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Precise quantification of the structure of nucleons is one of the crucial aims of hadronic physics for the
coming years. The expected progress related to ongoing and planned experiments should be accompanied by
calculations of partonic distributions from lattice QCD. While key insights from the lattice are expected to
come for distributions that are difficult to access experimentally, it is important that lattice QCD can
reproduce the well-known unpolarized parton distribution functions (PDFs) with full control over systematic
uncertainties. One of the novel methods for accessing the partonic x-dependence is the pseudodistribution
approach, which employs matrix elements of a spatially extended nonlocal Wilson line operator of length z.
In this paper, we address the issue of discretization effects, related to the necessarily nonzero value of the
lattice spacing a, which start at first order in a as a result of the nonlocal operator. We use twisted mass
fermions simulated at three values of the lattice spacing, at a pion mass of 370 MeV, and extract the
continuum limit of isovector unpolarized PDFs. We also test, for the first time in the pseudodistribution
approach, the effects of the recently derived two-loop matching. Finally, we address the issue of the

reliability of the extraction with respect to the maximal value of z.
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I. INTRODUCTION

Existence of the internal partonic structure of nucleons
was discovered over 50 years ago in groundbreaking experi-
ments at Stanford. Since then, data from deep inelastic
scattering (DIS) and other high-energy processes were used
to probe this structure extensively. Yet many aspects of the
rich internal dynamics of the nucleon and other hadrons,
such as polarized and multidimensional observables, remain
elusive. This continues to be a very active area of research,
with new planned or ongoing experiments, designed spe-
cifically to probe different aspects of hadronic structure.
Significant amounts of new experimental data are expected
from e.g. the COMPASS++/AMBER experiment at CERN
[1], the 12 GeV upgrade of Jefferson Lab’s CEBAF
accelerator [2,3] and the recently approved Electron-lon
Collider at Brookhaven National Laboratory [4,5]. The
experimental effort should be supplemented by theoretical
developments in multiple areas: phenomenological models,
perturbative QCD, and nonperturbative first-principles
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calculations. The appropriate tool for the latter is lattice
QCD (LQCD), a nonperturbative formulation of QCD
allowing for quantitative predictions from first principles.

The standard theoretical description of quantum field
theories involves perturbation theory. However, in the case
of QCD, the low-energy properties cannot be accounted
for in perturbation theory. A common way of overcoming
this restriction is the factorization framework in which
cross sections are separated into short- and long-distance
parts: the former are treated perturbatively, while the latter
are parametrized in terms of partonic distributions.
Such distributions can be evaluated by performing global
fits to experimental data. Obviously, this is viable only
under the condition of sufficient abundance of such
experimental input. The largest body of data concerns
the case of nucleon’s unpolarized parton distribution
functions (PDFs), for which thousands of measurements
impose stringent constraints over nearly the whole x-
dependence. Additionally, the fits are performed by several
independent groups (see, e.g., Refs. [6-9]), allowing for
comparison and assessment of the influence of some
necessarily introduced assumptions.

In contrast, once one considers polarized observables,
already the case of longitudinal polarization of the parton
and the nucleon (helicity PDFs) is significantly less con-
strained (see, e.g., Refs. [10—12]). In the case of transversely
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polarized quarks in a transversely polarized nucleon,
experimental data are hardly enough to get any quantitative
knowledge of transversity PDFs [13,14], although including
more experimental data improves the extraction precision
[15]. The extraction can also be augmented by an additional
input, e.g. the tensor charge calculated on the lattice [13].
Even less can be inferred for the three-dimensional nucleon
structure, which is quantified in terms of generalized parton
distributions (GPDs) [16-20] and transverse-momentum
dependent PDFs (TMD PDFs or TMDs) [21-25]. Access
to them is not possible in standard DIS: GPDs require
exclusive processes such as deeply virtual Compton scatter-
ing (DVCS) [26] and deeply virtual meson production [27],
while TMDs require processes such as Drell-Yan [28-30]
and semi-inclusive DIS [23,24]. The amount of data
available from such experiments is much smaller, leading
to insufficient constraining power to fully quantify the three-
dimensional structure. No global fits have so far been
performed in the whole DVCS kinematic domain to extract
GPDs, but first attempts at extracting GPD-related observ-
ables are under way [31-33]. Similarly, while there is
insufficient data for full mapping of TMDs, first fits are
being performed [30,34,35], particularly for the unpolarized
case. Although significant progress is expected from the
above mentioned new experimental setups, it would be
invaluable to complement it with first-principle lattice
investigations.

Being a genuinely nonperturbative approach, LQCD can,
in principle, fill the gap coming from the lack of access to
low-energy properties in perturbation theory. A potentially
crucial restriction of LQCD for calculating partonic dis-
tributions is its Euclidean metric, prohibiting direct access to
them. However, indirect access is still possible and different
approaches to it are intensely investigated in the last years.
This present surge of studies was initiated by seminal papers
of Ji [36,37]. He proposed that while light-front correlations
are inaccessible in Euclidean spacetime, lattice-calculable
spatial correlations in a boosted hadron can be used to
define alternative observables that can be appropriately
“translated” to the desired distributions. There are several
lattice observables that are well suited to extract partonic
distributions from them. Apart from being calculable on the
lattice, these observables need to have the same infrared
structure as their light-front counterparts and be renorma-
lizable. While Ji’s proposal of quasidistributions sparked
intense studies, earlier approaches also existed [38—41],
some of them revived in the last years, and new ones were
put forward [42-46]. Similarly to the standard phenomeno-
logical approach, all of these methods make use of
factorization at the stage of relating the lattice data to
light-front distributions. The different lattice approaches
were all subject to broad theoretical and practical studies,
see, e.g., Refs. [42,47-119] and the reviews [120-124].

Quasidistributions [36] are defined as Fourier transforms
of Euclidean matrix elements (MEs) of boosted hadrons

with an operator insertion of a spatially separated quark-
antiquark pair connected by a Wilson line and with a Dirac
structure that determines the type of the distribution.
Exactly the same MEs can be used to define another
generalization of light-front distributions, dubbed pseudo-
distributions [43,44,55,74,125-128]. With z denoting the
vector describing the position of the Wilson line and p
being the hadron’s 4-momentum, the difference between
the two approaches consists in the Fourier transform being
either in |z| at fixed p. (quasi) or in p-z at fixed |z
(pseudo). The Lorentz-invariant product p - z is often called
the “Toffe time.” However, the key difference comes at the
stage of factorization, performed in momentum space
(quasi) or in coordinate space (pseudo). In practice, in
the quasidistribution method, renormalized MEs are first
subjected to reconstruction of the x-dependence, i.e.
coordinate-space MEs are an input to a procedure that
brings them to momentum space of Bjorken-x fractions.
The ensuing functions are called quasidistributions and
they are then subjected to a factorization-based matching
procedure, that, in turn, “translates” the spatial correlations
that they express to light-front correlations that define
physical distributions like PDFs and GPDs. In the pseu-
dodistribution approach, renormalized MEs, called pseudo-
ITDs (loffe time distributions), are usually at this stage
subjected to a matching procedure, leading to light-front
ITDs. These functions are then input to the x-dependence
reconstruction. A Fourier transform of pseudo-ITDs can
also be done prior to matching, leading to the so-called
pseudo-PDFs; however, the factorization is still in coor-
dinate space, at short distances. These differences between
the two approaches have far-reaching consequences and
imply possibly very different systematic effects, although
in the end, the physical distributions from both methods
should coincide.

In this paper, we investigate discretization effects, which
are particularly important for nonlocal operators. We use the
pseudodistribution approach to extract unpolarized isovec-
tor PDFs of the nucleon in the continuum limit. We use three
ensembles of twisted mass gauge field configurations at
lattice spacings a =~ 0.064, 0.082 and 0.093 fm, at a
nonphysical pion mass of around 370 MeV. This setup
has been used to determine unpolarized and helicity PDFs
within the quasidistribution approach [95], at a fixed
nucleon boost of 1.8 GeV. Here, we supplement the lattice
data of Ref. [95] with additional three to four nucleon
momenta to cover the full range of loffe times required in
the pseudo-PDF method and to utilize the standard ratio
scheme renormalization, where the divergences are canceled
by taking a ratio with respect to zero-boost MEs.

The outline of the paper is as follows. In Sec. II, we recall
some theoretical principles of pseudo-PDFs along with their
practical aspects. Our lattice setup is outlined in Sec. I1I. The
results of our study are described in Sec. IV. Finally, Sec. V
concludes and discusses future prospects.
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II. THEORETICAL SETUP AND
ANALYSIS TECHNIQUES

We refer the reader to the review of Ref. [74] for an
extensive discussion on the theoretical principles and
properties of pseudodistributions and summarize here only
the main aspects.

A. Euclidean matrix elements

Euclidean correlations that underlie quasi- and pseudo-
PDFs of the nucleon are described by bare MEs, M (P, z),
of the form

(P.5'|Or(0.2)

P,s) = Mp(P,z)a(P,s")\Tu(P,s), (1)

where u(P,s) is a spinor corresponding to a Euclidean
4-momentum P and spin s. The bare nonlocal operator is

Or(x,2) = (x)TW(x, x + 2)y(x + 2), (2)

with x and z denoting position 4-vectors, the latter being the
displacement between light-quark doublets y and v, which
are connected by a Wilson line W that maintains gauge
invariance.! The Pauli matrix 73 corresponds to the iso-
vector flavor combination u# — d for which all results of this
work are obtained. In the following, we choose z =
(0,0,0,z3) and P = (P, 0,0, P3) and henceforth, z will
denote the length of the Wilson line. The Dirac structure I
determines the type of the accessed PDF and here, we
choose I" = y, to consider unpolarized PDFs” and drop the
index I" in M below.

The above MEs, M(P, z), can be viewed as functions of
the Wilson line length z and the loffe time v = P;z, giving
rise to the notion of ITDs mentioned above. From now on,
we will, thus, use the notation M(v, z) to refer to these
objects. The lattice-calculated ITDs contain the standard
logarithmic divergence and, at nonzero z, additionally a
power divergence induced by the Wilson line. These
divergences have been shown to be multiplicatively renor-
malizable to all orders in perturbation theory [53,54] and
they can be removed through a ratio with a ME of the same
operator at P; = 0. We employ a double ratio that also
involves z = 0 MEs to cancel additional systematics and
ensure exact normalization of the charge [52],

M(v,z)/ M(v.,0)

M. 2) =702/ M(©0.0)°

(3)

'We employ here the opposite convention to the one com-
monly used in the quasi-PDF literature, wherein y rather than y
is displaced by z. This implies the opposite sign of the imaginary
part of MEs.

*The other choice of " = 73 leads to slower convergence [125]

and to mixing with the twist-3 scalar operator for nonchiral lattice
fermions [129-131].

The renormalized MEs, I (v, z), are referred to as reduced-
or pseudo-ITDs. Apart from serving the purpose of renorm-
alization, the above ratio can be plausibly conjectured to
remove some systematic effects [52]. In particular, this
concerns discretization effects and O(ZzAéCD) higher-twist
effects (HTEs), which are likely similar in the numerator
and the denominator of the ratio. We note that the above
prescription defines a nonperturbative renormalization
scheme and 1/z is a kinematic scale that suppresses
higher-twist contributions, analogous to the momentum
transfer in deep inelastic scattering. As a ratio, I is
renormalization group invariant. However, its leading-twist
contribution is related by factorization to the PDF at scale u
via the dimensionless product z%u? (see below). Therefore,
under the leading-twist approximation, the dependence of
M on z is governed by Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution.

B. Matching to light-front correlations

Reduced ITDs are Euclidean observables that can be
“translated” to their light-front counterparts via a pertur-
bative matching procedure. We will denote the light-front
(matched) ITDs by Q(v, i), where the MS renormalization
scheme is chosen with the renormalization scale denoted by
u. Matched ITDs are related to light-front PDFs, g(x, i), by
a Fourier transform:

q(x,p) = 1 /_ T e QW ). (4)

27 )

The relevant one-loop matching formulas were derived
in Refs. [55,128,132,133] and recently, the formalism was
extended to two loops [134]. In this work, we apply it for
the first time to actual lattice data. Reference [134] provides
a factorization relation for the unpolarized matrix element
renormalized in a generic scheme (denoted below with the
superscipt “R”). For the case of interest here, i.e. the ' = y,
Dirac structure and with the standard relativistic normali-
zation of states, this relation reads’

Mp.o)f =~ / ' dx g (e p)id(w.zp). (5)

2R(z, ) J-1

where p is the renormalization/factorization scale and the
factorization is valid up to O(ZZA6CD) higher-twist cor-
rections. R(z,u) is the conversion factor between the
chosen renormalization scheme and the MS scheme, in
which the light-cone PDF ¢(x, u) is expressed. A(xv, z, u)
is the perturbatively calculable matching kernel, available
to two loops:

3We insert an additional factor 2 in the denominator of the
right-hand side of Eq. (5) to reconcile the convention in Ref. [134]
[in which in Eq. (6) iA(0, z, ) = 2 at tree level] with our Eq. (1).
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2 2 3 2 3
A(.X'l/ zZ, ’u) — Deixv + s” F ZL ( ey +/ du aflli (u)(eixuu _ eixy)) +% [ZzLicﬁ‘z)aE%eim + z ZLICEZ)
=0 =0 j=1 =0 j=1
1 _ _ L 0 , .
X A du a[(?])(elxuv _ elxz/) + ZLlCé(tz) /1 dl/l aﬁ%(u)(emuv _ elxp):| , (6)
i=0 -
where L = u?/4) + 2y and the gauge group factors ©
o ) e and the gauge sroup o) = [z, )
ae CP=c2, P =cpCp CP =n;CiTp  and .

c? =2 - CrC,/2, withn  the number of quark flavors.

The one-loop coefficients are allh =5/2, all) =3/2,  where the kemel A(xv, z, ) = A(xv, z, 1) /A(0, z, ) and

a(()ll)l(u>: (u2—4u+1—41n(1—u))/(1 —u) and a<1) (1) = the limits of the integration can be extended to infinity.

11 ..
(u> +1)/(u—1). Explicit expressions for the two-loop Writing

functions al(jz,z are lengthy and are given in the Supplemental

Material of Ref. [134]. ) i s (1) a2 @

To get the appropriate expression in the double ratio iA(xv,z. 1) =2e +;A (v ’Z’/‘H';A (xvz.1) (8)
scheme, one can form a suitable ratio of the right-hand
sides of Eq. (5), in which the conversion factors R(z, u)
cancel and one uses the normalization condition of g(x,u):  and Taylor-expanding A(xv, z, u) to O(a?), one arrives at
|

Alxv,z,p) = €™ + g_s (A (xv, z, 1) — €A (0,2, p))
T

2 AD (xw, 7. u)AD(0, 2. . o (A(0, 2, 1))
+2as2 <A(2)(xl/,Z,/t) Az ﬂ; 020 _ e™AD(0, z, ) + e”‘”—( ( zz w) ) 9)
T

Next, we derive the matching formulas in coordinate space, that transform the reduced I'TDs into light-cone ITDs. This
procedure can be split into the evolution part, which takes the ITDs defined at different scales 1/z to a common scale 1/7'u,
yielding evolved ITDs (v, u), and the matching part, leading finally to Q(v, u). First, we demonstrate that the above
matching reproduces the known one-loop formulas [55,128,132,133] used in previous work. Taking the explicit form of the

one-loop functions afli( ) given below Eq. (6) and plugging in Eq. (4), one obtains:

M(v.2) = Qv.p

C 24 1—4In(1 - 241, F2uletre ) ) 0 .,
a F/dx/ <u u —I—l Il( M) _ Ml + an /446 )(ezuxb _ elxu)/ dv e'””‘Q(z/,,u), (10)
—u —u P

|
where the contributions from the terms containing the Cr 2uteret!
coefficients a!]) cancel between A (xv) and ™A (0). C(u.z,p) — (L(l)(”)+B(l)(”)lnT>’ (12)
Using the integral representation of the Dirac delta, the
exponentials in the above equation lead to Q(uv,p) and
Q(v,p). To arrive at the form of Ref. [55] that we used in BW(u) = (13)
our previous study [83], we rearrange the terms to have
In(z%u?/4)e? =+, leading finally to

In(1 —u)
u—1

LW (u) =4 —2(u—1). (14)
M(v.2) = Qlwp) +% [ duC(u.zp)
TJo A similar procedure at the two-loop level, invoking
x (Q(uv,u)—Q(v,u)), (11)  additionally cancellations between A (xv) and e"*A?)(0)
in Eq. (9) and redefinition of the squared logarithm, leads to
with the two-loop matching,
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a; [1 a? [1
Mv.2) = Q) + % [ du CO w2 (Ques) = Qweg) + % [ €. 2p) Qo) = Q). (15)

Pule

2yp+1

2,2 ,27p+1
4+ B (1) n? ﬂf) (16)

2 2 2 | 2 2 2
(a0 = 00 + a3 0 -3l 0+ ol () + o CalaBh ) = a0 + ) >
2 2 2
L) = 3+, CoT rag (u) = a3 (u) + a) (u))

(€3 -4crs ) @i - o) w<o

(17)
2 2 I 1 2 2
3 (aﬁ& () = 2a5y) () = 3ap)) () + Lal)) <u>) + CrCalald) (u) = 248 (w) u >0,
B(2)(u) _ CoTo(a? 242 (18)
1 = +nCrTr(ayy (u) = 2a5 (u))
(c’f; —%CFCA> al’)(u) u <0,
C2 (2) _3 (1) Cc.C (2) C.T (2) > O,
BQZ)(M) _ F <a211(u) a111(u) | + CpCpayy, (u) + nyCrTraz; (u) u (19)
0 u < 0.
One can check that the matching relation (15) can be inverted in the following way:
a 1 a2 1
O, u;z) = M(v,z) — ;Y/ du CY(u)(M(uv, z) — M(v, 7)) — ﬂ—;/ du C? (u)(M(uv, z) — M(v, 2))
0 -1
2 I 1
+ %/ du C (u) / du'CO (") (M(uw'v, ) — M(uv, z) = M(u'v, z) + M(v, 7)), (20)
0 0

which is equivalent to Eq. (15) up to O(a}) effects. We use
this equation to calculate light-cone ITDs, Q(v, ), splitting
the procedure into two parts:

(1) BM(u) (one-loop) and BS2> (u) (two-loop) kernels—
evolution of z-dependent reduced ITDs to a common
scale 1/7 = u, taken to be 2 GeV—yielding evolved
ITDs, M/ (v, u; 2),

(2) LM (u) (one-loop) and L? (u) (two-loop) kernels—
matching and scheme conversion at fixed y—yielding
the final light-cone ITDs, Q(v, y; z).

Note that at this stage, the evolved and matched ITDs keep
track of the initial scale 1/z of reduced ITDs. This will allow
us to check the expected independence of z after the
matching procedure. In practice, this will provide an
important criterion for the maximal z that can be used
for the reconstruction of PDFs. In principle, z is limited to
the perturbative regime—thus, it should not exceed
0(0.2 - 0.3) fm, at which point uncontrolled O(z*Agp)

HTEs may be enhanced. However, a significant part of
HTE:s is expected to cancel when forming the double ratio
and moreover, the practically achievable level of precision is
limited. Thus, it is plausible to extend the maximal value of
z in the reconstruction, z,,,,, to a value such that Q (v, y; z) is
independent of z, considering ITDs coming from different
combinations of (Ps, z), but corresponding to the same Ioffe
time P3z. Having established the empirical value of such
Zmax> W€ Will drop the z-argument of evolved and matched
ITDs and ITDs from different combinations of (P, z) will
be averaged over.

C. Reconstruction of momentum-space distributions

PDFs are formally related to matched ITDs by Eq. (4).
However, this equation assumes an infinite range of
continuous loffe times, while lattice evaluations provide
only a discrete set of matched I'TDs, truncated at some loffe
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time implied by the available z,,,,. This generic limitation
for lattice determinations of partonic functions was dis-
cussed in detail in Ref. [66]. As in our previous work [83],
we will follow three ways of reconstructing the light-cone
distributions:
(1) naive Fourier transform, i.e. using a discretized
version of Eq. (4),
(2) Backus-Gilbert (BG) method [60,135] (see the
Appendix for details),
(3) reconstruction with an ansatz for the light-cone
PDF [73].
In each of these ways, additional assumptions are provided
that fill the gap between discrete lattice data and continuous
distributions. In the naive Fourier transform, this
assumption is most severe—the ITDs are assumed to be
zero beyond z,,,,« and no further criterion is used. In the BG
method, there is the model-independent assumption of
maximizing the stability of the reconstructed distribution
with respect to variation of the data within their errors,
which alleviates to some extent the data missing beyond
Zmax- One can show that the naive Fourier transform yields a
convolution of the PDF with a sinc-type kernel of width
(P3Zmax)”"; likewise, the BG-reconstructed g(x) is an
integral over nearby points x’ of the product of the true
PDF with a computable x-dependent smearing kernel
[95,135]. Finally, ansatz reconstruction assumes a func-
tional form of the PDF, analogously to procedures used in
global fits of experimental collider data.
It is convenient to consider separately the real and
imaginary parts of ITDs. The former are related to the
valence distribution, g, = g — 51,4

1
Re Q(v, u?) = A dx cos(vx)q,(x, u). (21)

The imaginary part is related to the distribution

QUZsEQU+ZZIZQ+q’
1
Im Q(v, y?) = / dx sin(vx)qo,(x, 4%).  (22)
0

Combining ¢, and ¢q,,,, we will also present results for
q = q, + g and for the antiquark (sea quark) PDF, ¢, = g.
In the ansatz reconstruction, we will use the simplest
plausible functional form capturing the limiting behaviors
for small and large x,

q(x) = Nx*(1 - x)/, (23)
with fitting parameters «, /. For the valence PDF, normal-
ized to 1, N=1/B(a+1,p+1), B(x,y) =T'(x)['(y)/
I'(x + y) being the Euler beta function and I'(x) the gamma

*All kinds of distributions extracted in this work are for the
u — d flavor combination, i.e. g(x) = u(x) — d(x).

function. In turn, the normalization of the distribution ¢,
N, is an additional fitting parameter. The fits minimize the
x* function,

s B0, u) = Qv p)
x = 2
v=0 GQ(D"“)

, (24)

where o5 (v, i) is the statistical error of Q(v,u) and
Qf(v,p) is the cosine/sine Fourier transform of the fitting
ansatz, for the ¢, and g¢,,, case, respectively. Such fits
define the fitted ITDs, Q/(v,u), which are continuous
functions of the loffe time. Note the fits depend on the
maximum loffe time, v,,,, which is determined by the
maximal length of the Wilson line, z,,,,, and the maximum
nucleon boost.

III. LATTICE SETUP

In this work, we study the continuum limit of lattice-
extracted ITDs and the resulting unpolarized PDFs. For
each of the employed three lattice spacings, a = 0.0644,
0.0820, 0.0934 fm, we use the lattice data of Ref. [95]
pertaining to nucleon boosts of around 1.8 GeV and the
Dirac structure y,. These data were used for an analogous
continuum limit study in the quasidistribution framework.
For quasi-PDFs, one can only use data of a sufficiently large
momentum, for which contact with the light-cone frame can
be attained. In turn, pseudo-PDFs can utilize all nucleon
boosts, including small ones, thus leading to precisely
extracted ITDs at small Ioffe times. To take advantage of
this fact, we supplement the data of Ref. [95] with all
intermediate nucleon boosts (including zero boost used to
form the reduced ITDs) by performing additional calcu-
lations. In Ref. [95], all data were produced employing five
steps of stout smearing [136] applied to the Wilson line of
the nonlocal operator. Here, we also consider data obtained
without stout smearing, checking the independence of the
results concerning this aspect.

The computational techniques are the same as in Ref. [95]
and we refer to this paper for more details, discussing here
only the main aspects. The used ensembles of gauge field
configurations were generated by the European Twisted
Mass Collaboration [137], the predecessor of the current
Extended Twisted Mass Collaboration (ETMC). They have
two degenerate light flavors of maximally twisted mass
fermions [138,139] with masses corresponding to a pion
mass of around 370 MeV and the strange and charm quarks
with near-physical values of the mass. The gluonic part of
the action is Iwasaki improved [140]. The parameters of our
calculations are given in Table I. While twisted mass
fermions yield automatic O(a) improvement of physical
observables when tuned to maximal twist, the evaluated
nonlocal matrix elements do not belong to this category and
thus, the improvement holds only at z = 0. Consequently,
the ITDs calculated in this work have O(a) leading
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TABLE L

Parameters of gauge field configurations ensembles used in this work. We give the ensemble label, the

lattice size [(L/a)® x (T/a)], the spatial lattice extent (L) in fm, the value of the product m,L, the lattice spacing (a)
in fm, the source-sink separation in lattice units (¢,/a) and the values of the available nucleon boosts (P3 as multiples
of 2z/L and in GeV), together with the numbers of employed configurations (N.u,) and the number of
measurements (N pe..s, With 4, 8, 16 or 32 measurements per configuration).

Ensemble  (L/a)}x (T/a) L (fm) m,L a(fm) t//a P P3 (GeV)  Negnt Nimeas
0 0 630 2520

2z/L 0.55 630 2520

A60 243 x 48 2.2 4.1 0.0934 10 4r/L 1.11 1260 10080
67/L 1.66 1260 40320

0 0 458 1832

2z/L 0.47 458 1832

B55 323 x 64 2.6 50 00820 12 4n/L 0.94 915 7320
6z/L 1.42 1830 29280

8x/L 1.89 1829 58528

0 0 630 2520

2r/L 0.60 630 2520

3

D45 32° x 64 2.1 3.9 0.0644 15 4n/L 1.20 1259 10072
67/L 1.80 1259 40288

discretization effects. Thus, our continuum extrapolations
are performed assuming O(a) fitting ansatzes, but we check
also the alternative O(a?) ones for comparison. The latter
may be plausible when including relatively small z values,
for which remnants of automatic O(a) improvement may be
present. Also, it was shown in Ref. [78] that maximal twist
can remove some of the O(a) contributions and some
reduction of these can also ensue in the double ratio that
defines reduced ITDs. We also remark that all statistical
analyses are performed using 1000 bootstrap samples
generated by reshuffling the original data.

IV. RESULTS

A. ITDs

The lattice input to the determination of PDFs via the
pseudodistribution approach are bare MEs, which we show
in Fig. 1 for all our ensembles and for all employed nucleon
boosts, with five steps of stout smearing. We note that the
z = 0 matrix element is independent of the nucleon boost
and yields 1 upon multiplication with the appropriate scale-
and scheme-independent normalization factor Zy, reflect-
ing vector current conservation. At nonzero z, the real part
decays to zero faster as the boost increases. The imaginary
part vanishes for z = 0 at any boost and for all z’s in the
zero-momentum case, within uncertainties. For z > 0, it
becomes more pronounced with increasing boost, with its
maximum moving towards smaller Wilson line lengths.

In Fig. 2, we show reduced ITDs (five iterations of stout
smearing), formed according to Eq. (3), as a function of the
Ioffe time. For sufficiently small Ioffe times, all nucleon
boosts yield ITDs consistent with the ones for other values
of P3. Such ITDs are defined at different scales 1/z, which
suggests that the scale dependence is relatively small.

Nevertheless, there is a clear trend in the data that, at a
fixed Ioffe time v, the real (imaginary) part of reduced ITDs
increases (decreases) with increasing boost. Below, after
performing the matching procedure, we will see how this
trend is counteracted by perturbative corrections and the
residual scale dependence is lowered, as long as one stays
in the domain of validity of perturbation theory.

Evolved and matched ITDs for separate ensembles are
shown in Figs. 3 and 4, respectively. Here, we decompose
the perturbative evolution and matching procedure into
one-loop and two-loop parts. The two-loop effect in the
evolution is much smaller than the one-loop one, but its
relevance is increasing at larger loffe times. However, one
needs to keep in mind that the perturbative procedure
becomes unreliable at large distances z. Nevertheless, the
two-loop effect is clearly statistically significant for ITDs
with Wilson line lengths z 2 0.4-0.5 fm and the evolved
ITDs are substantially different than reduced ITDs. The
second, L-kernel part of the perturbative matching acts in
the opposite direction, bringing matched ITDs closer to
reduced ones and making the two-loop effects statistically
significant only for ITDs originating from z 2 0.5-0.6 fm.

Crucially, Fig. 4 reveals that the trend mentioned in the
context of reduced ITDs, of ITD values at a fixed v
increasing/decreasing with P; for the real/imaginary part,
is no longer observed for small Ioffe times. In the real part,
for example, larger-momentum I'TDs at small v are corrected
downwards more than small-momentum ones, reducing the
spread between matched ITDs from different combinations
(P3,z) at a given v. Obviously, at some value of z, where
perturbation theory is no longer trustworthy, an overcom-
pensation effect occurs—thus, in large-v ITDs, the trend is
exactly the opposite to the one in reduced ITDs, with larger
P5 leading to smaller/larger I'TDs in the real/imaginary part.
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(red 5-stars), P; = 6x/L (yellow 6-stars), and P; = 8x/L (purple squares; only B55).

This overcompensation behavior, indicating the break-
down of the perturbative formalism, allows us to establish
the aformentioned practical criterion for the value of 7z,
in the PDF reconstruction procedure. On the one hand, the
coordinate-space factorization should include only ITDs at
perturbative values of z, with large-z I'TDs contaminated
by potentially uncontrollable HTEs. On the other hand, the
double ratio is likely subtracting a part of the HTEs and the
remaining ones may be well below our statistical precision
for values of z extending beyond the perturbative regime.
Inspecting Fig. 4, we observe that ITDs at small loffe times

are independent on the nucleon boost at which they have
been obtained as long as the product Pz is the same, thus
demonstrating that perturbative corrections decrease the
spread of data from different boosts and the matching
procedure works properly. The P;-dependence of such
equal-v ITDs (i.e. the overcompensation effect discussed
above) starts to set in for ITDs obtained at values of z larger
than around 0.5 fm for the real part and already around
0.3 fm for the imaginary part (we note that the two-loop
correction slightly decreases this value), indicating statis-
tical significance of HTEs for such large lengths of the
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FIG. 2. Real (left) and imaginary (right) parts of reduced ITDs, (v, z), at different values of P5 for the ensembles A60 (top), B55
(middle), and D45 (bottom). The different symbols correspond to P3 = 2z/L (blue circles), P; = 4x/L (red rhombuses), P; = 6x/L

(yellow stars), and P3 = 8z/L (purple squares; only B55).

Wilson line and the breakdown of coordinate-space fac-
torization. Below, we keep these values in mind when
reconstructing the PDFs. Particularly the value for the
imaginary part is rather low, close to the expectation for
the validity of perturbation theory. This provides a clue that
the reconstruction of distributions involving antiquarks (i.e.
using the imaginary part of ITDs) may be more difficult for
the lattice. Thus, we will look at PDFs reconstructed with
three different values of z.,,.: 0.3 fm, 0.5 fm and 0.7 fm.

For a given value of z.,,,, all data corresponding to z >
Zmax are dismissed and ITDs corresponding to the same
Ioffe times that originate from different combinations of
(Ps3,z) are averaged. A comparison of such v-averaged

reduced, evolved and matched ITDs (with two-loop for-
mulas) at a finite lattice spacing is shown in the three upper
rows of Fig. 5, for z,,,, = 0.5 fm. We show ITDs at loffe
times corresponding to the discrete values attainable for
B55 and D45, ie. 2zn/32, with n integer. For A60
(L/a = 24), ITDs are interpolated to these discrete values
by fitting fourth-order polynomials to the v-dependence.
We note such polynomials provide a very good description
of the v-dependence in the entire range of loffe times. As
mentioned above, the effect of matching is opposite to
the one of evolution, with effects of the former almost
cancelling the latter. In the real part, at small/large loffe
times, matched ITDs are below/above reduced ones, with
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markers show the one-loop effect and the closed darker-color ones the two-loop effect.

exact cancellation of evolution and matching occurring
around v = 1.8. The behavior is exactly the opposite in the
imaginary part, with small/large-v matched ITDs above/
below reduced ones.

At this stage, we are ready to perform continuum limit
extrapolations from our three lattice spacings. The fitting
ansatz takes the form

I(a) = Z(0) + " d, (25)

where Z(a) is the considered ITD (reduced or matched at
one/two-loop order, either real or imaginary part) at lattice

spacing a and cgl Jis the slope of the leading discretization
effects linear in a’, with i = 1, 2. The extrapolations are
performed always at fixed Ioffe times being integer multi-
ples of 2z/32.

The bottom row of Fig. 5 compares our reduced, evolved
and matched ITDs in the O(a) continuum limit, again
showing z,,.x« = 0.5 fm. Clearly, the errors are inflated in
the continuum limit, decreasing the significance of
differences between reduced and matched ITDs. In fact,
at all Ioffe times, these differences become statistically
insignificant, with largest ones slightly exceeding 1-o
(imaginary part at small values of v).
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darker-color ones the two-loop effect.

In the continuum limit, we also address the issue of the
potential influence of the number of stout smearing
iterations on our results. In Fig. 6, we show the v-averaged
reduced ITDs of the three ensembles with zero or five steps
of stout smearing, together with their continuum limit
extrapolations, performed both with an O(a) and O(a?)
fitting ansatz (Zp.x = 0.5 fm). This reveals that there is
significant dependence of ITDs on the number of stout
iterations for the separate ensembles, particularly at large
Joffe times. However, the results in the continuum limit are
fully compatible between zero and five stout steps. This

holds in the whole considered range of loffe times with
extrapolations linear in a. In the case of a? extrapolations,
the difference between zero stout and five stout is mildly
statistically significant in narrow ranges around v = 2 (real
part) or v = 1 (imaginary part). Since we know that O(a)
effects are bound to be present, this suggests that these
effects may be enhanced around these Ioffe times and
supports the need for the O(a) improvement of the
underlying MEs. We also note the compatibility of con-
tinuum results obtained with extrapolations linear in a and
a2, for the whole considered range of loffe times. This is a
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FIG. 5. Real (left) and imaginary (right) parts of reduced (blue circles), evolved (red rhombuses), and matched (yellow stars) ITDs,
with the same Ioffe times corresponding to different combinations (Pj,z) averaged over, including Wilson line lengths
7 < Zmax = 0.5 fm. Shown are Ioffe times corresponding to the discrete values attainable for BS5 and D45; the data for A60 (with
different values of the boost in lattice units) are interpolated with fourth-order polynomials. From top to bottom: A60, B55, D45,
continuum limit from O(a) extrapolation (evolved and matched ITDs from two-loop formulas). The insets zoom in the small-v behavior.
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FIG. 6. Real (left) and imaginary (right) parts of reduced ITDs, (v, z), with the same loffe times corresponding to different
combinations (Ps,z) averaged over, z < zp. = 0.5 fm. Shown are data points for the ensembles A60 (blue circles), B55 (red
rhombuses), and D45 (yellow stars). The red/blue bands correspond to data obtained with zero/five steps of stout smearing of the Wilson
line entering the nonlocal operator, with the lighter/darker color pertaining to O(a)/O(a?) extrapolation to the continuum.

consequence of the relative smallness of discretization
effects, with reduced ITDs compatible between ensembles
for almost all values of v. Obviously, the longer O(a)
extrapolation inflates the errors much more significantly.
Overall, it is clear that ITDs obtained with different
numbers of stout smearing iterations differ only by O(a)
cutoff effects. Hence, below we concentrate exclusively on
the slightly more precise case of five stout steps.

Figure 7 presents the dependence of v-averaged matched
ITDs, again at the level of single ensembles and the O(a)
and O(a*) continuum limits. In this case, we compare
results from one- and two-loop matching. As observed
above in Fig. 4, the two-loop effects for z < 0.5-0.6 fm are
smaller than statistical uncertainties already for separate
ensembles. Thus, the continuum limits with inflated errors
are also consistent. Again, cutoff effects are almost invis-
ible at this level of precision. The slope c(Ial) is statistically
insignificant for all loffe times, being at most 1-1.5-¢ away
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from zero at v < 2 in the real part. This is depicted in Fig. 8,
where we plot c(Ial)afgss, where apss = 0.082 fm is our
middle lattice spacing. Thus, this quantity can be inter-
preted as the difference of the fitted B55 result and the

continuum limit value.

B. PDFs

Now, we move on to reconstruction of PDFs from our
matched ITDs. The criterion of restricting lattice data to
ME:s including only rather low Wilson line lengths has an
important consequence for the choice of the preferred
reconstruction method. Namely, ITDs restricted to these
small z’s, combined with our nucleon boosts of up to around
1.8 GeV, allow us to explore loffe time range of up to e.g.
around 4.7 at z,,, = 0.5 fm. As implied by Fig. 7, this
means that neither the real nor the imaginary part of ITDs
has yet decayed to zero. In the naive Fourier reconstruction

061

0.5}

0.3F

Im|[Q)]

0.1F

FIG.7. Real (left) and imaginary (right) parts of matched ITDs, Q(v, u = 2 GeV), with the same Ioffe times corresponding to different
combinations (Ps,z) averaged over, z < zp. = 0.5 fm. Shown are data points for the ensembles A60 (blue circles), B55 (red
rhombuses), and D45 (yellow stars). The blue bands correspond to matching performed at one-loop/two-loop order, with the lighter/
darker color pertaining to O(a)/O(a?) extrapolation to the continuum.
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of one- and two-loop matched ITDs, multiplied by the ith power of our middle lattice spacing, agss = 0.082 fm.

method, this leads to a sharp cutoff of ITDs, which are taken
as identically equal to zero for larger loffe times. The BG
approach addresses the inverse problem with a model-
independent mathematical assumption, but does not provide
the data missing beyond z, either. In turn, the fitting
ansatz reconstruction supplements the data by assuming a
certain model parametrization reflecting the expected small-
and large-x behavior, which implicitly models the missing
large-v region of the ITD. While the implied model
dependence is nonideal from the point of view of achieving
genuine first-principle results, in practice it is inevitable at
this stage of lattice calculations. The conclusion that the
quality of lattice data needs to improve is well known, see
e.g. Refs. [120,123] for extensive discussions, and it should
be understood as being able to obtain robust data at larger
nucleon boosts. The latter is essential in both quasi- and
pseudodistribution approaches, by allowing these methods
to make reliable contact with the light-cone frame and/or
exploring the full range of Ioffe times.

Thus, we first present our PDF reconstructions from
fitting, at the level of separate ensembles. All four kinds of
considered PDFs are shown in Figs. 9, 10, and 11, for
ensembles A60, B55, and D45, respectively. In each plot,
we compare results from one- and two-loop matching and
we show z,.. = 0.3 fm (left columns), z,.x = 0.5 fm
(middle columns) and z,,, = 0.7 fm (right columns).
Starting with the valence distribution, ¢,, we note that it
is reconstructed with very good statistical precision, with
errors of order 1%-2% for a wide kinematic range.
Consistently with the size of the two-loop correction up
to z~0.5 fm, the two-loop-matched PDFs are consistent
with their one-loop counterparts for z,,,, = 0.3 and 0.5 fm,
with the two-loop correction visible at z,,,,, = 0.7 fm and
small x < 0.1. Distributions involving the imaginary part of
ITDs, employing 3-parameter fits, have larger relative
errors. The additional fitting parameter, the normalization
N, produces a less-constrained model, leading to much
worse precision of the extracted PDFs, with errors for a

large range of x at the level of 10%—20% for the case of ¢,
5%—10% for q and over 25% for the suppressed g. The
two-loop correction affects a somewhat wider x range,
0.2 £ x < 0.4, with the effect at smaller x obscured by the
large errors.

In Fig. 12, we show the reconstructed distributions in the
continuum limit. The continuum extrapolation is performed
at the level of ITDs, thus matched continuum-extrapolated
ITDs are here input to the fitting reconstruction procedure.
The inflation of errors in this extrapolation obscures any
differences between one- and two-loop-matched PDFs,
even at 7., = 0.7 fm. In turn, the flatness of this extrapo-
lation implies no statistically significant difference between
PDFs obtained with O(a) and O(a?) continuum fitting
ansatzes.

To understand the role of z,,,,, we take a closer look into
the z...-dependence of the continuum-extrapolated, two-
loop-matched PDFs. To better illustrate the differences
appearing in the large-x region, we plot the PDFs multiplied
by x in Fig. 13. In the case of the valence distribution, PDFs
reconstructed with all values of z,,, are compatible with
each other. The regime of loffe times probed with growing
Zmax 10Creases, but this has an effect only of decreasing the
error in the small- to intermediate-x region, without gen-
erating tension in any regime of x. As we argued above,
ITDs corresponding to z > 0.5 fm may have uncontrolled
HTEs and thus, the error estimate implied by z,,,,« = 0.5 fm
should be taken as the most reliable. The z,,,,-dependence
in distributions involving the imaginary part of ITDs is
markedly different. While z,. =0.3 fm and z.,, =
0.5 fm cases are compatible with each other, the additional
ITDs from larger Wilson line lengths influence the fits
significantly. The origin of this behavior is rather clear at the
level of imaginary part of matched ITD—z,,, = 0.5 fm
allows one to reach v~ 4.7 at P; ~ 1.8 GeV and the ITD
reaches its maximal value around this Ioffe time. Thus, there
is a considerable part of information missing on the
underlying PDFs if one disregards large z’s for which no
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FIG. 9. PDFs for ensemble A60 from fitting ansatz reconstruction. From top to bottom: ¢,,, ¢, = ¢, + 24, ¢ = q, + G, ¢; = q. The

left/middle/right columns show results with z,., = 0.3/0.5/0.7 fm, respectively. Results from one- and two-loop matching are

compared in each plot.

reliable contact can be made with the light-cone frame.
The plots of ¢g,,,, ¢ and g have another striking feature
indicating that the reconstruction is not robust with
Zmax < 0.5 fm. Namely, the PDFs are nonzero at x = 1.
This is seemingly in contradiction with the fitting ansatz that
includes the factor (1 —x)”. However, a large subset of
bootstrap samples in the fits of the imaginary part of ITDs
favors a zero value for the fitting coefficient f and thus, a
nonzero value of q,,,(x = 1). Most likely, this is again
related to reaching only the region of the maximum of
Im Q(v), which introduces a bias into the reconstructed
PDFs. This is indicated by the well-behaved case of
Zmax = 0.7 fm, where a clearly nonzero value of f is
preferred for all bootstrap samples. However, distributions
involving scales far beyond the perturbative regime need to
be interpreted with care. In practice, a robust reconstruction

of the distributions ¢,,,, ¢ and g will only be possible if
the range of reliably probed loffe times is extended by
accessing them with larger nucleon boosts and smaller
values of z.

We provide all values of our fitting parameters of the
ansatz (23) in Table II (for separate ensembles) and
Table III (for continuum-extrapolated data). Some tenden-
cies can be observed when varying z.,,.. For both ¢, and
4.2 @ 1s largely independent of z,,,,, while for 3, there is
some tendency toward its larger value when increasing
Zmax- The latter is particularly obvious for g, as discussed
in the previous paragraph—f,  is consistent with zero for
the two lower z,,,,, values in continuum fits (as well as ones
for the finest lattice spacing), while the additional ITD data
when extending to z. = 0.7 fm favor g > 0 for all
bootstrap samples.
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FIG. 10. PDFs for ensemble B55 from fitting ansatz reconstruction. From top to bottom: ¢, ¢, = ¢, + 24,9 = q, + @, g, = . The
left/middle/right columns show results with z,, = 0.3/0.5/0.7 fm, respectively. Results from one- and two-loop matching are

compared in each plot.

We conclude the discussion about the z,,,,-dependence
by spelling out our choice of its preferred value. In Fig. 4,
we have observed that ITDs pertaining to the same loffe
time, but originating from different (P3, z) combinations,
start to differ when z exceeds 0.5 fm for the real part and
already 0.3 fm for the imaginary part. However, this
observation is valid at the level of separate ensembles.
Since the continuum extrapolation inflates the errors
significantly, by a factor 3-5, the criterion of compatibility
of ITDs from different (P;,z) pairs can be relaxed to
correspond with these increased errors. In other words, the
plausible value of z,, is such that different (Ps,z)
combinations with the same P;z lead to consistent ITDs
in the continuum limit. In practice, this amounts to ITDs
from such combinations differing by less than around 3-¢ at
the level of separate ensembles. We apply this relaxed

criterion only to the imaginary part and it allows us to
justify z. = 0.5 fm for g,,,. For the real part, we stay
more conservative and do not extend z,,,x beyond 0.5 fm,
which also allows us to have ¢ and g with the same
universal Z,y.

Having chosen our preferred value of z,,,, = 0.5 fm, itis
interesting the see the approach of the PDFs to the
continuum limit at this z,,,, by plotting the PDFs from
the separate ensembles together with their continuum limits
(with two-loop matching), see Fig. 14. The reconstructed
valence distribution is practically identical from the ensem-
bles with the two coarsest lattice spacings, with the one from
D45 slightly below the two at small x and slightly above at
large x. The inflated errors of the continuum PDFs, both
from O(a) and O(a?) extrapolations, imply that the latter
are compatible with D45 and differ from A60/B55 up to a
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FIG. 11. PDFs for ensemble D45 from fitting ansatz reconstruction. From top to bottom: ¢, ¢,», = ¢, + 24,9 = q, + @, ¢, = . The

left/middle/right columns show results with z,,, = 0.3/0.5/0.7 fm, respectively. Results from one- and two-loop matching are

compared in each plot.

bit above 1-¢ in some regions of x. Despite the smallness of
discretization effects, we observe that the tendency is that
they enhance/suppress the valence PDF at small/large x. In
the case of ¢,,,, the situation is qualitatively similar, with
this PDF being compatible between A60 and BS55 and
with some tensions of slightly above 1-¢ in certain x-ranges
with respect to D45. The latter is most susceptible to the
feature mentioned above, with several bootstrap samples
resulting in the vanishing of the fitting parameter f and
gs(x =1) > 0. This behavior propagates also to the
continuum-limit-extrapolated PDFs. Overall, with increased
errors at the stage of continuum extrapolations, we observe
that discretization effects do not play a major role, with
some tendencies similar to the ones in ¢,, of certain
suppression of the continuum g¢,,, at small x and its
enhancement at large x. However, again, the latter is more

indicative of not probing a large enough region of loffe
times. Similar conclusions can be drawn for the two
remaining distributions, being linear combinations of g,
and qv2s-

Finally, again only for our preferred value of
Zmax = 0.5 fm, we compare the effects of the three
reconstruction methods (Fig. 15). The largest differences
between the fitting reconstruction and the two other
methods can be seen in the small-x regime. With our
relatively small z,,,,,, the ITDs corresponding to the largest
probed loffe times, are still nonzero. The sharp cutoff on the
Ioffe time assumed in the naive reconstruction and the BG
method translates to an artificially lowered value of the
PDFs at small x. In fact, by construction, these methods are
unable to produce a divergent behavior as x — 0. This
feature is bypassed in the fitting reconstruction by avoiding
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FIG. 12. Continuum-extrapolated PDFs from fitting ansatz reconstruction. From top to bottom: ¢, ¢, = ¢, + 29, ¢ = q, + §,
qs = g. The left/middle/right columns show results with z,,,,, = 0.3/0.5/0.7 fm, respectively. Results from one- and two-loop matching
as well as from O(a) and O(a?) extrapolations are compared in each plot.

the sharp drop of ITD values beyond loffe times inacces-
sible with z,,,,.. While there is, obviously, no ITD data in
this region, the assumption of the fitting ansatz effectively
models the large-v behavior of ITDs, with the behavior
guided by data at smaller loffe times. In the PDFs, this
translates to an enhanced error in the small-x region, as this
regime of PDFs is comparatively more determined by
large-v ITDs, even if PDFs at all x receive contributions
from all Toffe times. It is clear that the errors at small x can
only be reduced if data at larger boosts are available. For
larger x, there is, in general, rather good agreement between
all reconstruction methods, in particular between fitting
ansatz reconstruction and BG. The z,,,« cutoff in the naive
Fourier transform and BG translates to a mild oscillatory
behavior, especially at x 2 0.6. In the end, our preferred

reconstruction method is the one involving the fitting
ansatz. While it has the drawback of being model depen-
dent, this model dependence is naturally reflected in the
final errors. In other words, at the current level of precision,
we are not sensitive to corrections to the functional form of
the fitting ansatz and thus, we expect that the modeling
uncertainty is not significantly larger than our errors. We
view this as a temporary restriction of the approach for two
reasons. Firstly, with increased precision of the data, one
can include further fitting parameters of the ansatz, making
it more realistic and less model dependent. Secondly, if the
full range of Ioffe times is probed with sufficient precision,
i.e. the range of loffe times is extended such that ITDs
decay to zero, all reconstruction methods should lead to
compatible, model-independent results.
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FIG. 13. Comparison of continuum-extrapolated PDFs from fitting ansatz reconstruction with three z,,,, values, 0.3, 0.5, 0.7 fm. From
top to bottom: q,, ¢,0s = 4 + 23, 9 = q, + G, g, = §. The left/right columns show results with O(a)/O(a?) extrapolation. Results are
plotted for PDFs multiplied by x in order to better visualize differences at large x.

054504-19



MANJUNATH BHAT et al.

PHYS. REV. D 106, 054504 (2022)

TABLEII. Parameters a, f of the fitting ansatz (23) for the three separate ensembles; reconstruction of ¢, and g,,, with three values of
Zmax-
A60 B55 D45
qv qv2s qv 425 qv qv2s

Zmax_(fim) a p a p a a p a s a s
0.3 —0.136(19) 1.58(9) —0.81(20) 0.06(17) —0.112(27) 1.49(8) —0.65(27) 0.71(50) —0.157(14) 1.40(8) —0.78(16) 0.01(7)
0.5 —0.135(15) 1.72(9) —0.66(29) 0.37(31) —0.126(11) 1.76(7) —0.60(27) 0.59(31) —0.157(11) 1.54(8) —0.89(20) 0.09(21)
0.7 —0.145(13) 1.86(9) —0.82(20) 0.53(20) —0.126(13) 1.88(8) —0.72(26) 0.72(31) —0.159(8) 1.68(8) —0.61(21) 0.69(22)

C. Compatibility with DGLAP evolution

In Ref. [105], it was found that discretization effects lead
to the violation of the DGLAP evolution of PDFs. The
authors of the aforementioned work only used a single
lattice spacing, but parametrized the cutoff effects using
Jacobi polynomials under the assumption that they have
the form a/|z| multiplied by a function of v. Here, we can
test their findings explicitly with three lattice spacings.
We recall here the methodology of this test proposed in
Ref. [105]. It consists of fitting the real part of ITDs at fixed
z to a cosine Fourier transform of a phenomenologically
inspired ansatz for the valence PDF:

X (1 — x)Pu

2 = Blay + 1.py + 1)’

(26)

where 3, is held fixed and the only fitting parameter is a,;,
where the subscript M denotes the fitted ITD (M = IN, Q).
We consider two strategies for ,,. We take ), = 3, as in
Ref. [105], but also consider another setup with f3,, for each
ensemble taken as its fitted value in the PDF reconstruction
with 7.« = 0.5 fm, i.e. 1.72 for A60, 1.76 for B55, 1.54
for D45 and 1.27 in the continuum (see Tables II and III).
We refer to this setup as fhPT 1. The fitted values of agy
(fits of reduced ITDs) are expected to depend on z, since
they are defined at different scales 1/z. If the DGLAP
evolution is satisfied, the z-dependence should be consid-
erably milder in ay (fits of matched ITDs)

Such fits for separate ensembles are straightforward and
can be performed for fixed z/a’s with their implied Toffe time
values. One can also choose to fit at fixed values of z, e.g.
multiplies of discrete z pertinent to D45, with interpolations

between neighboring z/a’s for A60 and B55. However, we
are also interested in such fits for continuum-extrapolated
ITDs. In this case, continuum limit extrapolations need to be
performed not only at fixed z, but also at fixed P5z. Since
the nucleon boosts of the different ensembles are slightly
different, this requires an additional interpolation in loffe
time at fixed z. Thus, we use the following approach. First,
we perform fits of Eq. (26) for all ensembles at fixed z
satisfying the condition z = nap,s, where n is integer and
apys = 0.0644 fm is our finest lattice spacing. As hinted
above, this implies the need for interpolations for A60 and
B55, performed with fourth-order polynomials to the z/a-
dependence at fixed P;. We note these fourth-order poly-
nomials provide very good description of this dependence.
Having the ITDs at fixed z, fits of Eq. (26) provide the
z-dependence of the fitting parameter @;, and a parametri-
zation of the v-dependence at fixed z. The latter are used for
interpolation to common P;z’s required by the continuum
limit extrapolation. Performing this interpolation, we arrive
at separate-ensemble ITDs at fixed values of z and P53z, both
being integer multiples of the values pertinent to D45. These
can be extrapolated to the continuum limit and subjected
again to fits of Eq. (26), leading to the z-dependence of the
fitting coefficient a,; for continuum ITDs.

The fits of O(a)-continuum-extrapolated reduced and
matched ITDs are shown in Figs. 16 and 18, respectively,
for both the cases of f5PF 1 and ), = 3. For each value of
z, we show ITDs of the separate ensembles, together with
their continuum limit and the fitting band resulting from
the ansatz of Eq. (26). Note that ITDs corresponding to
both choices of 3, are different, due to the interpolations
to fixed loffe time performed with a different functional

TABLE III.  Parameters a, f of the fitting ansatz (23) for the O(a) and O(az) continuum extrapolations; reconstruction of ¢,,, and g,

with three values of z,;,x-

Continuum O(a)

Continuum O(a?)

qv qv2s qv q2s
Zmax (fm) a p a a p a p
0.3 —0.195(42) 1.10(25) —0.60(28) 0.24(78) —-0.167(31) 1.26(16) —0.70(24) 0.12(29)
0.5 —0.199(32) 1.27(27) —-0.79(21) 0.04(15) —0.172(21) 1.45(16) —0.90(17) 0.07(18)
0.7 —0.203(26) 1.38(28)  —045(33)  0.6334)  —0.176(17) 1.56(16)  —0.49(26)  0.75(29)
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FIG. 14. PDFs from separate ensembles together with their O(a) and O(a?) continuum limits: g, (top left), ¢,,, = ¢, + 2§ (top
right), ¢ = q, + g (bottom left), g, = g (bottom right), and z,,,,x = 0.5 fm. Results are plotted for PDFs multiplied by x in order to better

visualize differences at large x.

form. However, in all cases, reduced and matched ITDs
from interpolations with #5PF i and f3,, = 3 are consistent
with each other. For some distances (smaller than 0.2 fm
and greater than 0.7 fm), description of the ITD data
behavior is not possible with giPF11 and then, we restrict
ourselves to fits with 3, = 3. For all the cases depicted in
Figs. 16 and 18, the fits of Eq. (26) give good values
of y?/dof < 1.

The extracted values of the fitting coefficients agy and
ag are shown in Figs. 17 and 19, respectively. At finite
lattice spacings, we see a striking dependence of @, on the
distance for both choices of f,,, implying violation of the
DGLAP relation. While reduced ITDs are defined at
different scales z and this is unsurprising, the violation
of DGLAP can also be seen in matched ITDs, defined at a
common scale of y =2 GeV. After the continuum limit
extrapolation, agy becomes practically independent of the
distance for reduced ITDs. Obviously, the inflated errors
of continuum ITDs imply that the actual dependence on
the distance may be hidden within statistical errors. For

matched ITDs, there is still considerable deviation of a, at
the smallest and the largest distances, pointing also to the
fact that the observed z-independence of agy may be
accidental. Thus, our data yield no support to the hypoth-
esis that discretization effects are responsible for the
violation of the DGLAP evolution. However, there is also
no contradiction with this hypothesis—the visibly inflated
errors upon continuum extrapolation make all values of a,

for z £0.4-0.5 fm, depending on the scenario for f,,
compatible with one another. In this way, the violation of
DGLAP of continuum ITDs is not seen within our errors
for the distances entering the ITDs used for the
reconstruction of the final PDFs. We note that this is in
the spirit of our criterion of choosing z,. being a
pragmatic one and decided by the precision of the data.
Strictly speaking, distances z 2 0.2 fm correspond to too
small energy scales for perturbation theory to work.
However, in some range of z, the effects of breakdown
of the perturbative expansion are smaller than statistical
uncertainties. The pragmatic criterion for z,,,, chooses its
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FIG. 15. Comparison of reconstruction methods for the continuum PDFs: ¢, (top left), ¢,,, = ¢, + 2§ (top right), ¢ =g, + g

(bottom left), and ¢, = g (bottom right). Shown are naive Fourier transform reconstruction (orange), the Backus-Gilbert method (green)
and the fitting ansatz reconstruction (purple). In all cases, O(a) continuum limit extrapolation from two-loop-matched ITDs is used,

with 2, = 0.5 fm.

value based on the comparison of the magnitude of these
uncertainties and the HTEs of (’)(zzAéCD). Thus, in the
context of this DGLAP evolution test, one can only expect
compatibility of ay until z * 7, and not unambiguous
flatness of the z-dependence of a. This is precisely what
we observe in our data and we view it as being consistent
with the behavior of matched ITDs obtained from different
combinations of (Pz,z) at the same Ioffe time, with
O(zzAéCD) HTEs exceeding our statistical precision
for z =2 0.5 fm.

However, even upon the apparent consistency of our
DGLAP study with the z,,,, criterion imposed on matched
ITDs, the findings are rather inconclusive. Thus, it will be
an important direction for future work to perform this test
with more precise data and, also, using less simplified and
model-independent methodology.

D. Final results

Now, we show our final PDFs obtained in this study and
we compare them to distributions coming from one of the
phenomenological extractions, NNPDF3.1 at NNLO [9]. All
the lattice-extracted PDFs come from ITDs calculated at
three lattice spacings, extrapolated to the continuum limit at
O(a) or O(a?). The probed range of Ioffe times extends
from zero to around 4.7, with the latter value determined by
the maximal length of the Wilson line, z,,,, = 0.5 fm, that
can be justified to be small enough for the short-distance
factorization to hold. We emphasize again that z,,,, needs to
be chosen in conjunction with the available precision of data.
The criterion that we advocate for is the agreement between
ITDs extracted from different combinations of (Ps,z) at
fixed P5z, which leads rather unambiguously to the con-
clusion that z,,,, = 0.5 fm is a safe choice. For the real part

054504-22



CONTINUUM LIMIT OF PARTON DISTRIBUTION FUNCTIONS ...

PHYS. REV. D 106,

054504 (2022)

0.99
0.98
0.97

0.96

0.95

0.9

Re [

0.95
0.9
0.85
0.8

0.9

0.8

0.7 ;

1&

: - T
. 2=00644 fm “_ z =0.3220 fm » z = 0.5796 fm
» i
' 0.8 th 0.5 @
f'l i}
0.6 i 0 I
02 04 06 08 0 1 2 3 0 2 4 6
] 1k ] - 1k
Z=01288fm oo ) 2 =0.3864 fm " 2 = 0.6440 fm
3 ’ #
0.6 . 05 "
[ *
' 0.4 ! ;
0 i
0.2
0.5 1 0 1 2 3 4 0 2 4 6
] 15 1 1r
! z=0.1932 fm - 2 = 0.4508 fm ; » — 0.7084 fm
! 1 1
0.5
05 . ] |
| =
i 0 |
0
0.5 1 1.5 0 2 3 4 0 2 4 6
. ’ T . T 1 - R T T ] 1 A— ' . ' . ’
z = 0.2576 fm " z=0.5152 fm ; #=0.7728 fm
t 05 ~ 0.5 _
i ‘
) % ‘ 0 i
0.5 1 15 2 25 % 1 2 3 4 5 0 2 4 6 8
14
S A60 3=3.0 : B55B=230 D45 3=30 +O(a)B=30 fit O(a) B =3.0
A603=172 | B558=1.76 D453=154  O(a) B=1.27 fit O(a) B =1.27
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FIG. 17. Dependence of the extracted values of the fitting coefficient agy on the physical distance z. The data points correspond to fits
to the data of the separate ensembles, while the band depicts the values of agy from fits to the O(a)-continuum-limit-extrapolated data.
The coefficient By is different for all ensembles and for the continuum limit in the SEPFS setup (left) or fixed to 3 (right).
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of matched ITDs, no deviations between fixed-v ITDs at
different (P3,z) is seen even with the precise separate-
ensemble data up to z > 0.5 fm. The situation is different for
the imaginary part—we observe inconsistencies between
(P3,z) combinations already around z = 0.3 fm, but they
are small enough until z =0.5 fm to be hidden within
statistical errors after the continuum limit extrapolation.
Thus, while z,.,, = 0.5 fm is clearly too large for the
imaginary part at the 2%-3% precision level (of separate
ensembles), it is beyond statistical precision in the con-
tinuum [with O(10%) errors]. In turn, for the real part, HTEs
are apparently smaller and invisible even with 2%-3%
statistical uncertainties. In general, z,,, = 0.5 fm may seem
rather large from the point of validity of perturbation theory
(1/Zmax = 0.4 GeV), but the violation of factorization is
lessened to some degree when taking the ratios of matrix
elements by the partial cancellation of HTEs between the
numerator and the denominator. The remainder of these
effects is hidden in our statistical errors as long as one does
not include I'TDs originating from Wilson line lengths above

5 T T T T
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A \ ;\ |
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0 [ == -
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Zmaxs I Zmax 15 adjusted according to the achieved level of
precision.

The reduced ITDs were subjected to a two-loop match-
ing procedure and we have shown that the two-loop
correction to the standard one-loop matching used in earlier
works is a small effect, thus establishing good convergence
of perturbation theory in the matching. Finally, the matched
ITDs are used in a fitting reconstruction of PDFs, by
employing a phenomenologically inspired fitting ansatz.
We have argued that the implied model dependence is
reflected in the errors of the PDFs, particularly at small x.

In the top left panel of Fig. 20, the valence PDF is
compared to NNPDF. We note that the statistical precision
of the lattice result is similar to the precision of the valence
NNPDF, even after the continuum limit extrapolation that
inflates the errors. However, the errors of the lattice-
extracted PDF are only statistical, with some sources of
systematic uncertainties unquantified. In this work, one of
the most obvious systematics of lattice computations has
been evaluated, by extrapolating the data to the continuum
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FIG.20. Comparison of lattice-extracted PDFs with the corresponding NNPDFs (3.1, NNLO) [9] for ¢, (top left), ¢,o, = ¢, + 2g (top
right), ¢ = g, + g (bottom left), and g, = g (bottom right). All PDFs are reconstructed with a fitting ansatz from two-loop-matched
ITDs with z,,, = 0.5 fm, using either O(a) or O(a?) continuum limit extrapolation.
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limit. However, the lattice ensembles that we have used
involve a nonphysical pion mass of around 370 MeV,
which is bound to play an important role.

This role can be understood by inspecting the PDF ¢,
(top right panel of Fig. 20), whose first moment is
(X)y—q = Jo dxx(q,(x) +2g(x)). Several years ago it
was discovered that (x),_, is significantly above its
phenomenological value when computed with nonphysi-
cally heavy quarks, see e.g. Ref. [141]. In particular, at
m, ~ 370 MeV, (x),_, is around 40%-70% too large, for
example (x),_;, = 0.270(3) for our ensemble B55, com-
puted from local operators [142] at the same source-sink
separation. We can compare the latter with our values of
(x),_, from the integration of the fitting-reconstructed g,,:
0.264(6) (A60), 0.254(5) (BSS), 0.266(7) (D45), 0.269(25)
[O(a) continuum limit, i.e. the g,,, of Fig. 20]. The larger
value of (x),_, manifests itself as an enhanced value of
the PDF at x 2 0.5. This pion-mass-related behavior is
observed also in the valence distribution, which is the
dominating input of (x),_, = [} dxx(q,(x) 4+ 2g(x)), the
valence part giving in the continuum limit 0.263(20) and
the sea part amounting to 2 - 0.003(11). The enhanced value
of the valence PDF at intermediate and large x implies,
obviously, its suppressed value at small x. Similar con-
clusions hold for ¢ = ¢, + g (bottom left panel of Fig. 20),
with the most striking discrepancy with respect to NNPDF
occurring in the large-x regime. This discussion allows us to
speculate that the nonphysical pion mass of the present
study is the main systematic uncertainty responsible for the
difference between our PDFs and ones from global fits.

We also emphasize again the difficulty related to dis-
tributions involving the antiquarks. They receive contribu-
tions additionally from the imaginary part of matched I'TDs
(g = q, + g and the antiquark distribution itself) or solely
from it (g,,,), which are further away from zero at our
maximal Toffe time corresponding to z,,,, = 0.5 fm. This
implies that a larger range of loffe times is missing in the
reconstruction. Together with the lack of the normalization
condition, this translates to larger variability of the fits and
significantly larger errors of the PDF. Moreover, the data at
the available Ioffe times are not enough to exclude a
vanishing value of the coefficient f of the ¢,,, fitting
ansatz that governs the large-x behavior of the PDF, leading
to its nonvanishing value at x = 1. Thus, this qualitative
feature signals nonrobust reconstruction of this distribution
and the need for probing a larger range of loffe times, i.e.
ITDs obtained at larger nucleon boosts. The antiquark
distribution g (bottom right panel of Fig. 20), similarly
to ¢ originating from both ¢, and ¢,,, and hence related to
both the real and imaginary part of ITDs, is strongly
suppressed and does not allow for meaningful conclusions.
At large-x, it is affected by the nonvanishing value of ¢,,, at
x =1 and at small x, by very large errors. Given that it
probes the difference between the behavior contained in the
real and imaginary parts of ITDs, its extraction seems to be

the most difficult. Clearly, a prerequisite for its robust
determination is to extend the range of available Ioffe times,
i.e. to increase the accessed nucleon boost.

V. SUMMARY AND PROSPECTS

In this paper, we tested discretization effects in partonic
distributions extracted using the pseudodistribution
approach on the lattice. This is one of the most important
systematic effects in lattice calculations in general and its
quantification is necessary to obtain final meaningful
results. We concentrated on the unpolarized isovector
PDF of the nucleon and we calculated the relevant matrix
elements using ensembles of gauge field configurations at
three lattice spacings, ranging from 0.093 to 0.064 fm, at a
nonphysical pion mass of about 370 MeV. The bare matrix
elements were produced with three or four nucleon boosts
up to around 1.8 GeV and the divergences that they
contain were renormalized by forming appropriate ratios.
Such ratios are functions of two Lorentz invariants, the
Wilson line length (z) and its product with the nucleon
boost, the so-called Ioffe time (v = P5z). Thus, they are
called (reduced or pseudo-)loffe time distributions or
ITDs. Pseudo-ITDs are Euclidean objects that describe
spatial correlations in a boosted nucleon and their crucial
property is that they can be perturbatively factorized into
the relevant physical ITDs defined on the light front. Until
recently, this factorization was available only at one loop,
but recently, the two-loop correction was calculated [134].
In our work, we implemented this correction for the
first time in the pseudodistribution approach to address
another of the most important systematic effects, in this
case unrelated to the lattice computation, namely the
truncation effects in the perturbative factorization. The
matched ITDs are still coordinate-space objects and
further systematics hides in their translation to momentum
space of Bjorken-x fractions, which we tested employing
three methods of the reconstruction of the x-dependence.
Other systematic effects that we addressed included the
influence of stout smearing of the operator insertion and
the dependence of the results on the maximal length of the
inserted Wilson line.

We begin our final discussion with the latter. The choice
of this maximal length, z,,,,,, is delicate. On the one hand, at
fixed maximal nucleon boost, it is profitable to have large
Zmax €nabling access to a wide range of loffe times, ideally
such that the I'TDs have decayed to zero. On the other hand,
the pseudodistribution approach is based on a short-distance
factorization, necessitating values of z in the perturbative
regime. Too large values of z,, imply the presence of
uncontrolled higher-twist effects of O(z*Agcp). Yet the
optimal value of z,.. 1S a priori not clear. With the
requirement of perturbation theory being applicable at the
scale 1/z. taken literally, one would be limited to values
of 0(0.2) fm. However, this does not take into account two
important aspects. The first one is that the definition of
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reduced ITDs involves a ratio of matrix elements with the
same z, in which higher-twist effects can partially cancel.
The second, in turn, is a pragmatic one—the finite precision
of lattice results implies that small effects may be hidden in
statistical errors. This fact allows us to define a practical
criterion for establishing z... by inspecting ITDs from
different combinations of (Ps, z) and the same product P;z.
If they agree, the ITD corresponding to the largest z is still
statistically consistent with a “perturbatively safe” ITD, i.e.
one with z that is unambiguously in the perturbative regime.
With our precision of the data, z,,,, i, thus, determined to
be 0.5 fm for the continuum-extrapolated distributions. We
note that our previous work [83], at one lattice spacing, but
with physically light quarks, established z,,, = 0.8 fm to
be safe in the practical sense. In the current work, our
statistical errors are significantly smaller at the nonphysical
pion mass, and, hence, our sensitivity to higher-twist effects
is larger. Thus, we argue that the optimal safe value of z,,,,
is not universal and has to be established for each considered
set of lattice data, with the expectation that more precise
data imply the necessity of a decreased z,,,,x. We emphasize
that a careful analysis leading to the determination of z,,,, is
a prerequisite for the reliability of the approach. Moreover,
the importance of such an analysis will increase as more
precise data are extracted on the lattice.

We now turn to discretization effects, the main motiva-
tion of this work. Our main finding is that these effects are
relatively small in our setup, being on the verge of statistical
significance for most loffe times. At the level of PDFs, they
lead to tendencies that the distributions are enhanced at
small x and suppressed at large x. However, the inflation of
errors in the continuum limit extrapolations makes the final
continuum distributions always consistent with the ones at
the finest lattice spacing. We tested extrapolations linear
both in the lattice spacing and its square, and given the
flatness of these fits, they lead to compatible results.
However, the increase of final errors with respect to those
of the separate ensembles is much larger with the O(a)
ansatz. This increase amounts to a factor of order 3-5 for
most loffe times, while it is around half as large for the
O(a?) extrapolation. It brings about an important, although
rather obvious conclusion that it is an important direction
for the future to better understand the O(a) discretization
effects and to implement a full O(a)-improvement program
in the lattice calculations of PDFs, if eventually these are to
lead to precise extractions. We note that the size of cutoff
effects depends on the employed discretization—thus, the
conclusion about the comparatively small effects in our
study may not be universal. Nevertheless, for our setup, it is
reassuring and excludes large systematics due to discreti-
zation effects.

Concerning truncation effects, we found that the two-
loop effects are negligible at this level of precision and with
our value of z,,,.. More precisely, separating the factoriza-
tion effect into evolution from scales 1/z at which the

matrix elements are defined and matching from the
Euclidean to the physical observables, the two-loop effects
in the former are quite significant already at distances of
order 0.4 fm. However, the matching part acts in the
opposite direction on the ITDs, making the two-loop
correction larger than our precision only at 7 > 7., 1.€.
it affects only ITDs that are not included in the
reconstruction of PDFs. The overall effect of evolution
and matching is small and statistically insignificant in the
continuum-extrapolated results.

Finally, we comment on the reconstruction of the x-
dependence from matched ITDs. Generically, this procedure
is ill defined, as one is trying to determine a continuous
distribution from a discrete set of data truncated at some
finite loffe time. From this point of view, it is clear that some
assumptions are needed in this step. As hinted above, we
used three reconstruction methods. Two of these, the naive
Fourier transform and the Backus-Gilbert method, implic-
itly assume that ITDs are zero beyond z,,,. Such a sharp
cutoff leads to unreliable results, manifested in suppressed
small-x behavior and oscillations at large x. Thus, the
method of choice is reconstruction with a fitting ansatz.
Although it is model dependent, we argue that this is only
seemingly a restriction at the current stage. Given the
substantial statistical error in the continuum limit, our
expectation is that the model dependence is a subdominant
source of uncertainty. With more precise data and probing
the full range of Toffe times (until ITDs decay to zero), more
realistic fitting ansatzes can be used and/or one can reliably
use the model-independent Backus-Gilbert approach.

Having addressed the different systematic effects and
having established the relative smallness of discretization
effects and truncation effects in the matching, we compared
our final reconstructed PDFs to ones from global fits. There
is clear qualitative agreement with the latter for all types of
considered distributions, but still wide regions of x values
showing quantitative tension. In this work, we eliminated
some of the systematics earlier considered as likely culprits
for the disagreement, particularly discretization effects and
truncation effects in the matching. Likewise, there is
convincing evidence that higher-twist effects are smaller
than our statistical precision. In this way, it is most probable
that the disagreement with global fits is to the largest extent
induced by the nonphysical pion mass of our simulations.
This is further justified by the consistency of the observed
enhancement of the distributions at large x values over
phenomenology with lattice-calculated average momentum
fraction (x) at the nonphysical pion mass.

Our work leads to rather unambiguous conclusions for
directions of further work. First, such a continuum-limit
study with two-loop matching should be repeated at the
physical pion mass. This would allow us to test the
conjecture that the too-heavy quarks are responsible for
the observed differences with respect to global fits. Up to
now, one pseudodistribution study of unpolarized PDFs
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exists directly at the physical point, done by our group in
2020 [83] at a single lattice spacing a = 0.094 fm. Another
calculation close to the physical pion mass and extrapo-
lating to it (from 172, 278, 358 MeV) was published by the
HadStruc Collaboration [82]. In Ref. [83], we observed
consistency with NNPDF in a wide range of Bjorken-x
values (x < 0.3, x 2 0.6) already within statistical errors.
Moreover, we admitted plausible values of unquantified
systematic uncertainties, including ones from discretization
effects, which allowed us to extend the consistency with
phenomenology to the whole range of x. The magnitude of
these estimates of cutoff effects is in agreement with the
present study. In the present work, we find that cutoff
effects are relatively small, but there is room for O(20)%
effects assumed in Ref. [83], particularly at lighter pion
masses, for which discretization effects may be enhanced.
Obviously, the current analysis has no direct implications
for the results at the physical point, obtained with a
different ensemble and in a different setup of N, =2
twisted mass fermions without clover improvement. Thus,
an explicit check of discretization effects at the physical
pion mass is mandatory at some point. The key challenge is
to perform such a calculation with sufficient precision to
reach meaningful conclusions about the size of discretiza-
tion effects. The O(a) continuum extrapolation of the
present work inflates the errors 3-5 times with respect
to the one of the separate ensembles, as mentioned above,
which implies that the precision of Ref. [83] would trans-
late to 30%—50% errors of the physical-continuum PDFs.
Thus, reaching meaningful precision for the study of cutoff
effects would necessitate simulations with much finer
lattice spacings or, preferably, implementing an O(a)-
improvement program [78,131]. Some indication of the
role of O(a) effects is provided by the observed mild
tension between zero stout and five stout continuum limits
upon O(a?) extrapolation.

A second important direction is to be able to probe the
full range of Ioffe times, i.e. such that matched I'TDs have
decayed to zero. Currently, accessing v <5, the missing
information is provided by the fitting ansatz and the large-v
ITDs values are guided by the accessible-v behavior and the
form of the ansatz, thus introducing some model depend-
ence into the final results. While this is reflected in the
enhanced errors, particularly at small x, it is clear that it is
desirable that this is avoided. Probing the full range of loffe
times would also allow for reliable usage of the Backus-
Gilbert method that currently suffers from an even more
severe model dependence, implied by the strong
assumption that ITDs are zero beyond z,,.. Moreover,
the insufficient maximum loffe time is reflected in patho-
logical behavior of the distribution ¢ + g, with fits for
many bootstrap samples insensitive to the 1 — x part of the
fitting ansatz and implying a nonphysical, nonvanishing
value of this distribution at x = 1. However, increasing the
range of loffe times is difficult when taking the need for a

moderately small z,,,, into account, since it implies the
necessity of simulating larger hadron boosts. The latter
leads to an exponential increase of the computational cost,
caused by the decaying signal-to-noise ratio and an
increased excited-states contamination, implying the need
for larger source-sink separations. The problem is severely
aggravated when trying to combine both postulates, of
physical-point continuum limit calculations probing the full
range of loffe times by accessing large nucleon momenta.
In fact, the cost of this seems prohibitive at present and
most likely, such computations are realistic only upon
methodological improvements allowing for more favorable
signal for large boosts. Ideally, this should be combined
with above discussed O(a) improvement of the relevant
matrix elements, giving, in practice, a factor of around 2
reduction of errors of continuum distributions.

We would like to point out that the above directions for
further work are natural in the light of the present results
and the ones of Ref. [83], but any hypotheses on the reasons
behind discrepancies with phenomenological fits are purely
speculative before actual tests are done. Given the status of
unpolarized PDFs, as being rigorously constrained in most
of the x-range by thousands of experimental measurements,
lattice practitioners have the possibility of using it as a
benchmark case to understand the role of all conceivable
sources of uncertainties. Hence, further investigations are
mandatory and while analyses such as our current work
lead to conclusions about most likely sources of uncer-
tainties, it is clear that other systematic effects are important
to be scrutinized as well in the future.

Nevertheless, the prospects of the pseudodistribution
approach and other related methods are very good. For
many physical distributions, we have entered an era of
laboriously quantifying several sources of systematic
uncertainties. This is a prerequisite to eventually obtaining
robust results with fully reliable uncertainties. In this work,
we have shown that discretization effects and truncation
effects in the matching can be fully under control, which is
an important step in this quest.
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APPENDIX: BACKUS-GILBERT METHOD

The criterion the BG method adds to the discrete and
truncated set of lattice data is to minimize the variance of
the solution to the inverse problem. This consists in
maximizing the stability of the solution with respect to
statistical variation of the data. Such a condition is a model-
independent assumption which chooses a unique distribu-
tion from the infinite number of solutions from a given set
of input lattice ITDs.

The reconstruction procedure is performed separately
for each values of x, which we take with a step of 0.01.
The mathematical criterion of the BG method leads to a
d-dimensional vector ax(x), d being the number of avail-
able discrete Ioffe times from the lattice calculation. This
vector is an approximate inverse of the Fourier kernel
function K(x), i.e. the cosine or the sine function for the
distributions ¢, and ¢,,,, respectively. Thus,

A(x¥) = ax(x),K(¥),, (A1)

where K(x') is a d-dimensional vector with elements
K(x"), = cos(vx’) or K(x'), =sin(vx’). The function
A(x, x") approaches the Dirac delta function as the number
of input ITDs increases. When d is finite, the A(x,x’)
approximation to §(x — x’) is the one with minimized width.
The width minimization conditions are given e.g. in
Ref. [60] and yield

aK(x)_ M}l(x)uK i

CufMg! (x)ug (A2)

with the d x d-dimensional matrix elements Mg(x)
given by

1
M0y = [ d¥a= 2 PROKG), 40 (83)

and elements of the d-dimensional vector ug are

Ug, = Aldx’l((x’)y. (A4)

The matrix Mg (x) can have eigenvalues arbitrarily close to
zero, which need to be regularized. We employ the
Tikhonov regularization [147], which introduces a free
parameter p, see also Refs. [60,148,149], which makes
the matrix invertible by moving its lowest eigenvalues away
from zero. The choice of p should be made such that the
results are not biased and the resolution of the method is
relatively unaffected. We find that p = 1073 is appropriate,
with little effects when changing it by an order of magni-
tude. In turn, much smaller values of p introduce large
oscillations in the reconstructed distributions due to the
presence of very small eigenvalues of M (x), while much
larger values distort visibly the shapes of the final PDFs.
The latter are given by

qv/v2s (x’ /l) = ZCZK<X)DRC/IHI Q<V7 ﬂ) (AS)
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