios in
Table I, we simulate at six different values of the (then
analytically continued) cubic coupling

z ¼
Xnf
i¼1

μi
3π2T

¼ 0.0; 0.025; 0.05; 0.1; 0.15; 0.2: ð2:9Þ

B. Matching the pressure to full QCD

Our goal is to study different susceptibilities, i.e.
derivatives of the pressure, in full QCD using simulations
of EQCD. To this end, we do not only have to match the
parameters in the EQCD action to full QCD, but also the
pressure itself. The philosophy for this is quite simple; we
take the perturbative pressure of QCD, subtract its pertur-
bative EQCD counterpart and substitute it with the lattice
EQCD result. The remaining perturbative part is UV-
dominated and can be reliably evaluated in perturbation
theory:

pQCD ¼ ðpQCD − pEQCDÞ þ pEQCD

≈ ðpPT
QCD − pPT

EQCDÞ þ platt
EQCD: ð2:10Þ

Depending on which derivative we want to investigate, we
take derivatives of the above expression with respect to a
given number of μi. The four-dimensional pressure was
computed perturbatively up to Oðg5Þ in ref. [13]. This
computation also contains the three-dimensional pressure,
which is divergent by itself, though. These divergences
cancel against divergences in the hard sector in the four-
dimensional case. In the purely three-dimensional case,
however, we need to introduce a divergent cosmological
constant into the EQCD action that cures these divergences.

III. HIGHER-ORDER CUMULANTS IN EQCD

Beyond the second order derivatives studied in [26], one
can also investigate higher derivatives of the pressure with
respect to different quark chemical potentials, sometimes
also called cumulants. Since we only consider massless
quarks, they are degenerate and we do not need to specify
the name of the quark, e.g.

χij ¼ χud ¼ χus ¼ χds; ð3:1Þ

and conversely for higher derivatives. Even though a brute
force derivation of the corresponding correlation functions
in EQCD is possible, it can be dramatically simplified with
a little additional work.

A. Derivation of higher order cumulants

We calculate derivatives of the pressure, i.e.

pðT; μ̄Þ ¼ −fðT; μ̄Þ ¼ lim
V→∞

1

V
lnZðT; μ̄Þ; ð3:2Þ

with the free energy density f and the volume V. Recalling
that only fully connected correlation functions contribute to

TABLE I. Our six scenarios of interest.

T (MeV) nf g2 x y0 y2

277 3 4.389885 0.1143767 0.3733574 0.126563
400 3 3.708094 0.0961857 0.4361834 0.147505
600 3 3.165581 0.0818254 0.5055096 0.170614
2500 4 2.188389 0.0446669 0.7981834 0.243255
25000 5 1.517625 0.0237276 1.2509489 0.346349
100000 5 1.260187 0.0199537 1.4977310 0.413653
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the free energy—and consequently the pressure—helps
simplifying the calculation drastically. Subtractions of
partly connected correlation functions can therefore be
dropped in the following, and reinstated in the end. This
also means that we only have to keep track of all derivatives
acting directly on Z, since the derivatives acting on the
1=Z-normalization of correlation functions generate the
partly connected subtractions. Moreover, we need to take a
closer look at the (μ̄-dependent) part of the EQCD action

Sμ̄EQCD ¼
Z

d3xy2
X
f

μ̄2fTrΦ2ðxÞ þ i
1

3π

X
f

μ̄fTrΦ3ðxÞ:

ð3:3Þ

Derivatives can only act on Z in two different ways: either
as a single derivative on the exponential function or as a
double derivative1

−
∂SEQCD
∂μ̄i

¼ −2y2μ̄iΦ2 − i
Φ3

3π
ð3:4Þ

−
∂
2SEQCD
∂μ̄i∂μ̄j

¼ −2y2δijΦ2: ð3:5Þ

Note the minus sign due to the weight of the exponential in
theEuclidean path-integral being expð−SEQCDÞ. Calculating
ever-higher derivatives of the pressure thus amounts to
combining the two above expressions in all possible ways
maintaining the symmetry in the indices. Similar to the
subtractions, it is sufficient to keep only specific combina-
tions of the indices and reinstate the symmetry of the
derivative in the end, bearing in mind that derivatives acting
on continuous functions commute. Since the dimensional
reduction to EQCD only works away from any phase
transition, i.e., a nonanalyticity in the free energy y, anyway,
it is safe to assume that derivatives with respect to the quark
chemical potential μ̄ acting on the pressure commute. As a
first pedagogical example, we rederive the quadratic quark
number susceptibility, as used in [26]. Since it is a second
derivative, (3.4) can only contribute as

�
−
∂SEQCD
∂μ̄i

��
−
∂SEQCD
∂μ̄j

�
ð3:6Þ

and (3.5) as
�
−
∂
2SEQCD
∂μ̄i∂μ̄j

�
; ð3:7Þ

where the symmetrization in the indices i and j is already
intact and does not yet need to be enforced at this stage.
We combine the two above terms to

χij ¼ 4y22μ̄iμ̄jK2;1 þ i
2y2
3π

ðμ̄i þ μ̄jÞK2;2

−
1

ð3πÞ2K2;3 − 2δijy2K1;1 ð3:8Þ

with the help of the condensates

K1;1 ≡ hΦ2i
K2;1 ≡ Vg63dhðΦ2 − hΦ2iÞ2i
K2;2 ≡ Vg63dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞi
K2;3 ≡ Vg63dhðΦ3 − hΦ3iÞ2i:

Let us caution the reader once more that the subtractions of
the partly connected contributions have to be reinstated in
the end. Keeping track of all the subtractions throughout the
derivation does not provide any further insights about the
underlying mechanisms.
As a first nontrivial example, we present the derivation of

the expression for the cubic derivative of the pressure with
respect to the chemical potential. Once more, this can only
receive two possible contributions:

�
−
∂SEQCD
∂μ̄i

��
−
∂SEQCD
∂μ̄j

��
−
∂SEQCD
∂μ̄k

�
ð3:9Þ

and

�
−
∂SEQCD
∂μ̄i

��
−
∂
2SEQCD
∂μ̄j∂μ̄k

�
þ…; ð3:10Þ

where the dots will denote the symmetrizations in the
respective indices in the following. We can combine these
two possibilities to

χijk ¼−8y32μ̄iμ̄jμ̄kK3;1− i
4y22
3π

ðμ̄iμ̄jþ μ̄jμ̄kþ μ̄kμ̄iÞK3;2

þ 2y2
9π2

ðμ̄iþ μ̄jþ μ̄kÞK3;3þ i
1

ð3πÞ3K3;4

þ4y22ðδijμ̄kþδjkμ̄iþδkiμ̄jÞK2;1þ i
2y2
3π

K2;2; ð3:11Þ

where we defined the condensates

K3;1 ≡ V2g123dhðΦ2 − hΦ2iÞ3i
K3;2 ≡ V2g123dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞi
K3;3 ≡ V2g123dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ2i
K3;4 ≡ V2g123dhðΦ3 − hΦ3iÞ3i:

Considering (3.11), we observe that by setting μ̄ ¼ 0, only
K2;2 and K3;4 survive. These two condensates, in turn, are
odd in Φ3, therefore they should be consistent with 0

1We simplified the notation as 1=V
P

x TrΦ2ðxÞ → Φ2, and
analogously for Φ3.
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numerically at vanishing z.2 Consequently, (3.11) reflects
the expectation that an odd derivative in μ̄ should vanish at
vanishing z.

B. Analytic continuation

We still cannot compute Ki;j -observables defined above
directly on the lattice due to the imaginary part of the
action. This can be cured by analytic continuation of z. It
was found in [26] that this way of analytic continuation is
highly superior to a more straightforward continuation in
the full quark chemical potential μ, since the leading
contribution of μ is quadratically through y. An analytic
continuation in z has the advantage of leaving y unchanged
and only modifying the imaginary part of the action.
The condensates contributing to the higher order deriv-

atives vary only mildly with z and therefore can be
expanded in powers of z. This hypothesis was checked
explicitly for all used condensates by plotting their z-
dependence and making sure that it is fitted sufficiently
well by the low order expansion in z. Depending on how
many powers of hΦ3 − hΦ3⟫ a condensate contains it
contains either exclusively even or exclusively odd powers
of iz. Consequently, we apply the following procedure for
the analytic continuation of the nth derivative:
(1) We expand the condensates with the highest sum of

powers of Φ2 and Φ3 to first nontrivial order.
(2) The coefficients of condensates with the highest

power sum also reoccur in condensates with a lower
power sum. We expand the lower condensates to
consistent order in iz, i.e. the order where the highest
power sum coefficients become relevant.

(3) We analytically continue iz → z.
(4) We rephrase the expanded expressions in terms of

the respective condensates at imaginary chemical
potential zI. As a matter of choice, we set zR ¼ zI in
order to make the factors of zI=zR unity.

As a first instructive example, we start with the analytic
continuation of (3.8), as already done in [26]. We start with
expanding

K2;1 ¼ Vg63dhðΦ2 − hΦ2iÞ2i ≈ a21;0

K2;2 ¼ Vg63dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞi ≈ ia22;1z

K2;3 ¼ Vg63dhðΦ3 − hΦ3iÞ2i ≈ a23;0; ð3:12Þ

where coefficients aij;k are assumed to be independent of z.
In the next step, we notice that K2;2 and K1;1 are related by

K2;2 ¼
∂K1;1

∂ðizÞ ; ð3:13Þ

so in order to obtain a nontrivial contribution by K2;2 which
also contributes everywhere else consistently, we expand

K1;1 ¼ hΦ2i ≈ a11;0 þ a11;2z2 ð3:14Þ

and identify

a22;1 ¼ −2a11;2: ð3:15Þ

In order to perform the analytic continuation we remind
ourselves that z can be seen as a complex number
z ¼ ðzR; zIÞ. Measurements are done at ð0; zIÞ, whereas
the physical case is represented by ðzR; 0Þ. If zR ¼ zI, the
two above cases are related exactly by a rotation iz → z.
The physical observable ðχij3dÞac is therefore related to the
condensates Kn;mðzIÞ, i.e. at imaginary z, via

ðχij3dÞac ¼ 4y22μ̄iμ̄jK2;1ðzIÞþ
2y2
3π

zR
zI
ðμ̄iþ μ̄jÞK2;2ðzIÞ

−
1

ð3πÞ2K2;3ðzIÞ−2δijy2

�
K1;1ðzIÞþ

z2R
zI
K2;2ðzIÞ

�
:

ð3:16Þ

In applying the same procedure to the third derivative in
(3.11), we obtain the condensates

K2;1 ¼ Vg63dhðΦ2 − hΦ2iÞ2i ≈ a21;0 þ a21;2z2

K2;2 ¼ Vg63dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞi ≈ −2iza11;2
K3;1 ≡ V2g123dhðΦ2 − hΦ2iÞ3i ≈ a31;0

K3;2 ≡ V2g123dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞi ¼ ∂K2;1

∂ðizÞ ≈ −2iza21;2

K3;3 ≡ V2g123dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ2i ¼ ∂K2;2

∂ðizÞ ¼
∂
2K1;1

∂
2ðizÞ ≈ −2a11;2

K3;4 ≡ V2g123dhðΦ3 − hΦ3iÞ3i ¼ ∂K2;3

∂ðizÞ ≈ −2iza23;2:

2We note that the EQCD action (2.1) can break the symmetry Φ ↔ −Φ spontaneously, leading to nonzero hΦ3i [31]. However, the
dimensional reduction of hot QCD maps to the symmetric phase of EQCD with hΦ3i ¼ 0 if z ¼ 0.
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After analytic continuation we obtain

ðχijk3d Þac ¼ −8y32μ̄iμ̄jμ̄kK3;1ðzIÞ −
4y22
3π

ðμ̄iμ̄j þ μ̄jμ̄k þ μ̄kμ̄iÞ
zR
zI

K3;2ðzIÞ þ
2y2
9π2

ðμ̄i þ μ̄j þ μ̄kÞK3;3ðzIÞ þ
1

ð3πÞ3
zR
zI

K3;4ðzIÞ

þ 4y22ðδijμ̄k þ δjkμ̄i þ δkiμ̄jÞ
�
K2;1ðzIÞ þ

z2R
zI

K3;2ðzIÞ
�
þ 2y2

3π

zR
zI

K2;2ðzIÞ: ð3:17Þ

The procedure outlined in this section can be easily
generalized to even higher orders. We present the analyti-
cally continued expressions for the quartic, quintic, and
sextic derivatives in Appendix B for the sake of readability.

IV. LATTICE IMPLEMENTATION

Discretizing (2.1) on a spatial grid with finite lattice
spacing a yields

SEQCD;L¼β
X
x;i>j

�
1−

1

3
□x;ij

�

þ2
X
x;i

TrðΦ2
LðxÞ−ΦLðxÞUiðxÞΦLðxþaîÞU†

i ðxÞÞ

þ
X
x

Z4ðxþδxÞðTrΦ2
LðxÞÞ2þZ2ðyþδyÞTrΦ2

LðxÞ

þZ3zTrΦ3
LðxÞ ð4:1Þ

□x;ij ≡UiðxÞUjðxþ aîÞU†
i ðxþ aĵÞU†

jðxÞ; ð4:2Þ

with the spatial link variables UiðxÞ connecting lattice sites
x and xþ aî, and the rescaled lattice version of the scalar
field ΦL. Both x and y receive multiplicative and additive
renormalization. Since EQCD is a superrenormalizable
field theory, only a finite number of divergent counterterms
suffice to render all amplitudes of the theory finite. In
particular, only the scalar mass term y receives a divergent
contribution, which can be eliminated analytically by a
calculation of δy in lattice perturbation theory [32]. Beyond
the elimination of divergent bits, it is also possible to pursue
the lattice improvement procedure further in order to bring
our lattice implementation of EQCD even closer to the
continuum. While the elimination of OðaÞ errors in the
EFT parameters of EQCD was recently completed [33] for
z ¼ 0, the OðaÞ behavior of most of the condensates that
we measure is not yet investigated. Moreover, the emer-
gence of the z-term in the EQCD action can also modify the
known OðaÞ behavior of the EFT parameters. Therefore,
we use a partly OðaÞ-improved set of the parameters [32],
meaning that β, Z4, δx, and Z2 are accurate to OðaÞ, while
we set Z3 ¼ 1 and δy is only utilized to Oðln aÞ, meaning
that both z and y still give rise to OðaÞ-correction on the
Lagrangian level. A compendium of the lattice renormal-
ization constants can be found in Appendix A of [34].

Note that z does not acquire additive renormalization due to
the Φ3 → −Φ3-symmetry of the Lagrangian.
One can argue on dimensional grounds that only K1;1

and K2;3 can receive divergent lattice corrections. In fact,
they have been calculated [27,35] and read

Kcont
1;1 ¼ Klatt

1;1 −
c̃1
g23da

− c̃2ðc̃02 − ln g23daÞ þOðg23daÞ ð4:3Þ

Kcont
2;3 ¼ Klatt

2;3 − c̄2ðc̄02 − ln g23daÞ þOðg23daÞ; ð4:4Þ
with

c̃1 ≈ 6 × 0.1684873399 ð4:5Þ

c̃2 ¼
3

2π3
ð4:6Þ

c̃02 ≈ 0.6796ð1Þ þ ln 6 ð4:7Þ

c̄2 ¼
5

16π2
ð4:8Þ

c̄02 ≈ 0.08848010þ ln 6: ð4:9Þ

All other condensates follow

Kcont ¼ Klatt þOðg23daÞ: ð4:10Þ
Given the very mild dependence of the condensates,
especially the higher cumulants, on the lattice cutoff a,
full removal of all OðaÞ-lattice effects is not crucial for our
work (see Fig. 1)—especially of the condensates for the
higher cumulants—on the lattice cutoff a, a The line in the
ðx; yÞ-plane on which EQCD describes real-world QCD
lies in the supercooled phase of EQCD [27]. However, the
metastability of EQCD diminishes as one approaches the
crossover temperature in full QCD. Since our smallest
temperature in Table I is too close to the crossover
temperature, we applied a bit of mass reweighting to the
z ¼ 0.0, 0.025, 0.05 points at T ¼ 277 MeV to ensure that
the simulation remains in the symmetric phase. This
procedure additionally inflates the errors of these points.
Our lattice EQCD simulation program is modified from

the one used in [33] and is based on the openQCD-1.6-
package [36] by Martin Lüscher. A combined update of 2
heatbath sweeps followed by 9 over-relaxation sweeps in a
checkerboard ordering through the entire volume is applied.
The scalar kinetic term in (4.1) is incorporated into the gauge
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sector update via a Metropolis step. The quartic scalar
interaction also requires an accept/reject step in the scalar
heatbath update. Both heatbath and overrelaxation are
concluded by a final Metropolis step for the cubic term.
In order to extrapolate our results to the continuum, we

simulate each of the six temperatures in full QCD from
Table I times at six different values for z and at five different
lattice spacings each:

g23da ¼ 1

4
;
1

6
;
1

8
;
1

12
;
1

16
: ð4:11Þ

In total this makes 180 distinct simulations. The simulation
parameters and the respective reached statistical power are
tabulated in AppendixA. Due to the fullOðaÞ-improvement
in EQCD not being known in our setup, we combine the
condensates to the different susceptibilities at finite a and
extrapolate the susceptibilities to the continuum instead of
the single condensates. As long as there are more con-
densates involved into the computation of a susceptibility
than different variants of the susceptibility exist, this
procedure is preferred since it minimizes the number of
interpolations. We found it to be sufficient to fit a quadratic
curve for each susceptibility, so that each fit has five data
points and three fit parameters. An example for the con-
tinuum extrapolation is displayed in Fig. 1.We see fromhere
that the overall dependence on the lattice cutoff is mild and
the data can bewell describedwith a quadratic curve in g23da.
Since EQCD possesses a mass gap, finite volume effects are
exponentially suppressed. Therefore, it is sufficient to
choose a volume that satisfies the empirical bound [37]

V
a3

≥
�

6

g23da

�
3

: ð4:12Þ

To this end, we keep the physical volume fixed at

g63d × V ¼ 83: ð4:13Þ

V. RESULTS

We provide our continuum-extrapolated, tabulated
results in three-dimensional units in Appendix C.
Comparing to four-dimensional predictions from the lattice
and perturbation theory requires an application of the
matching procedure outlined in Sec. II.

A. Second derivatives

We start reviewing our simulation results with the
qualitatively already known data for the quadratic quark
number susceptibility, evaluated at different nf than in [26].
The quadratic susceptibilities are plotted as a function of
the temperature in Fig. 2. For the diagonal susceptibility,
we essentially observe an exponential dependence on the
temperature which is generated by the exponential temper-
ature dependence of the screening mass term y through the
scale setting. At lower temperatures close to Tc, the
diagonal susceptibility becomes slightly negative, a feature
that is already known from [26]. Increasing the chemical
potential μ̄ results in a mild increase of χii3d, the curves are
strictly ordered by their respective z. As expected, the off-
diagonal quark number susceptibility χij3d is numerically
suppressed by about one order of magnitude compared to
its diagonal counterpart χii3d. The off-diagonal susceptibility
vanishes at μ̄ ¼ 0 for temperatures far away from the
pseudocritical temperature of QCD. Coming closer to the
crossover, the quality of the perturbative dimensional
reduction decreases, so a deviation from the expected value
of 0 can be explained as an artifact of a poor dimensional
reduction. Deviations from 0 set in as one turns on the
chemical potential, also preserving the hierarchy in z
observed in the diagonal susceptibility.
An important benchmark for our data is the comparison

to full QCD lattice data on the small-T side and full QCD
perturbation theory on the large-T side in Fig. 3. To this
end, we have to apply the matching procedure outlined on
Sec. II. Since we use a different number of massless quark
flavors nf for different temperatures, it does not seem
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FIG. 1. Continuum extrapolation of the diagonal and nondiagonal second order susceptibilities. Example at T ¼ 100 GeV, nf ¼ 5,
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sensible to draw the perturbative prediction as a line.
Therefore, we computed the values at the same temper-
atures as our lattice EQCD data. Beyond quadratic sus-
ceptibilities with respect to conserved charges (B, I,Q, and
S) [38], direct measurements of the quark number suscep-
tibilities are available on the lattice up to T ¼ 950 MeV
[39–41]. We analyze their behavior before moving on to the
higher cumulants. We see that agreement with lattice data is
not even reached at T ¼ 600 MeV, although the gap
between our values and the full-QCD lattice prediction
shrinks by a good margin as temperature increases. This
seems to contrast the earlier experience from [37].
However, there are two important differences between
the present work and [26]. On the one hand, we use a
MS-scale of ΛMS ¼ 341 MeV from 2þ 1-flavor lattice
QCD in contrast to the much lower ΛMS ¼ 245 MeV from
2-flavor lattice QCD in [26]. Therefore, our smallest
temperature features a much lower T=ΛMS-ratio than the
corresponding temperature in [26] and consequently lies
much closer to the QCD crossover, where dimensional
reduction ceases to work. Moreover, our computation
includes three massless flavors of quarks instead of two.
At small temperatures, neglecting the strange quark mass
might actually not be a valid approximation and causes a

power series of extra corrections inms=T. As expected, our
results approach the perturbative result with increasing
temperature and good agreement with the perturbative
result is reached at T ¼ 25 GeV, which does not contradict
earlier results [26]. As the dimensional reduction technique
itself is expected to work beyond T ≳ 2Tc [42], the
conclusion must be that nonperturbative physics plays an
important role in EQCD for temperatures below
T ¼ 25 GeV. Another peculiar feature of Fig. 3 is that
the purely perturbative predictions are closer to the four-
dimensional lattice results than our lattice EQCD results
matched to full QCD. We suspect that this is due to the
using a 1 loop running coupling for the matching to EQCD
in (2.3), whereas [13] features a 2 loop running coupling.
While there should not be any difference formally since the
matching at Oðg4Þ is incomplete, anyways, there is a big
difference in the numerical values of g2 at low temper-
atures; the 2 loop g2 is about 20% smaller than its 1 loop
equivalent at T ¼ 277 MeV. At this point, it seems natural
to also compare our results to other resummation tech-
niques on the market, namely the hard-thermal-loop-
resummed perturbation theory (HTLpt). An expression
for the pressure of QCD is available in HTLpt at three-
loop order [43]. Comparing it to other perturbative curves
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FIG. 2. Second order susceptibilities in three-dimensional units as functions of the temperature.
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(cf. [13]) and lattice results [38], as done for instance in
[29], one realizes that both perturbative cuves agree
very well within their uncertainty bands which are domi-
nated by the scale-setting uncertainty. While this behavior
is not surprising in the regime of high temperatures,
since g shrinks due to asymptotic freedom and therefore
different resummation schemes converge to bare perturba-
tion theory, the agreement at temperatures around the
pseudocritical temperature is indeed remarkable. One can
hypothesize that this is due to both schemes actually
choosing the mass associated with color-electric screening
m2

D to have the same value. Either way, we decided to
not additionally crowd our plots with a comparison
to HTLpt and leave it with the statement that both
perturbative resummation schemes yield numerically very
similar output.

B. Third derivatives

Third derivatives are odd in μ̄, therefore, they should
vanish at μ̄ ¼ 0. Moreover, (3.17) suggests that at μ̄ ¼ 0, all
three variants of the derivative should be numerically equal.
Both features can be found in Fig. 4, consistency with zero
for the z ¼ 0 data is indeed realized at a quite exact level.
Moreover, the derivatives in three-dimensional units con-
tain an overall factor of π from μ̄ ¼ μ

πT, while the more
natural scaling would be μ

T. Therefore, we expect the overall

order of magnitude of the third derivative to be higher than
the second one, due to this extra factor of π, also translating
to the ratios of the other higher cumulants in three-
dimensional units. Figure 4 furthermore shows clearly that
the error of data points closer to Tc drastically increases, a
feature for which the small mass reweighting of some of
these data points cannot be entirely blamed.
While it becomes evident from the data that there is a

certain lower bound in temperature below which the
dimensional reduction is not valid any more, the situation
for large z is somewhat different. Even though a value of
z ¼ 0.1 at nf ¼ 3 corresponds to μ ≈ T, which is definitely
outside of the range of validity of our dimensional
reduction procedure, there is no inherent evidence from
the data for the breakdown of the μ ≪ T-approximation
that went into the scale setting in (2.3). Where temperatures
close to the pseudocritcal temperature of full QCD cause
the error bars to blow up, a large value of z just strongly
favors one of the two possible signs of the TrΦ3 operator in
the EQCD action (2.1) and therefore reduces the fluctua-
tions in the system, leading to smaller error bars at
comparable numerical effort.

C. Fourth derivatives

The fourth derivative is again even in μ̄, therefore, the
fully diagonal susceptibility χiiii3d and its bidiagonal
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FIG. 4. Third derivatives χiii (a), χiij (b), and χijk (c) in three-dimensional units as functions of the temperature.
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counterpart χiijj3d do have a finite expectation value even at
μ̄ ¼ 0, which also reflects in our results in Fig. 5. Despite
the lack of a clear physical interpretation, we still display
χijkl3d at temperatures with nf > 3, since it gives an idea
about the part of (B1) that solely contains condensates that
generically appear in fourth derivatives. A rough scaling by
an additional factor of π compared to the third derivatives is
maintained here, too. Following the trend of the third
derivatives, the data at T ¼ 277 MeV starts to become ever
more noisy, whereas the error bars for all other temper-
atures are barely visible.

D. Fifth derivatives

Fifth derivatives are again odd in μ̄ and therefore
expected to feature a vanishing expectation value at μ̄ ¼ 0,
as one can see from our results in Fig. 6. Observing another
relative increase of π in the order of magnitude, the
consistency with 0 of the z ¼ 0-data is still very precise.
Aside from the generically fifth-derivative-contribution
χijklm3d , Fig. 6 only shows data from scenarios in which

the respective derivative is well defined, i.e. χiijkl3d is only
displayed at temperatures that correspond to at least nf ¼ 4.
Even though without physical meaning, we still display the
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numerical values of the derivatives omitted in the plot in
Appendix C.

E. Sixth derivatives

Just as for the previous derivatives, we observe a relative
factor of π in the order of magnitude of the sixth derivative.
The relative errors of T ¼ 277 MeV increased once more,
only physically well-defined derivatives are plotted in
Fig. 7 other than the fully off-diagonal part χijklmn

3d .

F. Comparison of higher derivatives to
perturbation theory

Beyond second derivatives, comparing our data for the
higher derivatives to their respective perturbative predic-
tions provides an important benchmark. Restricting our-
selves to μ̄ ¼ 0, we plot all susceptibilities which are not

expected to vanish for symmetry reasons in Fig. 8. Just like
for the second derivatives, the discrepancy near the QCD
crossover temperature is substantial. As one increases the
temperature, the two curves approach each other. The
lowest temperature was not even included in the plots of
the sixth order derivatives since it essentially consists of a
huge error bar and would only prevent the reader from
noticing details in the plot at higher temperatures. The
higher derivatives feature a quicker convergence toward
the perturbative solution in general.
Just as for the second derivatives, four-dimensional

lattice data for higher derivatives are available for
the conserved charges [21] as well as directly for deriv-
atives with respect to the quark chemical potential [20,40].
For the sake of simplicity we stick to derivatives with
respect to the quark chemical potential once more. More
specifically we benchmark against continuum-extrapolated
four-dimensional lattice data for the fourth derivatives [40]
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in Fig. 8 since lattice data for the sixth derivatives are only
available at finite lattice spacing [20].
In the low-temperature regime of Figs. 8(a) and 8(b) we

face significant deviations of our low-temperature results
from lattice computations. The reasons for this deviation
seem to be the same as for the big deviations from the
lattice data for the second derivative: neglecting the strange
quark mass, poor scale fixing, and insufficient accuracy in
the matching of the effective theory close to the pseudoc-
ritical temperature.

VI. CONCLUSION

EQCD is an effective description of high-temperature
QCD which can be robustly derived using perturbation
theory. It fully includes the nonperturbative soft thermal
physics, and offers an economical way to study its effects in
Monte Carlo simulations which are numerically less costly
than full 4-dimensional lattice simulations. It also has a
dramatically milder sign problem than full QCD. In the
present work, we have derived formulas for higher deriv-
atives of the pressure with respect to the quark chemical
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potential up to sixth order. We have studied these operators
on the lattice and provided continuum-extrapolated results
in six cases corresponding to physical scenarios at different
temperatures T and number of massless quark flavors nf .
Our data was compared to perturbation theory at high
temperatures and full-QCD lattice simulations at low
temperatures close to the crossover temperature Tc of
full QCD at vanishing quark chemical potential. For
temperatures reasonably well above Tc, we were able to
extract a clear signal on the lattice for all derivatives up to
sixth order; a clean extrapolation to the continuum is
possible. Agreement with perturbative results sets in around
T ≈ 25 GeV.
Our results shed light into the limitations of the dimen-

sional reduction procedure in general, and the perturbative
treatment of EQCD. The data at nf ¼ 3 show substantial
deviations from nf ¼ 2þ 1 full QCD lattice data. We

conclude that the dimensional reduction procedure at
Oðg3Þ-accuracy does not work well for temperatures below
600 MeV, probably even higher temperatures. In particular,
the reasons for this are threefold: First, the quality of the
dimensional reduction is poor around the pseudocritical
temperature of full QCD, which is where full QCD-lattice
data is available. Especially the matching of the chemical
potential-term of full QCD to the three-dimensional z
constrains the accuracy of the matching to Oðg3Þ. The
substantially better agreement of purely perturbative results
(containing EQCD treatment for the soft sector) with
four-dimensional lattice predictions hints that already a—
formally incomplete—usage of a higher loop running
coupling could accelerate the convergence of our fully
matched lattice EQCD results toward four-dimensional
lattice predictions drastically. Second, we neglected the
mass of the strange quark, which turns out not to be a valid
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approximation up to T ≈ 600 MeV. A finite strange quark
mass could be incorporated into the dimensional reduction
procedure from full QCD to EQCD [44], even though that
would partly break the symmetry of the derivatives in flavor
space. Third, and somewhat related to the previous point,
we set the scale by a value for ΛMS for 2þ 1 flavor full
QCD, which assumes a finite strange quark mass and
therefore deviates from the nf ¼ 3-flavor results that would
be more rigorous to use in our case.
Under the caveat of these improvements, lattice EQCD

simulations of higher order cumulants could deliver a
valuable tool for the determination of the equation of state
of nuclear matter at temperatures of a few times the
pseudocritical temperature and moderate quark chemical
potential.

ACKNOWLEDGMENTS

We thank Aleksi Vuorinen and Mikko Laine for fruitful
discussions on the present work, in particular the pertur-
bative aspects. We highly appreciated Olaf Kaczmarek and
Frithjof Karsch providing us with raw data for the higher
cumulants from the lattice. Moreover, we thank Ari
Hietanen for his initial work on the analytical expressions
of the third and fourth derivatives from EQCD. The support
of the Academy of Finland Grants No. 308791 and
No. 320123 is acknowledged.

APPENDIX A: SIMULATION PARAMETERS

Table II shows the simulation parameters at which we
conducted out three-dimensional Monte-Carlo simulations.

TABLE II. Simulation parameters of our 180 runs.

g23da x y0 z V Statistics

1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.0 323; 483; 643; 963; 1283 1227640, 632100, 523420, 252380, 230120
1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.025 323; 483; 643; 963; 1283 1077660, 621940, 472540, 293720, 246080
1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.05 323; 483; 643; 963; 1283 1259060, 605380, 481740, 284080, 251800
1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.1 323; 483; 643; 963; 1283 1026300, 627440, 496320, 314060, 261820
1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.15 323; 483; 643; 963; 1283 1098280, 648460, 536000, 289840, 164600
1=4; 1=6; 1=8; 1=12; 1=16 0.1143767 0.3733574 0.2 323; 483; 643; 963; 1283 1098920, 650240, 541740, 306080, 273100

1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.0 323; 483; 643; 963; 1283 1177760, 633280, 538700, 319880, 248320
1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.025 323; 483; 643; 963; 1283 1096740, 649880, 538840, 295400, 231500
1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.05 323; 483; 643; 963; 1283 1098280, 651780, 538760, 282420, 162940
1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.1 323; 483; 643; 963; 1283 1107220, 648700, 536120, 279660, 245120
1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.15 323; 483; 643; 963; 1283 1101740, 650160, 53240, 292720, 243980
1=4; 1=6; 1=8; 1=12; 1=16 0.09618573 0.4361834 0.2 323; 483; 643; 963; 1283 1101740, 650160, 532400, 292720, 243980

1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.0 323; 483; 643; 963; 1283 1272640, 979620, 539800, 287060, 210940
1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.025 323; 483; 643; 963; 1283 1161060, 664900, 492600, 193580, 253700
1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.05 323; 483; 643; 963; 1283 1099440, 651020, 535260, 308380, 265500
1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.1 323; 483; 643; 963; 1283 1096340, 649840, 536620, 304440, 254560
1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.15 323; 483; 643; 963; 1283 1101140, 415120, 522760, 304920, 253740
1=4; 1=6; 1=8; 1=12; 1=16 0.08182539 0.5055096 0.2 323; 483; 643; 963; 1283 1091620, 636820, 468260, 309900, 245920

1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.0 323; 483; 643; 963; 1283 888240, 446580, 232320, 312360, 260140
1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.025 323; 483; 643; 963; 1283 1097200, 649900, 536400, 221940, 85160
1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.05 323; 483; 643; 963; 1283 1095460, 649960, 534580, 294620, 246120
1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.1 323; 483; 643; 963; 1283 1101780, 650800, 814480, 239280, 239720
1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.15 323; 483; 643; 963; 1283 1094760, 650720, 536720, 241880, 179340
1=4; 1=6; 1=8; 1=12; 1=16 0.04466692 0.7981834 0.2 323; 483; 643; 963; 1283 910680, 600100, 546580, 272380, 241120

1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.0 323; 483; 643; 963; 1283 920380, 684900, 544300, 281420, 224680
1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.025 323; 483; 643; 963; 1283 1102120, 649580, 536620, 124440, 188120
1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.05 323; 483; 643; 963; 1283 1099420, 648700, 536280, 293940, 246760
1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.1 323; 483; 643; 963; 1283 1097060, 650400, 474980, 169780, 260860
1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.15 323; 483; 643; 963; 1283 1045720, 641860, 536300, 189620, 90720
1=4; 1=6; 1=8; 1=12; 1=16 0.02372764 1.250949 0.2 323; 483; 643; 963; 1283 1018700, 238860, 148320, 256360, 191560

1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.0 323; 483; 643; 963; 1283 1098300, 628160, 510340, 275100, 250740
1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.025 323; 483; 643; 963; 1283 840600, 665080, 554880, 262820, 176880
1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.05 323; 483; 643; 963; 1283 1246540, 658280, 537820, 86120, 35700
1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.1 323; 483; 643; 963; 1283 1097020, 649760, 535880, 71700, 235200
1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.15 323; 483; 643; 963; 1283 1252160, 650720, 536080, 247040, 235580
1=4; 1=6; 1=8; 1=12; 1=16 0.01995365 1.497731 0.2 323; 483; 643; 963; 1283 1096340, 650360, 536300, 134540, 257580
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A total computation budget of 430; 000CPU × hrs was
utilized. Due to bad core allocation on the local cluster,
some of the statistics of different temperature or z, but equal
g23da, differ a bit. As already pointed out, we applied a small
amount of mass reweighting to the z ¼ 0.0, 0.025, 0.05
data points at T ¼ 277 MeV at all considered lattice
spacings to stabilize the system in the supercooled phase.
The reweighting allowed a computation at ycomp ¼ 0.375.

APPENDIX B: EXPRESSIONS FOR HIGHER
DERIVATIVES

In this appendix, we present the full analytically con-
tinued expressions for the higher derivatives. Each new

derivative requires new condensates and new way
of analytically continuing the lower condensates. We
denote the condensates with K. The first index is the
sum of the two powers of Φ2 and Φ3. The second index
runs from 1 to first index þ1 and refers to the power of Φ3

involved. Symmetrization in indices are denoted by
three dots.

1. Fourth derivatives

Continuing the condensates

K2;1 ¼ Vg63dhðΦ2 − hΦ2iÞ2i ≈ a21;0 þ a21;2z2

K3;1 ≡ V2g123dhðΦ2 − hΦ2iÞ3i ≈ a31;0 þ a31;2z2

K3;2 ≡ V2g123dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞi ¼ ∂K2;1

∂ðizÞ ≈ −2iza21;2

K3;3 ≡ V2g123dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ2i ¼ ∂K2;2

∂ðizÞ ≈ −a22;1 þ 3a22;3z2

K4;1 ≡ V3g183dhðΦ2 − hΦ2iÞ4i ≈ a41;0

K4;2 ≡ V3g183dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞi ¼ ∂K3;1

∂ðizÞ ≈ −2iza31;2

K4;3 ≡ V3g183dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ2i ¼ ∂K3;2

∂ðizÞ ¼
∂
2K2;1

∂
2ðizÞ ≈ −2a21;2

K4;4 ≡ V3g183dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ3i ¼ ∂K3;3

∂ðizÞ ¼
∂
2K2;2

∂
2ðizÞ ≈ −6iza22;3

K4;5 ≡ V3g183dhðΦ3 − hΦ3iÞ4i ¼ ∂K3;4

∂ðizÞ ¼
∂
2K2;3

∂
2ðizÞ ≈ −2a23;2;

analytically yields the analytically continued expression for the fourth derivative

ðχijkl3d Þac ¼ 16y42μ̄iμ̄jμ̄kμ̄lK4;1ðzIÞ þ
8y32
3π

zR
zI

ðμ̄iμ̄jμ̄k þ μ̄jμ̄kμ̄l þ μ̄kμ̄lμ̄i þ μ̄lμ̄iμ̄jÞK4;2ðzIÞ

−
4y22
9π2

ðμ̄iμ̄j þ μ̄iμ̄k þ μ̄iμ̄l þ μ̄jμ̄k þ μ̄jμ̄l þ μ̄kμ̄lÞK4;3ðzIÞ

−
2y2
ð3πÞ3 ðμ̄i þ μ̄j þ μ̄k þ μ̄lÞ

zR
zI

K4;4ðzIÞ þ
1

ð3πÞ4K4;5ðzIÞ − 8y32ðδijμ̄kμ̄l þ δikμ̄jμ̄l þ δilμ̄jμ̄k

þ δjkμ̄iμ̄l þ δjlμ̄iμ̄j þ δklμ̄iμ̄jÞ
�
K3;1ðzIÞ þ

z2R
zI

K4;2ðzIÞ
�

−
4y22
3π

½δijðμ̄k þ μ̄lÞ þ δikðμ̄j þ μ̄lÞ þ δilðμ̄j þ μ̄kÞ þ δjkðμ̄i þ μ̄lÞþδjlðμ̄i þ μ̄kÞ þ δklðμ̄i þ μ̄jÞ�
zR
zI

K3;2ðzIÞ

þ 2y2
ð3πÞ2 ðδij þ δik þ δil þ δjk þ δjl þ δklÞ

�
K3;3ðzIÞ þ

z2R
zI

K4;4ðzIÞ
�

þ 4y22ðδijδkl þ δikδjl þ δilδjkÞ
�
K2;1ðzIÞ þ

z2R
zI

K3;2ðzIÞ
�
: ðB1Þ
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We see that K3;2 is the first derivative of K2;1 with respect to iz, K4;2 the first derivative of K3;1, and K4;4 the first derivative
of K3;3. Therefore, the three named condensates of lower order behave nontrivially under the analytic continuation.

2. Fifth derivatives

Analytically continuing the condensates as

K3;1 ¼ V2g123dhðΦ2 − hΦ2iÞ3i ≈ a31;0 þ a31;2z2

K3;2 ¼ V2g123dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞi ≈ −2iza21;1
K4;1 ¼ V3g183dhðΦ2 − hΦ2iÞ4i ≈ a41;0 þ a41;2z2

K4;2 ¼ V3g183dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞi ≈ −2iza31;2
K4;3 ¼ V3g183dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ2i ≈ a43;0 þ a43;2z2

K4;4 ¼ V3g183dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ3i ≈ −2iza33;2
K5;1 ¼ V4g243dhðΦ2 − hΦ2iÞ5i ≈ a51;0

K5;2 ¼ V4g243dhðΦ2 − hΦ2iÞ4ðΦ3 − hΦ3iÞi ≈ −2iza41;2
K5;3 ¼ V4g243dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞ2i ≈ −2a31;2
K5;4 ¼ V4g243dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ3i ≈ −2iza43;2
K5;5 ¼ V4g243dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ4i ≈ −2a33;2
K5;6 ¼ V4g243dhðΦ3 − hΦ3iÞ5i ≈ −2iza45;2;

we arrive at the fifth order derivative expression

ðχijklm3d Þac ¼−ð2y2Þ5μ̄iμ̄jμ̄kμ̄lμ̄mK5;1−
ð2y2Þ4
3π

ðμ̄iμ̄jμ̄kμ̄lþ…ÞzR
zI
K5;2þ

ð2y2Þ3
ð3πÞ2 ðμ̄iμ̄jμ̄kþ…ÞK5;3þ

ð2y2Þ2
ð3πÞ3 ðμ̄iμ̄jþ…ÞzR

zI
K5;4

−
2y2
ð3πÞ4 ðμ̄iþ…ÞK5;5−

1

ð3πÞ5
zR
zI
K5;6þð2y2Þ4ðμ̄iμ̄jμ̄kδlmþ…Þ

�
K4;1þ

z2R
zI
K5;2

�
þð2y2Þ3

3π
ðμ̄iμ̄jδlmþ…ÞzR

zI
K4;2

−
ð2y2Þ2
ð3πÞ2 ðμ̄iδlmþ…Þ

�
K4;3þ

z2R
zI
K5;4

�
−

2y2
ð3πÞ3 ðδlmþ…ÞzR

zI
K4;4− ð2y2Þ3ðμ̄iδjkδlmþ…Þ

�
K3;1þ

z2R
zI
K4;2

�

−
ð2y2Þ2
3π

ðδjkδlmþ…ÞzR
zI

�
K3;2−

z2R
3
K5;4

�
: ðB2Þ

We see that the condensates K5;2, K5;4, K4;2, and K5;4 can be phrased as derivatives of K4;1, K4;3, K3;1, and K3;2,
respectively, and therefore the latter four are nontrivially continued under iz → z.

3. Sixth derivatives

The sixth order derivative contains the condensates

K3;1 ¼ V2g123dhðΦ2 − hΦ2iÞ3i
K4;1 ¼ V3g183dhðΦ2 − hΦ2iÞ4i
K4;2 ¼ V3g183dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞi
K4;3 ¼ V3g183dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ2i
K5;1 ¼ V4g243dhðΦ2 − hΦ2iÞ5i
K5;2 ¼ V4g243dhðΦ2 − hΦ2iÞ4ðΦ3 − hΦ3iÞi
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K5;3 ¼ V4g243dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞ2i
K5;4 ¼ V4g243dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ3i
K5;5 ¼ V4g243dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ4i
K6;1 ¼ V5g303dhðΦ2 − hΦ2iÞ6i
K6;2 ¼ V5g303dhðΦ2 − hΦ2iÞ5ðΦ3 − hΦ3iÞi
K6;3 ¼ V5g303dhðΦ2 − hΦ2iÞ4ðΦ3 − hΦ3iÞ2i
K6;4 ¼ V5g303dhðΦ2 − hΦ2iÞ3ðΦ3 − hΦ3iÞ3i
K6;5 ¼ V5g303dhðΦ2 − hΦ2iÞ2ðΦ3 − hΦ3iÞ4i
K6;6 ¼ V5g303dhðΦ2 − hΦ2iÞðΦ3 − hΦ3iÞ5i
K6;7 ¼ V5g303dhðΦ3 − hΦ3iÞ6i;

which can be combined to the analytically continued expression for the sixth order derivative

ðχijklmn
3d Þac ¼ þð2y2Þ6μ̄iμ̄jμ̄kμ̄lμ̄mμ̄nK6;1 þ

ð2y2Þ5
3π

ðμ̄iμ̄jμ̄kμ̄lμ̄m þ…Þ zR
zI
K6;2

−
ð2y2Þ4
ð3πÞ2 ðμ̄iμ̄jμ̄kμ̄l þ…ÞK6;3 −

ð2y2Þ3
ð3πÞ3 ðμ̄iμ̄jμ̄k þ…Þ zR

zI
K6;4

þ ð2y2Þ2
ð3πÞ4 ðμ̄iμ̄j þ…ÞK6;5 þ

2y2
ð3πÞ5 ðμ̄i þ…Þ zR

zI
K6;6 −

1

ð3πÞ6K6;7

− ð2y2Þ5ðμ̄iμ̄jμ̄kμ̄lδmn þ…Þ
�
K5;1 þ

z2R
zI
K6;2

�
−
ð2y2Þ4
3π

ðμ̄iμ̄jμ̄kδmn þ…Þ zR
zI
K5;2

þ ð2y2Þ3
ð3πÞ2 ðμ̄iμ̄jδmn þ…Þ

�
K5;3 þ

z2R
zI
K6;4

�
þ ð2y2Þ2

ð3πÞ3 ðμ̄iδmn þ…Þ zR
zI
K5;4

−
2y2
ð3πÞ4 ðδmn þ…Þ

�
K5;5 þ

z2R
zI
K6;6

�
þ ð2y2Þ4ðμ̄iμ̄jδklδmn þ…Þ

�
K4;1 þ

z2R
zI
K5;2

�

þ ð2y2Þ3
3π

ðμ̄iδklδmn þ…Þ zR
zI

�
K4;2 −

z2R
3
K6;4

�
−
ð2y2Þ2
ð3πÞ2 ðδklδmn þ…Þ

�
K4;3 þ

z2R
zI
K5;4

�

− ð2y2Þ3ðδijδklδmn þ…Þ
�
K3;1 þ

z2R
zI
K4;2 −

z4R
3zI

K6;4

�
: ðB3Þ

Beyond the usual identification of condensates that correspond to first or second derivatives of other condensates with
respect to iz, we see the connection of three condensates for the first time via

K6;4 ¼
∂
2K4;2

∂
2ðizÞ ¼

∂
3K3;1

∂
3ðizÞ : ðB4Þ

APPENDIX C: TABULATED RESULTS

In this appendix, we give tabulated numerical results for all (three-dimensional) cumulants that we computed, in units of
the three-dimensional coupling g23d (see Tables III–V). The number of different indices of some of the derivatives exceeds
the number of massless quark flavor available. Therefore, these cumulants do not correspond to a physical scenario.
However, χijkl3d for instance has no physical meaning in scenarios with nf ¼ 3, but gives a good estimate how big the
influence of the generically fourth-order condensates in (B1) is, which still contains valid, though not strictly physical,
information.
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TABLE III. Results for the different derivatives of the EQCD pressure at T ¼ 277; 400 MeV, number of massless quark flavors nf ,
and chemical potentials z ¼ nfμ

3π2T; in units of the three-dimensional coupling g23d.

z

T ¼ 277 MeV, nf ¼ 3

0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d −0.0695ð12Þ −0.0656ð11Þ −0.05702ð90Þ −0.02829ð52Þ −0.00220ð40Þ 0.01994(21)

χij3d=g
6
3d

−0.00537ð17Þ −0.00149ð31Þ 0.00702(42) 0.02032(41) 0.02381(66) 0.02682(27)

χiii3d=g
6
3d 0.0044(20) 0.110(13) 0.217(12) 0.245(15) 0.1575(36) 0.1228(12)

χiij3d=g
6
3d

0.0044(20) 0.0484(62) 0.0769(38) 0.05059(76) 0.0288(11) 0.0257(21)

χijk3d =g
6
3d

0.0044(20) 0.0176(28) 0.00681(72) −0.0465ð62Þ −0.0356ð26Þ −0.0228ð33Þ
χiiii3d =g

6
3d 1.338(79) 0.835(11) −0.74ð21Þ −3.10ð64Þ −1.38ð10Þ −0.504ð67Þ

χiiij3d =g
6
3d

0.124(14) −0.177ð86Þ −1.10ð15Þ −1.69ð32Þ −0.452ð35Þ 0.107(20)

χiijk3d =g63d 0.111(13) −0.068ð44Þ −0.457ð57Þ −0.132ð59Þ 0.415(20) 0.669(16)

χiijj3d =g63d 0.515(35) 0.265(21) −0.336ð79Þ −0.60ð17Þ 0.154(23) 0.46385(51)

χijkl3d =g63d 0.105(12) −0.014ð23Þ −0.1250ð42Þ 0.645(69) 0.872(50) 0.949(34)

χiiiii3d =g63d 0.4(24) −14.5ð52Þ −26.0ð19Þ 27.5(85) 26.0(19) 15.41(98)

χiiiij3d =g63d 0.08(93) −5.5ð20Þ −8.73ð61Þ 21.1(37) 17.0(11) 10.13(53)

χiiijk3d =g63d −0.02ð39Þ −2.08ð71Þ −1.98ð40Þ 10.4(16) 6.72(33) 4.135(91)

χiiijj3d =g63d 0.08(76) −4.3ð15Þ −6.31ð34Þ 12.1(28) 8.97(54) 5.45(17)

χiijkl3d =g63d −0.03ð22Þ −0.87ð24Þ 0.44(29) 1.42(80) −1.25ð25Þ −0.55ð33Þ
χiijjk3d =g63d 0.01(40) −2.01ð66Þ −1.81ð19Þ 4.96(147) 2.155(70) 1.45(17)

χijklm3d =g63d −0.03ð14Þ −0.27ð1Þ 1.65(33) −3.09ð48Þ −5.23ð54Þ −2.89ð52Þ
χiiiiii3d =g63d −258ð40Þ −80ð19Þ 326(71) 94(38) −172ð412Þ −43ð20Þ
χiiiiij3d =g63d −67ð15Þ 4.5(83) 189(31) −210ð50Þ −220ð30Þ −64ð14Þ
χiiiijk3d =g63d −22.9ð72Þ 5.1(76) 136(26) −81ð56Þ −100ð11Þ −18.9ð68Þ
χiiiijj3d =g63d −52ð11Þ −10.8ð27Þ 179(37) 3(125) −88ð11Þ −17.1ð82Þ
χiiijkl3d =g63d −8.0ð41Þ 3.5(49) 68(13) −29ð34Þ −14.2ð26Þ 19.35(32)

χiiijjk3d =g63d −16.0ð54Þ 3.7(54) 86(15) −54ð25Þ −43.5ð62Þ 7.4(23)

χiiijjj3d =g63d −41ð10Þ 3.0(54) 107(16) −126ð45Þ −104ð17Þ −14.3ð60Þ
χiijklm3d =g63d −4.2ð27Þ 1.6(23) 12.1(21) −9ð14Þ 42(47) 46.4(43)

χiijjkl3d =g63d −9.1ð37Þ 2.2(32) 35.0(49) −26.2ð69Þ 13.4(36) 33.6(21)

χiijjkk3d =g63d −22.9ð56Þ −2.9ð20Þ 63(11) −13ð15Þ −1.9ð40Þ 25.98(28)

χijklmn
3d =g63d −2.4ð21Þ 0.75(10) −15.6ð60Þ 2(37) 70.3(72) 59.9(68)

z

T ¼ 400 MeV, nf ¼ 3

0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d −0.02834ð27Þ −0.02618ð48Þ −0.02106ð36Þ −0.003004ð56Þ 0.01892(11) 0.04226(24)

χij3d=g
6
3d

−0.0021364ð69Þ −0.001061ð28Þ 0.001722(23) 0.00969(15) 0.01714(33) 0.02504(35)

χiii3d=g
6
3d 0.00026(20) 0.03510(36) 0.06455(58) 0.0982(14) 0.10625(68) 0.11074(73)

χiij3d=g
6
3d

0.00026(20) 0.01318(15) 0.022831(70) 0.02985(68) 0.03003(23) 0.0260(21)

χijk3d =g
6
3d

0.00026(20) 0.002227(43) 0.00197(23) −0.00434ð35Þ −0.00813ð28Þ −0.0164ð34Þ
χiiii3d =g

6
3d 0.4493(71) 0.4100(20) 0.3013(61) 0.021(14) 0.012(22) 0.033(56)

χiiij3d =g
6
3d

0.02723(71) 0.0016(15) −0.0498ð51Þ −0.1048ð79Þ 0.070(20) 0.333(24)

χiijk3d =g63d 0.02618(62) 0.00899(76) −0.0183ð11Þ 0.0271(18) 0.2612(90) 0.6519(86)

χiijj3d =g63d 0.1667(28) 0.14508(64) 0.0986(14) 0.0705(38) 0.263(24) 0.5514(51)

χijkl3d =g63d 0.02565(57) 0.01261(41) −0.00280ð17Þ 0.0964(17) 0.364(14) 0.819(20)

χiiiii3d =g63d 0.043(43) −1.343ð45Þ −1.528ð75Þ 1.981(92) 6.49(18) 12.23(21)

χiiiij3d =g63d 0.008(16) −0.537ð11Þ −0.398ð12Þ 2.179(28) 4.680(78) 7.975(78)

χiiijk3d =g63d −0.0010ð72Þ −0.2087ð25Þ −0.067ð11Þ 1.231(13) 2.211(36) 3.39(13)

χiiijj3d =g63d 0.008(13) −0.4095ð95Þ −0.350ð11Þ 1.182(11) 2.664(51) 4.459(93)

(Table continued)
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TABLE III. (Continued)

z

T ¼ 277 MeV, nf ¼ 3

0.0 0.025 0.05 0.1 0.15 0.2

χiijkl3d =g63d −0.0015ð37Þ −0.08068ð31Þ −0.0186ð53Þ 0.234(23) 0.196(46) −0.13ð30Þ
χiijjk3d =g63d 0.0015(67) −0.1902ð33Þ −0.1291ð35Þ 0.550(13) 1.018(38) 1.40(23)

χijklm3d =g63d −0.0017ð20Þ −0.01653ð94Þ 0.0058(31) −0.264ð31Þ −0.811ð61Þ −1.89ð38Þ
χiiiiii3d =g63d −22.67ð99Þ −10.82ð27Þ 16.1(11) 56.7(22) 55.4(76) 22(13)

χiiiiij3d =g63d −5.81ð19Þ −1.18ð16Þ 8.07(41) 14.0(13) 10.1(60) −9.9ð10Þ
χiiiijk3d =g63d −1.646ð72Þ −0.247ð40Þ 2.138(93) 0.2(11) 2.8(38) 3.8(60)

χiiiijj3d =g63d −4.04ð21Þ −1.926ð34Þ 2.40(14) 4.2(16) 7.2(41) 5.4(67)

χiiijkl3d =g63d −0.470ð31Þ −0.0441ð53Þ 0.367(15) −1.05ð54Þ 6.5(20) 23.6(28)

χiiijjk3d =g63d −1.186ð52Þ −0.196ð26Þ 1.403(56) 0.88(65) 6.8(25) 18.6(38)

χiiijjj3d =g63d −3.59ð12Þ −0.748ð96Þ 4.82(24) 9.28(64) 12.0(37) 13.3(58)

χiijklm3d =g63d −0.335ð19Þ −0.0766ð12Þ 0.078(11) 1.124(67) 12.06(75) 39.87(91)

χiijjkl3d =g63d −0.727ð33Þ −0.145ð13Þ 0.668(19) 1.55(19) 10.8(13) 33.3(18)

χiijjkk3d =g63d −1.891ð90Þ −0.777ð21Þ 1.299(64) 3.67(43) 12.0(19) 30.0(26)

χijklmn
3d =g63d −0.267ð13Þ −0.09277ð85Þ −0.067ð16Þ 2.21(29) 14.85(20) 48.01(84)

TABLE IV. Results for the different derivatives of the EQCD pressure at T ¼ 600; 2500 MeV, number of massless quark flavors nf ,
and chemical potentials z ¼ nfμ

3π2T; in units of the three-dimensional coupling g23d.

z

T ¼ 600 MeV, nf ¼ 3

0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d −0.0695ð12Þ −0.0656ð11Þ −0.05702ð90Þ −0.02829ð52Þ −0.00220ð40Þ 0.01994(21)

χij3d=g
6
3d

−0.0014415ð69Þ −0.000577ð19Þ 0.001601(14) 0.008940(10) 0.01677(18) 0.02486(45)

χiii3d=g
6
3d −0.00001ð12Þ 0.02707(18) 0.05181(76) 0.08798(76) 0.10183(62) 0.1099(21)

χiij3d=g
6
3d

−0.00001ð12Þ 0.009646(84) 0.01801(22) 0.02760(36) 0.02872(73) 0.0291(17)

χijk3d =g
6
3d

−0.00001ð12Þ 0.00095(12) 0.001098(55) −0.00252ð30Þ −0.00788ð82Þ −0.01134ð174Þ
χiiii3d =g

6
3d 0.3543(56) 0.3342(21) 0.2804(38) 0.14193(89) 0.144(24) 0.383(36)

χiiij3d =g
6
3d

0.01800(33) 0.00524(79) −0.02197ð59Þ −0.0326ð15Þ 0.125(12) 0.487(12)

χiijk3d =g63d 0.01757(30) 0.00800(45) −0.00742ð15Þ 0.04412(93) 0.2707(62) 0.708(35)

χiijj3d =g63d 0.1296(20) 0.11762(55) 0.0933(12) 0.10127(74) 0.2720(53) 0.679(25)

χijkl3d =g63d 0.01735(28) 0.00919(29) −0.00006ð28Þ 0.0797(16) 0.3408(27) 0.807(47)

χiiiii3d =g63d 0.035(28) −0.655ð25Þ −0.765ð15Þ 1.878(11) 6.569(16) 11.90(84)

χiiiij3d =g63d 0.0095(98) −0.2837ð61Þ −0.1969ð51Þ 1.7377(49) 4.5145(239) 7.45(61)

χiiijk3d =g63d 0.0017(36) −0.11629ð48Þ −0.0334ð21Þ 0.9622(86) 2.121(20) 3.21(35)

χiiijj3d =g63d 0.0082(78) −0.2089ð52Þ −0.1756ð41Þ 0.9971(63) 2.6345(99) 4.32(39)

χiijkl3d =g63d 0.0005(15) −0.04141ð47Þ −0.01210ð80Þ 0.222(13) 0.2415(91) 0.09(19)

χiijjk3d =g63d 0.0031(36) −0.0971ð14Þ −0.0666ð19Þ 0.480(11) 1.0390(88) 1.50(24)

χijklm3d g63d −0.00002ð50Þ −0.00395ð95Þ −0.00148ð54Þ −0.149ð16Þ −0.6979ð98Þ −1.47ð20Þ
χiiiiii3d =g63d −12.65ð22Þ −5.74ð23Þ 10.51(34) 48.13(18) 57.7(30) 63.6(85)

χiiiiij3d =g63d −3.399ð61Þ −0.908ð23Þ 4.81(13) 14.11(30) 13.3(21) 21.8(66)

χiiiijk3d =g63d −0.891ð24Þ −0.219ð12Þ 1.067(28) 1.59(33) 3.0(13) 21.0(26)

χiiiijj3d =g63d −2.138ð42Þ −1.005ð28Þ 1.299(42) 4.63(39) 6.6(14) 23.6(31)

χiiijkl3d =g63d −0.217ð12Þ −0.054ð11Þ 0.0721(67) −0.28ð19Þ 5.75(82) 32.0(13)

χiiijjk3d =g63d −0.643ð18Þ −0.1673ð94Þ 0.707(19) 1.60(21) 6.57(98) 30.29(78)

χiiijjj3d =g63d −2.098ð39Þ −0.570ð13Þ 2.882(77) 9.11(16) 13.5(14) 32.6(22)

(Table continued)
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TABLE IV. (Continued)

z

T ¼ 600 MeV, nf ¼ 3

0.0 0.025 0.05 0.1 0.15 0.2

χiijklm3d =g63d −0.1699ð77Þ −0.0605ð65Þ 0.0146(29) 0.982(59) 11.09(58) 43.1(36)

χiijjkl3d =g63d −0.395ð12Þ −0.1155ð67Þ 0.3462(99) 1.604(91) 10.17(69) 39.5(24)

χiijjkk3d =g63d −1.026ð21Þ −0.4327ð65Þ 0.745(23) 3.45(13) 11.34(83) 38.6(16)

χijklmn
3d =g63d −0.1466ð56Þ −0.0637ð46Þ −0.0142ð10Þ 1.614(70) 13.76(50) 48.7(48)

z

T ¼ 2.5 GeV; nf ¼ 4

0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d 0.09130(10) 0.09234(43) 0.09535(17) 0.106781(81) 0.124285(64) 0.145465(57)

χij3d=g
6
3d

−0.0006043ð77Þ −0.0002251ð74Þ 0.000860(14) 0.004792(92) 0.01051(11) 0.01695(13)

χiii3d=g
6
3d 0.000067(60) 0.01794(11) 0.03541(25) 0.06595(64) 0.08928(79) 0.1035(16)

χiij3d=g
6
3d

0.000067(60) 0.006273(67) 0.012091(92) 0.02187(19) 0.02853(23) 0.03147(99)

χijk3d =g
6
3d

0.000067(60) 0.000435(63) 0.000435(91) −0.00016ð17Þ −0.00184ð22Þ −0.00449ð70Þ
χiiii3d =g

6
3d 0.3052(16) 0.3022(11) 0.2907(11) 0.2502(71) 0.2497(54) 0.361(12)

χiiij3d =g
6
3d

0.01006(16) 0.00608(32) −0.00259ð23Þ −0.0082ð31Þ 0.0520(54) 0.2354(38)

χiijk3d =g63d 0.00990(18) 0.00658(25) 0.00018(13) 0.0063(12) 0.0963(33) 0.3077(30)

χiijj3d =g63d 0.679(25) 0.10832(49) 0.10528(46) 0.09799(40) 0.0924(27) 0.1595(46)

χijkl3d =g63d 0.00982(19) 0.00715(13) 0.00152(10) 0.01323(92) 0.1100(49) 0.3412(56)

χiiiii3d =g63d −0.016ð11Þ −0.294ð12Þ −0.390ð12Þ 0.526(65) 3.100(98) 7.12(16)

χiiiij3d =g63d −0.00248ð54Þ −0.1438ð20Þ −0.1587ð65Þ 0.497(28) 2.146(53) 4.53(11)

χiiijk3d =g63d 0.0009(15) −0.0640ð18Þ −0.0606ð38Þ 0.2897(123) 1.109(21) 2.167(85)

χiiijj3d =g63d −0.0025ð15Þ −0.1016ð17Þ −0.1183ð44Þ 0.296(19) 1.349(33) 2.813(96)

χiijkl3d =g63d 0.0008(28) −0.02188ð94Þ −0.0201ð15Þ 0.0891(42) 0.3126(62) 0.446(74)

χiijjk3d =g63d −0.00033ð38Þ −0.04846ð40Þ −0.0528ð24Þ 0.1583(91) 0.658(13) 1.236(81)

χijklm3d g63d 0.00069(37) −0.00089ð72Þ 0.00006(41) −0.0109ð63Þ −0.086ð13Þ −0.414ð71Þ
χiiiiii3d =g63d −7.36ð27Þ −4.75ð11Þ 2.64(11) 26.42(72) 53.6(15) 75.7(19)

χiiiiij3d =g63d −2.1013ð95Þ −1.185ð76Þ 1.411(66) 8.99(25) 17.31(45) 25.3(12)

χiiiijk3d =g63d −0.4947ð45Þ −0.265ð20Þ 0.308(16) 1.66(15) 4.04(30) 9.91(46)

χiiiijj3d =g63d −1.150ð54Þ −0.750ð15Þ 0.284(11) 3.25(19) 7.67(33) 14.78(56)

χiiijkl3d =g63d −0.0809ð12Þ −0.0357ð53Þ 0.0166(43) −0.06ð10Þ 1.35(26) 8.84(21)

χiiijjk3d =g63d −0.3507ð24Þ −0.189ð14Þ 0.203(11) 1.141(98) 3.46(26) 10.94(28)

χiiijjj3d =g63d −1.2859ð50Þ −0.726ð46Þ 0.844(40) 5.43(16) 11.30(29) 20.37(60)

χiijklm3d =g63d −0.06852ð87Þ −0.0368ð27Þ 0.0008(23) 0.048(24) 1.97(25) 11.60(33)

χiijjkl3d =g63d −0.20666ð28Þ −0.1132ð79Þ 0.0981(63) 0.622(44) 2.87(24) 11.96(25)

χiijjkk3d =g63d −0.561ð18Þ −0.3503ð74Þ 0.1850(89) 1.744(72) 5.08(21) 14.41(27)

χijklmn
3d =g63d −0.0622ð21Þ −0.0373ð24Þ −0.0070ð16Þ 0.100(21) 2.28(25) 12.97(43)
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TABLE V. Results for the different derivatives of the EQCD pressure at T ¼ 25; 100 GeV, number of massless quark flavors nf , and
chemical potentials z ¼ nfμ

3π2T; in units of the three-dimensional coupling g23d.

T ¼ 25 GeV, nf ¼ 5

z 0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d 0.23651(13) 0.237460(60) 0.240254(86) 0.25109(12) 0.26843(12) 0.29107(30)

χij3d=g
6
3d

−0.000241ð15Þ 0.000031(25) 0.0008664(81) 0.004170(72) 0.008975(50) 0.015226(46)

χiii3d=g
6
3d 0.000040(47) 0.01758(22) 0.03480(23) 0.06778(89) 0.09402(15) 0.1164(18)

χiij3d=g
6
3d

0.000040(47) 0.00591(15) 0.01173(11) 0.02260(29) 0.03139(11) 0.03849(52)

χijk3d =g
6
3d

0.000040(47) 0.00008(13) 0.00020(10) 0.00001(15) 0.00009(21) −0.0003ð15Þ
χiiii3d =g

6
3d 0.3834(27) 0.3769(31) 0.3674(10) 0.3286(41) 0.3356(84) 0.457(19)

χiiij3d =g
6
3d

0.00730(16) 0.00565(22) 0.0010(11) −0.0108ð17Þ 0.0400(34) 0.2119(51)

χiijk3d =g63d 0.00721(17) 0.00555(11) 0.00126(47) 0.0020(11) 0.06387(59) 0.25421(48)

χiijj3d =g63d 0.1326(10) 0.1293(11) 0.12341(30) 0.1150(23) 0.1628(28) 0.3353(33)

χijkl3d =g63d 0.00717(17) 0.005355(60) 0.00142(11) 0.00724(94) 0.07721(88) 0.2744(24)

χiiiii3d =g63d −0.014ð18Þ −0.190ð12Þ −0.253ð32Þ 0.341(60) 2.71(10) 6.94(28)

χiiiij3d =g63d −0.0028ð35Þ −0.1063ð31Þ −0.1325ð85Þ 0.390(38) 1.890(34) 4.478(72)

χiiijk3d =g63d −0.00048ð23Þ −0.0511ð15Þ −0.0615ð30Þ 0.240(20) 1.005(12) 2.265(27)

χiiijj3d =g63d −0.0028ð35Þ −0.0722ð26Þ −0.0916ð73Þ 0.226(24) 1.212(23) 2.883(35)

χiijkl3d =g63d −0.000345ð21Þ −0.01705ð50Þ −0.0206ð11Þ 0.0764(56) 0.3264(86) 0.672(71)

χiijjk3d =g63d −0.0011ð12Þ −0.0355ð11Þ −0.0443ð29Þ 0.126(12) 0.6217(78) 1.409(40)

χijklm3d g63d −0.000250ð74Þ −0.000037ð63Þ −0.00016ð18Þ −0.0056ð18Þ −0.014ð11Þ −0.122ð95Þ
χiiiiii3d =g63d −7.54ð34Þ −4.85ð21Þ 2.35(15) 28.3(13) 59.36(67) 98.4(12)

χiiiiij3d =g63d −2.2021ð49Þ −1.360ð16Þ 1.014(40) 9.71(38) 19.29(28) 34.62(21)

χiiiijk3d =g63d −0.48368ð97Þ −0.3027ð23Þ 0.2121(43) 1.876(28) 4.11(13) 11.80(91)

χiiiijj3d =g63d −1.124ð68Þ −0.740ð38Þ 0.281(31) 3.62(11) 8.10(20) 18.0(11)

χiiijkl3d =g63d −0.0479ð17Þ −0.0332ð18Þ 0.0050(57) −0.034ð30Þ 0.78(13) 7.71(81)

χiiijjk3d =g63d −0.33542ð95Þ −0.2102ð17Þ 0.1400(33) 1.265(24) 3.238(84) 11.24(70)

χiiijjj3d =g63d −1.3369ð25Þ −0.8259ð95Þ 0.607(25) 5.85(24) 12.17(18) 24.827(97)

χiijklm3d =g63d −0.0417ð16Þ −0.0278ð14Þ −0.0012ð22Þ 0.0189(59) 1.256(34) 9.32(47)

χiijjkl3d =g63d −0.1871ð11Þ −0.1177ð13Þ 0.0679(25) 0.6550(206) 2.366(35) 10.69(50)

χiijjkk3d =g63d −0.545ð22Þ −0.353ð14Þ 0.1590(82) 1.880(71) 4.882(40) 14.40(55)

χijklmn
3d =g63d −0.0385ð16Þ −0.0250ð12Þ −0.0039ð17Þ 0.045(19) 1.493(16) 10.13(31)

T ¼ 100 GeV; nf ¼ 5

z 0.0 0.025 0.05 0.1 0.15 0.2

χii3d=g
6
3d 0.331747(77) 0.33303(13) 0.33638(12) 0.349623(71) 0.370942(57) 0.39872(15)

χij3d=g
6
3d

−0.000137ð13Þ 0.0001848(86) 0.001242(39) 0.005091(44) 0.010907(53) 0.01825(27)

χiii3d=g
6
3d 0.000015(97) 0.021282(24) 0.04211(28) 0.08081(74) 0.1151(12) 0.1433(18)

χiij3d=g
6
3d

0.000015(97) 0.007202(86) 0.01434(27) 0.02703(22) 0.03797(30) 0.04665(31)

χijk3d =g
6
3d

0.000015(97) 0.00016(13) 0.00041(28) 0.000120(47) −0.00063ð18Þ −0.00169ð51Þ
χiiii3d =g

6
3d 0.4589(10) 0.4513(22) 0.4368(17) 0.434(15) 0.484(18) 0.681(15)

χiiij3d =g
6
3d

0.00657(20) 0.00403(29) −0.0018ð14Þ 0.0094(43) 0.0995(75) 0.348(10)

χiijk3d =g63d 0.00652(22) 0.00440(19) −0.00028ð51Þ 0.0136(14) 0.11606(32) 0.378(12)

χiijj3d =g63d 0.15734(41) 0.15338(84) 0.14587(58) 0.1569(62) 0.2434(48) 0.492(13)

χijkl3d =g63d 0.00649(22) 0.00445(25) 0.000476(62) 0.01535(43) 0.1235(29) 0.400(16)

χiiiii3d =g63d 0.038(17) −0.257ð15Þ −0.278ð70Þ 1.08(12) 4.99(28) 11.01(50)

χiiiij3d =g63d 0.0071(35) −0.1295ð13Þ −0.114ð12Þ 0.742(20) 3.13(13) 6.80(31)

χiiijk3d =g63d −0.00046ð47Þ −0.0587ð17Þ −0.0438ð33Þ 0.3937(47) 1.580(45) 3.39(13)

χiiijj3d =g63d 0.0074(34) −0.0906ð20Þ −0.085ð13Þ 0.478(22) 2.044(82) 4.45(18)

(Table continued)
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