
Form factors of B → πlν and a determination of jVubj with Möbius
domain-wall fermions

Brian Colquhoun ,1,2,*,∥ Shoji Hashimoto,2,3,† Takashi Kaneko,2,3,5,‡ and Jonna Koponen 4,2,§

(JLQCD Collaboration)

1Department of Physics and Astronomy, York University, Toronto, Ontario M1J 1P3, Canada
2High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

3School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies),
Tsukuba 305-0801, Japan

4PRISMA+ Cluster of Excellence & Institut für Kernphysik, Johannes Gutenberg-Universität Mainz,
D-55128 Mainz, Germany

5Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University,
Nagoya, Aichi 464-8602, Japan

(Received 18 March 2022; accepted 11 August 2022; published 6 September 2022)

Using a fully relativistic lattice fermion action, we compute the form factors of the semileptonic decay
B → πlν, which is required for the determination of the Cabibbo-Kobayashi-Maskawa matrix element
jVubj. We employ the Möbius domain-wall fermion formalism for the generation of lattice ensembles with
2þ 1 sea quark flavors as well as for the valence heavy and light quarks. We compute the form factors at
various values of the lattice spacing and multiple light and heavy quark masses, and extrapolate the results
to the physical point. We combine our lattice results with the available experimental data to obtain
jVubj ¼ ð3.93� 0.41Þ × 10−3.
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I. INTRODUCTION

The determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVubj from the measurement of the
exclusive semileptonic decay B → πlν requires precise
knowledge of the corresponding decay form factors, which
can be obtained using lattice simulations of quantum
chromodynamics (QCD). For the first time in lattice
QCD we calculate these quantities using a fully relativistic
approach. jVubj is an important Standard Model parameter,
and the ratio jVubj=jVcbj is a particularly sought-after result
that requires continued refining of both these elements of
the CKM matrix.

Heavy quarks require special consideration in lattice
QCD since, on coarse lattices, discretization errors from
large masses in lattice units, amQ, become uncontrollable.
Therefore, B → πlν calculations typically use effective
actions for b quarks, such as nonrelativistic QCD
(NRQCD) [1–3], the Columbia interpretation of relativis-
tic heavy quarks (RHQ) [4] and the Fermilab interpreta-
tion of the Sheikholeslami-Wohlert clover action [5].
Alternatively, it is possible to use multiple values of the
heavy quark mass amQ < amb in a fully relativistic action
and extrapolate to the physical mass. This requires that
sufficiently fine lattices are available to keep amQ small
enough that discretization effects can be controlled when
combining the data at various lattice spacings. We take the
latter approach in this work using the Möbius domain-wall
fermion action [6–10]. We use the same action for the heavy
and light quarks, and for both valence and sea light quarks.
With the Möbius domain-wall fermion formalism, the

leading discretization effects are of Oða2Þ. In our analysis
we extrapolate the results at finite lattice spacing to the
continuum limit assuming that there are effects ofOða2Þ as
well as a term proportional to ðamQÞ2, which is specific to
the heavy quark. The maximum value of amQ used in this
work is 0.688 so that discretization effects are kept under
control. The continuum extrapolation is combined with the
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extrapolation to the physical heavy and light quark masses
in a global fit function. The associated systematic errors are
estimated by introducing higher order dependences on the
lattice spacing and quark masses.
The momentum transfer range in B → πlν decays is

large, owing to the large energy release from the b quark.
The most precise experimentally available data points are in
the small momentum transfer q2 ≪ m2

b corresponding to
the kinematics where the pion recoil momentum is large.
The small recoil data near maximum momentum transfer
q2 ≈ 26.46 GeV2 is less copious and the relative statistical
error is larger. On the lattice QCD side, the most accurate
form factor results are obtained at large momentum transfer
when the recoil momentum is small. In order to make most
use of the available information from both experiment and
lattice calculations, one can combine the data to constrain
the q2 dependence using the so-called z-parameter expan-
sion [11–18], as first applied to the B → πlν process in
Ref. [19]. This approach only makes assumptions about the
analytic structure of the form factors and, because it only
involves an expansion about a small parameter z, the results
are robust. We follow this strategy in this work and estimate
the associated errors.
In calculations of both jVcbj and jVubj there exist persistent

tensions between their exclusive and inclusive determina-
tions [20,21]. The cause(s) of this tension is still unclear,
although new theoretical and experimental analyses for jVcbj
are revealingpotential problems in previous analyses, such as
the assumed functional form of the form factors. A recent
review of the jVcbj puzzle can be found in Ref. [22], while
general overviews of the CKMmatrix elements from a lattice
perspective can be found in Refs. [23,24].
A more elaborate analysis of jVubj is premature due to

the small branching fraction, but care is needed to ensure
that the choice of the parametrization of the form factors
allows systematic improvement when more data becomes
available. On the exclusive side, the model-independent
lattice calculation is a key element in the combined analysis
with experimental data. In this work we provide a fully
nonperturbative computation of the B → πlν form factors
with controlled extrapolation to the physical mass param-
eters for both heavy and light quarks as well as to vanishing
lattice spacing. A discussion of the inclusive determination
of jVubj is beyond the scope of this paper as it involves very
different theoretical methods, such as perturbative QCD
and the heavy quark expansion, but we note that a
promising new direction for tackling the problem using
lattice QCD is also being developed [25,26].
The rest of this paper is organized as follows. In Sec. II

we discuss the relevant background, including details on
the form factors obtained from the calculation and how they
are extracted using the appropriate matrix elements. The
lattice setup and procedure for our calculation is described
in Sec. III, while further details of the ensemble generation
and the properties of the generated ensembles are described

in the Supplemental Material [27]. We discuss the results of
the lattice form factors and the estimation of various
sources of systematic uncertainties in Sec. IV. In Sec. V
we discuss the continuum results for the form factors, the
use of the z-parameter expansion to obtain results across the
entire q2 range, and our main result: the determination of
jVubj when our lattice form factors are combined with
differential branching fractions from experiment. Finally,
we conclude in Sec. VI.

II. FORM FACTORS

Form factors to describe the semileptonic decay of a B
meson to a pion can be defined for the transition matrix
element hπðpπÞjVμjBðpBÞi of the flavor-changing vector
current Vμ ¼ q̄γμQ as

hπðpπÞjVμjBðpBÞi ¼ fþðq2Þ
�
pμ
B þ pμ

π −
M2

B −M2
π

q2
qμ
�

þ f0ðq2Þ
M2

B −M2
π

q2
qμ; ð1Þ

where fþðq2Þ and f0ðq2Þ are the vector and scalar form
factors of this process, pB and pπ are the four-momenta of
the B and π respectively, and MB and Mπ are their masses.
The momentum transfer is qμ ¼ pμ

B − pμ
π. At q2 ¼ 0 there

exists a kinematic constraint, fþð0Þ ¼ f0ð0Þ.
A common alternative parametrization that is useful for

lattice calculations relates thematrix elements to parallel and
perpendicular form factors, fkðEπÞ and f⊥ðEπÞ, through

hπðpπÞjVμjBðpBÞi ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
½vμfk þ pμ

π;⊥f⊥�; ð2Þ
where vμ ¼ pμ

B=MB is the velocity of the B meson, and
pμ
π;⊥ ≡ pμ

π − ðv · pπÞvμ. The pion energy Eπ is related to
the momentum transfer of the leptons by

Eπ ≡ v · pπ ¼
M2

B þM2
π − q2

2MB
: ð3Þ

Throughout this paper we keep the Bmeson on the lattice at
rest and so can use the relations

fkðEπÞ ¼
hπðpπÞjV0jBðpBÞiffiffiffiffiffiffiffiffiffiffi

2MB
p ; ð4Þ

f⊥ðEπÞ ¼
hπðpπÞjVijBðpBÞiffiffiffiffiffiffiffiffiffiffi

2MB
p 1

pi
π
; ð5Þ

where the temporal, μ ¼ 0, and spatial, μ ¼ i, components
of the vector current Vμ are considered, respectively.
Another possible parametrization—motivated by heavy

quark effective theory—is [28]

hπðpπÞjVμjBðvÞi¼2

�
f1ðv ·pπÞvμþf2ðv ·pπÞ

pμ
π

v ·pπ

�
; ð6Þ
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where the B meson state is defined as jBðvÞi ¼
ð1= ffiffiffiffiffiffiffi

MB
p ÞjBðpBÞi such that it is properly defined in the

heavy quark limit. The form factors f1ðv · pπÞ and
f2ðv · pπÞ are also consistently defined in the heavy quark
limit and the heavy quark mass dependence would start
from 1=mb. Comparing with Eqs. (4) and (5), we get

f1ðv · pπÞ þ f2ðv · pπÞ ¼
fkðEπÞffiffiffi

2
p ; ð7Þ

f2ðv · pπÞ ¼ f⊥ðEπÞ
�
v · pπffiffiffi

2
p

�
: ð8Þ

The relation to the conventionally defined form factors
fþðq2Þ and f0ðq2Þ is given by

fþðq2Þ ¼
ffiffiffiffiffiffiffi
MB

p �
f2ðv · pπÞ
v · pπ

þ f1ðv · pπÞ
MB

�
; ð9Þ

f0ðq2Þ¼
2ffiffiffiffiffiffiffi
MB

p M2
B

M2
B−M2

π

�
½f1ðv ·pπÞþf2ðv ·pπÞ�

−
v ·pπ

MB

�
f1ðv ·pπÞþ

M2
π

ðv ·pπÞ2
f2ðv ·pπÞ

��
; ð10Þ

or, equivalently, by

fþðq2Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2MB

p ½fkðEπÞ þ ðMB − EπÞf⊥ðEπÞ�; ð11Þ

f0ðq2Þ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
M2

B−M2
π
½ðMB−EπÞfkðEπÞþðE2

π−M2
πÞf⊥ðEπÞ�:

ð12Þ

In the limit v · pπ → 0, the soft pion theorem and the
pole dominance ansatz is justified using the heavy meson
chiral Lagrangian approach and one obtains [28]

lim
v·pπ→0

f2ðv · pπÞ ¼ gB�Bπ
fB�

ffiffiffiffiffiffiffiffiffi
MB�

p
2fπ

v · pπ

v · pπ þ ΔB
; ð13Þ

withMB� the mass of the vector meson B�, ΔB¼MB�−MB
the hyperfine splitting, fB� and fπ the B� and π decay
constants respectively, and gB�Bπ the B�Bπ coupling.

III. LATTICE CALCULATION

A. Ensembles and correlators

We use the Möbius domain-wall fermion action [10] in
this work for both heavy and light quarks. The gauge
ensembles were generated with 2þ 1 flavors of dynamical
quarks by the JLQCD Collaboration. The tree-level
Symanzik-improved gauge action is employed, and stout
smearing [29] is applied to the gauge fields when coupled to
fermions. The lattice ensembles used in this work are

summarized in Table I. They form a subset of those
generated by the JLQCD Collaboration. (The full list is
found in the Supplemental Material [27].) Each ensemble is
given an ID of the form “X-ud#-sa”, where Xð¼C;M; or FÞ
denotes the lattice spacing, the number after ud represents
the pion mass in units of 100 MeV, and the letter after s
distinguishes whether the strange quark mass is above (a) or
below (b) its physical value.
The simulation parameters are chosen as follows. The

lattice spacings for coarse “C,” middle “M” and fine “F”
lattices are 0.0804(1), 0.0547(1) and 0.0439(1) fm, corre-
sponding to lattice cutoffs a−1 ¼ 2.453ð4Þ, 3.610(9) and
4.496(9) GeV, respectively. We use a range of light quark
masses that correspond to pion masses from 500 MeV
down to 230 MeV. They are roughly tuned to 500 (ud5),
400 (ud4), 300 (ud3) and 230 ðud2Þ MeV. Two values of
strange quark mass are taken to sandwich its physical value
on the coarsest lattice, i.e., above (sa) or below (sb) the
physical strange quark mass. Lattice volumes are 323 × 64,
483 × 96 and 643 × 128 for the three lattice spacings,
respectively. They are chosen such that the spatial extent
L of the lattice is kept constant, ∼2.6 fm, in physical units.
The only exception is for the “C” ensemble with the lightest
pion mass, “C-ud2-sa-L”, which has a larger volume of
483 × 96. The temporal extent NT is chosen as NT ¼ 2L.
All ensembles satisfy the condition MπL > 4, which is
often required to suppress the finite volume effects to a
sufficient level, i.e., below a few per cent level for meson
masses, decay constants, and form factors. We summarize
the parameters of the gauge configurations including the
light and strange sea quark masses, ml and ms, in Table I.
The ID for each ensemble is the same as those in the
Supplemental Material where further details about the
lattice ensembles, including the measurement of the lattice
spacing through the gradient flow, the observation of the
topology tunnelings, and the light pseudoscalar meson
masses and decay constants, are discussed [27].
The chiral symmetry of Möbius domain-wall fermions is

not exact due to the finite fifth dimension Ls. The resulting
residual mass depends on the lattice spacing and the details
of the implementation of the domain-wall fermion. In our
case the residual mass on the coarsest lattice (β ¼ 4.17, the
“C” lattices) is at the level of 1 MeV and an order of
magnitude smaller on finer lattices (“M” and “F”). Detailed
measurements are described in the Supplemental Material
[27]. The residual mass, however, does not directly affect
the analysis of the B → πlν form factors because we use
the pion and kaon masses as parameters to control the chiral
extrapolation.
In addition to this work, the ensembles have so far been

used for a determination of the renormalization constants
[30], a calculation of the charmonium correlator and the
extraction of the charm quark mass and the strong coupling
constant [31], and a calculation of theD semileptonic decay
form factors [32]. The lattice data have also been applied to

FORM FACTORS OF B → πlν AND A … PHYS. REV. D 106, 054502 (2022)

054502-3



a calculation of the topological susceptibility in QCD [33],
a study of the Dirac eigenvalue spectrum and a precise
calculation of the chiral condensate [34], another study of
the Dirac eigenvalue spectrum but in the high energy region
[35], the short-distance current correlator and its compari-
son with experimental data [36], and a proposal for lattice
calculations of inclusive B meson decays [25,26].
The valence sector also uses the Möbius domain-wall

fermion action and the light quark masses are the same as
used in the sea. Heavy quark masses were chosen as
amQ ¼ 1.252n × amc, for n ≥ 0 and limited to values
amQ ≤ 0.7 to keep discretization errors under proper con-
trol. This results in mass values amc ≤ amQ ≤ 2.44 × amc.
The charmquarkmass in lattice units,amc, is tuned such that
the spin-averaged charmonium 1S state reproduces its
physical mass. (Details are discussed in Ref. [31].) Since
the lowest heavy quark mass used is that of the charm, we
have the process D → πlν included as part of our dataset.
We can then use form factors from that decay plus the
additional heavier quark masses to extrapolate to the
physical b quark mass.

In order to extract the form factors, we compute the
three-point functions of the form

CπVμB
3pt ðt; TÞ ¼

X
x;y;z

eiðpπ ·xþq·yÞhPS
πðx; 0ÞVμðy; tÞPS

Qðz; TÞi;

ð14Þ

where PS
π and PS

Q are interpolating operators to create or
annihilate the pseudoscalar pion and heavy mesons. These
operators are smeared to enhance the overlap with the
corresponding ground state. The smearing is applied in a
gauge invariant manner using an operator ð1 − ðα=NÞΔÞN
with a discretized Laplacian Δ and parameters α ¼ 20 and
N ¼ 200. The source of the quark propagator is generated
on the entire source time slice with random Z2 noise, and
then the smearing is applied. The B meson is always set at
rest so that q ¼ −pπ . The source-sink separation in the
temporal direction T is kept approximately fixed in
physical units across all lattice spacings. We use T ¼ 28,
42 and 56 on ensembles with β ¼ 4.17, 4.35, and 4.47,

TABLE I. Parameters of the gauge configurations used in this analysis. We give the ID, the lattice spacing,
coupling and dimensions in the first four columns. The number of configurations, Ncfg, are given in column five. We
then provide the light, strange and heavy quark masses in lattice units in the next three columns respectively. Finally,
we note the number of times sources Ntsrc used for each set of parameters, where a time source at t ¼ 0 is always
employed, and additional time sources are evenly spaced in the time direction.

ID a (fm) β L3 × NT × Ls Ncfg aml ams amQ Ntsrc

C-ud5-sa 0.080 4.17 323 × 64 × 12 100 0.019 0.04 0.44037 2
0.68808 2

C-ud5-sb 0.080 4.17 323 × 64 × 12 100 0.019 0.03 0.44037 2
0.68808 1

C-ud4-sa 0.080 4.17 323 × 64 × 12 100 0.012 0.04 0.44037 2
0.68808 2

C-ud4-sb 0.080 4.17 323 × 64 × 12 100 0.012 0.03 0.44037 2
0.68808 1

C-ud3-sa 0.080 4.17 323 × 64 × 12 100 0.007 0.04 0.44037 4
0.68808 4

C-ud3-sb 0.080 4.17 323 × 64 × 12 100 0.007 0.03 0.44037 4
0.68808 1

C-ud2-sa-L 0.080 4.17 483 × 96 × 12 100 0.0035 0.04 0.44037 4
0.68808 2

M-ud5-sa 0.055 4.35 483 × 96 × 8 50 0.012 0.025 0.27287 2
0.42636 2
0.68808 2

M-ud4-sa 0.055 4.35 483 × 96 × 8 50 0.008 0.025 0.27287 2
0.42636 2
0.68808 2

M-ud3-sa 0.055 4.35 483 × 96 × 8 42 0.0042 0.025 0.27287 4
0.42636 2
0.68808 2

F-ud3-sa 0.044 4.47 643 × 128 × 8 50 0.003 0.015 0.210476 4
0.328869 2
0.5138574 1
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respectively. The ground state can then be well isolated by
the fits as described in Sec. III B.
The heavy-to-light vector current is defined as

Vμ ¼ q̄γμQ. Both light (q) and heavy (Q) quark fields
are described by the Möbius domain-wall fermion action,
and the current is local on the lattice. The renormalization
constant ZV is multiplied with the current afterwards, as
discussed in Sec. III C.
We also compute the pion and heavy meson two-point

functions. These are used to constrain the energies of the
initial and final states in the combined fit, as discussed in
Sec. III B.
These measurements are performed on Ncfg gauge

configurations for each ensemble and repeated Ntsrc times
by always using time source t ¼ 0 and then shifting the
source and sink time slices by NT=Ntsrc. The number of
measurements is thus Ncfg × Ntsrc per ensemble. Details are
listed in Table I for each choice of ensemble and valence
heavy quark mass.

B. Two-point and three-point correlator fits

To extract the required form factors, we perform simul-
taneous fits of all two-point and three-point correlators for
each set of ensembles and quark mass parameters using a
constrained multiexponential fit [37]. Doing so allows us to
fit the majority of the time extent of the correlators while
isolating the ground states—needed to determine the form
factors—from the excited states, which can be discarded.
We include data starting from time slice tmin ¼ 2, 3 or 4 in
the fit, depending on the ensemble. The two-point corre-
lators are fit to the cosh form

CPðtÞ ¼
Xnexp−1
n¼0

aP;nb�P;nðe−EP;nt þ e−EP;nðNT−tÞÞ; ð15Þ

where the subscripts P, n correspond to state n of
pseudoscalar P, such that n ¼ 0 is the ground state. The
interpolating operators are always smeared at the source,
and are either local or have the same smearing parameters at
the sink. The amplitudes aP;n and bP;n are then equal for the
smeared sink or different if the sink is local. We always fit
both cases simultaneously to improve the determination of
the ground-state energy. We use nexp ¼ 3 and, since we
only require ground-state energies and amplitudes for our
calculation, we simply check that fits with two or four
exponentials give consistent ground-state results. This
multiexponential approach to our fits ensures the uncer-
tainty due to contamination of excited states is taken into
account.
For the three-point correlators, we fit to the form

C3ptðt; TÞ ¼
Xnexp−1
n;m¼0

aπ;nVn;ma�B;me
−Eπ;nte−EB;mðT−tÞ: ð16Þ

The energies, Eπ;n and EB;m, and smeared amplitudes, aπ;n
and aB;m, are the same as those from the pion and heavy
meson two-point correlator fit form. The amplitude V0;0,
which connects the ground-state heavy meson to the
ground-state pion, is needed to determine the form factors.
It relates to the corresponding matrix element by

Vμ
0;0 ¼

hπjVμjBi
2

ffiffiffiffiffiffiffiffiffiffiffiffi
EπMB

p : ð17Þ

As with the two-point correlators, we use nexp ¼ 3.
We use the PYTHON packages GVAR [38], LsqFIT [39] and

CORRFITTER [40] to fit our correlators. The fit parameters
are given Bayesian priors as follows. The magnitudes of
meson two-point amplitudes can be estimated by fitting that
correlator alone with a single exponential at large time t,
which leaves only the ground-state contribution. The heavy
meson and pion two-point amplitudes are found to be of
order 0.1–1.0 (smeared) and 10–30 (local), depending on
the lattice spacing of the ensemble. These are taken as the
central values, and the priors are given very conservative
widths that are 5 times these values. Similarly, one can
extract estimates of the magnitudes of the three-point
amplitudes, which are found to be of order 1.0 (μ ¼ 0)
and 0.4 (μ ¼ 1; 2; 3), and we again assign widths 5 times
these values. Priors for the energies of ground states with
zero momentum are given 10% widths. The energies of
ground states with nonzero momentum get their priors
according to the dispersion relation for energy using the
prior of the zero momentum ground state. The gaps
between energies of two consecutive states are given priors
of ≈0.7 GeV with 70% widths.
We simultaneously fit a substantial amount of two-point

and three-point correlator data, including multiple amQ and
q2 values. This can be difficult as we have to invert large
covariance matrices in our fits. If the available statistics is
limited, as it is in our case, the eigenvalues of the matrices
tend to be underestimated and driven to zero. A standard
way to deal with this is to impose singular value decom-
position (svd) cuts csvd. In this procedure any eigenvalue
smaller than csvd times the largest eigenvalue emax is
replaced by csvdemax. The use of the svd cuts makes the
matrices less singular. This is a conservative approach since
it can only serve to increase the final error. We have chosen
the value of csvd for each ensemble such that the fit quality
is good while keeping as many eigenvalues as possible.
As we have to use fairly large svd cuts in these fits, using

χ2 per degree of freedom (χ2=Ndof) as a measure of
goodness-of-fit becomes less reliable. An svd cut increases
the uncertainties in the data without increasing the random
fluctuations in the data means. This tends to make the
contributions from the parts of the χ2 function affected by
the svd cut much smaller than naively expected, which
pulls χ2=Ndof down artificially. We therefore check the fits
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and the final χ2=Ndof by adding extra noise to the priors and
svd cut, which does not change the fits significantly.
In Figs. 1–6 we show how well our fit results agree with

the correlator data for various values of lattice spacing, pion
mass and heavy quark mass. In Fig. 1 (left panel) we plot a
representative example of the ratio of three-point and two-
point correlators, CV0ðtÞ=ðCπðtÞCBðT − tÞÞ, alongside the
fit result. The data at β ¼ 4.17, amu;d ¼ 0.007 and amQ ¼
0.44037 with zero momentum insertion are shown. In the
time range where the ground states dominate, this ratio
will be a constant: the three-point ground-state amplitude
divided by the two-point ground-state amplitudes. Towards
T ¼ 28 we observe a significant curvature of the correlator
ratio downward. If, on the other hand, we plot the ratio of
the three-point correlator to the leading exponential func-
tions e−Eπ t and e−MBðT−tÞ, a much longer plateau is evident
as shown in Fig. 1 (right panel). This implies that the
significant excited state contribution comes from the B
meson two-point function. The plateau represents
aπ;0V

μ
0;0a

�
B;0 in Eq. (16). In either case, the fit results

capture the excited-state effects in the data very well.
We emphasize that we do not fit these correlator ratios.
Rather, we use the simultaneous, multiexponential fits to
two-point and three-point correlators described earlier in
this section for each ensemble.
Similar plots of the three-point function divided by the

ground-state exponentials are shown in Figs. 2–4 for
the lattice data obtained at the coarsest lattice, β ¼ 4.17.
Here the data are shown for both temporal (left) and
spatial (right) vector-current components for all available
momentum insertions: (0,0,0), (0,0,1), (0,1,1), (1,1,1) in
units of 2π=L. Figures 2 and 3 should be compared for the
effect of different light quark masses, while Figs. 2 and 4
should be compared for the effect of different heavy
quark masses. In all cases, the fit results closely follow the
lattice data.
The correlators computed on finer lattices are shown in

Figs. 5 and 6. General observations are the same as those on
the coarse lattice, but we observe larger noise due to limited
statistics, especially on the finest lattice at β ¼ 4.47 (Fig. 6).

FIG. 1. Three-point correlator data with a V0 insertion on the ensemble with β ¼ 4.17, amu;d ¼ 0.007 and amQ ¼ 0.44037. The bands
represent the fit results and their fit range. The pion is created at t ¼ 0 while the B meson is annihilated at t ¼ T. Left panel: the three-
point correlator is divided by the pion and B meson two-point correlators. Right panel: the three-point correlator data is divided by the
exponential function corresponding to the meson ground-state energies extracted from our fits.

FIG. 2. Three-point correlators Vμ divided by corresponding ground-state exponentials. Data is from the ensemble with β ¼ 4.17,
amu;d ¼ 0.007 and amQ ¼ 0.44037. The pion is created at t ¼ 0 while the B meson annihilated at t ¼ T. Results for the temporal (left)
and spatial (right) vector currents are shown for all available momenta: (0,0,0), (0,0,1), (0,1,1), (1,1,1) in units of 2π=L.
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FIG. 3. Same as Fig. 2, but at heavier light quark mass amu;d ¼ 0.012 while keeping the heavy quark mass as amQ ¼ 0.44037.

FIG. 4. Same as Fig. 2, but at heavier heavy quark mass amQ ¼ 0.68808 while keeping the light quark mass as amu;d ¼ 0.007.

FIG. 6. Same as Fig. 2, but on the finest lattice, β ¼ 4.47, and at amu;d ¼ 0.003 and amQ ¼ 0.210476.

FIG. 5. Same as Fig. 2, but on a finer lattice, β ¼ 4.35, and at amu;d ¼ 0.0042 and amQ ¼ 0.27287.
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C. Current renormalization

For the lightest heavy quarkmass, i.e., when amQ ¼ amc,
we find that it is sufficient to renormalize our currents using
results from themassless coordinate space current correlators
as described in Ref. [36]. However, as discussed in
Refs. [25,41], discretization effects arising from larger quark
masses can lead to the renormalization constant ZV from

vector currents Q̄γμQ deviating substantially from 1. We
therefore consider it prudent to use the matrix element
hBsjQ̄γμQjBsi to partially renormalize our vector current
alongside the massless renormalization results. (Here Bs
stands for the pseudoscalar state comprising the heavy quark
Q and the strange quark.)
By calculating three-point Bs → Bs correlators and

demanding that the inserted temporal vector current matrix
element is 1—since it is conserved in the continuum—we
can obtain the renormalization constant

Z−1
VQQ

¼ hBsjQ̄γ0QjBsi: ð18Þ

We then take the overall renormalization constant for the
heavy-light current ZV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZVQQ
ZVqq

p
where the renorm-

alization constant for light-light current are determined as
Z−1
Vqq

¼ 1.047ð10Þ, 1.038(6), 1.031(5) at β ¼ 4.17, 4.35,

4.47, respectively [30].
We generated three-point correlators on each of the

ensembles with the heavier of the available strange quark
masses. On each ensemble and for each value of amQ >
amc we used smeared sources and sinks with time
separation T. We averaged over two time sources that
were separated by half the temporal extent of the lattice.
The exception was on the finest ensemble for which we
used only a single time source. We also generated two-point
correlators with the same sources so that we could extract
the required matrix element by

hBsjQ̄γ0QjBsi ¼
C3ptðtÞ
C2ptðTÞ

: ð19Þ

We show plots of the ratio from Eq. (19) in Fig. 7 for
ensembles with β ¼ 4.17, 4.35 and 4.47. We are able to
find plateaus in all cases and thus simply fit to a constant in
these regions. Table II gives the results for Z−1

VQQ
.

FIG. 7. Ratio of the Bs → Bs three-point correlators at time
slices t to the Bs two-point correlators. The data is from the
ensembles with β ¼ 4.17 and aml ¼ 0.007 (top), β ¼ 4.35 and
aml ¼ 0.0042 (middle), and β ¼ 4.47 (bottom). The heavy
quark masses are shown in the plots. They correspond to mQ ¼
1.252mc and 1.254mc.

TABLE II. Results for the inverse of the heavy-heavy renorm-
alization constant Z−1

VQQ
with statistical errors for each β value. In

columns two and three we give the light and heavy quark masses
respectively. We provide the fit ranges we used in column four.

β aml amQ ½tmin; tmax� Z−1
VQQ

χ2=Ndof

4.17 0.019 0.68808 [11, 14] 0.8342(29) 0.45
0.012 0.68808 [11, 14] 0.8382(35) 0.36
0.007 0.68808 [11, 14] 0.8396(28) 0.46

4.35 0.012 0.42636 [8, 21] 0.9878(6) 0.38
0.66619 [14, 21] 0.8013(24) 0.73

0.008 0.42636 [8, 21] 0.9886(6) 0.83
0.66619 [14, 21] 0.8031(27) 0.89

0.0042 0.42636 [8, 21] 0.9877(4) 0.73
0.66619 [14, 21] 0.8020(26) 0.37

4.47 0.003 0.328869 [12, 28] 1.0062(7) 0.96
0.513857 [10, 28] 0.9267(14) 0.94
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IV. RESULTS

A. Global fit to form factors

In order to obtain the B to π form factors f1ðv · pπÞ þ f2ðv · pπÞ and f2ðv · pπÞ at the physical quark masses and in the
continuum limit, we perform a global fit. The form factors are functions of v · pπ ¼ Eπ , which should also be parametrized.
We assume the energy dependence of the form factor f1ðv · pπÞ þ f2ðv · pπÞ is described by a simple polynomial, and use a
fit function

f1ðv · pπÞ þ f2ðv · pπÞ ¼ C0

�
1þ

X3
n¼1

CEnNn
EE

n
π

�
ð1þ Cχ logδfB→π þ CM2

π
NM2

π
M2

πÞ

×

�
1þ CmQ

NmQ

mQ

�
ð1þ Cm2

ss̄
δm2

ss̄Þð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2Þ: ð20Þ

For f2ðv · pπÞ, since we expect a contribution from the vector meson (B�) pole as described in Eq. (13), we use

f2ðv · pπÞ ¼ D0

�
Eπ

Eπ þ ΔB
ð1þDEπ

NEEπÞ
�
ð1þDχ logδfB→π þDM2

π
NM2

π
M2

πÞ

×

�
1þDmQ

NmQ

mQ

�
ð1þDm2

ss̄
δm2

ss̄Þð1þDa2ðΛQCDaÞ2 þDðamQÞ2ðamQÞ2Þ: ð21Þ

Here Cx and Dx are fit parameters, and Nx are normali-
zation constants that fix the units for energies and masses.
These have been chosen so that Cx and Dx are ∼Oð1Þ. We
choose NE ¼ 1=ð0.3 GeVÞ and NM2

π
¼ 1=ð0.3 GeVÞ2,

where 0.3 GeV is a typical pion mass/energy, and
NmQ

¼ 1 GeV−1. We take ΛQCD ¼ 0.5 GeV.
The heavy quark mass dependence as an expansion

in terms of 1=mQ is justified because the form factors
f1ðv · pπÞ and f2ðv · pπÞ can be defined even in the heavy
quark limit. The 1=mQ term represents the first correction
to that limit.
The strange quark masses have been set such that they

are close to the physical strange quark mass. They are not,
however, exactly tuned so we include the term

δm2
ss̄ ¼ ððmlat

ss̄ Þ2 − ðmphys
ss̄ Þ2Þ=ðmphys

ss̄ Þ2
≡ ½ð2ðMlat

K Þ2 − ðMlat
π Þ2Þ − ð2ðMphys

K Þ2 − ðMphys
π Þ2Þ�=

½2ðMphys
K Þ2 − ðMphys

π Þ2� ð22Þ

in our fit to take this into account. Having two strange
quark masses on either side of the physical mass on the
coarsest lattice allows the fit to determine the coefficient of
this correction term.
For the light quark mass dependence, we take the

expectation from SUð2Þ “hard-pion” chiral perturbation
theory for heavy-light mesons [42] (see also Ref. [43]):

δfB→π ¼ −
3

4
ð3g2B�Bπ þ 1Þ

�
Mπ

4πfπ

�
2

ln
M2

π

Λ2
; ð23Þ

plus a term linear in M2
π. We take 1.0 GeV as the value for

the scale Λ appearing in the chiral logarithm terms. For the
pion decay constant fπ appearing in the denominator,
we take fπ ¼ 130.4 MeV. The logarithmic dependence
expected from chiral effective theory is not very significant
with the precision of the current lattice data, and in our
main fit we use the result from SUð2Þ chiral perturbation
theory by fixing Cχ log ¼ Dχ log ¼ 1. However, this depends
on the value we choose for the B�Bπ coupling gB�Bπ . In the
literature, the extracted values cover a wide range [44–49],
and it is not straightforward to assess the overall uncer-
tainty. On the other hand, it is not clear whether we can see
the chiral log in our data. We therefore estimate the
systematic uncertainty related to this term by setting
gB�Bπ ¼ 0.45 [44] as a representative value in our main
fit with fixed Cχ log and Dχ log ¼ 1, followed by another fit
where Cχ log and Dχ log are free fit parameters. In this way
the uncertainty due to gB�Bπ is taken into account in the
estimated systematic error. This is discussed in Sec. IV B.
We assume that the leading discretization effects appear

as an overall factor of the form ð1þ Ca2ðΛQCDaÞ2 þ
CðamQÞ2ðamQÞ2Þ, and do not consider cross terms, e.g., a

term of the form Eπa2 with independent parameters. This is
justified because the dependence on the lattice spacing is
small. We confirmed that adding such cross terms with free
fit parameters has a negligible effect on the fit.
We find a good fit when simply fitting up to the quadratic

term in pion energy for f1ðv · pπÞ þ f2ðv · pπÞ, but larger
uncertainties in data points with large pion momentum
make it unclear what behavior is exhibited at higher pion
energies. For this reason we include the cubic term in
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Eq. (20). The impact of the choice to include this higher
order term is minimal since, as we will discuss in Sec. VA,
when extrapolating toward q2 ¼ 0 we restrict our choice of
synthetic data for the z-expansion to the region of pion
energies covered by our simulation data. For f2ðv · pπÞ we
only include a term linear in the pion energy.
Fitting both form factors f1ðv · pπÞ þ f2ðv · pπÞ and

f2ðv · pπÞ simultaneously, we obtain a fit with χ2=Ndof ¼
0.59 (Ndof ¼ 182). We use Bayesian priors for the fit
parameters: we choose 1.0� 2.0 for C0 and D0, and
0.0� 2.0 for all other fit parameters. Results for the
parameters from the global fit are given in Table III.
We illustrate the extrapolations in pion mass, heavy

quark mass and lattice spacing in Figs. 8–10, respectively.
Figure 8 shows the form factors f1ðv · pπÞ þ f2ðv · pπÞ
and f2ðv · pπÞ as functions of v · pπ ¼ Eπ computed at
different light quark masses corresponding to Mπ ¼ 300,
400 and 500 MeV. The extrapolations to the chiral limit (or
to the physical pion mass) are performed using the fit to
Eqs. (20) and (21). One can see that the values of the form
factors are rather stable as a function of the quark mass. The
data points are well described by the global fit shown by

dashed curves. The thick curves represent the results
corresponding to the physical pion mass.
The heavy quark mass extrapolation is demonstrated in

Fig. 9, which shows the form factors computed for three

TABLE III. Our best fit parameters from the global fit functions [Eqs. (20) and (21)].

C0 CE CE2 CE3 CM2
π

CmQ
Cm2

ss̄
Ca2 CðamQÞ2

1.33(8) −0.37ð5Þ 0.09(3) −0.009ð6Þ 0.096(10) −0.34ð6Þ 0.06(4) −0.6ð6Þ 0.04(7)

D0 DE DE2 DE3 DM2
π

DmQ
Dm2

ss̄
Da2 DðamQÞ2

0.52(5) −0.086ð14Þ � � � � � � 0.026(15) −0.09ð14Þ 0.10(7) 0.03(1.09) 0.14(12)

FIG. 8. Heavy-to-light form factors f1ðv · pπÞ þ f2ðv · pπÞ
and f2ðv · pπÞ at light quark masses corresponding to M2

π ≃
300 MeV (diamonds), 400 MeV (squares) and 500 MeV
(circles). Data at β¼4.35 (1=a≃3.6GeV) and at mQ¼1.56mc.
Dashed curves are the results of the global fit at corresponding
pion masses, and the solid curves show the fit results extrapolated
to the physical pion mass.

FIG. 9. Heavy-to-light form factors f1ðv · pπÞ þ f2ðv · pπÞ and
f2ðv · pπÞ at three different heavy quark masses: mc (diamonds);
1.56mc (squares); and 2.44mc (circles). Data at β ¼ 4.35
(1=a ≃ 3.6 GeV) and at a fixed light quark mass corresponding
to Mπ ≃ 500 MeV. Dashed curves are the results of the global fit
at corresponding heavy quark masses, and the solid curves show
the fit results extrapolated to the physical b quark mass.

FIG. 10. Continuum extrapolation of the form factors f1ðv ·
pπÞ þ f2ðv · pπÞ and f2ðv · pπÞ evaluated with a typical param-
eter choice: p2π ¼ ð2π=LaÞ2 (note that the physical volumes of the
three lattices are similar); Mπ ≃ 300 MeV; and mQ ¼ 1.56mc.
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different heavy quark masses: mQ ¼ mc; 1.56 ×mc; and
2.44 ×mc. We find that both form factors increase toward
the physical b quark mass. As represented in Eqs. (20) and
(21), we extrapolate assuming dependence of the form
1=mQ, and the results at the physical point are represented
by the solid curves. The systematic error due to the
effect of neglecting a 1=m2

Q term is estimated in the next
subsection.
The continuum extrapolation is shown in Fig. 10 for a

typical parameter choice (p2π ¼ ð2π=LaÞ2, Mπ ≃ 300 MeV
and mQ ¼ 1.56 ×mc). Since the physical volumes of the
three lattices are similar, so too are the values of the
physical momenta of the three points shown. We find that
the continuum extrapolation in a2 is also mild, even though
a potentially significant discretization effect due to the
heavy quark mass of the form ðamQÞ2 is expected. This is
partly because the renormalization factor discussed in the
previous section absorbs the bulk of the discretization
effects. The global fit forms of Eqs. (20) and (21) assume
that the discretization effect applies as an overall factor
ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2Þ, independent of light
quark masses and energies v · pπ ¼ Eπ . This choice is
justified because the dependence on each such parameter is
small as we saw above. In principle this allows the global fit
to discriminate between the ðamQÞ2 and ðΛQCDaÞ2 effects;
in practice, both terms in our fits return coefficients
consistent with zero.
The final results for f1ðv ·pπÞþf2ðv ·pπÞ and f2ðv · pπÞ

at the physical quark masses and in the continuum limit are
shown in Fig. 11 as a function of v · pπ ¼ Eπ . The bands
represent the one standard deviation regions with only the
statistical uncertainties included. The region that our lattice
data cover is from 0.225 GeV to 0.975 GeV. The results
outside of this region are obtained from the fit functions in
Eqs. (20) and (21). In the soft pion limit, the form factor
f2ðv · pπÞ rapidly goes to zero as a result of the pole term

included in Eq. (21), and is not directly confirmed by the
lattice data.

B. Estimation of systematic errors

We now turn to the analysis of systematic uncertainties.
To make an assessment of their impact we perform addi-
tional fits with particular terms added or amended. We
attempt the following variations of the fits:
(1) The original fit using the form of Eqs. (20) and (21).
(2) Adding a 1=m2

Q term such that the heavy quark
dependence of f1ðv · pπÞ þ f2ðv · pπÞ is parame-
trized by a factor ð1þCmQ

NmQ
=mQþCm2

Q
N2

mQ
=m2

QÞ
instead of ð1þCmQ

NmQ
=mQÞ. Similarly for f2ðv·pπÞ.

(3) Adding M4
π terms such that the pion mass depend-

ence of f1ðv · pπÞ þ f2ðv · pπÞ is parametrized by a
factor ð1þ Cχ logδfB→π=ð4πfπÞ2 þ CM2

π
NM2

π
M2

π þ
CM4

π
N2

M2
π
M4

πÞ instead of ð1þCχ logδfB→π=ð4πfπÞ2 þ
CM2

π
NM2

π
M2

πÞ. Similarly for f2ðv · pπÞ.
(4) Adding the next order term inEπ , so that f1ðv · pπÞ þ

f2ðv · pπÞ is parametrized by ð1þP
4
n¼1 CEnNn

EE
n
πÞ

and f2ðv · pπÞ by ð1þP
2
n¼1DEnNn

EE
n
πÞ.

(5) Adding a4 terms such that the discretization effects of
f1ðv · pπÞ þ f2ðv · pπÞ are parametrized by a factor
ð1þCa2ðΛQCDaÞ2þCa4ðΛQCDaÞ4þCðamQÞ2ðamQÞ2Þ
instead of ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2Þ.
Similarly for f2ðv · pπÞ.

(6) Adding ðamQÞ4 terms such that the discretization
effects of f1ðv · pπÞ þ f2ðv · pπÞ are parametrized
by a factor ð1þ Ca2ðΛQCDaÞ2 þ CðamQÞ2ðamQÞ2 þ
CðamQÞ4ðamQÞ4Þ instead of ð1þ Ca2ðΛQCDaÞ2 þ
CðamQÞ2ðamQÞ2Þ. Similarly for f2ðv · pπÞ.

(7) Allowing the fit to determine the coefficient in front
of the chiral log, i.e., letting Cχ log and Dχ log be free
fit parameters instead of fixing them to 1.

We plot the result of these alternative fits in Fig. 12 at three
representative q2 values (19.15 GeV2, 23.65 GeV2 and
26.40 GeV2) after converting to f0ðq2Þ and fþðq2Þ. The
results are very stable across the alternative fits. The inner,
lighter gray band shows our statistical uncertainty only,
which is exactly the result from fit 1. The outer, darker gray
band displays our total error, which includes systematic
effects that come from the deviation from fit 1 of each of fits
2–7 added in quadrature.
We also plot the systematic uncertainty coming from each

of the listed sources as a function of pion energy in Fig. 13 for
both form factors f0 and fþ, covering the q2 rangewherewe
have data. They are estimated using the fits as described
above, i.e., the deviation from themain fit “1” is plotted. They
can therefore be either positive or negative. The estimated
total systematic errors (red dash-dot lines), calculated from
all sources of systematic uncertainty added in quadrature, are
comparable in size to the statistical errors (blue solid lines).

FIG. 11. Results of the global fit of the data for f1ðv · pπÞ þ
f2ðv · pπÞ (upper curve) to Eq. (20) and f2ðv · pπÞ (lower curve)
to Eq. (21). The data from which these are obtained exist in the
region 0.225 GeV < Eπ < 0.975 GeV.
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V. FORM FACTORS IN THE CONTINUUM
AND jVubj

The differential decay width relates to the form factors
fþðq2Þ and f0ðq2Þ, and jVubj through

dΓðB → πlνÞ
dq2

¼ G2
FjVubj2
24π3

ðq2 −m2
lÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
π −M2

π

p
q4M2

B

×

��
1þ m2

l

2q2

�
M2

BðE2
π −M2

πÞjfþðq2Þj2

þ 3m2
l

8q2
ðE2

π −M2
πÞ2jf0ðq2Þj2

�
; ð24Þ

whereGF is Fermi’s constant andml is the lepton mass. For
electrons and muons the terms suppressed by m2

l can be
discarded (at least at the current theoretical and experimental

precision), whichmeans that the contribution from the scalar
form factor f0 can be neglected. Thus the relation between
the differential decay width and the form factors is reduced
to a much simpler form:

dΓðB → πlνÞ
dq2

¼ G2
FjVubj2
24π3

jpπðq2Þj3jfþðq2Þj2; ð25Þ

where the pionmomentum in the rest frameof theBmeson is

jpπj ¼
1

2MB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

B þM2
π − q2Þ2 − 4M2

BM
2
π

q
: ð26Þ

To determine jVubj, we need the branching fractions
obtained from experiment as well as form factors from
our lattice calculation. In this section, we first discuss the
parametrization of the q2 dependence of the form factors.

FIG. 12. Results for f0ðq2Þ (left panels) and fþðq2Þ (right panels) for each of our fits (numbered according to the list in the text) in
tests of systematic uncertainties. The results at representative values of q2 are shown: 19.15 GeV2, 23.65 GeV2 and 26.40 GeV2. The
inner gray bands are the statistical errors only, while the outer bands show the total statistical plus systematic uncertainties.
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The treatment of the experimental data is then described so
that we can combine this with our lattice data to make a
determination of jVubj.

A. Form factor shape

We use the z-parameter expansion to parametrize the
shape of the form factors. Here, q2 is transformed to a small
parameter z as

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ þ t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ þ t0
p ; ð27Þ

where tþ ¼ ðMB0 þMπþÞ2 is the Bπ threshold. We are free
to choose the value of t0 ≤ tþ. We choose t0 ¼ ðMB þ
MπÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffi
Mπ

p Þ2 since this symmetrizes the values of z
around 0, with jzj < 0.28.
For our final results of the fþðq2Þ form factor we

fit our data to the Bourrely-Caprini-Lellouch (BCL)
expansion [18],

fþðq2Þ¼
1

1−q2=M2
B�

XNz−1

k¼0

bþk

�
zk−ð−1Þk−Nz

k
Nz

zNz

�
; ð28Þ

where the denominator on the right hand side addresses a
pole at q2 ¼ M2

B� . The second term in parentheses is
introduced to ensure that the form factor satisfies the
appropriate asymptotic form near the threshold. For the
scalar form factor, f0ðq2Þ, we fit to a simple series
expansion in z:

f0ðq2Þ ¼
XNz−1

k¼0

b0kz
k: ð29Þ

Another widely used parametrization is the Boyd-
Grinstein-Lebed (BGL) expansion [13,14]:

f0ðq2Þ ¼
1

P0ðq2Þϕ0ðq2; t0Þ
XNz

n¼0

a0nzn;

fþðq2Þ ¼
1

Pþðq2Þϕþðq2; t0Þ
XNz

n¼0

aþn zn; ð30Þ

where P0ðq2Þ is usually taken as 1, and the pole in the
vector form factor is taken care of by the Blaschke factor
Pþ ¼ zðq2;M2

B� Þ. The outer functions ϕ0ðq2; t0Þ and
ϕþðq2; t0Þ are analytic. Often, the outer function for the
scalar form factor is chosen as ϕ0ðq2; t0Þ ¼ 1. For the
vector form factor we follow [50] and choose

ϕþðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

32πχð0ÞJ

s 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p 


×
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − q2
q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t−

p 

3=2

×
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − q2
q

þ ffiffiffiffiffi
tþ

p 

−5 ðtþ − q2Þ

ðtþ − t0Þ1=4
; ð31Þ

where t� ¼ ðMB0 �MπþÞ2, t0 ¼ 0.65t− and χð0ÞJ ¼
6.9 × 10−4 GeV−2. Note that the choice of t0 differs
between the BCL and BGL z-expansion parametrizations
in our analysis. Although our final results use the BCL
parametrization, we confirmed that the BGL parametriza-
tion produces entirely consistent results.
The coefficients of the BCL ansatze in Eqs. (28) and (29)

obey the unitarity constraint [18,51]

XNz

m;n¼0

Bmnbmbn ≲ 1: ð32Þ

This holds for both bþk and b0k. The coefficients Bmn are
symmetric in the indices, Bmn ¼ Bnm, and satisfy the
relation Bmn ¼ B0jm−nj. They depend on the choice of t0,

FIG. 13. Systematic errors as a function of pion energy for form
factors, f0 (top panel) and fþ (bottom panel). Individual
contributions are estimated using the fits as described in the
text. The total systematic errors (red dash-dot lines) are obtained
by adding the other systematic uncertainties in quadrature. The
statistical errors are depicted by the blue solid lines.
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and we list them for our choice t0 ¼ ðMB þMπÞð
ffiffiffiffiffiffiffi
MB

p
−ffiffiffiffiffiffiffi

Mπ
p Þ2 for both form factors fþ and f0 in Table IV. We do
not implement these constraints explicitly in our fits, but we
do check that they are satisfied by our results.
From the results of the global fit, we generate synthetic

data for a range of q2 values. Note that we have six degrees
of freedom left after the extrapolations, so we can pick six
data points (choosing more would result in a singular
correlation matrix). We choose to generate three data points
for each fþðq2Þ and f0ðq2Þ at q2 values q21 ¼ 19.15 GeV2,
q22 ¼ 23.65 GeV2, and q23 ¼ 26.40 GeV2. We pick these so
that they are approximately evenly spaced in z. The values
of the form factors are given in Table V together with the
statistical and systematic errors at each point. The corre-
lation matrices of the statistical and systematic errors are
provided in Table VI. The systematic covariance matrix is
calculated as follows. For each reference q2 value, we first
add all systematic effects listed in Sec. IV B in quadrature,
including correlations between different effects. We can
then calculate the (statistical) correlations between the total
systematic effects (for both form factors fþ and f0) at
different reference q2 values.
Our results for a fit to the BCL form of the z-expansion

are given in Table VII. The correlation matrix of the
resulting parameters bþk and b0k are in Table VIII. We do
not use priors in this fit. We obtain a good fit when the order
of the polynomial is chosen as Nz ¼ 3. Here we impose the
kinematic constraint fþð0Þ ¼ f0ð0Þ, i.e., we have six data
points and five fit parameters. If we do not include the
constraint then we have six data points and six fit
parameters so cannot use χ2=Ndof as a measure of goodness
of the fit. The fit result, however, remains unchanged.
Although we do not impose them explicitly, we find that the
unitarity constraints from Eq. (32) are satisfied and we get
0.034(16) and 0.122(44) for fþ and f0, respectively.

We find that Nz ¼ 2 is insufficient for a good fit. We also
test fitting the form factor fþðq2Þ alone using five synthetic
data points. This makes very little difference to the fþðq2Þ
results. We plot results of the form factors across the entire
z range in Fig. 14. The blue squares show f0 and the red
circles show ð1 − q2=M2

B� Þfþ, while the bands are their
corresponding fit results.
We can compare the form factors f0ðq2Þ and fþðq2Þ to

the results from other lattice QCD calculations when both
statistical and systematic uncertainties are included. Results
from the RBC and UKQCD Collaborations [4] and the
Fermilab Lattice and MILC Collaborations [5] are plotted

TABLE IV. Constants used to estimate the unitarity bound for
the BCL ansatz, taken from Refs. [18,5].

B00 B01 B02 B03 B04 B05

f0 0.1032 0.0408 −0.0357 −0.0394 −0.0195 −0.0055
fþ 0.0198 0.0042 −0.0109 −0.0059 −0.0002 0.0012

TABLE V. Synthetic data points for fþðq2Þ and f0ðq2Þ at
q21 ¼ 19.15 GeV2, q22 ¼ 23.65 GeV2, and q23 ¼ 26.40 GeV2.
Their statistical and systematic errors are listed together with
the total errors estimated by adding them in quadrature.

fþðq21Þ fþðq22Þ fþðq23Þ f0ðq21Þ f0ðq22Þ f0ðq23Þ
Mean 1.165 2.600 6.597 0.500 0.703 0.937
Stat. err 0.067 0.152 0.423 0.019 0.026 0.036
Syst. err 0.099 0.229 0.631 0.027 0.037 0.043

Tot. err 0.120 0.275 0.760 0.033 0.045 0.056

TABLE VI. Statistical (upper panel) and systematic (lower
panel) correlation matrix for the synthetic data points at
q21 ¼ 19.15 GeV2, q22 ¼ 23.65 GeV2, and q23 ¼ 26.40 GeV2.

fþðq21Þ fþðq22Þ fþðq23Þ f0ðq21Þ f0ðq22Þ f0ðq23Þ
fþðq21Þ 1.000 0.957 0.901 0.799 0.728 0.663
fþðq22Þ 0.957 1.000 0.989 0.758 0.720 0.662
fþðq23Þ 0.901 0.989 1.000 0.708 0.682 0.639
f0ðq21Þ 0.799 0.758 0.708 1.000 0.971 0.921
f0ðq22Þ 0.728 0.720 0.682 0.971 1.000 0.943
f0ðq23Þ 0.663 0.662 0.639 0.921 0.943 1.000

fþðq21Þ fþðq22Þ fþðq23Þ f0ðq21Þ f0ðq22Þ f0ðq23Þ
fþðq21Þ 1.000 0.996 0.969 0.761 0.675 0.692
fþðq22Þ 0.996 1.000 0.981 0.737 0.650 0.663
fþðq23Þ 0.969 0.981 1.000 0.682 0.590 0.604
f0ðq21Þ 0.761 0.737 0.682 1.000 0.992 0.996
f0ðq22Þ 0.675 0.650 0.590 0.992 1.000 0.996
f0ðq23Þ 0.692 0.663 0.604 0.996 0.996 1.000

TABLE VII. Fit results from the BCL z-expansion parametri-
zation with Nz ¼ 3 on our synthetic lattice data. Coefficient b00 is
fixed by the kinematic constraint fþð0Þ ¼ f0ð0Þ. The value is
b00 ¼ 0.535ð35Þ.

bþ0 bþ1 bþ2 b01 b02
0.391(40) −0.450ð92Þ −0.92ð29Þ −1.35ð11Þ 0.33(31)

TABLE VIII. Correlation matrix from the z-expansion fit to our
synthetic lattice data only with Nz ¼ 3 using the BCL para-
metrization. The constraint fþð0Þ ¼ f0ð0Þ has been applied (this
determines b00).

bþ0 bþ1 bþ2 b01 b02

bþ0 1.000 −0.515 −0.281 −0.100 0.102
bþ1 −0.515 1.000 0.496 0.447 0.531
bþ2 −0.281 0.496 1.000 0.606 0.790
b01 −0.100 0.447 0.606 1.000 0.638
b02 0.102 0.531 0.790 0.638 1.000
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alongside our results in Fig. 15. We restrict this comparison
to the q2 region that approximately corresponds to the
inserted pion momentum in the lattice calculations and find
general agreement for both form factors. Near q2max there
are slight discrepancies with RBC/UKQCD for f0ðq2Þ and
Fermilab/MILC for fþðq2Þ. This may hint at some sys-
tematic effects, although the statistical significance is
limited.
It is also interesting to compare the lattice form factors

with theoretical expectations from heavy-quark symmetry.
In the soft-pion limit, the vector and scalar form factors,
fþðq2Þ and f0ðq2Þ, are related by [28]

lim
q2→M2

B

f0ðq2Þ
fþðq2Þ

¼ fB
fB�

1 − q2=M2
B�

gB�Bπ
; ð33Þ

up to corrections of Oð1=m2
bÞ. This ratio is plotted in

Fig. 16 along with the theoretical expectation. We take

gB�Bπ ¼ 0.45ð5Þ (from Ref. [44]) and fB�=fB ¼ 0.941ð26Þ
(from Ref. [52]). The width of the green error band that
represents the heavy quark effective theory (HQET) expect-
ation reflects only the uncertainties from gB�Bπ and fB�=fB,
and not any other theoretical errors. For the lattice data, we
take our result of fit “1” extrapolated to the chiral limit
M2

π ¼ 0, showing only the statistical uncertainty. The
agreement with the theoretical expectation in the soft pion
limit and q2 → M2

B, which is at the rightmost end of the
plot, is excellent.

B. Branching fractions from experiment

For the experimental results we use the following sets of
data: the BABAR 2010 untagged analysis in 6 bins [50]; the
Belle 2010 untagged analysis in 13 bins [53]; the BABAR
2012 untagged analysis in 12 bins [54]; and the Belle 2013
tagged analysis in which the B0 → πþlν process was

FIG. 14. Form factors using the BCL form of the z-parameter
expansion. Lattice data for f0 (blue squares) and ð1− q2=M2

B� Þfþ
(red circles) are shown with corresponding fit bands covering the
entire z region.

FIG. 15. Comparison of the physical form factors f0ðq2Þ and fþðq2Þ with results from other lattice QCD calculations. Results from
the RBC and UKQCD Collaborations are from Ref. [4] and results from the Fermilab Lattice and MILC Collaborations are
from Ref. [5].

FIG. 16. Form factor ratio f0ðq2Þ=½ð1 − q2=M2
B� Þfþðq2Þ� as a

function of q2 compared with the prediction in the soft-pion limit
from heavy-quark symmetry and χPT [28]. The width of the
green error band reflects only the uncertainties from gB�Bπ ¼
0.45ð5Þ (from Ref. [44]) and fB�=fB ¼ 0.941ð26Þ (from
Ref. [52]), and not any other theoretical errors.
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measured in 13 bins and the B− → π0lν process was
measured in 7 bins [55]. We deal with this last set of data by
assuming isospin symmetry, which allows us to convert the
B− decay to the B0 decay through

ΔBðB0 → πþlνÞ ¼ 2
τB0

τB−
ΔBðB− → π0lνÞ; ð34Þ

where the mean life of the neutral and charged B mesons
are τB0 ¼ 1.519ð4Þ ps and τB− ¼ 1.638ð4Þ ps, respectively
[56]. These are the same sets of data as used by the Heavy
Flavour Averaging Group (HFLAV) [20], the Flavour
Lattice Averaging Group (FLAG) [21] and in the analysis
presented in Ref. [57], as well as in the most recent lattice
calculations of jVubj [4,5].
We assume that systematic correlations between each of

the individual datasets are negligible. We do, however,
include correlations from the systematic uncertainties in the
Belle 2013 analysis between the 13-bin and 7-bin data. The
Belle collaboration indicated systematic correlations of
49%. We construct a total covariance matrix for the B0

and B− data (after conversion to the isospin symmetric B0

mode) by taking the direct sum of the statistical covariance
matrices (where the off-diagonal blocks are 0) and of the
systematic covariance matrices (with 49% correlation
between each of the bins in the off-diagonal blocks),
and then summing these two 20 × 20 matrices. The
inclusion of these systematic correlations was found to
have a negligible effect on the parameters and fit quality.
Our first step is fitting the four sets of data individually

and then collectively without any lattice input. Using the
BCL parametrization, we fit for the branching fraction in
the ith bin through

ΔBi ¼
G2

FjVubj2
24π3

Z
q2iþ1

q2i

jpπðq2Þj3jfþðq2Þj2dq2; ð35Þ

so that the combination of the form factor and CKM matrix
element results in an overall normalization of bþ0 jVubj.
The slope and the curvature from the z-expansion fits are

captured in the ratios bþ1 =b
þ
0 and bþ2 =b

þ
0 , respectively.

Table IX gives our results of fits to each of the branching
fraction results with Nz ¼ 3. We find that the fit quality is
acceptable for each set of data when fitted individually, but
that fitting all data simultaneously (“All”) results in a

relatively poor fit. This is due to a tension between the
BABAR 2010 data and the other results. We confirm this by
fitting various combinations of datasets, finding poor fit
quality whenever BABAR 2010 is included. Therefore, we
also give results for the case where BABAR 2010 is dropped
(“Excl. BABAR 2010”), which results in an acceptable fit.
Fitting with Nz ¼ 3 is sufficient, and higher order fits do

not improve the fit quality. Although we agree with the
values of the fitted parameters for the BABAR 2012 data
reported by the Fermilab Lattice and MILC Collaborations
in Ref. [5], we find that the fit quality is actually better. Our
result is in agreement with that found by the RBC and
UKQCD Collaborations [4] and the result presented in
Ref. [57] where they each find a similar discrepancy with
the fit quality reported by the Fermilab Lattice and MILC
Collaborations.
In Fig. 17 we plot 68% and 95% confidence regions for

bþ1 =b
þ
0 and bþ2 =b

þ
0 for each of the cases listed in Table IX.

This visually demonstrates the tension between the BABAR
2010 dataset and the other measurements. We also show the
consistency between these shapes and with the shapes
determined from our lattice only fit to the form factors
using the BCL parametrization with Nz ¼ 3 and with the
kinematic constraint fþð0Þ ¼ f0ð0Þ imposed.

TABLE IX. Results of the fits to the branching fractions obtained from experiments.

Experiment BABAR 2010 BABAR 2012 Belle 2010 Belle 2013 All Excl. BABAR 2010

bþ1 =b
þ
0 −0.85ð47Þ −0.24ð44Þ −1.25ð26Þ −1.79ð51Þ −0.96ð19Þ −1.05ð21Þ

bþ2 =b
þ
0 0.4(1.5) −3.8ð1.3Þ −0.90ð88Þ 1.1(1.6) −1.37ð60Þ −1.42ð65Þ

bþ0 jVubj × 103 1.360(74) 1.499(59) 1.602(62) 1.558(85) 1.518(33) 1.557(36)
χ2=Ndof 1.99 0.45 1.18 1.26 1.39 1.07
p-value 0.11 0.91 0.30 0.21 0.04 0.36

FIG. 17. Contour plots for the shape parameters bþ1 =b
þ
0 and

bþ2 =b
þ
0 . We show 68% confidence regions with a solid outline,

and 95% regions with a dashed outline.
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C. Determination of jVubj
We now turn to fitting the above branching fraction

results alongside our form factor results from the lattice. In
this way we can determine the z-expansion parameters bþn
and our main result of jVubj, which appeared in the
normalization of the experiment-only fits above. As dis-
cussed earlier, the contribution from the scalar form factor
f0ðq2Þ to the branching fraction is suppressed by the
squared lepton mass, and we neglect it. Therefore only
fþðq2Þ appears in Eq. (35). However, we do include lattice
data for both form factors in the fit, and fit fþðq2Þ, f0ðq2Þ
and experimental branching fraction data simultaneously.
We impose the constraint fþð0Þ ¼ f0ð0Þ explicitly,
although this makes a negligible difference to our final
results since the low-q2 region is primarily controlled by
the branching fraction data.
As we have only three data points for f0,Nz ¼ 4 gives the

maximum number of fit parameters we can use for f0 if
the constraint fþð0Þ ¼ f0ð0Þ is imposed (Nz ¼ 3 without
the constraint). For fþ we have data points from lattice and
experiment, and are not limited to Nz ¼ 4. We therefore
choose ðNfþ

z ; Nf0
z Þ ¼ ð3; 3Þ, (4,4) and (5,4) for our main fits

(imposing the constraint at q2 ¼ 0), and ðNfþ
z ;Nf0

z Þ¼ð3;3Þ,
(4,3) and (5,3) for test fits without the constraint.We find that
all these choices give a reasonable fit quality and the
parameters are stable. We take ðNfþ

z ; Nf0
z Þ ¼ ð4; 4Þ for our

accepted final result.
Numerical results for our combined lattice and experi-

ment fits are given in Table X. We first fit the lattice form
factors with each of the experimental branching fraction
analyses in turn and find acceptable fit quality in each case.
Next, we fit the lattice data alongside all experimental
datasets simultaneously. As in the experiment-only fit, we
do not find that the fit quality is particularly good when all
experimental analyses are included. We therefore provide a

further set of numerical values for the casewhere theBABAR
2010 analysis is excluded. This improves the fit quality
while all parameters are consistent with the all-experiment
fit. It should be noted that when BABAR 2010 is excluded,
the value of jVubj is determined to be marginally higher. The
unitarity constraints from Eq. (32) are satisfied in each case,
althoughwe stress again that they are not explicitly imposed
on the fits. The correlation matrices for the combined fit of
all lattice and experimental data are in Table XI, while those
without BABAR 2010 are in Table XII.
The differential branching fraction data from experi-

ments, our lattice data (converted using jVubj from our
accepted fit) and bands representing our z-expansion fit
results with all errors included are plotted in Fig. 18. The
differences among the results with different ðNfþ

z ; Nf0
z Þ are

hardly visible, and they give essentially the same result for
jVubj. We reiterate that we take ðNfþ

z ; Nf0
z Þ ¼ ð4; 4Þ as our

main result. In Fig. 19 we again show the form factors
across the entire z range, this time using the above BCL fits
combining lattice form factor data and branching fractions
from experiment. The lattice data for f0 (blue squares) and
ð1 − q2=M2

B� Þfþ (red circles) are shown with correspond-
ing fit bands from the combined fit.
Our final result for jVubj is thus from the combined fit

with all experimental data:

jVubj ¼ ð3.93� 0.41Þ × 10−3: ð36Þ

The uncertainty includes the statistical and systematic errors
originating from our lattice calculation as well as the
total errors from the experimental data. If we exclude the
BABAR 2010 dataset from the analysis, we obtain jVubj ¼
ð4.01� 0.42Þ × 10−3 with a much improved p-value (see
Table X).
Our result for jVubj is compared with other lattice QCD

calculations and exclusive and inclusive determinations by

TABLE X. Results of the simultaneous fits to form factors from our lattice calculation and experimental branching fractions, with
ðNfþ

z ; Nf0
z Þ ¼ ð4; 4Þ. We list b00 here for completeness, but it is fixed through the constraint fþð0Þ ¼ f0ð0Þ.

Experiment BABAR 2010 BABAR 2012 Belle 2010 Belle 2013 All Excl. BABAR 2010

bþ0 0.388(40) 0.385(40) 0.390(40) 0.388(40) 0.389(40) 0.390(40)
bþ1 −0.389ð80Þ −0.350ð78Þ −0.438ð76Þ −0.469ð84Þ −0.391ð66Þ −0.411ð69Þ
bþ2 −0.20ð18Þ −0.72ð16Þ −0.66ð16Þ −0.57ð18Þ −0.62ð15Þ −0.66ð15Þ
bþ3 1.79(77) −0.40ð64Þ 0.23(65) 0.96(76) 0.22(52) 0.09(5)
b00 0.535(35) 0.536(35) 0.535(35) 0.533(35) 0.536(35) 0.536(35)
b01 −1.31ð12Þ −1.33ð12Þ −1.35ð12Þ −1.35ð12Þ −1.33ð12Þ −1.34ð12Þ
b02 1.16(23) 0.56(17) 0.59(17) 0.71(21) 0.68(16) 0.60(16)
b03 2.4(1.1) 0.63(97) 0.88(98) 1.3(1.0) 1.03(96) 0.85(96)
jVubj × 103 3.58(41) 4.04(43) 4.10(45) 3.91(45) 3.93(41) 4.01(42)P

Bþ
mnbþmbþn 0.075(59) 0.027(14) 0.023(9) 0.038(31) 0.020(8) 0.022(7)P

B0
mnb0mb0n 1.07(70) 0.21(24) 0.28(29) 0.44(42) 0.32(32) 0.27(28)

χ2=Ndof 1.43 0.77 1.13 1.22 1.37 1.05
p-value 0.22 0.66 0.33 0.23 0.04 0.38
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HFLAVand FLAG in Fig. 20. Compared with other lattice
QCD computations of the B → πlν process (Fermilab/
MILC [5], RBC/UKQCD [4] and HPQCD [3]) our result is
slightly higher but still consistent within the estimated

errors. Our result is also compatible with the inclusive
determination, which we have taken from HFLAV [20]
using the “GGOU” analysis. We include dashed error bars
to indicate the spread of results from other methods. We
also note that our value is in good agreement with those of
Refs. [57–59], while moderately higher than—but still

TABLE XI. Correlation matrix from the z-expansion fit to all experiments and our synthetic lattice data with

ðNfþ
z ; Nf0

z Þ ¼ ð4; 4Þ parameters. Note that b00 is fixed by the constraint fþð0Þ ¼ f0ð0Þ.

jVubj bþ0 bþ1 bþ2 bþ3 b01 b02 b03

jVubj 1.000 −0.980 0.568 0.346 0.007 0.051 −0.409 −0.060
bþ0 −0.980 1.000 −0.652 −0.379 0.048 −0.067 0.392 0.064
bþ1 0.568 −0.652 1.000 −0.024 −0.570 0.093 −0.349 −0.159
bþ2 0.346 −0.379 −0.024 1.000 −0.192 0.153 0.066 −0.050
bþ3 0.007 0.048 −0.570 −0.192 1.000 −0.158 0.126 0.251
b01 0.051 −0.067 0.093 0.153 −0.158 1.000 0.388 −0.647
b02 −0.409 0.392 −0.349 0.066 0.126 0.388 1.000 −0.376
b03 −0.060 0.064 −0.159 −0.050 0.251 −0.647 −0.376 1.000

TABLE XII. Correlation matrix from the z-expansion fit of our synthetic lattice data and experiment excluding
BABAR 2010 with ðNfþ

z ; Nf0
z Þ ¼ ð4; 4Þ parameters. Note that b00 is fixed by the constraint fþð0Þ ¼ f0ð0Þ.

jVubj bþ0 bþ1 bþ2 bþ3 b01 b02 b03
jVubj 1.000 −0.977 0.552 0.379 0.039 0.056 −0.367 −0.040
bþ0 −0.977 1.000 −0.643 −0.412 0.019 −0.073 0.348 0.045
bþ1 0.552 −0.643 1.000 −0.008 −0.573 0.102 −0.326 −0.157
bþ2 0.379 −0.412 −0.008 1.000 −0.141 0.153 0.079 −0.035
bþ3 0.039 0.019 −0.573 −0.141 1.000 −0.159 0.132 0.260
b01 0.056 −0.073 0.102 0.153 −0.159 1.000 0.393 −0.646
b02 −0.367 0.348 −0.326 0.079 0.132 0.393 1.000 −0.382
b03 −0.040 0.045 −0.157 −0.035 0.260 −0.646 −0.382 1.000

FIG. 18. Fitting experimental branching fractions together with
form factors from lattice QCD to extract jVubj. The error bands
show our fit results when we include ðNfþ

z ; Nf0
z Þ terms in the

z-expansion. We find that Nfþ
z ≥ 3 gives a reasonable fit quality,

and take ðNfþ
z ; Nf0

z Þ ¼ ð4; 4Þ as our main result.

FIG. 19. Form factors using the BCL form of the z-parameter
expansion determined from a combined fit of lattice data and
branching fractions from experiment. Lattice data for f0 (blue
squares) and ð1 − q2=M2

B� Þfþ (red circles) are shown with fit
bands covering the entire z region.
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consistent with—that in Ref. [60], all of which use lattice
form factor results as input.

VI. CONCLUSIONS

For the determination of jVubj, the combination of the
lattice computation of form factors and the experimental
measurements of the differential cross section is crucial.
This is not solely because the experiments can only measure
the product of the form factor fþðq2Þ and jVubj, but because
they provide complementary information about the form
factor shape. The lattice calculation provides the form factor
in the large q2 region with controlled errors, while the
experimental data aremore sensitive to the low q2 region. As
one can see from the fit results, by combining the data from
both experiment and lattice QCD, the form factor shape is
much better controlled.
Our combined result for jVubj is 3.93ð41Þ × 10−3 when

including data from all experiments, and 4.01ð42Þ × 10−3

when excluding the 6-bin untagged BABAR 2010 analysis.
In both cases these results are consistent with the inclusive
determination of jVubj and with previous results on the
exclusive B → πlν process.
The advantage of our lattice calculation over previous

work is the use of a fully relativistic lattice fermion

formulation, with which no extra matching procedure is
required. (For the renormalization constant, we employed a
strategy to eliminate the bulk of the large discretization
effects appearing in the wave-function renormalization by
making a non-perturbative determination of ZV using
heavy-to-heavy three-point functions.) Our analysis there-
fore becomes rather straightforward: we simply assume the
discretization effects are of Oða2Þ and OððamQÞ2Þ and let
the numerical data determine their size by combining the
lattice data at various a and amQ. We also explore the
dependence on the heavy quark mass and find that it is
consistent with a leading 1=mQ correction to the heavy
quark limit.
A major challenge in this analysis was due to the

multiple extrapolations that have to be performed at the
same time in three parameter dimensions: the light quark
mass; the heavy quark mass; and the lattice spacing. We
find that these limits are reached rather smoothly with our
global fit function. We estimate systematic errors due to
potentially missing higher order terms in the ansatze by
attempting the fit including one such term at a time. There
is no single dominant source of error, but after adding them
in quadrature the total systematic error is comparable to the
statistical error in our calculation. The inclusion of heavier
masses for mQ and smaller pion masses would help further
control systematic effects, while additional statistics is the
key to improving the calculation of these form factors in the
future.
We anticipate more lattice calculations of the B → πlν

process using fully relativistic actions in the near future.
Crucially, this includes cases where the heavy quark is
tuned to the physical b quark mass on the finest lattices,
allowing for an improved approach to the physical point,
and therefore even better control of systematic effects.
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FIG. 20. Comparison of our result for jVubj with other lattice
QCD calculations and exclusive and inclusive determinations by
HFLAVand FLAG. The data point labeled “JLQCD” is our final
result (this work). Other results are from the following publica-
tions: the Fermilab Lattice and MILC Collaborations [5]; the
RBC and UKQCD Collaborations [4]; and the HPQCD Col-
laboration [3]. The value tagged Λb → plν is from Refs. [61,62].
This combines a lattice QCD calculation of the form factors
of the Λb to p process with experimental measurement of the
ratio BðΛ0

b → pμ−ν̄μÞ=BðΛ0
b → Λþ

c μ
−ν̄μÞ presented by the LHCb

Collaboration, which allows the extraction of the ratio
jVubj=jVcbj. Using jVcbj ¼ ð39.5� 0.8Þ × 10−3 from exclusive
decays [62,63], the authors quoted a value for jVubj. The FLAG
average is from the 2021 report [21], and the HFLAV exclusive
and inclusive results are from Ref. [20]. The inclusive data point
is from their GGOU analysis, with a second (dashed) error bar to
represent the spread of values from other frameworks.
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