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We extend our previous work on the light-quark connected part, aHVP;lqcμ , of the leading-order hadronic-
vacuum-polarization (HVP) contribution to the muon anomalous magnetic moment aμ, using staggered
fermions, in several directions. We have collected more statistics on ensembles with lattice spacings of
0.06, 0.09 and 0.12 fm, and we added two new ensembles, both with lattice spacing 0.15 fm, but with

different volumes. The increased statistics allow us to reduce statistical errors on aHVP;lqcμ and related

window quantities significantly. We also calculate the current-current correlator from which aHVP;lqcμ is
obtained to next-to-next-to-leading order (NNLO) in staggered chiral perturbation theory, so that we can

correct lattice values for aHVP;lqcμ to NNLO for finite-volume, pion-mass mistuning and taste-breaking

effects. We discuss the applicability of NNLO chiral perturbation theory to aHVP;lqcμ and to the window

quantities, emphasizing that it provides a systematic effective-field theory (EFT) approach to aHVP;lqcμ , but
not to short- or intermediate-distance window quantities. This makes it difficult to assess systematic errors
on the standard intermediate-distance window quantity that is now widely considered in the literature.
In view of this, we investigate a longer-distance window, for which EFT methods should be more reliable.
Our most important conclusion is that, especially for staggered fermions, new high-statistics computations
at lattice spacings smaller than 0.06 fm are indispensable. Our results are based on configurations provided
by the MILC and also by the CalLat collaborations.

DOI: 10.1103/PhysRevD.106.054503

I. INTRODUCTION

The recent confirmation [1] of the experimental value [2]
for the anomalous magnetic moment of the muon, aμ, has
now sharpened the discrepancy with the Standard Model
(SM) estimate [3] to 4.2 standard deviations (σ). As is well
known, the largest part of the uncertainty in the SM
estimate comes from the hadronic corrections, which
appear first at order α2 (α is the fine-structure constant)
through the contribution from the hadronic vacuum polari-
zation, aHVPμ , and at order α3 through the hadronic light-by-
light contribution aHLbLμ .
The SM estimate is based on a data-driven evaluation of

aHVPμ through dispersive methods, while both data-driven

and lattice methods contribute to the current best value for
aHLbLμ ; for the latter, data-driven and lattice estimates are in
good agreement [3,4]. For aHVPμ the situation is more
complicated: while the uncertainties of most determinations
based on lattice QCD do not resolve at present the
discrepancy between the experimental and SM values,
one collaboration [5] finds a value for aHVPμ leading to
an SM estimate about 1.5σ below the experimental value,
and about 2.1σ above the estimate based on the disper-
sive value.
Lattice-based determinations are afflicted by a number of

systematic errors, with finite-volume (FV) corrections,
continuum extrapolation and scale setting among the most
important of these. All lattice collaborations compute the
various contributions to aHVPμ using1 at least three lattice
spacings, allowing, in principle, for a continuum extrapo-
lation. In contrast, estimating FV corrections purely byPublished by the American Physical Society under the terms of
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numerical extrapolation to the infinite-volume limit is too
costly, and effective-field theory (EFT) methods and
models play an important role in estimating these correc-
tions. As, in general, ensembles at different lattice spacings
do not have the same spatial volume, FV corrections have
to be applied at each lattice spacing, before extrapolation to
the continuum limit is attempted (also, even if physical pion
masses are used, there are small mistunings to be cor-
rected). Good control over these systematic errors is
particularly important for the light-quark connected part
of aHVPμ , as it contributes about 90% to the total.
In the time-momentum representation [6], aHVPμ is

obtained from

aHVPμ ¼ 2

Z
∞

0

dtwðtÞCðtÞ; ð1:1Þ

with

CðtÞ ¼ 1

3

X
i

Z
d3xhjiðx⃗; tÞjið0⃗; 0Þi; ð1:2Þ

where ji ¼ 2
3
ūγiuþ � � � are the spatial components of the

hadronic contribution to the electromagnetic current,2 and
the weight wðtÞ is defined by

wðtÞ ¼ 4α2
Z

∞

0

dQ2

�
cos ðQtÞ − 1

Q2
þ 1

2
t2
�
fðQÞ;

fðQÞ ¼ m2
μQ2Z3ðQÞð1 −Q2ZðQÞÞ

1þm2
μQ2Z2ðQÞ ;

ZðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4Q2m2

μ

q
−Q2

2m2
μQ2

ð1:3Þ

(for a detailed discussion of this weight, see Ref. [7]; for the
momentum representation in momentum space obtained by
integrating over t, see Refs. [8,9]; cf. Eq. (3.1) below). We
have used that CðtÞ and wðtÞ are even functions of t.
A “window” WðtÞ can be introduced to define “window

quantities” [10]:

aWμ ðt0; t1;ΔÞ ¼ 2

Z
∞

0

dtWðt; t0; t1;ΔÞwðtÞCðtÞ; ð1:4Þ

with Wðt; t0; t1;ΔÞ defined by

Wðt; t0; t1;ΔÞ¼
1

2

�
tanh

�
t− t0
Δ

�
− tanh

�
t− t1
Δ

��
: ð1:5Þ

This is a step function equal to 1 for t0 ≲ t≲ t1 and zero
outside this interval, which transitions smoothly over a

range Δ. These window quantities single out the contri-
bution of a particular region in t to the total aHVPμ .
It has become standard to compute aWμ ð0.4; 1; 0.15Þ

(with values of the arguments in fm), since this intermedi-
ate-distance window can be computed with a significantly
higher precision than aHVPμ itself, and it thus provides a
good benchmark for comparison between different lattice
computations.
Recent results for the light-quark connected contribution

to aWμ ð0.4; 1.0; 0.15Þ are summarized in Fig. 1. The top five
results are obtained using staggered fermions,3while the
bottom four results are obtained usingWilson-like fermions
(domain-wall, twisted-mass, and clover fermions, respec-
tively). Besides discretization of the Dirac operator, the
calculations differ in numbers of sea quark flavors, 2þ 1 vs
2þ 1þ 1, and whether conserved or local currents are
used, which affects the path to the continuum limit. The
point denoted with “R ratio” is obtained by correcting the
dispersive value of aWμ by subtracting lattice window results
for the strange-quark, disconnected, etc., parts from it. The
staggered results are not in agreement with the R-ratio
value, while the Wilson-like results are (except the very
recent results from Ref. [13]). Clearly, the spread in these
results needs to be understood in order to gain a better
understanding of the discrepancy between lattice and
dispersive values for aHVPμ .

FIG. 1. The isospin-symmetric, light-quark connected contri-
bution to aWμ ð0.4; 1.0; 0.15Þ from Aubin et al. [14], LM 20 [15],
BMW 20 [5], FHM 20 [16], RBC/UKQCD 18 [10], ETMC 21
[17], χQCD 22 [13] and Mainz/CLS 20 [18]. The blue point
represents the value we obtain in Sec. VI A below. The red point
is obtained by using lattice results to convert aHVPμ from the
dispersive approach to its isospin-symmetric, light-quark con-
nected part (by C. Lehner, using data from Ref. [19]).

2We use conserved currents on the lattice.

3With all except BMW 20 using subsets of MILC-HISQ
ensembles [11], so that the Aubin et al. 19, LM 20, FHM 20 and
this work’s results are to some extent correlated. Our 48II
ensemble (cf. Table I below) is a CalLat ensemble [12].
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In this paper, our aim is to update our earlier staggered
results [14] for the light-quark connected contribution
aHVP;lqcμ to aHVPμ , using our new results to investigate the
continuum limit, as well as the use of various methods to
compute FV corrections. While we will also discuss the full
quantity aHVP;lqcμ , our main focus will be on window
quantities aW;lqc

μ , using our results to study possible causes
of the discrepancies visible in Fig. 1.
In the case of staggered fermions, the breaking of taste

symmetry at nonzero lattice spacing plays a special role.4

New operators (proportional to powers of the lattice
spacing a, starting with a2) appear in the low-energy
EFT describing the physics of the Nambu-Goldstone
bosons [22,23], leading to “taste splittings” [24] in their
mass spectrum. While this is an Oða2Þ effect that dis-
appears in the continuum limit, it has generically been
found to be advantageous to “correct” for these taste
splittings already at nonzero lattice spacing, using stag-
gered chiral perturbation theory (SChPT). Since roughly
half of the lattice effort aimed at aHVPμ employs staggered
fermions, it is important to investigate the special role of
taste breaking in taking the continuum limit.
Two different approaches have been used in the compu-

tation of FV effects, and to correct for taste breaking and
pion-mass mistuning. One approach is based on chiral
perturbation theory (ChPT), the low-energy theory for
QCD with light quarks. This approach is based on a
perturbative expansion and power counting, and is system-
atically improvable by the calculation of higher orders in
the expansion. In Ref. [25] we showed that ChPT can be
applied to aHVPμ systematically, and we applied this obser-
vation specifically to the calculation of FVeffects. Here we
will extend this to a quantitative estimate for the approxi-
mate maximum value of the pion masses for which next-to-
next-to-leading-order (NNLO) ChPT can be trusted. We
will also compute FV and taste-breaking effects to NNLO
in SChPT.5 The key observation of Ref. [25] is that when
considering aHVPμ , the appropriate EFT is an EFT for pions,
muons and photons, thus extending the usual definition of
ChPT to include QED effects (to leading order in α, in our
case) due to the electromagnetic interactions of pions with
the muon. It was argued that this extended EFT framework
allows for the introduction of all necessary counterterms in
the EFT to make the chiral expansion systematically
applicable to aHVPμ .
The other approach has relied on the use of models

to understand these systematic effects. In particular,
aWμ ð0.4; 1.0; 0.15Þ is a quantity defined at scales at which

ChPT is not expected to work, as for example demonstrated
in Ref. [5]. Applying ChPT to compute FV and taste-
breaking corrections for aWμ ð0.4; 1.0; 0.15Þ nevertheless
thus degrades ChPT to a model, and one would expect
better models to exist, by including the physics of the ρ
meson more completely than it is at NNLO in ChPT. Here
we will pay particular attention to the “SRHO” model,
developed specifically for the case of staggered fermions in
Ref. [26] and applied further in Refs. [5,27]. The dis-
advantage is, of course, that even if a model may work very
well for a certain range of parameters, extrapolations are
less well controlled, and there is no path to systematic
improvement of the model.
This discussion points at a disadvantage of the window

quantityaWμ ð0.4; 1.0; 0.15Þ, which is nowcomputed bymany
collaborations for the sake of comparison between different
methods. If reliable extrapolations to the continuum limit and
infinite volume could be obtained directly from the lattice
data, this comparison would be unambiguously meaningful,
and thus very useful, as aWμ ð0.4; 1.0; 0.15Þ is a physical
quantity, and can be computed with very small statistical
errors. However, in practice, these limits cannot be easily
obtained directly from the data, and we need EFT or model
methods to compute FV corrections, and, in the case of
staggered fermions, taste-breaking corrections to improve
the continuum limit. But, for aWμ ð0.4; 1.0; 0.15Þ no reliable
EFT-based method is available, and we thus need to resort to
models. One might expect that FV corrections and taste-
breaking corrections for aWμ ð0.4; 1.0; 0.15Þ are very small,
but with the small statistical errors, one needs quantitative
information on how small. Using both ChPTand the SRHO
model, we will see that while they are indeed small, it is
unlikely that these corrections can be safely neglected, and
indeed the systematics of these corrections dominate the total
error. This calls the usefulness of this window quantity into
question, at least with the current state of the art. We will
therefore explore another, longer-distance, window quantity,
aWμ ð1.5; 1.9; 0.15Þ, whichwewill show tobemore accessible
toChPT. The disadvantage is that lattice computations of this
window quantity will have larger statistical errors, and it
remains to be seen which window quantities will turn out to
be optimal for comparison between different lattice results.
We will refer to these two windows as W1 and W2, with

aW1
μ ¼aWμ ð0.4;1.0;0.15Þ; aW2

μ ¼aWμ ð1.5;1.9;0.15Þ: ð1:6Þ

As always in this paper, we will consider the light-quark
connected contributions aW1;lqc

μ and aW2;lqc
μ to aW1

μ and aW2
μ .

This paper is organized as follows. In Sec. II, we present
our new data from the lattice, and provide brief details
about the computation. In Sec. III, we revisit ChPT,
presenting our extension of SChPT to NNLO, we give
an estimate for the maximal pion mass at which NNLO
ChPT can be expected to be quantitatively reliable, and we

4For reviews of staggered fermions and taste breaking, see
Refs. [20,21].

5In Ref. [14] staggered effects were only included to NLO
while NNLO FV effects were computed in continuum ChPT;
Ref. [5] was the first to extend their inclusion to NNLO.
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compare taste breaking on our ensembles with SChPT. Our
results for aHVP;lqcμ , including FV and taste-breaking cor-
rections, are then presented in Sec. IV, and we convert our
continuum extrapolation of aHVP;lqcμ into a value for aHVPμ

using results for other contributions from the literature in
Sec. V. We then present our results for light-quark con-
nected window quantities in Sec. VI. In both Secs. IV and
VI, the extrapolation to the continuum limit is discussed.
Section VII contains our conclusions. An appendix briefly
details our implementation of the SRHO model.

II. LATTICE COMPUTATION

We summarize our ensembles in Table I. In comparison
with Ref. [14], we extended our dataset in several direc-
tions. We employed more configurations and low-mode
eigenvectors for the first three ensembles shown in the
table, and we added two ensembles at a coarser lattice
spacing, with different volumes. We summarize our meth-
odology in Sec. II A, and we present the results in Sec. II B.

A. Methodology

The lattice computation here is an extension of the
previous simulations of Ref. [14]. First, as can be seen in
Table I, we have run on more configurations of the finest
two ensembles (96 and 64) and we have increased the
number of low modes used (from 4000 to 8000 low modes
on 96 and from 6000 to 8000 on the 48 and 64 ensembles)
in order to improve the statistics. We increased the number
of trajectories separating measurements significantly on
all three ensembles, in particular on the 64 ensemble.
Additionally we have included two coarse ensembles with
a ≈ 0.15 fm at two volumes, 323 and 483 (where the coarse
483 ensemble is labeled as 48II to distinguish it from the
a ≈ 0.12 fm 483 ensemble, labeled as 48I), both to include
an additional lattice spacing and to examine finite-volume
effects explicitly. All ensembles are near the physical
pion mass.
We continued using the noise-reduction techniques

combining full-volume low-mode averaging [28–31] and
all-mode averaging developed by the RBC and UKQCD

collaborations [10,32,33]. We omit the specific details as
they are the same as in Ref. [14].
Finally, as in our previous work, we implement the

bounding method of Refs. [10,34] to further reduce
statistical errors on the extraction of aHVP;lqcμ . Here we
use that the correlator of Eq. (1.2) has a lower bound of 0
for t > tb and an upper bound of CðtbÞe−E0ðt−tbÞ, where
E0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

is the lowest (two-pion) energy
state in the vector channel. For sufficiently large tb, the two
bounds overlap to give a more precise result for aHVP;lqcμ

than we would obtain by summing over the long-dis-
tance tail.

B. Results

The simulations on the ensembles listed in Table I
provide us with measurements of the correlator CðtÞ
defined in Eq. (1.2), where we used conserved currents.
We then use trapezoidal integration, defining

aμðtÞ≡ 2a
X½t=a�−1
n¼1

wðnaÞCðnaÞ þ awð½t=a�aÞCð½t=a�aÞ

→ 2

Z
t

0

dt0wðt0ÞCðt0Þ for a → 0: ð2:1Þ

On the lattice, the maximum value of t in Eq. (2.1) is
t=a ¼ T, with T given in Table I for the five ensembles. In
the limits a → 0 and T → ∞, this yields aHVPμ , as defined in
Eq. (1.1), but at nonzero a there is anOða2Þ correction. For
window quantities, the window function Wðt; t0; t1;ΔÞ is
inserted with appropriate choices for the window param-
eters t0, t1 and Δ.
In Fig. 2 we show aμðT; tbÞ as a function of tb (in fm).

Here tb is the value of t in Eq. (2.1) in which we switch
from the lattice correlator CðtÞ to the upper bound (blue
points) or lower bound (orange points) replacing CðtÞ from
t ¼ tb to t ¼ aT by the upper or lower bound, following the
bounding method of Ref. [10], cf. Sec. II A. The shaded bar
indicates the tb region from which we obtain the values for
aHVP;lqcμ shown in Table II; we did not use the bounding

TABLE I. Parameters defining the lattice ensembles. Columns contain a label to refer to the ensemble, the lattice
spacing a, the spatial volume L3 times the temporal direction T (in lattice units), the Nambu-Goldstone pion mass
mπ , the maximum pion mass mS in the pion taste multiplet (cf. Sec. III C),mπL, the number of configurations in the
ensemble, the separation between measurements (“Sep.”), and the number of low-mode eigenvectors.

Label a (fm) L3 × T mπ (MeV) mS (MeV) mπL #configs Sep. #Low modes

96 0.05684 963 × 192 134.3 153 3.71 77 60 8000
64 0.08787 643 × 96 129.5 212 3.69 78 100 8000
48I 0.12121 483 × 64 132.7 326 3.91 32 100 8000
32 0.15148 323 × 48 133.0 418 3.27 48 40 8000
48II 0.15099 483 × 64 134.3 418 4.93 40 100 8000
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method for the two window quantities also shown in the
table as they depend much less on the long-time tail ofCðtÞ.
Errors are statistical only. The lattice spacing is set using
w0 ¼ 0.1714ð14Þ fm [35].6 As expected, the statistical
errors for the longer-distance window W2 fall between
those for aHVP;lqcμ and those for the shorter-distance window
W1. There is a strong dependence on the lattice spacing,
and, for aHVP;lqcμ , a clear dependence on volume, shown by
the difference of the value for the last two ensembles in the
table, which differ only by volume. The volume depend-
ence of the a ¼ 0.15 fm ensembles is not visible in the two
window quantities. Here one should keep in mind that

taste-breaking effects are large for a ¼ 0.15 fm, and FV
effects would be much larger were they not “masked” by
the taste splittings. All these systematic effects will be
discussed in the following sections.

FIG. 2. aμðT; tbÞ for the connected light-quark contribution to the muon anomaly, using the bounding method of Ref. [10], as a
function of the switch-point tb, for the 96 (upper left), 64 (upper right), 48I (middle left), 32 (middle right), and 48II (lower) ensembles.
Values obtained with the upper bound are shown in blue; values obtained with the lower bound are shown in orange. The values in
Table II are obtained from the shaded regions in each of these plots. See text.

TABLE II. Results for aHVP;lqcμ , the 0.4–1.0 fm window aW1;lqc
μ

and the 1.5–1.9 fm window aW2;lqc
μ . The first error is statistical,

the second error from scale setting.

Ensemble aHVP;lqcμ aW1;lqc
μ aW2;lqc

μ

96 606.1(13.0)(5.8) 205.92(38)(45) 94.7(2.4)(1.5)
64 596.5(9.0)(5.6) 204.97(26)(49) 88.1(1.3)(1.4)
48I 547.0(8.6)(5.3) 201.42(53)(56) 76.8(1.4)(1.4)
32 503.3(6.9)(4.9) 200.49(68)(60) 70.8(1.0)(1.3)
48II 520.4(8.0)(5.0) 200.48(42)(60) 71.4(1.2)(1.3)

6Even though aHVPμ is a dimensionless quantity, one needs to
set the scale of the hadronic physics relative to the muon mass.
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We can compare the values of Table II with those of
Tables II and IV of Ref. [14] for the first three ensembles.7

Different configurations were used in this paper, making
our new results independent of the results of Ref. [14].
For the 96 and 64 ensembles, there is a significant reduction
in the statistical error for aHVP;lqcμ and aW1;lqc

μ (the W2
window was not considered in Ref. [14]). We notice that
there is a mild tension between the 96- and 64-ensemble
results for aW1;lqc

μ , up to about 1.4σ. This would in principle
allow us to combine the results of Ref. [14] with our new
results, but we chose not to do this. First, it is not excluded
that the tension is caused by the smaller separation between
measurements (notably for the 64 ensemble) in Ref. [14].
Second, including also the systematic errors to be discussed
below, combining the two datasets does not lead to a
significant reduction in errors compared to those obtained
with only the new dataset.

III. CHIRAL PERTURBATION THEORY FOR aHVP
μ

In this section, we will present the NNLO result for CðtÞ
calculated in two-flavor SChPT, in a finite spatial volume
L3 with periodic boundary conditions (considering also
finite-T effects to NLO).8 This extends our earlier calcu-
lation of Ref. [14] to include staggered effects also at
NNLO. Our results agreewith those of Ref. [5]. In Sec. III A
we present our result, in Sec. III B we compare NNLO
ChPTwith Ref. [36] in order to estimate the maximal value
of the pion mass at which NNLO ChPT can be trusted, and
in Sec. III C we discuss taste splittings in more detail.
Before we embark on all this, we would like to

emphasize again that ChPT can be systematically applied
to aHVPμ , to all orders [25], if one considers the EFT which
extends ChPT for the strong interactions to include the
electromagnetic coupling of pions to the external muon. In
this framework, counterterms beyond those present in the
strong chiral Lagrangian show up starting at NNNLO. This
can be seen by integrating over t in Eq. (1.1), which leads to
the representation [8,9]

aHVPμ ¼ 4α2
Z

∞

0

dQ2fðQÞΠ̂ðQ2Þ; ð3:1Þ

where Π̂ðQ2Þ is the subtracted scalar vacuum polarization.
Since, in ChPT, Π̂ðQ2Þ ∼ ðQ2Þk−1 at NkLO (modulo
logarithms) for large Q2, and fðQÞ ∼m4

μ=Q6 for large
Q, we see that the ChPT result is finite for k ¼ 1 and k ¼ 2,
but that a new counterterm is needed at k ¼ 3. This
counterterm has the form [25]

α2m3
μ

ð4πfπÞ4
μ̄σαβFαβμ trðQΣQΣ†Þ; ð3:2Þ

where μ is the muon field, Σ is the nonlinear pion field, Fαβ

is the electromagnetic field-strength tensor, and Q is the
charge matrix. Since we will consider CðtÞ to NNLO only,
this counterterm will not be needed below.

A. Formulas

We have calculated CðtÞ to NNLO in SChPT. In momen-
tum space, the corresponding calculation was done before in
Ref. [37] in continuum ChPT, while CðtÞ was calculated in
SChPT to NNLO in Ref. [5], with which our result agrees.
SChPT differs from standard continuum ChPT, because

the symmetry group of lattice QCD with staggered fermions
is smaller than the continuum symmetry group. Hence, new
operators appear in the chiral Lagrangian multiplied by
powers of the lattice spacing a.9We follow a power-counting
scheme inwhich powers ofp2 (withp a typical momentum),
the quarkmassm, and the square of the lattice spacing a2 are
of the same order. Operators of order a2 have been classified
in Refs. [22,23]; those appearing at orders a2p2, a2m and a4

have been classified in Ref. [38].
In an NNLO calculation, we work to Oðp6Þ. Tree-level

contributions to CðtÞ only appear at Oðp4Þ and Oðp6Þ and
lead to contact terms proportional to δðtÞ. Since wðtÞ ∼ t4 at
small t, we can ignore such contact terms, unless they would
contain four derivatives. The only contact term leading to
such a contribution is proportional to the low-energy constant
(LEC) c56 [39], and this contact term does lead to an NNLO
contribution to aHVPμ . For a more detailed discussion of this
contact term, we refer to Appendix A of Ref. [25]. Its
contribution cancels in differences like FV corrections and
taste-breakingcorrections,which are our focus in this paper.10

Each staggered fermion leads to four degenerate fer-
mions (“tastes”) in the continuum limit. If we consider two-
flavor QCD with staggered fermions, we thus obtain eight
fermions in the continuum limit, four up quarks and four
down quarks. The problem that there are too many sea
quarks is resolved by taking the fourth root of each
staggered fermion determinant, which effectively reduces
the total number of fermions in the continuum limit by a
factor of 4. In SChPT, this is handled as follows. One
introduces N staggered fermions of each flavor, and the
theory thus has 2 (for flavor) ×4 (for taste) ×N quarks in
the continuum limit (which, in the isospin limit, are fully
degenerate). One develops SChPT by considering the
EFT for the ð8NÞ2 − 1 pions in this theory, using the

7We did not consider the window ŵ of Ref. [14], as we always
found that it leads to a stronger dependence on the lattice spacing.

8Nomenclature: Because at leading nontrivial order in ChPT
CðtÞ is given by a one-loop diagram, we refer to this order as
“next-to-leading order”(NLO).

9In addition, low-energy constants which already appear in the
continuum chiral Lagrangian will also become dependent on a.

10In principle, a term of order a5 can appear in the SChPT
Lagrangian [40]. However, it does not contribute to aHVPμ to
NNLO, as explained in Ref. [5].
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SUð8NÞL × SUð8NÞR symmetry, and spurions to introduce
the symmetry-breaking effects of the quark masses and
lattice spacing. Finally, in order to reflect the fourth roots at
the QCD level, one sets N ¼ 1=4. (For a review of the

validity of this procedure, as well as the validity of taking
the fourth root, we refer to the review in Ref. [41].)
Keeping N general, the NNLO expression for CðtÞ in

SChPT is, for t > 0 (thus avoiding contact terms)

CðtÞ ¼ N2

3

1

V

X
p⃗

X
X

p⃗2

E2
XðpÞ

e−2EXðpÞt
�
1 −

N
f2

X
Y

DYð0Þ −
16l6ðp⃗2 þm2

XÞ
f2

�

þ N3

36f2
1

V2

X
XY

X
p⃗ q⃗

p⃗2q⃗2

E2
XðpÞE2

YðqÞ
EXðpÞe−2EYðqÞt − EYðqÞe−2EXðpÞt

p⃗2 − q⃗2 þm2
X −m2

Y

¼ N2

3

1

V

X
p⃗

X
X

p⃗2

E2
XðpÞ

e−2EXðpÞt
�
1 −

N
f2

X
Y

DYð0Þ −
16l6ðp⃗2 þm2

XÞ
f2

þ N
6f2

lim
η→0

Re
1

V

X
q⃗

X
Y

q⃗2

EYðqÞ
1

q⃗2 − p⃗2 − iηþm2
Y −m2

X

�
: ð3:3Þ

The sums over momenta are sums over integer vectors n⃗,
with k⃗ ¼ 2πn⃗=L, reflecting the finite spatial volume L3

with periodic boundary conditions. Sums over X and Y
represent sums over all 16 taste pions, for each of the N
replicas. The exact staggered symmetry group implies that
there is some degeneracy, and, for instance,

X
X

1

E2
XðpÞ

e−2EXðpÞt ¼ e−2E5jtj

E2
5

þ 3e−2Ek5jtj

E2
k5

þ e−2E45jtj

E2
45

þ 3e−2Ejkjtj

E2
jk

þ 3e−2Ek4jtj

E2
k4

þ 3e−2Ekjtj

E2
k

þ e−2E4jtj

E2
4

þ e−2Esjtj

E2
s

; ð3:4Þ

where

EXðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X þ p⃗2

q
; ð3:5Þ

withmX themassofpionwith tasteX.Thedifferent tastepions
are labeled by irreducible representations of the staggered
symmetry group, with X∈f5;k5;45;jk;k4;k;4;Sg with
degeneracies 1, 3, 1, 3, 3, 3, 1 and 1, respectively [24].
The physical pion mass is mπ ¼ mX¼5; this is the pion that
becomes massless at nonzero lattice spacing if the bare
quark mass is taken to zero. The heaviest pion in a taste
multiplet is mS ¼ mX¼S. The only two LECs appearing in
Eq. (3.3) are the pion decay constant in the chiral limit, f,
and the Oðp4Þ LEC l6. In our convention, the physical
pion decay constant is fπ ¼ 130.4 MeV. Finally, DYð0Þ
represents a tadpole loop:

DYð0Þ¼
1

V

X
k⃗

Z
dk4
2π

1

k24þE2
YðkÞ

¼ 1

V

X
k⃗

1

2EYðkÞ
: ð3:6Þ

The expression in Eq. (3.3) is valid when a current in the
taste-singlet representation is used. This is the case for our
simulations, where we always use conserved currents.
As we did in Ref. [14], we use Poisson resummation to

split the expression for CðtÞ into its infinite and finite-
volume parts. The infinite-volume part diverges, and is
renormalized by l6, with (ϵ ¼ 3 − d, with d the number of
spatial dimensions in dimensional regularization)

l6 ¼ lr
6ðμÞ þ

N
12π2

�
1

ϵ
þ 1

2
log ð4πÞ − 1

2
γE þ 1

2

�

≡ −
N

24π2

�
l̄6ðmπ; NÞ þ log

m2
π

μ2

�

þ N
12π2

�
1

ϵ
þ 1

2
log ð4πÞ − 1

2
γE þ 1

2

�
; ð3:7Þ

where the latter equation defines l̄6, which for N ¼ 1=4
has the value 16.0(9) [42].
The result (3.3) turns out to be quite simple: the effect of

SChPT, in comparison with continuum ChPT, is that each
pion loop gets averaged over the tastes in each staggered
multiplet. There are no other effects of the many operators
that appear in SChPT beyond ChPT (for some more
discussion of the contribution of classes of operators unique
to SChPT, see Ref. [5]). We will use Eq. (3.3) setting
f ¼ fπ ¼ 130.4 MeV, N ¼ 1=4 and l̄6ðmπ; 1=4Þ ¼ 16.
Furthermore, we will use values for the taste masses mX
measured by MILC on the first four ensembles of Table I.11

11We thank Doug Toussaint for providing us with the complete
taste spectra on these ensembles.
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For the fifth ensemble in Table I we will use the same taste
splittings as for the 323 ensemble, as these two ensembles
have been generated using the same lattice action at
(nearly) the same lattice spacing, and we expect taste
splittings to be (nearly) independent of the volume. Since
the physical pion masses on these two ensembles are not
exactly the same, we use the relation

ΔM2
taste ≡m2

X −m2
π ¼ m2

X −m2
5 ¼ ΔX; ð3:8Þ

with ΔX the taste splittings on the 323 ensemble, for the
conversion. We then substitute Eq. (3.3) into Eq. (1.1),
multiplying by a factor 10=9 to reflect the fact that we are
considering only the light-quark connected part on the
lattice [43,44], so that

aHVP;lqcμ ¼ 10

9
2

Z
∞

0

dtwðtÞCðtÞ: ð3:9Þ

Finally, we have considered finite-T effects to NLO,
finding that finite-T effects are always much smaller than
our statistical errors, and we will thus not take these into
account.

B. Range of validity

Let us begin with the ChPT view, to NNLO, of aHVPμ in
the continuum limit, in infinite volume. For this, it is easiest
to use the momentum representation, Eq. (3.1). The
expression for the scalar vacuum polarization to NNLO
can be found in Refs. [45,46], and the value for c56 can be
obtained from the SUð3Þ LEC C93 by matching [47], with
C93 determined in Ref. [48]. In the “MSþ 1” scheme used
in all these references,

c56ðmρÞ ¼ −1.3ð4Þ × 10−4: ð3:10Þ

Using Eq. (3.1), we find12

aHVP;2-flavor ChPTμ ¼ 6.6ð1.6Þ × 10−8: ð3:11Þ

The central value is very reasonable, but the error,mostly due
to the error in c56, is very large. To NLO in ChPT, we find
instead of Eq. (3.11) the value 0.7 × 10−8. This indicates that
NNLO ChPT may give a good understanding of aHVPμ , even
if, as is well known, NLO ChPT does not. The reason is that
the ρ meson only starts contributing to the pion form factor
beyond leading order. This also suggests that the apparent

lackof convergence is not necessarily a reason toworry about
the applicability of ChPT.
We can do much better. First, if we are interested in

corrections due to finite volume, pion- mass mistuning or
taste breaking, the LEC c56 drops out, removing a significant
source of error. Second, in a recent paper a good representa-
tion of the two-pion contribution to aHVPμ was obtained using
a resummation of NNLO ChPT based on unitarity and
analyticity [36]. In Ref. [36] this was used to study the
dependence of aHVPμ on the pion mass. We can do the same
using straight NNLO ChPT, and compare to Ref. [36].
The comparison is shown in Fig. 3, which shows the

difference between aHVPμ values at different pion masses.
The band in this figure represents the estimate obtained in
Ref. [36],13 while the curve represents NNLO ChPT. We
see that if we take the result from Ref. [36] as a benchmark,
NNLO ChPT does remarkably well up to pion masses of
about 250 MeV. This suggests that NNLO ChPT can be
used safely to compute pion-mass retunings, as well as
corrections for taste splittings, as long as the taste splittings
are not too large. From Table I, we see that all pion masses
in the taste multiplet are well within this range for the 96
and 64 ensembles. While the 48I ensemble would not
appear to qualify, one should bear in mind that mS ¼
326 MeV is the mass of the heaviest member of the taste
multiplet, which counts for only 1=16th of the average in
Eq. (3.4). The root-mean-square mass on this ensemble is
equal to 241 MeV, and it is thus possible that NNLO ChPT
is reliable for this ensemble as well.
Of course, also the result from Ref. [36] is based on

NNLO ChPT, using a resummation based on the Omnès
relation. However, Ref. [36] carried out a careful compari-
son of the prediction from resummed NNLO ChPTwith the

0.15 0.20 0.25 0.30 0.35

2. 10 8

1.5 10 8

1. 10 8

5. 10 9

0

FIG. 3. Comparison of ΔaHVP
μ ðmπÞ ¼ aHVP

μ ðmπÞ −
aHVP
μ ðmπ ¼ 140 MeVÞ between NNLO ChPT, and the resum-

mation of Ref. [36], as a function of mπ . The blue band gives the
result of Ref. [36]; the red curve is computed with NNLO ChPT.

12Since this is computed in two-flavor ChPT, this reflects the
two-pion contribution, plus the effects of the ρ, through l6. The
contribution from the pion form factor is believed to be about
5 × 10−8, and it is not clear how much other physics (such as that
from kaon physics, for example) is represented through the values
of the LECs fπ , l6 and c56. We will not elaborate on this point
further here, as the error in Eq. (3.11) is large.

13We thank Martin Hoferichter for providing us with the code
to reproduce this plot.
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physical value of the two-pion contribution to aHVPμ at the
physical pion mass,14 with excellent agreement.
The situation is, in principle, different for window

quantities.15 Qualitatively, this can be understood from
Fig. 4, which shows the integrand of Eq. (3.1). This figure
explains why NNLO ChPT provides a decent approxima-
tion to the full integral from Q2 ¼ 0 to ∞: the ChPT curve
is close to the curve derived from data. However, cutting
out a window in time, with the window function (1.5),
corresponds to cutting out a region in Q2, with a short-
distance window corresponding to a large-Q2 region. If the
Q2 values in a region emphasized by a certain window are
large enough, the right-hand panel in Fig. 4 shows why
NNLO ChPT may yield a bad prediction for the window
quantity. For example, the NNLO ChPT value for a window
emphasizing Q2 values between 1 and 2 GeV2 might
overshoot the real value by a factor of about 2, from the
right-hand panel in Fig. 4. NNLOChPT is expected to work
better for a window with larger values of t0 and t1.

C. Taste splittings

It is interesting to consider the behavior of taste splittings
in the pion spectrum, as a function of the lattice spacing. In
Fig. 5, we show the taste splittings ΔX in Eq. (3.8) as a
function of a2α2sð1=aÞ for the first four ensembles in
Table I, where αsð1=aÞ is the MS coupling at the scale
1=a. The curves represent fits of the form

ΔX ¼ AXα
2
sð1=aÞa2 þ BXa4 þ CXa6; ð3:12Þ

with different coefficients for each of the tastes
X ∈ fk5; 45; jk; k4; k; 4; Sg.16 As we do not have access
to the correlations between the different taste splittings on
any given ensemble, our fits do not take correlations into
account, and thus we will have to judge the fits visually.
At leading order, SChPT for highly improved staggered

quarks (HISQ) fermions predicts the behavior reflected by
the first term, with coefficient AX in Eq. (3.12) [11]. It also
predicts that, at that order, the various taste multiplets fall
into representations of SOð4Þ, i.e., that the masses with
tastes k5 and 45, with tastes jk and k4 and with tastes k and

FIG. 5. Pion taste splittings as a function of a2α2sð1=aÞ, with αsð1=aÞ the MS coupling at scale 1=a. Points with error bars correspond
to the measured taste splittings on the first four ensembles in Table I. The curves reflect fits to the form given in Eq. (3.12); see main text.
The figure on the right zooms in on the region with the two smaller lattice spacings in Table I. The near degeneracy of the X ¼ k and
X ¼ 4, X ¼ jk and X ¼ k4, and X ¼ k5 and X ¼ 45 taste splittings is clearly visible (see text).

0.00 0.01 0.02 0.03 0.04 0.05
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FIG. 4. The integrand for Eq. (3.1). The solid blue curve is obtained from the R ratio compiled in Ref. [19], the dashed red curve is
obtained from NNLO ChPT, with parameters as specified in the text. The panel on the left shows the region up to Q2 ¼ 0.05 GeV2 and
the panel on the right shows the region 1 to 2 GeV2.

14Taking the physical pion mass to be 140 MeV, which is why
we take the reference mass in Fig. 3 to be 140 MeV.

15As also observed in Ref. [5].

16The scale in αs is expected to be of order 1=a. Our fits are not
sufficiently sensitive to the coefficient of 1=a inside αs to fix this
coefficient.

MUON ANOMALOUS MAGNETIC MOMENT WITH STAGGERED … PHYS. REV. D 106, 054503 (2022)

054503-9



4 become pairwise degenerate [22]. The other two terms,
with coefficients BX and CX should be considered as
phenomenological.
From Fig. 5, several observations can be made. First,

indeed, the approximate SOð4Þ multiplets at order a2 are
clearly seen. However, in carrying out the fits, we find that
the AX coefficients are not distinguishable from zero within
errors. This is puzzling, because if the HISQ action
suppresses Oða2Þ taste breaking to the extent that taste
splittings do not follow an ∼a2 behavior, one would also
not expect to see the approximate SOð4Þ degeneracies.
Most important, it is clear that both a4 and a6 terms are
needed in the fit, thus showing that for these four
ensembles, the behavior of the taste splittings is highly
nonlinear in a2α2sð1=aÞ. Moreover, the blow-up on the right
in Fig. 5 shows that this nonlinearity persists for the 96 and
64 ensembles, which have the smallest lattice spacings.
Indeed, we find that a4 terms are still needed even if one
tries to fit the taste splittings on the 96 and 64 ensembles
only. In a fit to only these two ensembles, we find that the
AX coefficients are marginally different from zero.17 The
main lesson from this discussion is that the behavior of taste
splittings on these four ensembles is very far from linear in
a2α2sð1=aÞ. This is visually clear from Fig. 5.18

IV. LIGHT-QUARK CONNECTED
CONTRIBUTION TO aHVP

μ

We begin this section by considering the various cor-
rections to the lattice results provided by NNLO SChPT.
The FV and pion-mass mistuning corrections are shown in
Table III; we also show the SRHO-model values for these
corrections. The table shows the NLO and NNLO FV and
pion-mass retuning corrections. All “NNLO” results will
always be understood to include the NLO contribution as
well. We estimated the errors from the truncation of ChPT
geometrically from the NLO and NNLO values, and we
show these errors with the NNLO results. We expect the FV
effects to be dominated by two-pion states, and indeed, the
table shows a reasonably good convergence for all five
ensembles. For the retuning corrections, the convergence is
somewhat less good. In this case, we also show NNLO
results one would obtain by replacing the value 16 for l̄6

with 3.5. This is an estimate for the value of l̄6 obtained by
leaving out the effect of ρ by setting lr

6ðμ ¼ mρÞ ¼ 0 in
Eq. (3.7), and thus, by comparison, gives an idea about the
size of the ρ contribution, which enters only at NNLO
through l̄6 [49]. The “retune NNLO no ρ” line in the table
shows that without the ρ NNLO results are much closer to
NLO results, thus confirming that the apparent poor
convergence originates from the contribution of the ρ.
The errors shown with the NNLO results are thus most
likely conservative.
Taste-breaking effects (in infinite volume) are shown in

Table IV. In this case, SChPT does not appear to converge,
although the “no ρ” line suggests that the appearance of the
ρ at NNLO is the likely reason for this lack of convergence.
However, for the coarser ensembles, the largest taste
masses are quite large, and this may be an additional
reason for the poorer convergence for these ensembles.
Below, we will consider continuum extrapolations with and
without taste-breaking corrections. As they are a lattice
artifact, their effect should extrapolate away in the con-
tinuum limit.19

TABLE III. FV and pion-mass retuning corrections for aHVP;lqcμ , in units of 10−10, computed in SChPT and in the
SRHOmodel. For the “no ρ” column, the value of l̄6 is reduced from 16 to 3.5. To be added to correct lattice results;
for details, see text.

Ensemble 96 64 48I 32 48II

FV NLO 15.6 7.0 2.11 2.24 0.588
FV NNLO 22.4(3.0) 10.2(1.5) 3.03(40) 3.36(56) 0.751(45)
FV SRHO model 13.2 5.9 1.81 1.94 0.517

Retuning NLO −0.80 −6.24 −2.55 −2.19 −0.75
Retuning NNLO −1.38ð42Þ −10.6ð3.1Þ −4.4ð1.3Þ −3.8ð1.1Þ −1.29ð39Þ
Retuning NNLO no ρ −0.89 −6.9 −2.8 −2.4 −0.84
Retuning SRHO model −1.68 −12.93 −5.34 −4.59 −1.57

TABLE IV. Taste-breaking corrections in aHVP;lqcμ in infinite
volume, units of 10−10, computed in SChPT and in the SRHO
model. For the “no ρ” column, the value of l̄6 is reduced from 16
to 3.5. To be added to correct lattice results; see text.

Ensemble 96 64 48I 32 48II

t. br. NLO 9.4 34.6 52.2 62.5 61.3
t. br. NNLO 16.6 65.8 114.0 151.6 149.6
t. br. NNLO no ρ 10.5 39.2 60.2 72.9 71.4
t. br. SRHO model 18.1 71.4 122.5 161.3 159.0

17For these fits, we set Ak5 ¼ A45, Ajk ¼ Ak4 and Ak ¼ A4 to
have a positive number of degrees of freedom, consistent with
leading-order SChPT.

18It might be interesting to see whether these taste splittings
can be better understood using NLO SChPT, for which the
necessary calculations have been carried out in Ref. [40]. This is
beyond the scope of the present paper.

19This is also the reason we make no attempt to estimate ChPT
truncation errors for the taste-breaking effects.

AUBIN, BLUM, GOLTERMAN, and PERIS PHYS. REV. D 106, 054503 (2022)

054503-10



In Fig. 6 we show our results for aHVP;lqcμ , using the
values of Tables II, III and IV. The gray data points show
the values of Table II. The FV and pion-mass mistunings
of Table III have to be applied before the continuum limit
can be taken, of course. The nearby colored points show
the same data, corrected for FV effects and pion-mass
mistuning using NNLO SChPT (left panel) or the SRHO
model (right panel), but not for taste breaking. Since taste
breaking is an order-a2 effect, these corrected data
allow us to extrapolate to the continuum limit, which is
done with a linear fit in each panel, shown as a dashed
line. The 32- and 48II-ensemble points, which have
different volumes but the same lattice spacing, agree
within errors.
In the left panel, we also show the data points corrected

for taste breaking in NNLO SChPT; the solid line shows a
linear fit, while the dotted-dashed line shows a constant fit;
both fits are in good agreement with the data. In the right

panel data points also corrected for taste breaking are
shown using the SRHO model; the solid line shows a linear
fit to these SRHO-corrected data points. We fit as a function
of a2, and not a2α2s , as the use of the trapezoidal integration
in Eq. (2.1) introduces an a2 error.
For all fits, we have assumed the statistical errors to be

uncorrelated, since the data are obtained on different
ensembles. The scale-setting errors have been assumed
to be 100% correlated (but assuming the latter to be
uncorrelated does not have a big effect on the fits). P
values for all fits are larger than 22% (with the SRHO-
based fit including taste-breaking corrections at this value).
All fits are good, and the data do not allow us to distinguish.
While the constant fit to the SChPT-corrected data gives the
smallest error, �6.4 × 10−10, clearly one cannot conclude
that the constant fit is preferred.
Our extrapolated values from these fits are as follows:

aHVP;lqcμ ¼ 638.7ð11.4Þ × 10−10; NNLO without taste breaking;

¼ 653.1ð11.4Þ × 10−10; NNLO;

¼ 659.6ð6.4Þ × 10−10; NNLO ðconstantÞ;
¼ 629.6ð11.4Þ × 10−10; SRHO without taste breaking;

¼ 646.5ð11.4Þ × 10−10; SRHO: ð4:1Þ

We have also carried out linear fits dropping the two data
points at a ¼ 0.15 fm, i.e., dropping the 32 and 48II
ensembles. The continuum-extrapolated values differ from
the central values above by not more than the fit errors in
Eq. (4.1). We note, however, that the values with and
without taste-breaking corrections become much closer.
As our best value, we take the average of the first two fits

in Eq. (4.1), adding a systematic error equal to half the

distance. This procedure is motivated by the fact that the
two fits should agree in the continuum limit, since they
differ only in the treatment of taste-breaking effects. Our
best value for aHVP;lqcμ is then

aHVP;lqcμ ¼ ð645.9� 11.4� 7.2� 3.0� 0.4Þ × 10−10

¼ 646ð14Þ × 10−10: ð4:2Þ
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FIG. 6. The continuum limit of aHVP;lqcμ in units of 10−10. Left panel: fits using NNLO SChPT for FV corrections and pion-mass
retuning; without taste breaking (linear, blue dashed line) and with taste breaking (linear, blue solid line or constant, blue dotted-dashed
line). Right panel: fits using the SRHOmodel for FV corrections and pion-mass retuning; without taste breaking (linear, red dashed line)
and with taste breaking (linear, red solid curve). The data points for each fit are shown in the same color; continuum limits are shown in
black. The gray points in both panels (slightly horizontally offset for clarity) show the uncorrected values reported in Table II. Some
continuum-limit extrapolations are slightly offset for clarity.
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The four errors are the statistical error from the fit, half the
distance between the first two fits in Eq. (4.1), and the
errors on the NNLO FVand retuning corrections for the 96
ensemble shown in Table III, taking for the latter two error
estimates those for the ensemble closest to the continuum
limit. The error in the second equality in Eq. (4.2) is
obtained by adding these four errors in quadrature.
Applying the same procedure to the two SRHO-based
values in Eq. (4.1) yields 638ð14Þ × 10−10, which is
consistent with Eq. (4.2).20

Comparing this value with the value we obtained in
Ref. [14], aHVP;lqcμ ¼ 659ð22Þ, we make the following
observations. Our new central value is lower, but consistent
within errors. Our total error has been reduced by a factor of
1.6. The main reason for this reduction is the reduction in
statistical errors, as can be seen by comparing Table II with
Table II of Ref. [14], especially for the 963 ensemble. Our
scale-setting error is now folded into the fit error, as we
took the scale-setting errors of Table II into account in our
fits, assuming them to be 100% correlated. While the error
in Eq. (4.2) is 2.2%, and thus still large relative to the
subpercent goal, we note that its central value is lower than
the corresponding value obtained in Ref. [5].21

There is good reason to believe that with these ensembles
scaling violations are not linear in a2, because already the
taste splittings themselves are not linear in a2, as we
showed in Sec. III C. A linear extrapolation of the two
smallest-a central values of aHVP;lqcμ leads to a lower value
of aHVP;lqcμ in the continuum limit, 631 × 10−10, at the very
low end of the range in Eq. (4.2). Clearly, all these values
are consistent with each other because of the relatively large
fit errors. Because of this, it is interesting to look at window
quantities.
Before we do so, we consider the sum of FV, pion-mass

mistuning and taste-breaking corrections to all ensembles,
and use these to compute the differences

aHVP;lqcμ ðensemble 1Þ − aHVP;lqcμ ðensemble 2Þ; ð4:3Þ

both in SChPT and in the SRHO model. These differences
can be compared with data, giving information on how well
SChPT and the SRHO model perform.22 The differences
are shown in Table V, where we take for “ensemble 1” the
96 ensemble, and we vary “ensemble 2.” While the lattice
numbers have relatively large errors, we see that NNLO
SChPT describes these differences reasonably well (pos-
sibly thanks to the large errors on the lattice differences), as
does the SRHO model, to a somewhat lesser extent.23 The
results of Table V confirm that between the options shown,
NNLO SChPT gives the better description of the data, even
on the coarser ensembles. It is difficult to estimate the
systematic errors on the NNLO-SChPT differences in
Table V, because we do not know how the errors on the
individual contributions in these differences are correlated,
and SChPT may not converge for the coarser ensembles. It
is not possible to estimate a systematic error for the SRHO-
based value.

V. COMBINATION WITH OTHER
CONTRIBUTIONS

In this brief section, we combine our value for aHVP;lqcμ

with other contributions, taken from the literature, to arrive
at a value for aHVP;LOμ which we believe to be a reliable
estimate within errors. In order to do this, we need to add
the strange- and charm-quark contributions, as well as the
disconnected parts, QED corrections to order α, and strong
isospin breaking (SIB) effects to linear order in mu −md.

24

We will avoid using any values for these other contri-
butions for which the errors contain any correlations with
our own result for aHVP;lqcμ . That excludes using any values
from Ref. [27], which are based on the same HISQ
ensembles, and, thus also any averages from Ref. [3] that
include HISQ-based results.
For the strange-quark plus disconnected contribution, we

will take our value from Ref. [50]. In Ref. [50] it was
pointed out that the sum of the strange-quark connected and
-disconnected parts can be determined from the experi-
mental R-ratio data, and corrected to yield a value for this
sum in the isospin-symmetric limit of pure QCD without

TABLE V. Differences of aHVP;lqcμ values between different ensembles. All numbers in units of 10−10; aμ ≡ aHVP;lqcμ .

aμð96Þ − aμð64Þ aμð96Þ − aμð48IÞ aμð96Þ − aμð32Þ aμð96Þ − aμð48IIÞ
Lattice 10(16) 59(16) 103(15) 86(15)
NLO SChPT 11 28 38 37
NNLO SChPT 28 75 114 111
SRHO 35 89 129 128

20No systematic errors associated with FV or retuning correc-
tions can be obtained in this case.

21We estimate the value of Ref. [5] by taking their value in
finite volume, 633.7ð2.1Þð4.2Þ × 10−10, and adding 10=9 (for the
light-quark connected part) times their finite-volume correction
18.7ð2.5Þ × 10−10 (which we ascribe to the light-quark part),
which yields 654.5ð5.5Þ × 10−10.

22Similar tests were carried out in Ref. [5].
23The agreement is less good for the 48II ensemble.
24Other contributions, such as that from the bottom quark, are

small enough that we can ignore them relative to the size of our
error in aHVP;lqcμ .
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QED. The analysis was carried out using the R-ratio
compilations of Ref. [51] and Ref. [52], thus leading to
two different estimates. Since these two estimates are
compatible with each other, here we take the average, with
the larger of the two errors and half the difference added in
quadrature. This yields

asconnþdisc
μ ¼ 39.4ð2.1Þ × 10−10: ð5:1Þ

This is in excellent agreement with the value 39.5ð2.9Þ ×
10−10 of Ref. [3]; it is also in good agreement with the value
38.2ð1.8Þ × 10−10 of Ref. [5].
For the charm contribution, we use the value obtained by

averaging the values of Refs. [10,53,54],

acharmμ ¼ 14.6ð0.7Þ × 10−10; ð5:2Þ
where we took the larger error, and we avoided using results
based on staggered simulations (which, however, are in good
agreement). We note that the average provided in Ref. [3] is
the same, but has a smaller error. In the combination with our
value for aHVP;lqcμ , this makes no difference.
For SIB corrections, we take the weighted average of the

results of Ref. [5], which found 1.93ð1.20Þ × 10−10 using
lattice QCD, and Ref. [55], which found 3.32ð89Þ × 10−10,
using ChPT. Since the errors on these results are not purely
statistical, wewill use the larger of the two errors, arriving at

aSIBμ ¼ 2.82ð1.20Þ × 10−10: ð5:3Þ
Adding to this the QED corrections of Ref. [5] (at present,
this work provides the only complete computation of all
contributions to these corrections), we find, to leading order
in α and mu −md,

aQEDþSIB
μ ¼ 2.82ð1.20Þ × 10−10 − 1.45ð63Þ × 10−10

¼ 1.4ð1.4Þ × 10−10: ð5:4Þ
We note that the estimate of this contribution provided in
Ref. [3] is based on estimates of only some of the many
QED plus SIB contributions, and, in particular, did not take
into account the strong cancellation between connected and
disconnected SIB corrections.
Adding the values in Eqs. (4.2), (5.1), (5.2), and (5.4)

and the corresponding errors in quadrature leads to the
estimate

aHVP;LOμ ¼ 701ð14Þ × 10−10: ð5:5Þ

The central value of this result is lower than the average
published in Ref. [3] and the result of Ref. [5], but it is
consistent within errors with both.

VI. WINDOW QUANTITIES

We now turn to our results for the window quantities
aW1;lqc
μ and aW2;lqc

μ , where W1 is the standard window
between 0.4 and 1.0 fm, andW2 is the window between 1.5

and 1.9 fm; cf. Eq. (1.6). As for aHVP;lqcμ , we will investigate
the continuum limit, and test the applicability of SChPTand
the SRHO model.

A. Window 0.4–1.0 fm

Again, we begin with showing the FV, pion-mass
mistuning and taste-breaking corrections, computed in
NLO and NNLO SChPT, as well as in the SRHO model,
in Table VI. As we will see in more detail below, SChPT is
not reliable for the W1 window, and we thus will not
discuss this table in as much detail as we did in Sec. IV for
aHVP;lqcμ . Suffice it to say that we observe that the W1
window suppresses the long-distance two-pion contribu-
tion significantly, so that the interplay with the ρ resonance
can play a larger role. This could explain the difference
between the SRHO-model estimates for FV corrections and
those based on SChPT. To the extent that the values in the
table can be taken as a guide, we see that corrections are
much smaller for aW1;lqc

μ , in comparison with aHVP;lqcμ .
In Fig. 7 we show aW1;lqc

μ as a function of a2. The gray
points again show the data of Table II, with the nearby
colored points the same data, but now corrected for FV or
pion-mass mistuning using NNLO or NLO SChPT (left
panel) and the SRHO model (right panel). The fits to these
data points are not completely justified, because it is not
clear that SChPT or the SRHO model are the right tools to
apply these corrections for the W1 window. In practice, FV
and mistuning effects appear to be small, and we obtain
good fits (p values 72, 22 and 16%, respectively). In the left
panel, the solid blue curve represents a quadratic fit to the
data now also corrected for taste breaking at NNLO, while
the dotted-dashed purple line shows a linear fit to the data
with taste breaking corrected at NLO. In the right panel, the
solid red curve shows a fit with the data also corrected for
taste breaking using the SRHO model; p values are 73, 50
and 25%, respectively. The 32- and 48II-ensembles points
agree within errors. Our extrapolated values from these fits
are as follows:

TABLE VI. FV, pion-mass retuning and taste-breaking correc-
tions for aW1;lqc

μ , in units of 10−10, computed in SChPT and in the
SRHO model. To be added to correct lattice results; for details,
see text.

Ensemble 96 64 48I 32 48II

FV NLO 0.61 0.31 0.095 0.137 0.0129
FV NNLO 0.73 0.36 0.108 0.170 0.021
FV SRHO −1.43 −0.65 −0.188 −0.205 −0.039

Retune NLO −0.069 −0.52 −0.22 −0.19 −0.064
Retune NNLO −0.165 −1.22 −0.52 −0.45 −0.154
Retune SRHO −0.056 −0.41 −0.17 −0.15 −0.053

t. br. NLO 0.88 3.9 8.0 11.5 11.4
t. br. NNLO 2.16 10.2 24.2 38.9 38.7
t. br. SRHO 0.41 2.1 5.8 9.9 9.9
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aW1;lqc
μ ¼ 208.84ð81Þ × 10−10; NNLO without taste breaking;

¼ 204.65ð81Þ × 10−10; NNLO;

¼ 208.52ð81Þ × 10−10; NLO without taste breaking;

¼ 206.84ð53Þ × 10−10; NLO ðlinearÞ;
¼ 205.45ð53Þ × 10−10; SRHO without taste breaking ðlinearÞ;
¼ 204.67ð81Þ × 10−10; SRHO: ð6:1Þ

We have also carried out linear fits dropping the two data
points at a ¼ 0.15 fm, i.e., dropping the 32 and 48II
ensembles. The continuum-extrapolated values differ from
the central values above by not more than 1.3 times the fit
error in Eq. (6.1) for the NNLO-based fits, not more than 0.6
times the fit error for the NLO-based and SRHO-based fits.
Clearly, the different extrapolations shown in Fig. 7 do

not yield a common continuum limit—the errors of the
different extrapolations do not overlap, with the exception
of the two SRHO-based extrapolations. Moreover, it would
be misleading to evaluate their level of agreement visually,
as the continuum extrapolations are highly correlated. If we
take the average between the largest and smallest values in
Eq. (6.1), we find

aW1;lqc
μ ¼ ð206.75� 0.81� 2.10Þ × 10−10

¼ 206.8ð2.2Þ × 10−10; ð6:2Þ

where the first error is the fit error, and the second error is
half the difference between the largest and smallest values.
The combined error is obtained by quadrature. We note that
the central value is essentially that given by the NLO linear
fit, but with a much larger error. We also note that the
estimated error is dominated by systematics. If, based on
the discussion of Table VII below, we discard the NNLO-
based fits, the same procedure would lead to the estimate
aW1;lqc
μ ¼ð206.60�0.81�1.93Þ×10−10¼206.6ð2.1Þ×10−10,

fully consistent with Eq. (6.2). If we would take the average
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FIG. 7. The 0.4–1.0 fm window, aW1;lqc
μ , in units of 10−10. Left panel: fits using NNLO SChPT for FV corrections and pion-mass

retuning; without taste breaking (quadratic, blue dashed line) and with taste breaking (quadratic, blue solid curve); fits using NLO
SChPT for FV corrections and pion-mass retuning; without taste breaking (quadratic, purple dotted line) and with taste breaking (linear,
purple dotted-dashed line). Right panel: fits using the SRHO model for FV corrections and pion-mass retuning; without taste breaking
(linear, red dashed line) and with taste breaking (quadratic, red solid curve). The data points for each fit are shown in the same color;
continuum limits are shown in black. The gray points in both panels (slightly horizontally offset for clarity) show the uncorrected values
reported in Table II. The isolated (green) point at a2 ¼ 0 is the estimated value from R-ratio data (by C. Lehner, using data from
Ref. [19]). Some data points and continuum-limit extrapolations are slightly offset for clarity.

TABLE VII. Differences of aW1;lqc
μ values between different ensembles. All numbers in units of 10−10;

W1≡ aW1;lqc
μ .

W1ð96Þ −W1ð64Þ W1ð96Þ −W1ð48IÞ W1ð96Þ −W1ð32Þ W1ð96Þ −W1ð48IIÞ
Lattice 0.94(46) 4.49(66) 5.43(79) 5.44(58)
NLO SChPT 2.28 6.47 9.98 9.89
NNLO SChPT 6.67 21.08 35.88 35.87
SRHO 2.15 6.49 10.65 10.91
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of the two SRHO-based extrapolations, we would obtain
205.1ð9Þ × 10−10, which is also consistent with Eq. (6.2),
but with a much smaller error.
The data points which are corrected only for FV effects

and pion-mass mistuning in Fig. 7 lie close to the gray data
points, which are the unmodified lattice results shown in
Table II. This suggests that FV and pion-mass mistuning
corrections are small, even if there is serious doubt that
NNLO SChPT can be trusted to reliably obtain these
corrections. The 64-ensemble gray point is farthest from
the corresponding corrected point because the pion-mass
mistuning correction is larger in that case (cf. Table I). As
can be seen in the figure, the fits to these corrected data
points (dashed and dotted curves) are nonlinear fits. This is
not unexpected, given the nonlinear behavior seen in the
taste splittings, as discussed in Sec. III C. With this clearly
nonlinear behavior, it is not possible to predict the behavior
at lattice spacings well below 0.06 fm reliably, and we thus
do not believe that the first fit shown in Eq. (6.1) can be
trusted to yield a reliable continuum limit. While, as we
have argued, all methods to compute corrections are based
on models, one notes that all of them lead to a lower
continuum limit when taste-breaking corrections are
included. Moreover, NLO SChPT and the SRHO model,
when applied to taste-breaking corrections, appear to
linearize the data (NLO SChPT leads to a good linear
fit; the SRHO quadratic fit leads to a curvature 1.2σ away
from zero). This leads us to believe that the true continuum-
limit value of aW1;lqc

μ probably lies below the value obtained
in the first line of Eq. (6.1). These considerations lead us to
the estimate (6.2) as the best value based on our data. It is
clear that lattice results at smaller lattice spacings would be
very helpful in narrowing down this range.
The value obtained in Eq. (6.2) can be compared to the

value we obtained from ensembles 96, 64 and 48I in
Ref. [14], which is 209.78ð96Þ × 10−10. Our new value is
lower, but is still 2σ higher than the R-ratio-based number,
200.7ð2.0Þ × 10−10, shown in Fig. 7.25 The reason for our
larger error is that we now included NNLO-SChPT- and
SRHO-based fits, which give a lower value relative to the
value not corrected for taste breaking than the NLO-SChPT-
based fit (which we employed exclusively in Ref. [14]). This
is even though our new lattice results have much smaller
statistical errors. In Ref. [14] we also considered the value
obtained from extrapolating the values at the smallest
two lattice spacings, which yields 207.7ð1.8Þ × 10−10.
Equation (6.2) is in good agreement with this value.
It is interesting to compare the different fits. The NNLO

and SRHO fits lead to the same continuum limit, despite their
different nature. All fits based on taste-breaking corrected

points have a positive slope as a function of a2, which is what
is also seen for domain-wall fermions [10]. Visually, the
NLO fit looks appealing—with an excellent linear fit. As we
have emphasized above, all three approaches should be
considered model approaches, as ChPT is not expected to
converge for this window. In fact, we can look into this by
considering the differences (4.3), but now for aW1;lqc

μ .
These differences are shown in Table VII. Clearly, NNLO

SChPT does not describe these differences, and the SRHO
model does much better. However, NLO SChPT describes
the data as well as the SRHO model. Combined with our
finding that the NLO-corrected data allow for a very good
linear fit, it would not be unreasonable to conclude that at the
level of a model, NLO SChPT might provide the preferred
model. We do not believe this to be justified, but instead, we
conclude that it is not justified to use a model to correct data
points based on visual improvement alone. We note that this
is reflected in a comparison between our “best” result,
Eq. (6.2), and the NLO-linear fit in Eq. (6.1), which lead to
the same central value, but very different errors. Unlike
discretization effects, whose model dependency disappears
as the lattice spacing is extrapolated to zero, the model
dependency in the FVeffects remains as long as a number of
measurements at sufficiently large volumes are not done to
allow for a reliable infinite-volume extrapolation. The
corrections based on SChPT or the SRHO model do not
completely eliminate this model dependency.
In summary, even though from Fig. 7 one could infer that

the SRHO model should be preferred over SChPT, for both
SChPT and the SRHO model there is no path to a
systematic improvement of the model description of the
data. In our view, that makes the window W1 of limited
usefulness until the removal of systematic effects can be
carried out using lattice data, without the need for any
model. Since taste-breaking effects appear to be the largest
effect hindering a straightforward extrapolation to the
continuum limit, data at a smaller lattice spacing would
go a long way to improving this unsatisfactory situation.
We compare our new value for aW1;lqc

μ with values
obtained by other collaborations in Fig. 1. We observe
that our new value is consistent with other staggered
determinations (first five values in the figure). In particular,
our value is in agreement with that obtained in Ref. [5],
even though we assigned a larger systematic error; cf.
Eq. (6.2). Comparing the right-hand panel in Fig. 7 with
Fig. 4 of Ref. [5], one notices the similarity between these
two figures.26 Data points without corrections for taste
breaking span about the same range of values for aW1;lqc

μ ,
and this is also true for the taste-breaking corrected points.

25If we use the R-ratio-based value 200.3ð1.3Þ × 10−10 from
Ref. [5], the value in Eq. (6.2) is 2.5σ higher. However, we prefer
to use, for comparison, a value that does not use staggered-
fermion results.

26The comparison should be made between the data points
shown in red in Fig. 7 and the data points in Fig. 4 of Ref. [5],
because the “no improvement” data points in that figure have
already been extrapolated to infinite volume.We note that Ref. [5]
and we both used conserved currents.
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In this comparison, we compare the lattice spacings of
Ref. [5] directly to ours, even though Ref. [5] used a
different, but also highly improved, staggered action. This
appears to be justified by the observation that taste-break-
ing effects, as modeled by the SRHO model, are of
approximately the same size at the same lattice spacing
in both Ref. [5] and this work. This suggests that also with
the action of Ref. [5], it would be desirable to see what
happens at a smaller lattice spacing.
A similar comparison can be made between Fig. 6 and

the Extended Data Fig. 3 of Ref. [5], for the data without
corrections for taste breaking (the green triangles in
Ref. [5]). As for aW1;lqc

μ , they span about the same range,

confirming that lattice spacings can be directly compared
between Ref. [5] and this paper, and taste-breaking effects
are comparable in size.

B. Window 1.5–1.9 fm

We now consider our new window, W2. Since 1.5 fm ≈
ð130 MeVÞ−1 is a rather large distance, it is reasonable to
expect that ChPT can be used to describe aW2;lqc

μ . In
Table VIII we show the FV, pion-mass mistuning and
taste-breaking corrections computed in SChPT and in the
SHRO model, in the same format as in Table VI. We note
that the convergence of SChPT for window W2 is much
better in general than for window W1, even though taste-
breaking corrections at NNLO are still more than 100%
larger than at NLO for the 48I, 32 and 48II ensembles.
In Fig. 8 we show the lattice-spacing dependence of

aW2;lqc
μ . The gray points again show the data of Table II,

with the nearby colored points the same data, but now
corrected for FV or pion-mass mistuning using NNLO
SChPT (left panel) and the SRHO model (right panel). All
fits shown in the figure have excellent p values, which
reflects the fact that the statistical errors on the W2 values
are relatively large. We note that the NNLO taste-breaking
corrections appear to capture a large fraction of the lattice-
spacing effects for windowW2, witness the relatively small
slope of the blue solid and dotted-dashed curves in the left-
hand panel. Our extrapolated values from these fits are as
follows:

aW2;lqc
μ ¼ 106.5ð3.8Þ × 10−10; NNLO without taste breaking;

¼ 103.2ð3.8Þ × 10−10; NNLO;

¼ 100.5ð2.1Þ × 10−10; NNLO ðlinearÞ;
¼ 102.8ð3.8Þ × 10−10; SRHO without taste breaking:

¼ 96.4ð2.1Þ × 10−10; SRHO ðlinearÞ: ð6:3Þ
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FIG. 8. The 1.5–1.9 fm window, aW2;lqc
μ , in units of 10−10. Left panel: fits using NNLO SChPT for FV corrections and pion-mass

retuning; without taste breaking (quadratic, blue dashed line) and with taste breaking (quadratic, blue solid curve; linear, dotted-dashed
line). Right panel: fits using the SRHO model for FV corrections and pion-mass retuning; without taste breaking (quadratic, red dashed
line) and with taste breaking (linear, red solid curve). The data points for each fit are shown in the same color; continuum limits are
shown in black. The gray points in both panels (slightly horizontally offset for clarity) show the uncorrected values reported in Table II.
Some data points and continuum-limit extrapolations are slightly offset for clarity.

TABLE VIII. FV, pion-mass retuning and taste-breaking cor-
rections for aW2;lqc

μ , in units of 10−10, computed in SChPT and in
the SRHO model. To be added to correct lattice results; for
details, see text.

Ensemble 96 64 48I 32 48II

FV NLO 2.25 1.08 0.325 0.372 0.062
FV NNLO 3.13 1.51 0.448 0.559 0.0744
FV SRHO 0.56 0.35 0.128 0.197 0.0156

Retune NLO −0.114 −0.879 −0.364 −0.313 −0.107
Retune NNLO −0.199 −1.52 −0.631 −0.543 −0.186
Retune SRHO −0.280 −2.12 −0.885 −0.761 −0.262
t. br. NLO 1.39 5.42 8.55 10.12 9.94
t. br. NNLO 2.47 10.14 17.60 22.06 21.76
t. br. SRHO 3.01 12.84 24.54 33.81 33.46
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In this case, the continuum limit obtained shows better
agreement between the values with and without taste-
breaking corrections when these are computed with NNLO
SChPT than when they are computed with the SRHO
model. If we interpret this as an indication that NNLO
SChPT is more reliable, averaging the largest and smallest
NNLO-based values in Eq. (6.3) would give an estimated
best value of aW2;lqc

μ ¼ 103ð4Þ × 10−10, where we averaged
the first and third values in Eq. (6.3), and took the largest fit
error as our error estimate. The SRHO model would lead to
a lower estimate, which, based on our discussion of
Table IX (see below), cannot be excluded. We have also
carried out linear fits dropping the two data points at
a ¼ 0.15 fm, i.e., dropping the 32 and 48II ensembles. The
continuum-extrapolated values differ from the central
values above by not more than 1.2 times the fit errors in
Eq. (6.3) for the NNLO case. In this case, the continuum
values obtained with NNLO SChPTwith and without taste
breaking are equal to 102.1ð2.4Þ × 10−10 in both cases, and
agree in the continuum limit. We thus take

aW2;lqc
μ ¼ 102.1ð2.4Þ × 10−10; ð6:4Þ

as our best estimate for window W2. This result is in good
agreement with the value 103ð4Þ × 10−10 quoted above.
Differences as defined in Eq. (4.3) for the W2 window

are tabulated in Table IX. In this case, NNLO SChPT
describes the differences much better than for the W1
window, and also better than NLO SChPT. The change
from NLO to NNLO SChPT is large, but, as remarked
before, this does not necessarily mean that ChPT does not
converge. We also observe that the agreement between the
lattice and NNLO-SChPT numbers is better for ensembles
with a smaller lattice spacing: within errors, the lattice
difference in column 2 agree with NNLO SChPT, with the
tension gradually increasing in columns 3 and 4, i.e., with
increasing taste masses. As for aHVPμ , it is possible that
some of the staggered pion masses on the 48I and 32
ensembles are too large; cf. Sec. III B. All this makes it
difficult to estimate the systematic error from truncating
SChPTat NNLO, and it is thus not straightforward to assess
the agreement with the lattice values for these differences.
The SRHO model also describes the lattice differences
reasonably well, but, of course, it is not possible to
assess the systematic error at all. Smaller errors on the
lattice differences would help discriminate between

NNLO SChPT and the SRHO model. A reduction of the
errors on aW2;lqc

μ shown in Table II and/or smaller lattice
spacings will be needed to obtain a more precise estimate
for aW2;lqc

μ .

VII. CONCLUSION

In this paper, we continued our study of the light-quark
connected contribution aHVP;lqcμ to the HVP part of the
muon anomalous magnetic moment, using lattice QCD
with staggered fermions. We presented and discussed
results for aHVP;lqcμ , the “intermediate-distance” window
quantity aW1;lqc

μ of Ref. [10], and a new window quantity
aW2;lqc
μ that probes the region between 1.5 and 1.9 fm. We

extended our use of SChPT to NNLO, in order to compute
FV, pion-mass mistuning, and taste-breaking corrections.
For comparison, we also computed these corrections using
the SRHO model of Ref. [26].
We now have values for each of these quantities at four

different lattice spacings, adding two ensembles at
a ¼ 0.15 fm, and improving statistics on the 96, 64 and
48I ensembles. In particular for the 96 ensemble, statistical
errors are significantly smaller than in Ref. [14]. This
allows for a more detailed study of the continuum limit than
was possible in Ref. [14]. In order to do this, FV and pion-
mass retunings need to be estimated on all ensembles,
because none have precisely the same (spatial) volume and
pion mass (even though the pion masses are close to
physical). Taste-breaking corrections can also be com-
puted, but, with four different lattice spacings, direct
extrapolation is also possible, in principle at least.
This raises the important question how to compute these

corrections. As we emphasized in Ref. [25], aHVP;lqcμ is
accessible to ChPT extended to include muons and pho-
tons, and, to NNLO, no new counterterms are needed
beyond those already present for the strong interaction
only. Here we showed that NNLO ChPT (in infinite
volume) can be expected to be reliable for pion masses
up to roughly 250 MeV, based on a comparison with
Ref. [36]. In addition, the largest uncertainty comes from
the contribution of the Oðp6Þ LEC c56, which is indepen-
dent of the volume and pion masses, so it drops out of
differences. At the same time, on our coarser ensembles
some of the taste masses are significantly larger than
250 MeV, making it less clear that one can rely on

TABLE IX. Differences of aW2;lqc
μ values between different ensembles. All numbers in units of 10−10;

W2≡ aW2;lqc
μ .

W2ð96Þ −W2ð64Þ W2ð96Þ −W2ð48IÞ W2ð96Þ −W2ð32Þ W2ð96Þ −W2ð48IIÞ
Lattice 6.6(2.7) 17.8(2.8) 23.9(2.6) 23.2(2.7)
NLO SChPT 2.1 5.0 6.7 6.4
NNLO SChPT 4.7 12.0 16.7 16.3
SRHO 7.8 20.5 30.0 29.9
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NNLO SChPT. This is one argument for going to lattice
spacings smaller than the currently smallest lattice spac-
ing, a ≈ 0.057 fm.
Our new value for aHVP;lqcμ , Eq. (4.2) is smaller, and has a

smaller total error, than the value we obtained in Ref. [14].
This is primarily explained by the fact that our uncorrected
lattice value for the 96 ensemble is now lower, by
17 × 10−10, even if it is consistent with our previous result
within errors. This difference is to be compared with the
difference of 13 × 10−10 between our value for aHVP;lqcμ in
Ref. [14] and our best new value, obtained in Eq. (4.2). It is
also interesting to compare the reduction in the total error
on our final result, from 22 × 10−10 in Ref. [14] to 14 ×
10−10 in Eq. (4.2), to the reduction of the error on the
uncorrected value on the 96 ensemble, from 27.5 × 10−10

to 13 × 10−10. While the use of NNLO SChPT has made
the computation of the various corrections that need to be
applied to the uncorrected lattice results more precise, it is
clear that the improvement of statistics on our 96 ensemble
plays a major role in the reduction of the overall error.
Unfortunately, our error on aHVP;lqcμ is large enough for our
value to agree both with the value obtained in Ref. [5], and
with the value obtained from the data-driven approach [3],
if we assume that the discrepancy between these two comes
from the light-quark connected part only. We combined our
value for aHVP;lqcμ with the contributions from strange,
charm, disconnected, QED and strong isospin breaking
into an estimate for aHVP;LOμ in Eq. (5.5).
The window quantity aW1;lqc

μ covers the 0.4–1.0-fm
range, and is not accessible to SChPT, in agreement with
the conclusion reached in Ref. [5]. This presents us with a
conundrum: the comparison of values for aW1;lqc

μ between
different lattice collaborations is only useful if the FV
effects, pion-mass retuning, and, in the staggered case, taste
breaking, can be reliably controlled. While in principle this
can be done numerically, on the lattice, by considering very
large volumes and very small lattice spacings, the present
state of the art does not allow us to do this, and this forces
one to rely on a model to compute all relevant corrections.
Here, we explored three parametrizations: NLO and NNLO
SChPT and the SRHO model, which all should be
considered models for the case of the W1 window.
Clearly, NNLO SChPT does extremely poorly, but, judged
by comparisons, NLO SChPT and the SRHO model do
about equally well. In our case, based on the comparison of
NLO SChPTand the SRHOmodel in Eq. (6.1), this leads to
a large systematic error, which diminishes the advantage
that aW1;lqc

μ can be computed with very small statistical
errors. Simulations at smaller lattice spacings (with small
statistical errors) would help reduce this systematic error.
As we discussed at the end of Sec. VI A, our data for the
W1 window look very similar to those of Ref. [5], which
suggests that our conclusions are relevant for simulations
based on the action of Ref. [5] as well.

Because of these issues with window W1, we have also
investigated a new window, W2, which covers the 1.5–1.9-
fm range. The advantage of this window is that it can
reasonably be expected to be accessible to ChPT, while
the disadvantage is that statistical errors will be larger.
Indeed, we find that statistical errors are larger, about 3–6
times as large as for windowW1, but still about a factor of 5
times smaller than those on aHVP;lqcμ . Table IX suggests that
indeed NNLO SChPT provides a reasonable description of
this window, in sharp contrast with Table VII for window
W1. However, given the large taste pion masses on ensem-
bles 48I, 32 and 48II, for which SChPT may not converge,
again simulations at a smaller lattice spacing should provide
more insight. While our results for the W2 window have
larger errors than our results for theW1window,we believe it
is important to consider “auxiliary” quantities within the
domain of validity of ChPT in the future.
We believe it is fair to say that taste-breaking effects in

aHVP;lqcμ and the window quantities on these ensembles are
not well understood. This is reflected by the fact that lattice
results uncorrected for taste breaking do not generally
extrapolate to the same continuum limit as those that are
corrected for taste breaking, despite the fact that taste
breaking is a pure lattice artifact. While the differences in
the continuum limit can be accounted for as a systematic
error, it is not clear that this is sufficient for complete
control of the continuum limit. It may well be that the
current discrepancies of lattice results for aW1;lqc

μ with
values obtained from the dispersive approach, observed
in a number of simulations [5,13–16] and this work, are due
to short-distance effects caused by the lack of a sufficiently
detailed understanding of the continuum limit. As this
discrepancy for the intermediate window W1 is of order
half the discrepancy between the lattice value for aHVPμ of
Ref. [5] and the dispersive value, this suggests that the
discrepancy in aHVPμ itself may be caused by the same short-
distance effects. Of course, it is just this type of focus that
the windows were designed to facilitate.
In fact, it appears that taste breaking on these HISQ

ensembles itself is not well understood. SChPT predicts an
approximate SOð4Þ symmetry at order a2 [22], and indeed,
the taste splittings shown in Fig. 5 exhibit this SOð4Þ
symmetry. However, at the same time, we find that the
coefficient of the a2α2s term in the fit is consistent with zero.
Since at order a4 operators appear in SChPT that break the
continuum SUð4Þ taste symmetry down to the minimal
lattice symmetry group [24], this would imply that the
HISQ action somehow suppresses those operators at order
a4 that break SOð4Þ down to the lattice symmetry group.
With the present set of ensembles, taste splittings are quite
nonlinear as a function of a2, and this is reflected in the
generally nonlinear behavior seen in Figs. 7 and 8.
Returning to aHVP;lqcμ and the window quantities, in order

to control taste breaking more reliably, it would be very
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helpful to reach the regime in which taste breaking is
approximately linear in a2α2sð1=aÞ. With the HISQ action,
this means going to smaller lattice spacings. In addition,
taste splittings have to be small enough (of order
≲150 MeV) for NNLO SChPT to be applicable. Finally,
there are likely to be scaling violations from other sources
than taste breaking, and one should thus not necessarily
expect the data points corrected for taste breaking to
become constant as a function of the lattice spacing.
We summarize our main conclusions. First, in order to

reliably extrapolate lattice results obtained with staggered
fermions to the continuum limit, smaller lattice spacings
will be needed, at least with the HISQ action. Adding at
least one smaller lattice spacing would allow us to dispense
with the 48I,II and 32 ensembles in taking the continuum
limit. Furthermore, as can be seen in Table II, the statistical
errors on our lattice results are now competitive with scale-
setting errors, especially for the window quantities. The
total error can thus be reduced by a more precise deter-
mination of the scale. Second, as long as it will be
necessary to apply corrections for finite volume, pion-mass
retuning, and, in the case of staggered fermions, taste
breaking, it is crucial to consider quantities for which these
corrections can be reliably computed using effective-field
theory methods, while models, in a “first-principles”
computation, should be avoided.
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APPENDIX: SRHO MODEL

We use the SRHOmodel, as first introduced in Ref. [26],
in the implementation of Ref. [5]. We chose

mρ ¼ 775 MeV; Fρ ¼ 210 MeV;

gρ ¼ 6; gγ ¼ 5.4: ðA1Þ

In infinite volume, it is straightforward to obtain the
spectral function ρSRHOðsÞ from the SRHO-model version
of the vacuum polarization, and, from this,

CSRHOðtÞ ¼
10

9

1

2

Z
∞

4m2
π

dsρSRHOðsÞ
ffiffiffi
s

p
e−

ffiffi
s

p
t; ðA2Þ

where the factor 10=9 is needed to obtain the quark-
connected part. This gives us access to the SRHO-model
prediction for aHVP;lqcμ and aW1=2;lqc

μ , as a function of the pion
mass, which allows us to get SRHO-model predictions for
pion-mass retuning and taste breaking in infinite volume. For
FV corrections in the SRHO model, we use Poisson
resummation, combined with the strategy of Ref. [5] to
incorporate the window in momentum space through the
introduction of the window version Π̂winðQ2Þ of Π̂ðQ2Þ.
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