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For the first time, center vortices are identified on SU(3) lattice ensembles that include dynamical
fermions. Using a variational method, the static quark potential is calculated on untouched, vortex-
removed, and vortex-only fields. Two dynamical ensembles and one pure gauge ensemble are studied,
allowing for an exploration of the impact of dynamical fermions on the center-vortex vacuum. Novel
modifications to the standard Coulomb term are introduced to describe the long range behavior of the
vortex-removed potential. These modifications remove a source of systematic error in the fitted string
tension on the original ensembles. Our pure Yang-Mills result is consistent with previous studies, where
projected center-vortex fields only reproduce approximately two thirds of the string tension. Remarkably,
we find that the vortex-only fields on both dynamical lattices are able to fully reproduce the respective
untouched string tensions.

DOI: 10.1103/PhysRevD.106.054505

I. INTRODUCTION

Over recent years, center vortices have been shown to
play a pivotal role in the generation of dynamical chiral
symmetry breaking and quark confinement in the QCD
vacuum [1–28]. In pure-gauge QCD, it has been shown that
vortex removal results in a loss of dynamical mass gen-
eration [22,24,26], loss of string tension [21,29] and the
suppression of the infrared Landau gauge gluon propagator
[21,27]. However, quantitatively reproducing these proper-
ties from vortex-only fields has proved elusive. In studies
performed on pure Yang-Mills SUð3Þ gauge fields, it is
well known that vortices alone can only account for ∼62%
of the full string tension [19,23,29]. Similarly, the Landau
gauge quark and gluon propagators calculated on vortex-
only fields do not agree with their original values except
after smoothing [24,27].
A natural next step for the vortex model is to examine

how the presence of dynamical fermions impacts the
structure of center vortices. Any subsequent shift in vortex
structure can be measured by calculating observables
arising from vortex-only and vortex-removed ensembles.
In this paper, we perform the first such analysis and present
a calculation of the static quark potential on vortex-
modified ensembles in the presence of dynamical fermions.

After identifying center vortices on the lattice, it is possible
to isolate the contribution to the static quark potential from
both the vortices alone and the original gauge field after
vortex removal. This calculation reveals a significant shift in
vortex structure induced by the presence of fermion loops in
the vacuum fields and further reinforces the central role
vortices play in producing the salient phenomena of QCD.
This paper is structured as follows. Section II outlines

how center vortices are identified on the lattice. Section III
introduces the calculation of the static quark potential
through use of Wilson loops. Section IV describes the
variational method used to calculate the static quark
potential. Section V discusses the results of this work,
introducing novel modifications to the standard Coulomb
term. Section VI summarises our findings.

II. VORTEX IDENTIFICATION

In the continuum, center vortices are regions of an
SUðNÞ gauge field that carry flux associated with the
center of the gauge group. These regions are “thick,”
meaning that in four dimensions they appear as three-
dimensional volumes. On the lattice, we instead identify
“thin” vortices that are correlated with the location of the
physical thick vortices [9,30]. These thin vortices are two-
dimensional sheets in four dimensions, which, when
projected to three dimensions, appear as closed loops.
Visualizations of these center vortices on the lattice have
been presented in Ref. [31].
To identity center vortices on the lattice, we first transform

each gauge field configuration to maximal center gauge
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(MCG). This is done by finding the gauge transformation
ΩðxÞ that serves to maximize the functional [23,29],

R ¼ 1

VNdimn2c

X

x;μ

jTrUΩ
μ ðxÞj2: ð1Þ

This gauge transformation brings each link as close as
possible to the center of the SUð3Þ group. For SUð3Þ, the
center of the group contains the three elements,

Z3 ¼
�
exp

�
m2πi
3

�
I; m ¼ 0;�1

�
: ð2Þ

After fixing to maximal center gauge, the nearest center
element is defined by finding the minimum difference in
phase between TrUμðxÞ and one of the elements of Z3.
UμðxÞ can then be projected onto this nearest center
element to obtain the vortex-only configurations, ZμðxÞ.
The vortex-removed configurations are then defined as
RμðxÞ ¼ Z†

μðxÞUμðxÞ.
For this work we make use of three ensembles of

200 323 × 64 lattice gauge fields. Two of these are
(2þ 1) flavor dynamical ensembles from the PACS-CS
Collaboration [32]. We choose the heaviest and lightest
pion mass ensembles to provide the greatest differentiation
as the physical point is approached. The pure gauge
ensemble was generated with the Iwasaki action [33] at
β ¼ 2.58 with the intent of having a similar lattice spacing
as the PACS-CS ensembles. This allows us to readily
compare the full QCD results with those obtained from the
pure gauge ensemble.
For each of these lattices, the MCG procedure above

creates a corresponding set of vortex-modified fields.
Throughout the rest of this work we refer to the three
field types derived from a lattice ensemble as the

(i) Original, untouched (UT) fields, UμðxÞ,
(ii) Vortex-only (VO) fields, ZμðxÞ, and
(iii) Vortex-removed (VR) fields, RμðxÞ.

The effectiveness of the MCG procedure can be seen in
Fig. 1, which shows a histogram of center phases before
and after MCG fixing on the pure gauge and lightest pion
mass dynamical ensembles. Interestingly, we find that the
pure gauge ensemble is more strongly peaked around the
center phases, although the discrepancy is small, made
visible by the logarithmic scale. A summary of the
ensemble parameters can be found in Table I.

A. Parallel MCG fixing

Given the size of the lattices used in this work, it was
necessary to implement a parallel version of the MCG
algorithm, which proceeds as follows. To construct the
maximal center gauge transformation ΩðxÞ, it is sufficient
to consider the nearest-neighbour contributions fromUμðxÞ

and Uμðx − μ̂Þ∀ μ ∈ f1; 2; 3; 4g. For each x, one then
seeks to maximise the local functional [34],

RðxÞ ¼
X

μ

jTrΩðxÞUμðxÞj2 þ
X

μ

jTrUμðx − μ̂ÞΩðxÞ†j2:

ð3Þ

This is achieved by considering each of the three SUð2Þ
subgroups of SUð3Þ. ΩðxÞSUð2Þ is then expressed as a linear
combination of the SUð2Þ generators σ⃗ such that

ΩSUð2ÞðxÞ ¼ g4I − ig⃗ · σ⃗: ð4Þ

This reduces Eq. (3) to a quadratic in ðg4; g⃗Þ subject to a
unitarity constraint that can then be minimized via standard
Lagrangian multiplier techniques. Once each of the three
SUð2Þ subgroups is iterated over once and ΩðxÞ has been
constructed, it is then applied to the nearest-neighbor gauge
links. The process is repeated for all other values of x and
then iterated until a plateau in R [see Eq. (1)] is reached.
AsΩðxÞ depends only on its nearest-neighbors, we mask

the algorithm to ensure that at any one time we consider
only even or odd values of x, where even or odd is defined
by whether

P
4
μ¼1 xμ is even or odd. We then distribute

FIG. 1. A histogram showing the average phase distribution m
of the pure gauge and lightest pion mass ensembles before (top)
and after (bottom) maximal center gauge fixing. Note the
logarithmic scale. In the top plot, the agreement is so close that
the dynamical ensemble results are hidden by the pure gauge.

TABLE I. A summary of the lattice ensembles used in this work
[32].

Type aðfmÞ β κu;d mπðMeVÞ
Pure gauge 0.100 2.58 … …
Dynamical 0.102 1.90 0.13700 701
Dynamical 0.093 1.90 0.13781 156
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regular chunks of the lattice across processors with one
shadowed plane in the directions along which the lattice
has been subdivided. Once an even or odd sweep has been
completed, the updated links are copied to adjacent
processors so that they are available for the alternate sweep.
A diagram illustrating this updating scheme for two
processors distributed along one dimension is shown
in Fig. 2.
The processor boundary is shown with the vertical

dashed line. Gauge links are shown with solid black arrows
and shadowed gauge links are shown with black dashed
arrows. Shown is the update process starting with the even
sites (blue circles) followed by the odd sites (red circles):
(1) The gauge links adjacent to the even sites are

updated with the gauge transformation ΩðxÞ.
(2) The updated links along the boundary are copied to

the relevant shadowed locations.
(3) The gauge links adjacent to the odd sites are

updated.
(4) The updated shadowed links are copied to the

relevant locations.
This method of parallel implementation requires a slightly
greater number of overall sweeps than the serial imple-
mentation, as each update does not have the fully
propagated information that would be carried by a serial
process starting from one corner of the lattice. However, it
has a number of advantages. Most apparent is the real-
time reduction in wall time, as the parallel implementation
scales very well thanks to minimal cross-processor
memory requirements. Additionally, there is no direction-
ality in this implementation as each site only sees its
neighbors during each sweep. This suppresses any incon-
sistency arising from choice of start point or order of
iteration. Given that each site is only affected by its
nearest neighbors, this implementation also has the
desirable property of being agnostic to the number of
processors used in the calculation.

III. STATIC QUARK POTENTIAL

The static quark potential provides a measurement of the
potential between two massive, static quarks at a separation

distance r. On the lattice, the static quark potential can be
obtained by considering the Wilson loop,

Wðr; tÞ ¼ TrRðx⃗; t0ÞTðy⃗; t0ÞR†ðx⃗; t1ÞT†ðx⃗; t0Þ; ð5Þ

that has two spatial paths connecting points x⃗ and y⃗
satisfying jy⃗ − x⃗j ¼ r via the shortest set of links on the
lattice. The forward spatial path Rðx⃗; t0Þ is separated from
the backward spatial path R†ðx⃗; t1Þ by the temporal extent
of the loop, t1 − t0 ¼ t. The loop is closed via the static
quark propagators Tðy⃗; t0Þ and T†ðx⃗; t0Þ, which correspond
to the product of links in the positive and negative temporal
directions, respectively. A diagram of this Wilson loop
construction is shown in Fig. 3.
When the spatial separation extends off axis to encom-

pass displacements in more than one spatial direction, a
diagonal path is chosen to reduce rotational lattice artifacts.
An integer step size vector s⃗ is initialized by taking the
spatial separation r⃗ and dividing out the smallest element. If
the two largest elements of s⃗ are both greater than 1, then
these are divided by the smaller of the two so that the step
size vector s⃗ has at most one element that is greater than 1.
The spatial link path is constructed by cycling between
the spatial directions |̂ with step size sj. When the total
displacement rj in a direction |̂ has been reached we set the
step size sj ¼ 0. This is perhaps most easily understood
with an example. For r⃗ ¼ ð6; 3; 2Þ, then the initial step size
vector s⃗ ¼ ð3; 1; 1Þ. The path r⃗ is traversed by starting at x⃗
and cycling through the steps s⃗ ¼ ð3; 1; 1Þ twice, then
updating s⃗ ¼ ð0; 1; 0Þ to the remaining displacement to
reach the end point y⃗.
The expectation value of the Wilson loop is connected

to the static quark potential Vα for state α via the
expression,

hWðr; tÞi ¼
X

α

λαðrÞ exp ð−VαðrÞtÞ: ð6Þ

FIG. 2. MCG updating scheme for two processors. The update
process is described in the text. FIG. 3. Diagram of a Wilson loop. Shown are the forward

(blue) and backward (red) spatial paths where different levels of
smearing are used to create our variational matrix. Links in the
positive temporal direction are oriented vertically upwards.
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Here, α enumerates the sum over energy eigenstates. This
expectation value in Eq. (6) is taken not only over the lattice
ensemble, but over the range of spatial paths that provide
the same r value. In this work, we consider a maximum
of 16 on axis points, and a range of 0 to 3 off axis points.
The temporal extent considered has a maximum of t ¼ 12
for the untouched and vortex-removed ensembles, and a
maximum of t ¼ 32 for the vortex-only. The larger value
for the vortex-only ensemble is used because the onset of
noise occurs much later, and we find better plateau fits
using this extended range.
Due to the cubic symmetry of the lattice, when consid-

ering a link path between two spatial points separated by
a given displacement vector r⃗ ¼ y⃗ − x⃗ it is possible to
permute the three spatial coordinates and obtain the same
value for the separation r ¼ jr⃗j. Averaging over these
permutations allows for further improvement of statistics
for the corresponding Wilson loop and better extraction of
the ground state.

IV. VARIATIONAL ANALYSIS

The analysis of the static quark potential is susceptible to
excited state contamination and signal to noise challenges.
In particular, the dynamical ensembles are typically noisier
at a given lattice spacing compared to the pure gauge case.
To better extract the ground state potential at earlier
Euclidean time, we create a correlation matrix by intro-
ducing different levels of smearing along the two spatial
edges of the Wilson loops describing the profile of the
flux tube,

Wijðr; tÞ ¼ TrRiðx⃗; t0ÞTðy⃗; t0ÞR†
jðx⃗; t1ÞT†ðx⃗; t0Þ: ð7Þ

Here the forward and backwards paths Riðx⃗; t0Þ and
R†
jðx⃗; t1Þ are constructed using links that have respectively

had i and j sweeps of spatial APE smearing [35] applied,
with a smearing parameter of α ¼ 0.7. For the untouched
and vortex-removed ensembles, the SUð3Þ projection
component of the APE smearing algorithm is performed
using the unit-circle projection method described
in Ref. [36].
The vortex-only ensembles present some difficulties in

the application of standard smearing algorithms, as high-
lighted by recent work [37] that delved into the difficult
question of smoothing SUð3Þ center vortex configurations.
We employ these findings to best extract the static quark
potential, starting with a brief summary of the relevant
results from this study.
It was shown in Ref. [37] that gauge-equivariant

smoothing (such as unit-circle projection) when applied
to SUð3Þ vortex-only configurations results in either no
effect or a swapping of the center phase to another
element of Z3, spoiling the center vortex structure. The
use of a nonanalytic reuniterization performed via a

MaxRe Tr method [38] can circumvent this issue; how-
ever it is subject to strict constraints on the smearing
parameter α.
The primary cause of the difficulties in smoothing vortex

fields arises from the proportionality of the vortex links
to the identity. To alleviate this issue, we apply the novel
centrifuge preconditioning method that was introduced in
Ref. [37], but only to the spatial links used to construct the
Wilson loop. Centrifuge preconditioning introduces a small
perturbation that rotates the vortex links away from the
center group Z3 whilst maintaining the vortex structure.
This is then followed by application of APE smearing at
smearing fraction αAPE ¼ 0.7 using MaxRe Tr reuniteriza-
tion to generate the variational basis for vortex-only
configurations.
For N choices of smearing sweeps, we obtain the N × N

correlation matrix,

Gijðr; tÞ ¼ hWijðr; tÞi
¼

X

α

λαi λ
�α
j exp ð−VαðrÞtÞ; ð8Þ

where the i, j indices enumerate the N smearing variations
on the initial and final spatial edges of the Wilson loop
respectively. The complex scalars λαi and λ�αj represent the
coupling of each smeared leg of the Wilson loop to the
static quark potential Vα. Note that in the following we
choose to suppress the implied r dependence of Gij and V
for clarity.
Presuming that the signal is dominated by the N lowest

energy states, such that α ∈ ½0; N − 1�, we wish to find a
basis uα such that,

GijðtÞuαj ¼ λαi z
�αe−Vαt; ð9Þ

where z�α ¼ P
i λ

�α
i uαi is now the coupling between this

new basis and the energy eigenstate jαi. Note that for the
remainder of this paper we adopt the convention that
repeated Latin indices are to be summed over whilst
repeated Greek indices are not. Equation (9) is equivalent
to requiring that

λ�αi uβi ¼ z�αδαβ: ð10Þ

Noting that the time dependence in Eq. (9) depends only
on the exponential term, we can consider stepping forward
in time by some amount Δt such that,

Gijðt0 þ ΔtÞuαj ¼ λαi z
�αe−Vαðt0þΔtÞ

¼ e−V
αΔtGijðt0Þuαj : ð11Þ

This recursive relationship is precisely a generalized
eigenvalue problem, which can be solved via standard
numerical techniques to obtain the eigenvectors uα.
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An identical argument can be made for the left eigenvectors
vα, such that they satisfy

vαi GijðtÞ ¼ zαλ�αj e−V
αt; ð12Þ

and hence,

vαi Gijðt0 þ ΔtÞ ¼ e−V
αΔtvαi Gijðt0Þ: ð13Þ

Making use of Eqs. (9) and (13), we find that

vαi GijðtÞuβj ¼ zαz�βδαβe−Vαt: ð14Þ
As such, we define the eigenstate-projected correlator,

GαðtÞ ¼ vαi GijðtÞuαj
¼ zαz�αe−Vαt; ð15Þ

and extract the potential by computing the log-ratio,

Vα
effðtÞ ¼ ln

�
GαðtÞ

Gαðtþ 1Þ
�
; ð16Þ

to obtain the static quark potential. We then consider
constant fits to the lowest energy state, V0

effðr; tÞ.
We use a 4 × 4 correlation matrix for the untouched and

vortex-removed ensembles, with a basis constructed from
6, 10, 18 and 30 sweeps of APE smearing. For the vortex-
only ensembles, even with centrifuge preconditioning and
MaxReTr reuniterisation applied, the configurations are
still slow to vary as a function of smearing sweeps. As a
consequence of this, we choose a 2 × 2 correlation matrix
with 2 and 60 sweeps of APE smearing to provide a
meaningful distinction between the basis elements.
In regards to the choice of variational parameters for

the original and vortex-removed ensembles, we find that
increasing Δt minimally affects the level of noise, whilst
providing slight improvement in ground state identifica-
tion. Thus, we choose a larger value of Δt ¼ 3. Selecting
larger values of t0 introduces substantial noise into the
results obtained from these ensembles, so we maintain
t0 ¼ 1 on these ensembles.
Selection of variational parameters is slightly different

on the vortex-only ensembles. For the diagonal correlators,
GiiðtÞ, where source and sink match and all states should
contribute positively, i.e., λαi λ

�α
i > 0, the effective mass

approaches from below. This is indicative of short-distance
positivity violation arising in the process of center projec-
tion. In the context of a variational analysis, we extend t0 to
the greatest feasible degree to avoid the region of positivity
violation at early times [39]. Indeed, our focus is on
understanding whether projected center vortices can cap-
ture the long-distance, nonperturbative features of QCD. To
this end, we choose ðt0;ΔtÞ to be (5,4), (4,5) and (4,2) for
the pure gauge, mπ ¼ 701 MeV, and mπ ¼ 156 MeV
vortex-only ensembles respectively. The difference in

variational parameters between the ensembles arises from
when the onset of noise dominates the signal.
To calculate uncertainties, we perform a third-order

single-elimination jackknife calculation [40]. Fit window
selection is performed to prioritise finding the earliest
appropriate value of tmin, in a method similar to that
outlined in Ref. [41]. As such, we select an initial tmax to
be the largest value maintaining Vðr; tmaxÞ > ΔVðr; tmaxÞ,
where ΔVðr; tmaxÞ is the jackknife uncertainty in Vðr; tmaxÞ.
An initial value of tmin ¼ t0 þ 2 is chosen. tmax is then
decreased until a covariance fit over the range ½tmin; tmax�
produces a χ2 per degree of freedom, χ̃2, of less than 1.3. If
no such tmax is found, tmin is increased by one lattice unit,
and the procedure is repeated. The on axis results of this
fitting procedure are shown for the lightest pion mass

FIG. 4. The on axis projected effective mass from the original
mπ ¼ 156 MeV ensemble. Results are shown for the original
(top), vortex-only (middle) and vortex-removed (bottom) ensem-
bles. The selected fit window that meets the χ̃2 criteria as
described in the text is shown as the dashed lines. The shaded
region shows the jackknife error on the fit. Points at the same
value of t are horizontally offset for visual clarity. Any points
with a relative error greater than 50% are excluded from the plot.
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ensemble in Fig 4. Once fits have been performed for all
values of r, we select a single fit window with a width of at
least two lattice units (i.e., at least three time values) such that
it is typically encompassed by the range of fit windows
found for each value of r.
After the potential VðrÞ is determined, we then perform

functional fits to the UT, VO and VR potentials. The
Ansätze used for each ensemble are given in Table II. The
functional fits take into account the full covariance matrix,
and error regions are constructed via repetition of the fits
on the jackknife ensembles. The selection of the range
½rmin; rmax� to fit over is performed in a manner similar to
the fit window selection for the effective mass. For the UT
and VR ensembles we initialize rmin to the lowest available
value, as we find that our window selection method
naturally avoids the short-range region that is plagued
by lattice systematics. To explicitly avoid this region for
the vortex-only potential, we initialize rmin ¼ 5 for these
ensembles. rmax is initialized to the largest available value
on all ensembles. Over this initial range, the functional fit is
performed and the χ2 per degree of freedom, χ̃2, is
calculated. If it is greater than 1.3 then rmax is reduced
byΔr ¼ 0.2, and the fit is repeated. If rmax − rmin < 3, rmax
is reset to its maximum extent and rmin is increased by
Δr ¼ 0.2. In our plots, points that are included in the fit are
shown in solid colors, whereas points excluded from the fit
are shown as faded.
We also present plots of the local slope calculated from a

series of linear fits taken over a sliding r window of width 4
lattice units. Each fit window is successively shifted in
increments of Δr ¼ 0.4 lattice units, with the fitted slope
plotted at the leftmost edge. We find that r ¼ 5 is
approximately where the onset of linearity begins, and
hence we begin our sliding windows from this value. The
excluded short-distance region is greyed out in the plots
presented. This procedure for obtaining the local slope
provides a simple method for gauging the linearity of the
potential over a range of distances.

V. RESULTS

We now present the results for the static quark potential.
To verify that our variational technique is appropriate,
we first calculate the vortex-only potential from the mπ ¼
156 MeV ensemble without a variational method to check
if the results from the variational analysis are consistent and
represent an improvement. Given the similarity of the
lattice spacing on our three ensembles, summarized in

Table I, we will consider r in lattice units for the remainder
of this work. We find that the fitted string tension is lower
after a variational analysis, with σVO ¼ 0.0484ð4Þ and
σVO ¼ 0.0490ð4Þ with and without variational analysis
respectively. Additionally, the effective mass plateau fits
occur at earlier times with the variational analysis, espe-
cially at larger r values. This suggests that the variational
analysis is appropriate and represents an improvement over
the naive method.
We show the VO potential with and without variational

analysis in Fig. 5. Fitting is performed via the method
outlined in the previous section. We observe from the local
slope plot that the long range potential is similar across both
methods. The fact that the differences are so slight is a
testament to the excellent signal-to-noise ratio in vortex
only ensembles and the subsequent access to large
Euclidean times in the Wilson loops. Nevertheless, the
use of a variational method does improve the onset of
lower-lying plateaus and is thus preferred.
As we are studying gauge fields that include dynamical

fermions, this gives rise to the possibility of string breaking.
However, it is well known that there is poor overlap
between the infinitely heavy static quark state and the
heavy-light meson-meson state which arises from the string
breaking transition [42]. To identify string breaking, it is
instead necessary to include operators for heavy-light
meson-meson states in the correlation matrix, as done in
Refs. [42,43].
The purpose of the variational analysis employed here

is to ensure accurate identification of the ground state
potential to enable comparison between the original and

TABLE II. The ansätze used for the three ensembles.

Type Ansatz Functional form

Untouched Cornell VðrÞ ¼ V0 − α=rþ σr
Vortex-only Linear VðrÞ ¼ V0 þ σr
Vortex-removed Coulomb VðrÞ ¼ V0 − α=r

FIG. 5. A comparison of the vortex-only potential from the
mπ ¼ 156 MeV ensemble extracted after no spatial smearing and
our variational method as described in the previous section. V0 is
set to 0 for both sets of results. The functional fit for the
variational results is also plotted. We observe a similar potential
for both choices; however the linearity of the fit is improved after
a variational method, with a larger range of points meeting the fit
criteria discussed in the text.
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vortex-modified ensembles. Our basis does not include any
of the appropriate operators to directly observe string
breaking in this analysis. The inclusion of these operators
requires inversion of the fermion matrix, which poses
technical difficulties on the vortex-only fields due to their
rough nature. These difficulties can be ameliorated with the
use of sophisticated smoothing techniques such as those
described in Ref. [37]. However, this would introduce a
level of complication to the variational analysis beyond
what is necessary for this study and is left to future work.

A. Standard potential fits

The static quark potential from the pure gauge ensemble
is presented in Fig. 6. Our results coincide with findings
from previous studies [19,23,29]. The untouched potential
is Coulomb-like at short distances whilst becoming linear
as r increases. We observe that the vortex-removed and
vortex-only potentials of Table II qualitatively capture these
regimes respectively. Vortex removal results in Coulomb-
like behavior at short distances, with approximately con-
stant behavior at moderate to large r indicating the absence
of a linear string tension. We do note, however, that the
Coulomb term provides a poor representation of the VR
results at large r. Contrasting the vortex-removed results,
we observe that the vortex-only ensemble features no 1=r
behavior, instead displaying a linear potential with a slope
of approximately 62% that of the original ensemble.
The fitted string tension values from the untouched and

vortex-only ensembles are presented in Table III. The ratio
of the vortex-only string tension to the untouched string
tension is shown in the third column. We see that while the

vortex field from the pure gauge background is only able
to recreate 62% of the untouched string tension, in the
presence of dynamical fermions there is a different story.
The fitted vortex-only string tension increases upon the
introduction of dynamical fermions at the heaviest pion
mass. At mπ ¼ 701 MeV the fitted string tension for the
vortex-only and untouched fields are nearly equal, whereas
on the lightest ensemble at mπ ¼ 156 MeV the fitted string
tension on the vortex-only field exceeds the untouched
value by about 25%.
What is clear is that the presence of dynamical fermions

significantly alters the texture of the vortex vacuum, even at
an unphysically large quark mass. The question then posed
is how best to shed some light on the nature of this “sea
change.” Figure 7 shows the static quark potential results
for the heavy dynamical ensembles, with mπ ¼ 701 MeV.
Examining the local slope as it varies with r provides some
insight. Note that the lattice spacings (as set by the Sömmer
scale) of the three ensembles listed in Table I are approx-
imately the same, so it is reasonable to make broad
comparisons in the slopes of the potentials.
As before, vortex removal captures the short-range

physics while absenting any linear rise associated with a
confining potential. Strikingly, the vortex-only field pro-
jected from the dynamical ensemble now fully reproduces
the long-range potential. This is best observed in the

FIG. 6. The static quark potential as calculated from the pure
Yang-Mills ensemble. Points are obtained from the variational
analysis and solid lines show the fitted Ansatz for each ensemble.
The choice of Ansatz is as described in Table II. Faded points
indicate that this point was not included in fitting the Ansatz, as
described in the text. The lower plot shows the fitted local slope
of a forward-looking sliding linear window from r to rþ 4a.

TABLE III. The fitted string tensions from the vortex-only and
untouched ensembles, and their respective ratios.

mπðMeVÞ a2σVO a2σUT σVO=σUT

Pure gauge 0.0344(9) 0.0558(3) 0.62(2)
701 0.0570(7) 0.0537(7) 1.06(2)
156 0.0484(4) 0.0386(1) 1.25(3)

FIG. 7. The static quark potential as calculated from the mπ ¼
701 MeV ensemble, with features as described in Fig. 6.
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moving local slope displayed in the lower panel of Fig. 7.
The more precise fitted string tension σ shows approximate
agreement as reported in Table III. This will be discussed in
greater detail in the next subsection.
Finally, we present the static quark potential on the

ensemble with the lightest pion mass of 156 MeV in Fig. 8.
Here we observe the untouched and vortex-only slopes
crossover, with approximate agreement of the local slope in
the region r ∈ ½5.5; 7�. As we extend to larger distances, we
observe that the vortex-only string tension exceeds the
original value. This overestimation is corroborated by the
fit values, where the value of σ reported in Table III is
approximately 25% larger than the untouched.
The unanticipated overestimation of the VO string

tension at the lightest mass gives an indication that there
is some additional physics that is not being accounted for.
A hint as to the possible answer is revealed in the vortex-
removed fits. Specifically, the standard Coulomb term

retains a residual increase in strength at moderate to large
r that does not match the approximately constant behavior
of the vortex-removed results. The slow rise present in the
standard Coloumb term could also interfere with the fitted
linear term coefficient, resulting in an underestimation of
the string tension in the UT results where both the Coulomb
and string-tension terms are present.
Table IV shows that as pion mass decreases, the fitted

value of the Coulomb term coefficient, α, on the UT
ensembles increases. This would then enhance possible
contamination of the fitted UT string tension resulting from
physics absent from the standard Coulomb term, amplify-
ing the discrepancy between the original and vortex-only
string tensions. This motivates modifications to the
Coulomb term that we introduce in the next section in
order to obtain better descriptions of the lattice results and
more accurate estimates of the string tension.

B. Modified Coulomb potential fits

We have seen the difficulty in fitting the Coulomb term
parameter, α, in our Ansatz to a wide range of values on the
dynamical ensembles. At the shortest distances, there is a
well-known difficulty associated with fitting α for both the
original and vortex-removed ensembles [44], stemming from
the small statistical errors present at short range coupled with
the presence of finite lattice-spacing systematics.
It is possible to apply a lattice correction to the Coulomb

term to compensate for these short-distance artifacts [45,46].
However, here we are mainly concerned with the long
distance behavior and adopt the simple solution of excluding
small values of the static quark separation r from our fits.
A more serious limitation in the fit functions used above

is revealed upon vortex removal. The standard Coulomb
term is only able to describe the vortex-removed results
over a limited range. This demonstrates a need for a
modified fit function in order to describe the large r
behavior of the vortex-removed potential.

FIG. 8. The static quark potential as calculated from the
mπ ¼ 156 MeV ensemble, with features as described in Fig. 6.

TABLE IV. Results of the standard static quark potential fits to the three ensembles. The fit parameters are described in Table II, and χ̃2

denotes the χ2 per degree of freedom.

Type ðrmin; rmaxÞ χ̃2 aV0 α a2σ

Pure gauge
UT (3.10, 16.55) 1.12 0.608(3) 0.286(7) 0.0558(3)
VR (3.00, 9.05) 1.23 1.010(2) 0.881(7) …
VO (5.00, 16.40) 0.97 −0.041ð4Þ … 0.0344(9)

mπ ¼ 701 MeV
UT (3.10, 16.55) 1.30 0.847(7) 0.42(1) 0.0537(7)
VR (3.00, 6.55) 1.30 1.092(4) 0.59(1) …
VO (5.00, 16.55) 1.03 −0.047ð4Þ … 0.0570(7)

mπ ¼ 156 MeV
UT (4.40, 13.25) 1.29 0.93(1) 0.61(4) 0.0386(1)
VR (3.10, 5.40) 1.28 1.106(5) 0.68(2) …
VO (5.00, 11.15) 1.28 −0.033ð2Þ … 0.0484(4)
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The decoupling of the static quark potential into the
vortex-removed and vortex-only components also provides
us with an opportunity. Specifically, the large r behavior of
the untouched potential is dominated by the linear string
tension. The dominance of the linear term at large r hides
any subleading effects.
The vortex-only component of the potential is well

described by a linear string tension. The origin of the
confining string tension is attributed to nontrivial vacuum
structure, with the center-vortex model of course being the
most pertinent to this study. On the other hand, the vortex-
removed potential does not possess a string tension as
testified by the absence of a linear slope. This provides us
with a chance to model effects that would otherwise be
obscured by the rising linear string tension.
The first modified Ansatz we propose is novel, with a

model based on antiscreening of the Coulomb potential,

VasðrÞ ¼ V0 −
α

1 − e−ρr
: ð17Þ

The Laurent series of this function is dominated by the
lowest order term α̃=r at short distances providing a
Coloumb-like potential, where the effective Coulomb
coefficient is α̃ ¼ α=ρ. Antiscreening implies that the
strong coupling constant αsðrÞ increases with increasing
separation between two test colour charges. If αs increases
as r increases, this will have the effect of counteracting
decreasing behavior of the 1=r term.
The specific form of the Ansatz we have chosen here is

motivated by the observation of the flat, constantlike
behavior of the vortex-removed potential at large distances.
Specifically, at large r the exponential in the denominator
of Eq. (17) tends to zero, such that a constant value
Vas → V0 − α is rapidly approached as r increases. The
implication of this is that the running coupling of αs is
approximately linear in r within the fitted region. Previous
lattice studies of the running of the strong coupling do show
an increase in αs with the separation r, although they are
limited in the applicable range of scale (up to ∼0.5 fm)
[45,47,48]. Importantly, the form of Eq. (17) is controlled
such that the large r behavior cannot describe a rising linear
potential tension and hence should not interfere with a fitted
string tension.
Intuitively, antiscreening can be understood by noting

that at short distances gluons carry color charge away from
a quark or antiquark such that the effective color charge
within a given radius is diluted, leading to asymptotic
freedom at short distances [49]. We know from previous
studies of the pure-gauge vortex-removed gluon propagator
that flat behavior consistent with asymptotic freedom is
observed at large q2 [27]. We also know that antiscreening
arises from the non-Abelian nature of the gluon field, and
as the vortex-removed field remains non-Abelian it seems
reasonable to postulate that antiscreening will still be
present in the absence of confinement.

Of course there are more sophisticated calculations of the
running of αs [48,50–55], but these have limited appli-
cability here, either due to the limited range of perturbation
theory in QCD or being inspired by the string tension. It is
not clear how these apply to vortex-modified fields. Here
we choose instead to simply model the observed behavior
of the vortex-removed potential.
We also consider an alternative model to fit the vortex-

removed results. The second modified Ansatz we propose
is a screened Coulomb potential, commonly known as the
Yukawa potential,

VscðrÞ ¼ V0 −
α

r
e−ρr: ð18Þ

Once again this has a Coulomb-like 1=r behavior at
small r. At large r the exponential term has the effect of
turning off the Coulomb interaction such that Vsc → V0 as
r increases.
One interpretation of the Yukawa model in this context is

that the gluon dynamically acquires an effective mass ρ in
the infrared. As a nonzero gluon mass is forbidden at the
Lagrangian level by gauge invariance, this mechanism must
be dynamical and scale-dependent. Indeed, the dynamical
generation of an effective gluon mass has been proposed
elsewhere as a possible mechanism for the gluon propa-
gator to take a finite value in the infrared limit [56–60].
It must be emphasized that the finiteness of the gluon

propagator in the infrared limit is distinct to the presence
(or absence) of confinement. The signature of confinement
is dependent on the nature of the running of the gluon mass.
Specifically, confinement is associated with an inflection
point or turnover in the gluon propagator, which in turn
implies the running gluon mass should not be constant. We
know that vortex-removed theory does not generate a string
tension and hence is nonconfining. Introducing the pos-
sibility of a constant effective gluon mass at a finite scale
would model the vortex-removed potential in a way which
is separate to any confinement mechanism.
We now turn to the results from our modified Coulomb

Ansätze. Table V presents the fit parameters, with the
resulting potentials illustrated in Fig. 9. We see that both
Vas and Vsc are able to describe the vortex-removed results
well, with similar values for the reduced χ2. At first glance
it seems somewhat counterintuitive that both an anti-
screened and screened model are able to describe the same
results. Numerically, this is possible because of the inter-
play between the V0 and α. Both Ansätze approach a
constant value in the large r limit, with Vas → V0 − α and
Vsc → V0 respectively.
We see that both modified Ansätze provide a superior

fit to the vortex-removed results when compared to the
standard Coulomb Ansatz, allowing the fit window to
extend to the maximum available rmax. In all cases the fitted
value of rmin is less than or equal to the standard potential
fits, indicating that the modifications made to the Coulomb
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FIG. 9. Fits to the lattice results for the potentials using the modified Coulomb term functions Vsc and Vas described in the text. The
vortex-removed results are now described well by the modified potentials.

TABLE V. Results of the functional fits to the modified Ansätze described in the text. The values of ρ for the untouched ensembles are
fixed to the value obtained from the corresponding vortex-removed fit.

Type ðrmin; rmaxÞ Fit function χ̃2 aV0 α a2σ ρ

Pure gauge
VR (2.90, 16.55) Vas 1.10 1.20(3) 0.27(3) … 0.28(2)
VR (2.90, 16.55) Vsc 1.13 0.931(5) 1.01(3) … 0.15(2)
UT (3.00, 16.55) Vas þ σr 1.16 0.652(4) 0.081(2) 0.0572(3) 0.28
UT (3.00, 16.55) Vsc þ σr 1.19 0.573(2) 0.301(7) 0.0572(3) 0.15

mπ ¼ 701 MeV
VR (1.80, 16.55) Vas 0.97 1.42(2) 0.42(3) … 0.53(2)
VR (1.80, 16.55) Vsc 1.01 1.005(2) 0.85(2) … 0.31(2)
UT (3.00, 16.55) Vas þ σr 1.29 1.02(1) 0.259(9) 0.0588(5) 0.53
UT (3.00, 16.55) Vsc þ σr 1.30 0.761(4) 0.54(2) 0.0585(5) 0.31

mπ ¼ 156 MeV
VR (3.00, 16.40) Vas 1.18 1.48(6) 0.48(6) … 0.51(4)
VR (3.00, 16.40) Vsc 1.18 1.009(3) 1.05(8) … 0.33(3)
UT (4.40, 9.25) Vas þ σr 1.28 1.17(4) 0.37(3) 0.0459(9) 0.51
UT (4.40, 9.25) Vsc þ σr 1.28 0.804(7) 0.84(7) 0.0457(9) 0.33
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terms are still able to account for the short distance
behavior of the potential up to the presence of lattice
artifacts.
Having verified that our modified Ansätze are success-

fully able to describe the vortex-removed potential results at
large r, we can then use this information to improve our fits
to the untouched results. This is accomplished by fixing ρ
to be the value obtained from the corresponding vortex-
removed ensemble, then adding a linear term to accommo-
date the string tension component of the untouched potential.
The motivation behind fixing ρ is that the cleanest fit value
for this parameter will be obtained in the absence of a string
tension term which will dominate the large r behavior.
Indeed, we find that if left as a free parameter ρ is poorly
constrained by the untouched potential fits due to the
presence of the dominating linear term.
The fits to the untouched ensembles are of comparable

range and χ̃2 to the original Cornell fits; however when we
look at the ratio of the vortex-only string tension to the
untouched, shown in Table VI, we see the significant impact
the modified Coulomb terms play. The untouched string
tension on the pure gauge ensemble is similar to the Cornell
fit value, however on the dynamical ensembles the string
tension is increased due to cleanly removing the contami-
nation from the slow rise in the standard Coulomb term at
moderate to large r. Remarkably, this results in agreement
between the vortex-only and untouched string tensions on
both dynamical lattices, as seen by the corresponding ratios
taking values close to unity in Table VI.
The fits to the results are unable to distinguish between

the two modified ansätze. Indeed, the resulting improve-
ments to the untouched potential fits result in values for the
string tension that are essentially identical. We also tested
an n-tuple form factor, ð1þ ðr=ρÞnÞ−1, to suppress the
Coulomb term at large r, and this provided a similar result.
This gives us confidence that any systematic errors arising
from the modified Coulomb terms are minimal in the final
string tensions reported.
The physical arguments provided for the two modified

Ansätze are simply to demonstrate some plausible mech-
anisms that might underpin their empirically motivated
forms. Due to the interplay between α and V0 it is likely
that more than one effect will contribute to the fitted values.
With a high-precision scaling analysis, a future examina-
tion may be able to resolve the physics represented by these
modifications. The key result here is that by successfully

modeling the observed long distance behavior of the
vortex-removed potential, we have been able to remove
a source of contamination in the untouched potential fits
and provide improved values for the fitted string tension for
the first time.
For a given Ansatz, the fitted value of ρ on the two

dynamical lattices are similar and are roughly double the fit
value on the pure gauge ensemble. This indicates that the
effects contributing to the medium to long-range behavior
of the vortex-removed potential are mainly sensitive to the
presence or absence of dynamical fermions, but are only
weakly dependent on the sea quark mass.
There are indications of increased screening by the light

dynamical fermions in both the untouched and vortex-only
results. Significantly, at longer distances we observe both
modified Ansätze show a decrease in the fitted value of the
untouched and vortex-only string tensions when transition-
ing from the heavy to light pion mass.
As we have not corrected for short-distance lattice artifacts

the fitted values of α should be interpreted with some
caution, but are also worth discussing. The Coulomb term
coefficients arising from the fits to the untouched potentials
are summarized in Table VII (recalling that for the Vas
Ansatz the effective short-distance coupling is α̃ ¼ α=ρ). For
the pure gauge ensemble, the fitted values are close to the
universal value of π=12 ≃ 0.26 derived from a thin flux tube
effective field theory [61]. We observe the Coulomb cou-
plings increase with decreasing sea quark mass for all three
Ansätze considered herein. This trend, which is indicative of
dynamical fermion screening, has been previously observed
for the standard potential fits [62]. It is interesting to see that
this trend is replicated in our modified fits as well, as it
suggests that the modified Coulomb terms are sensitive to
the same short-distance physics as the standard Ansatz.
The crucial finding of this work is that the introduction of

dynamical fermions at any pion mass induces a measurable
shift in the behavior of center vortices. Applying the
modified Ansätze introduced herein, the pure gauge vor-
tex-only potential remains unable to reproduce the
untouched string tension, whereas in contrast the respective
dynamical string tensions show good agreement. The
vortex-removed ensembles consistently show complete
removal of the long range confining potential. This rein-
forces the argument that the salient nonperturbative proper-
ties of the ground state vacuum fields are encapsulated in
the center vortex degrees of freedom.

TABLE VI. Ratios of the vortex-only to untouched string
tensions from the Cornell and modified fit functions.

mπðMeVÞ σVO=σcornellUT σVO=σasUT σVO=σscUT

Pure gauge 0.62(2) 0.60(2) 0.60(2)
701 1.06(2) 0.97(2) 0.97(2)
156 1.25(3) 1.05(2) 1.06(2)

TABLE VII. The (effective) Coulomb term coefficients from
the Cornell and modified fits to the untouched potentials.

mπðMeVÞ αcornellUT α̃asUT αscUT

Pure gauge 0.286(7) 0.293(7) 0.301(7)
701 0.42(1) 0.49(2) 0.54(2)
156 0.61(4) 0.72(6) 0.84(7)
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VI. CONCLUSION

In this work we have presented the first calculation of the
static quark potential from center vortices obtained in the
presence of dynamical fermions in QCD. The difficulties in
fitting a standard Coulomb term to a wide range of vortex-
removed values revealed a source of systematic contami-
nation at moderate to large separations, resulting in the
under estimation of the untouched string tension. In
response we proposed two modified Coulomb Ansätze.
The first modified Ansatz seeks to model the effect of
antiscreening in the running coupling for QCD. The second
modified Ansatz takes the form of a Yukawa potential,
accommodating a dynamical effective gluon mass. Both
Ansätze for the vortex-removed potential approach a
constant value in the large r limit and are able to describe
the static quark potential on the vortex-removed ensembles.
Extending the modified Coloumb potentials with a linear
string tension enables fits to the untouched potential.
The vortex-removed ensembles lack a linear confining

potential for both the large and small pion masses consid-
ered here. Resolving the long-range behavior of the vortex-
removed static quark potential with the fit parameter ρ
enables us to remove a source of systematic contamination
in the untouched potential fits, providing an improved
determination of the untouched string tension. In doing so,
we find good agreement between the vortex-only and
untouched string tensions in the presence of dynamical
fermions. The fact both modified Ansätze yield fit values
for the string tension that are essentially identical suggests
that any systematic errors introduced by the modifications
are minimal. Evidence of quark loop screening is seen at
the light quark mass.
These results suggest that the presence of dynamical

fermions resolves the pure-gauge discrepancy between the
original and vortex-only potential at large distances, pre-
senting an important step in understanding the QCD
vacuum. Historically, despite remarkable qualitative
results, the center-vortex model has not agreed quantita-
tively with pure Yang-Mills calculations. It is fascinating to
see that with the improvements presented here that good
agreement is achieved for the string tension with the
introduction of dynamical fermions in full QCD.
The mechanism for the observed phenomenological

improvement is currently unknown. In pure gauge theory
the identified center vortex string tension is dependent
on the specific gauge fixing procedure [5,9,11,63,64]. For
example, in Laplacian center gauge the full string tension is
recovered [65–70]. Future investigations will revisit these
gauge fixing dependencies with vortices derived from
dynamical gauge fields in order to further understand the
differences that have been observed herein.

Another avenue of improvement would be to expand the
variational operator basis. In particular, the inclusion of a
heavy-light meson-meson operator may clarify the long-
range behavior of the vortex-modified potential and reveal
possible connections to string breaking. We note that in the
presence of dynamical fermions, string breaking implies
that the static quark potential no longer rises indefinitely
and as such we must reconsider precisely what is meant by
quark confinement in this context.
The concept of separation-of-charge (Sc) confinement

has been proposed elsewhere and studied in the context of
the gauge-Higgs model [71–74]. Key to this concept is the
existence of an order parameter, analogous to the Edwards-
Anderson order parameter for spin-glass systems, that can
be calculated to determine if a given vacuum phase is
Sc-confining. It has not yet been verified numerically if
QCD is Sc-confining. Testing the response of the corre-
sponding order parameter to vortex projection/removal
would be an interesting line of future study.
The relationship between dynamical fermions and the

geometry of center vortices is also of interest, as it is well
understood that the confining potential of center vortices
arises from an area-law percolating behavior [5,25,75].
A direct examination of center-vortex structure comple-
mented by probing of further quantities will assist in
shedding light on the complex relationship between center
vortices and the structure of the QCD vacuum.
Our findings strengthen the evidence that center vortices

are responsible for the long-range confining potential of
QCD and provide a first glimpse of the interplay between
center vortices and dynamical fermions. Research to further
explore center vortices in full QCD will be the subject of
upcoming work.
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