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In the real-time formalism of the finite-temperature field theory, we compute the one-loop gluon self-
energy in a semiquark-gluon plasma (QGP) where a background field Q has been introduced for the vector
potential, leading to a nontrivial expectation value for the Polyakov loop in the deconfined phase. Explicit
results of the gluon self-energies up to the next-to-leading order in the hard-thermal-loop approximation are
obtained. We find that for the retarded/advanced gluon self-energy, the corresponding contributions at next-
to-leading order are formally analogous to the well-known result at Q@ = 0 where the background field
modification on the Debye mass is entirely encoded in the second Bernoulli polynomials. The same feature
is shared by the leading order contributions in the symmetric gluon self-energy where the background field
modification becomes more complicated, including both trigonometric functions and the Bernoulli
polynomials. These contributions are nonvanishing and reproduce the correct limit as @ — 0. In addition,
the leading order contributions to the retarded/advanced gluon self-energy and the next-to-leading order
contributions to the symmetric gluon self-energy are completely new as they only survive at Q # 0.
Given the above results, we explicitly verify that the Kubo-Martin-Schwinger condition can be satisfied in a

semi-QGP with a nonzero background field.

DOI: 10.1103/PhysRevD.106.054033

I. INTRODUCTION

The nature of the quark-gluon plasma (QGP), a primor-
dial state of matter generated in ultrarelativistic heavy-ion
experiments has been systematically studied over the last
decades. Understanding the deconfining phase transition
from the normal hadronic matter to the QGP is one of the
most important goals in high-energy nuclear physics. Near
the critical temperature 7., a tough challenge to achieve
such a goal emerges because of the failure of the perturba-
tion theory based on weak coupling expansion [1-3]. In a
region from 7. to ~4T., numerical simulations on the
lattice provide a powerful tool to study the nonperturbative
physics in the partially deconfined system which is termed
a semi-QGP [4]. Although the wealth of information on the
thermodynamics in equilibrium has been obtained from
lattice QCD [5-9], due to the well-known sign problem,
exploring the equation of state at very large baryon
chemical potential remains to be solved.

An alternative solution is to develop effective theories to
investigate the properties of the strongly interacting matter.
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As shown in lattice simulations for pure SU(N) gauge
theories, a significant increase of the order parameter for
deconfinement was observed in the semi-QGP region
where the Polyakov loop is nonzero but less than unity
[10-12]. Such a notable feature can be described by
considering a classical background field A{l for the vector
potential which is a diagonal matrix in the color space,
(A 4 = 845Q%/g with the matrix elements satisfying

N Q4 =0 for SU(N) gauge group. Accordingly, the
effective potential or free energy can be computed pertur-
batively by using a constrained path integral [13-20]. The
resulting effective potential attains at the minimum at
vanishing background field, indicating a deconfining phase
at all temperatures. To drive the system to confinement,
nonperturbative contributions have been introduced in the
matrix models that generate a complete repulsion of
eigenvalues of the thermal Wilson line. In recent years,
much attention has been paid to the developments of the
matrix models which have already had great success in
studying the QCD phase transition [21-26].

In the meanwhile, many phenomenological applications
have been considered in the semi-QGP where the focus was
put on the influence of the background field on the
corresponding physical quantities such as transport coef-
ficients and electromagnetic probes, see Refs. [27-32] for
examples. In this work, we concentrate on the real-time
gluon self-energy in the presence of a background field.
Being crucial in many processes involving soft momentum
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exchange, the gluon self-energy has been extensively
studied in previous works where a widely used calcula-
tional technique is the so-called Hard-Thermal-Loop (HTL)
approximation [33]. Besides the HTL gluon self-energies in
equilibrium [34], the investigation on the viscous correc-
tions shows the existence of unstable modes of the plasma
due to a rapid exponential growth of the soft gluon fields
[35-37]. In addition, the HTL gluon self-energy in a semi-
QGP has been computed in the imaginary time formalism
[38]. The most surprising outcome is that there is an
anomalous contribution ~T3 appearing in the gluon self-
energy that vanishes at zero background field.

In the real-time formalism, the gluon self-energy

becomes a 2 x 2 matrix. The four components are not
independent, therefore, it is more useful to write the gluon
self-energy in terms of the three independent components
in Keldysh representation [39], namely,
Mg =10}, + 1, Ty=0;+1y, Hp=I;;+I,. (1)
In the absence of the background field, by analytically
continuing the result in imaginary time, one can easily get
the retarded and advanced gluon self-energies as denoted by
15 and Iy, respectively. Furthermore, the symmetric gluon
self-energy Il in an equilibrium QGP can be obtained via
the Kubo-Martin-Schwinger (KMS) condition [40,41]

Ip(P) = (14 2n(po))sgn(po) Mg (P) —I14(P)). (2)

where n(pg) is the Bose-Einstein distribution function. When
a nonzero background field is considered, a Q-dependent
modification on the distribution function needs to be taken
into account. Furthermore, besides the normal ~72 terms, the
aforementioned anomalous contribution ~7° remains in the
retarded/advanced gluon self-energy after analytical continu-
ation. As a result, one cannot expect a trivial extension of
Eq. (2) from Q@ =0 to Q # 0. Therefore, the computation
of the real-time gluon self-energies as well as the verification
of the KMS condition in a semi-QGP with a nonzero
background field will be the main concern in the current work.

The rest of the paper is organized as follows. In Sec. I, we
briefly review the double line basis as commonly used when
computing in a background field and summarize the
corresponding Feynman rules in the real-time formalism.
In Sec. III, we compute the one-loop retarded/advanced
gluon self-energy in a semi-QGP up to the next-to-leading
order (NLO) in the HTL approximation and discuss the Q
modifications on the Debye screening mass. The same
analysis on the symmetric gluon self-energy is carried out
in Sec. IV. With the obtained results, in Sec. V we explicitly
verify that the KMS condition can be satisfied order by order
by the HTL approximated gluon self-energies in a semi-
QGP where Q # 0. Conclusions and outlook are given in
Sec. VI. In addition, some details of the calculation of the
contributions from the pure gauge part can be found in

Appendix A. A reorganization of the LO contributions of the
symmetric gluon self-energy is discussed in Appendix B.

II. THE FEYNMAN RULES IN THE
DOUBLE LINE BASIS

For completeness, we briefly review the double line basis
[38,42] which is defined by the generators of the funda-
mental representation,

1
(t%)eq = EPZZ, (3)
where the projection operator is given by
1
73?3 = pabde = Phraca = 5?52 - ﬁéabécd' (4)
The normalization of generators reads
1
tr(labICd) — 57)(117,&/1_ (5)

For SU(N) gauge theories, the color indices a, b, ¢ and d
run from 1 to N. There are N> — N off-diagonal generators
1%’ with a # b which are the ladder operators of the Cartan
basis. They are orthogonal to each other and normalized as
tr(#%°t**) = 1/2 with fixed a and b. The N diagonal
generators are not independent, satisfying > N | ¢ =
and the normalization becomes tr(14“t"?) = (6> — 1/N)/2
where no summation over a and b applies.

The great advantage of computation in the over-complete
double line basis is that the classical covariant derivative
Df} acting upon the fields has a very simple form in
momentum space. In the fundamental representation,
D' =0, —igAS with AY = A§'5,. When this covariant
derivative acts upon a quark field, we have D{y, —
—i(po + Q“)w,. Similarly, in the adjoint representation,
DS = 9, — ig[AS], - - -]. Acting upon a bosonic field, it gives
D1t — —i(py + Q% — Q)1 In any case, there is only a
constant and color-dependent shift in the energies.

Given the QCD Lagrangian Locp, we expand the gauge
fields around some fixed classical values as A, = Af} + B,
where B, corresponds to the quantum fluctuation. With the
standard procedure, the corresponding Feynman rules in
the double line basis can be derived. For example, the
inverse bare gluon propagator in momentum space reads

6S 1
— Pab 25 —(1== PabPab ab,cd7
sarmamr (P (1) )P

(6)

where the action S = [d*xLocp and ¢ is the gauge
fixing parameter. The Q-dependent momentum P is
given by P = (p,+ Q% — Q”,p). Notice that due to
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the over-completeness of the basis, upon inversion, the
explicit form of the diagonal components of the gluon
propagator cannot be uniquely determined. However, such
an ambiguity is absent in the calculation of the gluon self-
energy after performing the sum over the color indices [43].

The complete Feynman rules in the imaginary time
formalism can be found in Ref. [38]. On the other hand,
to compute in the real-time formalism, one has to double
the field degrees of freedom so that the propagators become
a 2 x 2 matrix. In order to get the Feynman rules in the
presence of the background field, we follow Refs. [27,44]
|

i
K*+ie

K*—ie

0 275(K?
- )+ o )<n(ko, Q%) + 0(ky)

and take the background field only for the part in imaginary
time (not in real time) along a complex time path [34]. As a
result, the corresponding Feynman rules become very
simple because the background field acting as an imaginary
chemical potential only affects the statistical distributions
of the thermal partons.

Let us denote the bare gluon propagator as
G (K, Q%) = —g,,P®<ID(K, Q%) with no summa-
tion over ¢ or b and @’ = Q¢ — Q. Here, D(K, Q%) is a
2 x 2 matrix which reads

n(ky, Q) n(ko, Q%) + 0(—ko)

Vl(ko, Qab)

)

where (k) is the Heaviside step function and the Q-dependent distribution function is defined as

1

ollkol-iQ0)/T _

n(kO’ Qab) = { 1

ko [+iQeP)/T _y

ab
ny

(ko)
(ko) for kg <0

for kg > 0
(8)

ab

n

In the Keldysh representation, the retarded, advanced and symmetric propagator can be obtained as the following:

Dgsa(K) = Dy (K, Q%) = D1p(K, Q)

Dy(K, Q) = Dyy (K, Q) + Dyy(K, Q) = 2(1 + 2n(ko. Q))5(K?).

Here, + and — correspond to the retarded and advanced
propagators, respectively and sgn(kg) is the sign function.
As we can see, the nonzero background field alters only the
symmetric propagator.

i
K> +ie

0

K?—ie

D(K, Q) = ( Ol. ) +2n5(1(2)<

where the fermionic distribution function is given by

i(ko, Q%) =

{m = fli(kg) for ko >0
! i (ko) for kg <0

ellkol+i1Q1)/T 11

Accordingly, the three independent components in the
Keldysh representation take the following forms:

Dgja(K) = D1 (K. Q%) — Dpp(K, Q%)
i
T Kt isgn(ky)e’
Dp(K, Q) = Dy (K, Q%) — D5 (K, Q%)

= 2a(1 = 27i(ko, Q))S(K?).  (12)

i
K> +isgn(ky)e’

©)

[

The bare quark propagator can be obtained in a similar
way which we denote as G*(K, Q%) = K6°*D(K, Q%)
with no summation over a. The matrix elements of

D(K, Q%) read

In addition, the ghost propagator can be obtained from
the gluon propagator by dropping the metric tensor —g,,,.
The Feynman rules for various vertices are listed in Fig. 1.
For later use, we also define the periodic Bernoulli
polynomials,

fi(ko, Q)
i(ko, Q) + 0(ko)

fi(ko, Q) + 0(—ko)

i(ky. Q) (19)

o 2(20)!
By(x) =) (=1)! cos(2mxn), (13)
. ; (2an)?
which satisfy
d
2IBy(x) = 5321(?‘)- (14)

It is easy to show that the above defined Bernoulli
polynomials are periodic functions of x, with period 1.
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»ef

ab, 7 _ gf(ab.cd,ef)PH

ORI
“'}\Cd

= _gf(ab'Cd’Gf)[(P = Q)p G + (Q = K)p gup + (K = P)y gy

v, cd = —ig2 [f(ij.abﬁcd)f(ji,ef,gh) (gﬂpgya _ g;wgi/p) 4 f(ij,ab,ef)f(ji,ghﬁcd)

X (g;mgt/p - g;wga,u) + f@j"ub’gh)f(jj’Cd’Cf) (g;wgap - g,u/)gau)}

Feynman rules for vertices in the double line notation where the structure constant is given by fe-cdef =

K

P P

(©) (d)

FIG. 2. Feynman diagrams contributing to the one-loop gluon self-energy.

For 0 < x < 1, the second and third Bernoulli polynomials
which are relevant in this work read

3 1
Bi(x)=x*-=x>+-x. (15)

1
B =32 Z
2(x) =x" —x+—, > >

6
For arbitrary values of x, the argument of the above
Bernoulli polynomials should be understood as x — [x]
with [x] the largest integer less than x, which is nothing but
the modulo function.

In the following, we compute the real-time gluon self-
energies at one-loop order where four Feynman diagrams
as shown in Fig. 2 contribute.' We are interested in the
physical “11” component of the gluon self-energy which
can be written as I1;; = (I1z + I14 4 I1;)/2. For conven-
ience, the calculation of the retarded/advanced and sym-
metric gluon self-energies will be carried out separately.

'Although we adopt the double line notation in this work, for
simplicity, the Feynman diagrams are drawn in the usual manner,
i.e., the gluon and ghost lines are not doubled.

III. THE RETARDED/ADVANCED GLUON SELF-
ENERGY IN A SEMI-QUARK-GLUON PLASMA

We start by considering the quark-loop diagram for the
retarded gluon self-energy. Using the Feynman rules as
provided in Sec. II, we can show

Hab'Cd<P, Q) _ Hab'Cd(P, Q) + Hab'Cd(P, Q)

R;uv 11 v 1200
> 2 ab cd d4K
=19 NfZ(t )ef(t )fe/&TytTr[YﬂnyK]
ef
x[D11(Q,9")Dy (K, Q)
~D(0.9")D1,(K.Q°)]. (16)

In the above equation, K = P 4+ Q and an overall factor
(—1) coming from the fermion loop has been included. In
addition, the minus sign in the square bracket appears due
to the type-2 field. Performing the trace over the y-matrices
and expressing the bare propagators in terms of the three
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independent components in the Keldysh representation,
we arrive at

Hlaql?ﬂid(P, Q) = l.gszZ'Palzfe’Pcd,ef
ef

d*‘K
x W(zKﬂKy—PﬂKD—Kﬂpy—gﬂyQ-K)

x[Dr(K.Q°)D4(Q)+Dr(K)Dp(Q.Q7)].
(17)
|

Notice that terms proportional to Dg(K)Dg(Q) or
D, (K)D4(Q) are independent of the background field
and dropped in the above equation because their contri-
butions vanish after integrating over k.

Furthermore, for vanishing background field, the two
terms, ~Dp(K)D4(Q) and ~Dg(K)Dy(Q), contribute
equally to the retarded gluon self-energy. Although this
is no longer true in the semi-QGP, there exists a simple
relation between the two terms as given by the following
equation:

d*K - ~
/ (2KﬂKu_P;4KD _KyPu_gﬂyQ'K)DR(K)DF(Q’ Qf)

(27)*
&0

= /— [ZQ,L!QI/ + P/,th + QuPu - g;wQ : <P + Q)]DR(P + Q)DF(Q’ Qf>

(27)*

4
K i N .
= / d 2K,K, — P,K, — K,P, — g,,K - (K = P)]Dz(P — K)Dy(=K, Q)

(2m)*

4
= /d—K 2K,K,-P,K,—K,P,—g,K-(K—P)|Ds(K—-P)Dp(K,-Q). (18)

(27)*

In the third line of the above equation, the variable Q is changed into —K. In addition, we have used Dg (P — K) = D, (K — P)
and replaced Dy (—K, Q') with Dy(K,—Q/) which is valid under the integration [ dk, with the delta function §(K?).
To proceed further, we should make use of the HTL approximation. Taking the spatial components as an example, we

will encounter the following integral:

[ d*K . y
l/—[zkikj —pikj —kip; — gij(K —P)-K|Dp(K, Q°)Ds(Q)

(2z)*

d’k 1
= / {[zkikj — pikj = kip; + gij(pok — k - p)]

(27)3 k

+ [2k;k; — pik; — kip; + g;;(=pok — k - p)]

Changing the integral variable k — —k, the leading order
(LO) contribution can be written as the following compact
form

Pk 1 2k;k; y 3
/(2n>3k—2p0k+2k.p_ie(n+(k)_”—(k>)
L [ dk dQ i
e _k2 e (k — e k ass IAJ ’
7o) 22 PR = (8)) ar " —py+kp—ic
(20)

i, (k)
—2pok + 2k - p + P? —ie

e (k
) | (19)
2pok + 2k -p + P~ +ie

where K is defined as k /k. We should mention that the LO
contribution vanishes in the limit of zero background field
because the two distribution functions 724 (k) and 72 (k)
become identical. In semi-QGP with a nonvanishing back-
ground field, integrating over k leads to a contribution
~iT3B5(§¢)/po where the third Bernoulli polynomial
Bs(x) is given by Eq. (15). Here, we also define the
dimensionless background field q = Q/(2zT) and
Q°=q°+1/2=0°/(2zT) + 1/2.

The NLO contribution can be obtained as the
following:
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piki + Qij(Pok -k-p)

&k i€ (k) +
/ (2r)? k

Y e

(€. (k) + AL (k) [ dQ

n< (k) |:_pikj -

dk . o(i jic (k
f— —k2 — —_
/47;2 ok 4z 0

aQ

:_/éik@ﬂm+ﬁﬂ@) P

where we have integrated by part to get the final expression.
Technically, the above calculation does not involve anything
new as compared to the vanishing background case. After
integrating over k, we find that instead of a contribution ~7?
at vanishing background field, when Q # 0, the above
equation gives rise to a contribution ~72B,(§¢) where
modifications due to the nonzero background field are
entirely encoded in the second Bernoulli polynomial B, (x).

The other Lorentz components can be computed in a
similar way and the result up to NLO reads

’/55

- gﬂy(K— P)-K|Dp(K,Q°)D,(Q)

2K,K, - P,K, - K,P,

__1 % K2 (¢ (k) — 7% (k)T (P)
/ dk )
5 k(RS (K) + A< (k)T (P). (22)

where the integral over the solid angle leads to the
following dimensionless functions

Q@ kK,
——Po % .
4zn " " P-K +ie

ukv

@) dQ K
r2e = [ & (mm, - po—2"0), (2
2= [ (M=o o). 03

where K .= (1, —k) and M 4 1s the heat-bath vector, which
in the local rest frame is given by M, = (1,0,0,0). These
two functions have nothing to do with the background field
and satisfy

1
L (P) =

1 2
W (P) = MM, T3 (P). (24)

In terms of the mutually orthogonal projection operators

A, (P) and B, (P), one can express Fﬁ) (P) as

v

') (P) = Tz(P)A,,(P) + 1, (P)B,,(P),

where longitudinal and transverse structure functions are
given by

(25)

1%1} ok;
- )/ 1 ]

2k, P2 ]

ot+k-p-— ok
AZA/
—po+k-p—ie
kik;
e (21)
—po+k-p—ie
| 2 /22
HT<P):p_02(po—p lnPo+P+l.€_1)’
2p°\ 2pop  po—p tie
2
I, (P) :p—g(l—pol 7p°+p+’€> (26)
p 2p po—p+tie
and the two projection operators read
p,pP, MM
o utv utty
A/w<P)__gﬂv+ P2 + M2
P2 MM
B Py — — et 27
;w( ) (MP)2 M2 ( )

In the above equation, M 4 is orthogonal to P, which is
defined as

M-P

P2P

M,=M,- " (28)

According to Eq. (18), the other contribution in the

retarded gluon self-energy can be obtained by changing Q¢
into —Q/ in Eq. (22). Then, we arrive at

abcd 2 L ﬁ 2 e —p¢
(P9 = e {0 [ Sl = )

(] (k) — L. (k)T (P)
dk 5
[ Skl (k) + (k)

+ (WL0) + LI (P) b ossepeser,
9

At Q = 0, the gluon self-energy is simply proportional
to an identity matrix in the color space.” Switching on the
background field, on the other hand, the color structure
becomes nontrivial as indicated by the following equation:

*When the standard choice for the generators of a gauge group
is adopted, the identity matrix is 6% where A and B refer to
adjoint indices running from 1 to N2 — 1 for SU(N). With the
double line notation, the identity matrix is given by P4,
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1
— 6ad5bc|e:a.f:c _ N&abécd

1
ab scd
+ 1708 E ‘f e (30)

e=f=a e=f=c

For the off-diagonal components ~5%?5°¢, the color indices e and f in the Bernoulli polynomials in Eq. (29) are replaced by
a and c, respectively. On the other hand, by requiring e = f, there are no diagonal components ~5¢°5°? existing in the LO

contribution. Explicitly, the retarded gluon self-energy takes the following form:

2

b.cd _ g
HZ’ /42 (P’ Q) - _27T2P()
TN
_ l__f92T25ad5bcg (
Po 6

N5l / K| (¢ (K) = 7 (k) = (7S, (k) = i€ (k)T (P)

.9 (P), (31)

at LO in the HTL approximation and the corresponding result at NLO is given by

ab,cd
l_[R NT1%

(P, Q) :—sz / kdk{é”béfd% [(ﬁi(k) + it

NLO

_ 5ad5bc[(

i (k) + 7 (k) + (7 (k) + 7 (k)] }F,S?(P)

N 1 .
— ?fngz |:5ab50d ﬁf}@ (qa’ qc) _ 5ad5bc]:}1) (qa’ qc):| F/(i) (32)

In the above equations, we have used the following
fermionic integrals:

/ kdk(7 (k) + 7% (k) = —272T2B, (),

873713 -
BE). ()

/kzdk(ﬁﬁ(k) —nt(k)) =—i
and the Q-dependent functions are defined by

G(q%.q°) = 87(B3(d") - By(&°)).
FP () —6(Bz(qa)+32(a”)),

ZBz

FPqq9) )—12(By(q*) +B»(q°)). (34)

The three Feynman diagrams from the pure gauge part in
Fig. 2 lead to the following contribution, which takes a
form analogous to Eq. (17,

3Some details of the calculation in the double line basis can be
found in Appendix A.

H%ﬁdwv Q) _ ig2Zfab,fe,ghfcd,hg.ef
efgh
d*K
X/(277:) (2K KU—P”KU—KMPU—QWQJ()
X [Dp(K,Q)DA(Q)+Dr(K)Dp(Q,Q%")).
(35)

As compared to Eq. (17), the only nontrivial difference lies in
the color structures. In addition, following the same analysis
as given in Eq. (18), it can be shown that the two terms in the
square bracket give a similar contribution to the retarded
gluon self-energy, in other words, Dg(K)Dg(Q, Q") can be
replaced by D(K, Q")D,(Q) in the above equation.
Summing over the color indices in Eq. (35), we obtain

Zfab,f&ghfcd,hng % (5ae&fh5bg 5ah5bf5eg)
efgh
x (898" 5
1

)

_ sadgbe Z Sad gbe

=c Z e=a >
e gh=ea 7 gh=cf

(36)

_ 5cf5dh5ge)

ef=ca
gh=ca

<5t1b5(‘d| e/=a + 501)50(1
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The integral over the hard momentum K in Eq. (35) can be
carried out with the same procedures as used in the
calculation of the quark-loop diagram. Therefore, it is
straightforward to obtain the contributions from the pure
gauge part which are given by

TN
! i

92T25ad5bcgg(qa’ qc)rl(li) (P),

(P.Q) =

LO Po 3
(37)

at LO, while the NLO result reads

ab,cd
HR;/w

N a1 :
NLO(P’ Q) — EngZ |:6uh5Lde§2>(qa’ qL)

- ) [T ). 39)

Here, q*“=q"—q°=(Q“—Q°)/(2zT) and the following
bosonic integrals are used,

/ kdk(n4c (k) + n%(k)) = 22°T*B,(q").

82373

/ k(e (k) = e (k) = i

B3(q*).  (39)

M| (P.Q) =T0j,,(P. Q)

NLO

Similar as before, we also define the O-dependent func-
tions for the pure gauge part,

G,(a°,0°) = 57 S (B (q") + B(@)).

e

FI . qf) = 5 D7 (Ba ) + Bo()),

F(q0,q°) = 6B,(q). (40)

Summing up the above results, the final expression
for the retarded gluon self-energy H%’;ﬁ‘l(P, Q) can be
obtained as

g’ (P.Q) =TIy, (P.Q)
T
— i_5ad5bc ng a’ c
o [ ’ (9,99
— m2G, (g%, q°)|T (P), (41)

and

1
_ _{m§ |:5ad5bc_7:}1)<qa’ qc) _ ﬁéabécd]:}z) (qa’ qc):|

. N : :
+ mz |:5ad5hcfél)(qa’ qc) _ ﬁéabéCdféZ)(qaa qL):| }F/(ﬁ/)(P)» (42)

where m% and m? denote the fermionic and bosonic

contributions in the Debye mass square, respectively. By
definition, mj, = m} +mg with mj = ¢*T>N;/6 and
m2 = g*T*N/3.

Following the terminology in Ref. [43], we introduce
H';‘e'gl‘jy(P, Q) in Eq. (41) to denote the anomalous contribu-
tions in the retarded gluon self-energy. These contributions

arise at LO in the HTL approximation, ~g*>T> / p,, and are not

transverse since P"F,(,L)(P) # 0. According to Eq. (31), the
integral over k involves a difference between two distribution
functions (n¢ (k) — n®(k)), therefore, the anomalous con-
tributions only show up at Q # 0. In addition, Eq. (41) is
antisymmetric under the interchange of the color indices
a < ¢, we can easily show the following identity,

E fPab,cdHab,Cd

Ryuv
abed

(P,Q)=0. (43)
LO

Accordingly, terms associated with (n¢ (k) + n®(k))
lead to the normal contributions H}?;D(P, Q) in Eq. (42).

[
They emerge at NLO, ~g*T?, where the same dimension-

less function F,(,? (P) as at Q@ = 0 is now multiplied by a
Q-dependent mass squared defined as

(MB)<4(Q)
: N1 :
— mJZC |:5ad5bc]:‘;l) (qa, qc) _ NéabéCdfg‘Z) (qa’ qc):|
1
4 m; |:5ad5bc‘7:§]1) (qa’ qc) _ NéabéCdf-S/Z) (qa’ qc):| .

(44)
As we can see, modifications on the Debye mass due to the
nonzero background field can be entirely encoded in the

second Bernoulli polynomials B;(x). Then, we can express
the normal contributions as

I, (P, Q) = —(M3)@</(QI)(P).  (45)
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Obviously, the above gluon self-energy is transverse
because the dimensionless function F,%)(P) is orthogonal
to P¥.

Considering vanishing background field, we find
G¢(9*.9°)=G,(9*.9°) =0 and the other four Q-dependent
functions in Eqgs. (34) and (40) equal one. Therefore, the
retarded gluon self-energy reduces to the following well-
known result as expected,

Met (P, Q = 0) = —m3 T (PYP<d. (46)

Given the above discussions, the calculation of the
advanced gluon self-energy is trivial. As compared to
the retarded one, the only difference is that the -+ie
description is now replaced by —ie in Eq. (26). In addition,
these results can be also obtained from the imaginary time
gluon self-energy as obtained in Ref. [38] after an ana-
lytical continuation iw,, + iQ% — p, + ie where w,, is the
bosonic Matsubara frequency.

IV. THE SYMMETRIC GLUON SELF-ENERGY
IN A SEMI-QUARK-GLUON PLASMA

It is also interesting to study the symmetric gluon self-
energy in a semi-quark-gluon plasma which has not been
|

M50 (P, Q) = TP, Q) + TS (P, Q)

addressed in previous studies. As is well known, at
vanishing background field, the three independent gluon
self-energies in the Keldysh representation satisfy the KMS
condition as given by Eq. (2). Therefore, the LO contri-
bution of Hj“p{’;ﬁd(P, Q = 0) can be simply obtained from
H;‘f;ﬁw (P,Q =0) at NLO (the LO contribution vanishes
as discussed in the previous section) where the HTL
approximation should also be imposed on the distribution
function, leading to an extra ~T/p, enhancement.
However, in the presence of a nonzero background field,
the KMS condition does not appear to be a trivial extension
of that at @ = 0 because one has to incorporate some new
terms when Q # 0, such as the nonzero LO contributions in
the retarded/advanced gluon self-energy. In the following,

we present the explicit calculation for Hﬁ’,‘ljd(P, Q) up to
NLO in the HTL approximation which is the same order as
we compute for the retarded and advanced ones. As we will
see, such a calculation is necessary to understand the KMS

condition in a semi-QGP with Q # 0.

A. The leading order contributions in the
HTL approximation

Summing the “11” and ‘“22” components, the contribu-
tion from the quark-loop diagram can be obtained as

A4
= igszZ(tab)ef(th)fe /éTI;Tr[YﬂQhK} [DII(Q7 Qf)Dll(K Qe) + Dzz(Q, Qf)Dn(K Qe)]

ef
d*K

Y / Gyt KK = PK, = K,P, = 0,0 K)
ef

x [Drp(Q. Q")Dr(K,Q¢) — (Dr(K) — Ds(K))(Dg(Q) — DA(Q))]

(27)*

. [ 'K
= PN,y Pebfepedes / (2K,K, - P,K, — K,P, — 9,0 - K)
of

x 4n*5(K)8(0%)((1 = 2ii(g0. Q7)) (1 = 2i(ko. Q7)) — sgn(go)sgn(ko)]. (47)

where we used Dg(K) — D4(K) = 2728(K?)sgn(ky). After
performing the integral over k, and keeping only the LO
contributions in the HTL approximation, the symmetric
gluon self-energy can be written as

3k kok.
1P, Q) = i2mgN, Y [ S (1
— i (k) - 7 (k)R - B = po/p)
k)ii¢ (k) — il (k) — ¢ (k)
X 3(K B+ po/ )PP (48)

|
To make the notations compact in the above equation, we
take the spatial components as an example. As before, the
corresponding integral over the solid angle is independent
of the background field which leads to

An o piDj
/ko,-kjé(k P = po/p) =7 (P) <5ij - p2]>

GRS (49)

where the two structure functions take simpler forms as
compared to Eq. (26),
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2_ 2
IM,(P) = n5—200(p = pf) - and

pZ
I, (P) = 22 30(p" = p}) (50)

The other Lorentz components can be computed in a
similar way and we can show that

2
50 (P.Q) = i Ny P epetes
ef

X / WkZ 2] (k)i (k) — iih (k) — s (k)]
XA, (P). (51)

In the above equation, the dimensionless function A, (P) is
given by

Ay

o(P) =TI7(P)A,, (P) + 11, (P)B,,(P),  (52)
and the two projection operators A, (P) and B, (P) are the
same as before which have been defined in Eq. (27).

Equation (51) indicates that nonzero background field
only modifies the integral over k as the distribution
functions are Q-dependent now. Performing the integral
in Eq. (51), we arrive at

T

1
Hab,cd (P, Q) — l;m? [5 sed sbe COt(nq“C)gf(q“, qc)

P o

1
+ Naabacdf}z) (qe, q”)] Au(P). (53)

As compared to H%{’/ﬁdho(P, Q), the most important differ-

ence lies in the fact that the LO terms in the HTL
approximation have a nonvanishing contribution to
H;I;’A‘D'd(P, Q) even at Q = 0. In the above result, to avoid
an ambiguous expression of the type “oco - 0" which origi-
nates from ~ cot(7q““)G¢(q“, q°), the special case q* = q°
should be understood as q* — q° + ¢. Consequently, one
can show that

B3(q“) — B3(q°) — £3B,(q°)e  and
cot(zqc) — +1/(ze). (54)

Therefore, in this limit of @ — 0, the square bracket in
Eq. (53) reduces to —P4b-<4,
The LO contributions from the pure gauge part to

H%’l;jd(P, Q) are similar to those from the quark-loop
diagram. In particular, one only needs to do the following

replacements in Eq. (48),

NfZ'Pab,fe'pcd,ef N Zfab,fe.yhfcd.hg.ef’
ef efgh

7% (k) — —n¢/(k), and @l (k) - —n" (k).

(55)

By using a set of bosonic integrals, the results of the pure
gauge part can be simply obtained as the following:

ab,c T 1 a c ac a qC
5| (P Q) = 17 |37 conq G, (@, )
1
+Nﬁ“”écdféz)(qa,qc)]/\,w(P), (56)

where the square bracket also reduces to —P¢ in this
limit of Q@ — 0.

Adding up Egs. (53) and (56), the final result for the
symmetric gluon self-energy at LO can be shown as

ab,c T 1 a c ac a ¢
HFZ;’Md LO(P,Q):l;{m?C {55 dgb¢ cot(nq )G,(9%.9°)
1 . .
+N5ab54df‘;2)(qa’qc):|
1
+m? [—55“‘15[’0 cot(7q*)G,(q*.q°)
1 ab scd 7(2) (na ~C

which is proportional to ¢T3/ p and reproduces the correct
behavior at vanishing background field,

T 2
M2 (P, Q = 0) = —i—=D

A, (P)Pbcd  (58)

Compared with the NLO result for the regarded gluon
self-energy, both Egs. (42) and (57) are formally analogous
to their counterparts at @ = 0. The influence of the nonzero
background field amounts to a modification on the Debye
mass. However, such a modification turns out to be more
complicated for the symmetric gluon self-energy where
both trigonometric functions and the Bernoulli polynomials
are included.

Given the fact that the LO symmetric gluon self-energy
has a nonzero contribution at @ = 0, we may consider it as
a normal contribution. However, there exists an ambiguity
because one can artificially introduce a term which van-
ishes at @ = 0, and thus gives an anomalous contribution.
Subtracting such a contribution from the original result, we
can define the so-called normal contributions. It turns out to
be interesting to make such a reorganization for the LO
symmetric gluon self-energy. Detailed discussions can be
found in Appendix B.
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B. The next-to-leading order contributions
in the HTL approximation

It is also important to explore the NLO contributions to

the symmetric gluon self-energy. Just like the LO

H%Zﬁd(P, Q), these contributions are completely new as
they only survive in a nonzero background field. More
importantly, as we will show later, they are necessary to
demonstrate the KMS condition at NLO in the HTL
approximation.

There are three kinds of contributions arising at NLO.
Dropping the term ~K,K, in Eq. (47), the first kind of

contribution can be obtained as

ab,cd
(P, Q)|

— iﬂ,gZNfZ'Pab,fe 'Pcd,ef
e
f

[ P s () = 7 (1

— 4. (k))8(k - p = po/p) + (2L (k)7 (k)
— il (k) = i (k))8(k - b + po/p)]. (59)

Here, we also take the spatial components as an example
and other components in the Lorentz space can be
discussed in a similar way. Notice that the term
~g,,Q - K does not appear in the above equation because
it has no contribution due to the delta functions. In addition,
J

g2:e4(P, Q)

(2z)* p

&Pk kik;
= —iZEQZNfZ'Pab,fe’Pcd,ef%/ b
11 of

the distribution function 7i(qy, Q') is approximated to
ii(ky, @7), and the subleading term in 5(Q?) is neglected,
namely 5(Q%) ~ 6(k - p T po/p)/(2kp) where the minus
sign corresponds to the positive energy k, = k while the
plus sign is for ky = —k.

Performing the integral over the solid angle, we arrive at

s (P.Q)|,

2
.9" Po,, PiPj > 2 b d
=—i=——N 0(p* — pg) E pab-fepedef
2wp e

[ k(2L 1 (6) = 7L () = 7. (00)

— (27 (k)7 (k) — 7L (k) — i€ (k))]. (60)

We should mention the above result is not proportional
to A;;(P) although one may naively expect such a
proportionality.

The second kind of contribution at NLO comes from the
following expansion of the distribution function for soft py,

(k= po, @) = i () F # (), (k) = ) B+
(61)

Picking up the subleading term which is suppressed by a
factor of p,/T, the resulting NLO contribution reads

{127 () (i (k) = 1)t (k) = 5 (k) (i (k) = 1)]5(k - B = po/ p)

—[2L (k) (R (k) = 1)7i¢. (k) = L (k) (AL (k) = 1)]8(k - B + po/ ) }. (62)

where we keep ~K, K, in Eq. (47) and other terms such as
~K,P, and ~K P, should be dropped which lead to higher
order contributions. For the same reason, we also take
5(0*) = 8(k -p F po/p)/(2kp) in the above equation.

|

= ]l—

2
ab,c . 9" Do ab,fecd,e
I35 (P, Q)’H 4ﬂ2;NfAij(P ) _Perdepees / kzdk(
of

The integral over the solid angle is the same as
the LO contribution, therefore, the second kind of con-

tribution at NLO is proportional to A;;(P). Then, we can

show that
ol (k) ol (k) onl (k) _onl (k)

—2 e (k) — 2 nc(k)). (63
ok ok el ——g— F 2=tk ). (63)

Now we turn to the third kind of contribution which takes a very similar form as Eq. (48),

b , , &Pk kik (o y 3 . P2
M(P.Q)| = i2ng?Nyy Perepectes / o {Pni(k)ni(k) — i (K) = i (K)o (k D-po/p+ 2k>
11 of n)?° p p
. P?
+ 2L (k)ii¢ (k) — il (k) — 7e.(k)]oN-© (k “p+po/p+ %) } (64)
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As we can see the only difference is that in Eq. (64), we keep the subleading term P?/(2kp) in the delta functions where the
superscript “NLO” means that only the NLO contributions should be kept in the integral over the solid angle, namely,

A . P2 A N P2 A N P2
/koikjé(k-p:tpo/p—&—%) E/koikj5L0<k-p:l:p0/p+%) +/koikj5NLO(k'p:l:po/p—i-%), (65)

where the first integral on the right-hand side of the above equation is actually given by Eq. (49) where the term P?/(2kp) is

not relevant, while the second one is given by

A . P?

2kp
Using Eq. (66), we can express H%‘flf]‘fd(P, Q)i as

.92190

ab,cd
HF;ij (P’ Q)

I 4r

= _1_2;Nf <A1](P> -2

L (Aij(P) —2n p;’;‘i 0(p* — P%))- (66)

k

pip- a ecd,e
pzj o(p* - ,%))ZP bfeped. f/kdk

ef

x[(2), (k)i (k) = il (k) = i€, (k) = (2L (k)i (k) = L (k) = i€ (k))]. (67)

Interestingly, we find that the first kind of contribution as given in Eq. (60) is completely canceled by the above equation
and the remaining terms are simply proportional to A;;(P). By combining Eqgs. (60), (63), and (67), the symmetric gluon

self-energy at NLO takes the following form:

f . . o, (k) = on. (k) -
v U [C e D)
0il (k) =, oRe (k) & f
- (B8 -8 ) | (68)

where N, (k) = 7/, (k) — 1/2. The other Lorentz compo-
nents can be obtained in a similar way, therefore, the
corresponding details are omitted here. Notice that
for the “00” component, the first two kinds of contributions
are both proportional to Ay (P), while the third kind of
contribution is not involved in NLO calculation.
According to Eq. (68), it is clear to see that the NLO
contribution in H}I;’ﬁd(P, Q) vanishes when Q =0 or
Q¢ = Q/. This is analogous to the retarded gluon self-

energy at LO. Therefore, no diagonal component exists

and H%{’};jd(P, Q)|nLo 1s considered as an anomalous
contribution.
We can further integrate over k in Eq. (68) by making use

of the following equation:

mied(p, Q)

NLO 2

L kzdk(a’ﬁ(k) s -0 )

T ok ok
= icot(zq/¢)[Liy(—e™™") + Liy(—e™")]
— csc?(nq/)[Liz (=€) — Lis (=), (69)

where the polylogarithm functions can be related to the
Bernoulli polynomials via

Liz(_eiZﬂqf) + LiZ(_e—ianf) _ 2”232 (qf)’
: i27q) - _i2nq/ A ~
Liz(—e™®) — Lij(—e™#9) = 1733(qf>- (70)

Consequently, the final result for the T} /;id(P, Q) at NLO

in the HTL approximation can be expressed as

1 .
- p_,(;éadé“ {m? (ECS& (7q°)G(a, °) + cot(rq) (¢, o) )

+ m? <— % csc?(7q)G, (g%, q¢) + cot(nq““)]—"él ) (¢, q“)) } A, (P). (71)
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Given the above discussions about the quark loop
diagram, calculations for the pure gauge part are straight-
forward, although rather tedious. We only provide the
corresponding result which is given in the second line of the
above equation. As compared to the LO result in Eq. (57)
which is pure imaginary, the NLO contribution is real and
suppressed by a factor of p,/T. We would like to mention
that although the NLO symmetric gluon self-energy is also
an anomalous contribution as it vanishes at Q@ = 0, unlike
the LO retarded gluon self-energy, it is transverse due to the
vanishment of P¥A,,(P). On the other hand, a similar
identity as Eq. (43) also holds for the NLO symmetric
gluon self-energy.

Finally, a vanishing result from Eq. (71) is required in the
special case where Q = 0 or Q* = Q°. However, this is not
very obvious based on the above given expressions. In fact,
taking 9 — q° £+ ¢ and making a Taylor expansion for
infinitely small €, both of the two terms associated with
different trigonometric functions in the square bracket have
contributions at successive orders ~1/e, ~e°, ~e and so on.
However, the divergent and finite parts in the Taylor series
are exactly canceled, leaving a vanishing result as expected.

V. THE KUBO-MARTIN-SCHWINGER
CONDITION IN A SEMI-QUARK-GLUON PLASMA

With the HTL gluon self-energies computed up to NLO
in Secs. III and IV, we can study the KMS condition in a
semi-quark-gluon plasma. As a natural extension of the
KMS condition at Q = 0, it can be expressed as

2e(P. Q) = (14 2n(po. Q**))sgn(po)

x (P, Q) = Te(P.Q).  (72)
A formal derivation of the above equation can be carried
out by following a similar procedure as used in the @ =0
case. As already mentioned before, the introduced back-
ground field acts like an imaginary chemical potential. In
analogy to an ordinary chemical potential, it only brings a
Q dependence in the distribution function as given in
Egs. (8) and (11).

For timelike gluons, studying the KMS condition is
rather trivial because the symmetric gluon self-energy
vanishes due to the @ function and meanwhile the retarded
and advanced ones become identical. In the following, we
consider only the spacelike gluons with p3 < p?.

Let us first recall what happens in zero background field.
To verify Eq. (72), one can make use of the following
relation among the dimensionless functions,”

(P) = i%;A,,AP), (73)

4F§?2,LD(P) is given by Eq. (25), while I“f,)w(P) can be obtained

by changing +ie into —ie in the same equation.

which can be obtained via the identity

np0+p+ie_
po—p+ie

npo+p—i€
po—p—ie

1 1

=-2zi forp}<p? (74

Furthermore, the external momentum p,, is considered to
be soft in the HTL approximation, i.e., po < T, and the
bosonic distribution function can be expanded as

2T
(14 2n(py, @ = 0))sgn(po) » —+ 22 ... (75)
p() 6T

where higher order terms are power suppressed for
po/T < 1 and should be dropped for consistency if only
the LO (nonvanishing) contributions in the gluon self-
energies are taken into account. Then, it is easy to show the
validity of Eq. (72) based on Eqgs. (46) and (58). Notice that
the bosonic distribution function is enhanced by ~T/ py,
therefore, a T3 behavior can be found on the right-hand
side of Eq. (72) which matches the T dependence in the
symmetric gluon self-energy.

It is certainly interesting to ask if the KMS condition can
hold when Q # 0. For the diagonal components of the
gluon self-energies, Eq. (72) becomes

I35 (P, Q) = (1 +2n(pg, Q°* = 0))sgn(po)
X (Haa,cc’(P’ Q) _ Haa,cc (P, Q)) (76)

Ryuv Asuy

Given the explicit results of the HTL gluon self-energies, the
above equation is valid because the diagonal components of
the gluon self-energies at Q # 0 can be simply obtained
from those at @ = 0 by multiplying a Q-dependent function
which is the same for the retarded/advanced and symmetric
solutions, see Egs. (42) and (57). In addition, the distribution
function for diagonal gluons is not affected by the back-
ground field, therefore, Eq. (75) can apply. It is worthwhile
to mention that for the symmetric gluon self-energy, the
diagonal components are taken from the LO contribution,
while for the retarded/advanced one, they arise at NLO in the
HTL approximation. This is actually in analogy with that in
zero background field.

For off-diagonal components, the KMS condition reads

7" (P, Q) = (14 2n(po, Q°))sgn(po)

x (Mg, (P, Q) =T (P, Q) (77)
where the bosonic distribution function becomes Q de-
pendent. As a result, there is no enhancement in n(pg, Q)
when p, is small. Instead, for py/T < 1 we find that

(14 2n(po. Q))sen(p) = i cot(xq") + 20 cse? (mq)

+-, QY#EQS (78)
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For later use, we write in the retarded/advanced gluon self-energies in order to

) ) ) ) match the power of T. Using Eq. (41), we get
(1+2n(po. Q*))sgn(po)lLo = icot(zq™),  q*#q",

p (79) iG] (P -TIG (P-Q)
142 ,9Q%))sgn =200sc2(nq9e), QU #QF. . T 4 e 4 meniie(l
ornlpo QOpen(pollio Zgpese (a2 i g ar.af) - mig, (@) (P) =T (P)
(80) . 2 2
—_ a’ Cc\ a’ C A v P , a C‘
Given the above expansion, it is not a surprise to see the 2p [mf gf (a%.9%) g g'q (a%.q%) s (P) a’#q
trigonometric functions in our result for H;’fp’lid(P, Q) as (81)

they also show up in the KMS condition.

The off-diagonal components of Hff;fyd(P, Q)atLOare  Taking also the LO term in the expansion of the
proportional to T2 as shown in Eq. (57). Clearly, to show OQ-dependent distribution function, according to Eq. (78),
the KMS condition, one needs to include only the LO terms it can be shown that

(14 2n(po, Q*))sgn(po) (Mg, (P, Q) — L (P, Q))

I& ac ac,ca _ ac,ca
L1+ 2n(po. @))sen(po)| (Mgt (P -TiE| (P, Q)
. T
= zﬂcot(nq“)[m;gf(q“, q°) — myG,(a%. q)]A,, (P), Q¢ # q-, (82)
|
which is nothing but the off-diagonal components of According to the above discussions, when considering

H,“vl.’;ﬁd|Lo(P, Q) as given in Eq. (57). Thus, the KMS  only the LO contributions in the symmetric gluon self-

condition in Eq. (77) is explicitly verified at LO. Here, the ~ energy, the verification of KMS conditions requires a
i ibutions i - computation of I1%:¢? (P, Q) up to NLO in the HTL
involved contributions in both symmetric and retarded/ putatior R/Ayw\" P i
advanced gluon self-energies come from the same order in ~ approximation. However, the off-diagonal components in
the HTL approximation. This is very different from the KMS ~ the NLO H?f}ﬁw(P ,Q) which are related to the LO

condition for diagonal components where the LO terms in ~ symmetric gluon self-energy via the KMS condition when

113745, (P. Q) vanish and the corresponding NLO contribu-  Q = 0 are missing in our discussion for nonzero back-
tions ~72 can be related to the LO ITz,* (P, Q) viaEq. (76)  ground field. In fact, with Q # 0, these missing terms
thanks to the enhanced bosonic distribution function. satisfy the following equation:

M| (PQ) =TI | (P.Q) = ~[mFy(q7.q7) + m3Fy (7. 4°)][Te, (P) = T, (P)]
Po

r 1 a c 1 a c a c
= iy i@ a) £ F @ Ol (P) gt a (83)
As compared to Eq. (81), the above contribution is suppressed by a factor of p,/T and turns out to be useful to verify the
KMS condition Eq. (77) at NLO.
As suggested by Eq. (78), there are two sources that contribute when studying the KMS condition Eq. (77) at NLO.
Explicitly, we can show that

(14 2n(po, Q*))sgn(po) (Mg, (P, Q) — I (P, Q))

NLO

= (14 2n(po, Q*))sgn(po)| (Mg,

Riuv
LO

+ (1 +2n(po, Q*))sgn(po)

(P,Q) =L (P.Q))

NLO

Lo(P’ Q) — Iy

NLO

ac,ca
<HR;/41/
NLO

(P, Q)

LO

= %cot(nqac)[m}f}”m“, ) + m2F (g0 q°) A (P)

+ Z—;CSCZ(”qaC)[m%gf<qa’ qc) — méQg(qa’ qc)]Aﬂy(P), qa ” qC_ (84)
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By comparing Eq. (84) with Eq. (71) which is obtained by a
direct calculation of H‘}ZﬁﬂNLO(P, Q), the validity of
Eq. (77) at NLO in the HTL approximation is verified.

When we expand the distribution function in Eq. (78)
with po < T, we implicitly assume QO ~ T, so that the
dimensionless background field q ~ O(1). Notice that a
special case where q ~ p,/T leads to a different expansion
of the distribution function which can be expressed as

1 2T
e e
for q* # q°, (85)

where Q“/q* = po/T with %~ O(1) and higher order
terms suppressed by powers of p,/T are dropped. To verify
the KMS condition for the off-diagonal components in this
special case, we need to also expand the Bernoulli poly-
nomials in the gluon self-energies for small py/T.
According to Eq. (41), the LO contribution to the retarded
solution becomes

M| (P.Q) = —i2mqemp i) (P) + - -,

for q~ po/T < 1. (86)

At the same order ~g>T?, there is another contribution
which can be obtained from Eq. (42) by setting Q = 0.
Therefore, the final result reads

M (P, Q) = —m} (122G T ) (P) + T30 (P)) + -
for g~ po/T < 1. (87)

Based on the above equation, it is easy to show

5P, Q) =TT (P, Q) = =i (126, (P)

(88)

On the other hand, the symmetric gluon self-energy is
simply given by Eq. (58) when expanding Eq. (57) for
q~ po/T < 1 and dropping the higher order contributions.
Together with Eqgs. (85) and (88), the KMS condition is
proved to hold in the special case where the background
field is at order ~p,/T.

It is interesting to point out that the anomalous con-
tribution in the retarded/advanced gluon self-energy is
~g*T?/p, when the background field Q ~ T. However,
for small Q where Q ~ py or q~ py/T, the anomalous
contribution becomes comparable to Il /4 at @ = 0 which
is proportional to the Debye mass square. As a result, the Q
modification on the retarded/advanced solution is not
negligible even for small background field. On the contrary,
for the symmetric gluon self-energy, such a Q modification

is power suppressed as compared to the result at vanishing
background field.

To conclude, our discussion confirms that in general,
using the real-time gluon self-energies computed in the
HTL approximation, the KMS condition is satisfied order
by order for p,/T < 1. As demonstrated in this work, it is a
highly nontrivial extension from Q =0 to Q # 0 due to
some new features arising in the off-diagonal components.

VI. CONCLUSIONS AND OUTLOOK

We computed the one-loop gluon self-energy up to the
next-to-leading order in the HTL approximation where a
background field Q has been introduced for the vector
potential, leading to a nontrivial expectation value for the
Polyakov loop in the deconfined phase. The explicit results
for the retarded/advanced and symmetric gluon self-energies
in the Keldysh representation have been obtained.

Some new terms which only survived at nonvanishing
background ground were found in our computations. For
the retarded/advanced gluon self-energy, they came from
the LO contributions which were proportional to ¢>T>/ p,,
enhanced by a factor of T/ p, as compared to the results at
Q = 0. For the symmetric gluon self-energy, on the other
hand, these new terms arose at NLO and were suppressed
by po/T as compared to the LO contributions. It is worth
pointing out that these anomalous contributions are propor-
tional to 5¢5”¢ and anti-symmetric when flipping the color
indices a <> ¢, therefore, Eq. (43) is valid simply because
the projection operator P*“““ is symmetric under a <> c. In
addition, the NLO contributions in 1/, as well as the LO
contribution in Il are formally analogous to the well-
known result computed in the completely deconfined QGP.
The influence of the nonzero background field merely
amounts to a modification on the Debye mass. According
to Egs. (42) and (57), we found that the fermionic
modification differs from the bosonic one and such a
modification is also different for the retarded/advanced
and symmetric solutions of the gluon self-energies. In the
limit @ — 0, both of these contributions reproduce the
desired results as shown in Eqgs. (46) and (58).

With the obtained results, we also verified that the KMS
condition can be satisfied in a semi-QGP with nonzero
background field. It is a nontrivial extension from Q = 0 to
Q # 0, especially for the off-diagonal components where
the statistic distributions for the soft gluons depend on the
background field, hence have no Bose enhancement
~T/po. In this case, we found that the anomalous con-
tributions played an important role which guaranteed the
order-by-order satisfaction of the KMS condition in the
HTL approximation.

In this work, all the computations were carried out within
the HTL perturbation theory where however, nonzero
values of Q cannot be consistently generated because
the corresponding equations of motion of the background
field require the system to always stay in the completely
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deconfined phase where Q vanishes. To quantitatively
study the background field modification on the gluon
self-energies, one needs to specify the values of Q at a
given temperature by using either the lattice simulations on
the Polyakov loops, or the equations of motion based on
effective theories in the semi-QGP. In fact, some other
unphysical behaviors have also been found in recent works
where only perturbative contributions were taken into
account [43,45,46]. Naively, one may relate these problems
to the nontransversality of the retarded gluon self-energy.
A further analysis [46] has shown that gauge invariant
sources, which are nonlinear in the gauge potential A,
generate a novel constrained contribution to the gluon self-
energy in the perturbation theory. It exactly cancels the
nontransverse term ~M,M,, and thus the total gluon self-
energy remains transverse. It is obvious that the KMS
condition is not affected by dropping this nontransverse
term, however, for any gauge invariant source, it was found
that there exists an unexpected discontinuity in the free
energy appearing at order ~g> as the background field
vanishes. In addition, including the anomalous contribu-
tion, either with or without the nontransverse term, one
encountered an ill-defined static limit in the resummed
gluon propagator [43]. Therefore, developing effective
theories to study the physics in semi-QGP appears to be
necessary.

In Ref. [47], a new contribution coming from two-
dimensional ghost fields embedded isotropically into four
dimensions was added to the perturbative gluon self-
energy. As a result, the LO anomalous contributions in
Eq. (41) have been completely canceled, leading to an
effective retarded gluon self-energy which is given by
Eq. (45) with the O-dependent mass squared shifted by a
dimensional constant. If we naively assume the same also
happens to the symmetric gluon self-energy,” then it can be
shown that the effective gluon self-energies satisfy the
KMS condition provided that the background field only
affects the statistical distributions of the hard particles, in
other words, (1 + 2n(pgy, Q%))sgn(py) should be approxi-
mated by 27/p, even for the off-diagonal components
because the distribution function here is for the soft gluons.
However, we have to admit that there seems no physical
reason to make such an assumption. On the other hand,
acknowledging the effective retarded gluon self-energy
proposed in Ref. [47], it turns out to be necessary to ignore
the Q dependence in the distribution functions of the soft
particles. Suppose that Eq. (79) was used, the off-diagonal
components of the resulting effective I3, (P, Q) would
become antisymmetric when we flip the color indices a and

°In this case, all the anomalous contributions from Egs. (B1),
(B3), and (71) should be dropped and the effective symmetric
gluon self-energy is given by Eq. (B5) where the same constant
shift applies to the Q-dependent mass squared.

c. This is obviously contradictory to the desired result when
taking the limit Q — 0.

The current work is an important step towards a full
study on the gluon self-energy and other related physics in
a semi-QGP. Properly incorporating the nonperturbative
contributions based on effective theories, in particular,
when the model in Ref. [47] is adopted, how the two-
dimensional ghost fields would affect the symmetric gluon
self-energy is obviously an interesting topic which still
needs to be further investigated.
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APPENDIX A: CONTRIBUTIONS FROM PURE
GAUGE PART TO THE REAL-TIME GLUON
SELF-ENERGIES

In this Appendix, we provide some details about the
calculations of the real-time gluon self-energies in a pure
gauge theory. We adopt the double line notation and focus
on the color structures of each Feynman diagram. The
outcome will explicitly show that the total contribution
from the pure gauge part is similar to the quark-loop
diagram which is also in analogy with what happened in the
zero background field.

We start by considering the gluon-loop diagram. Using
the Feynman rules as given in Sec. II, it can be shown that®

ab,cd ab,cd ab,cd
Moy (P.Q) =T1}\ " (P.Q) + Iy (P. Q)

:%Z /éTI;[DH(Q,Qgh)DH(K’Qd)

colors

—D,,(0,Q)Dy,(K, Q%))
x (=g ) (=g Wit (P. Q. K)

Ah, o
X VlC{,l/i])’o"ef (P7 Q, K)'Pefvef’Pgh,gh’

(A1)

where K = P + Q and the pre-factor 1/2 is the symmetry
factor. In the above equation, all the color indices except a,
b, ¢ and d need to be summed. In addition, we use Vy g to
denote the Feynman rules for the left and right vertex,
respectively. Using the following identities

Zfah,é‘}_‘,ghf])ef,éf — fah,fe.gh’

ef
Z fcd._aﬁ.efpgh,gﬁ _ fcd,h_q,ef

9

(A2)

=

To be more clear about the Lorentz and color indices used in
Eq. (A1), one can refer to Fig. 3.
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where the two structure constants f*>2/9h and f¢-3"¢f come from the left and right vertex, respectively, the sum over color
indices e, f, g and & can be carried out. In terms of the retarded/advanced and symmetric bare propagators, Eq. (A1) can be

expressed as

()ahcd l ) d‘K
M0 =7 3 [ Gilor@

colors

Q. Q")Dg(K) + D4(Q)Dr(K

, Qef)]fab,fe,ghfcd,hg,efﬁl(lp (P, Q, K), (A3)

where the Lorentz structure is fully contained in E,(,lb)(P, 0, K). Since it has nothing to do with the background field, a

straightforward calculation gives that

£Y)(P.0.K) =
X K_P + Q)o-’gup’ +
=[(P+K)

Turning to the ghost-loop diagram [see Fig. 2(c)], the
corresponding calculation is very similar to the above. It is
easy to show the following:

0= [ im0 0

colors

+ D4(Q)Dr (K, Qef)]
% fab,fe,gthd,hgvefZKﬂ QU. (AS)

In order to get a final result as given by Eq. (35), we need to
rewrite the above equation with a more symmetric form. By
changing the variables Q - —K’ and K — —Q’, we can
show that

d4

O Lt o0
—/(27[) DF(=K' Q"D (~0)

+ DA(=K)Dp(~Q', Q) QK,
_ d4K/ ! hg !
= [ G lor(E.@D,(@)

+ DR(K)DH(Q Q) QKL

Dg(K) + D4 (Q)Dr(K. Q) |K,0,

H( )abcd(P Q) —

Ripv

FIG. 3. Gluon-loop diagram contributing to the one-loop gluon
self-energy.

[(P + K)pg;m + (_K - Q)Mgpo' +

(Q - P)agpy]g(mJ

(_Q - K)bgp’a’ + (K + P)p’ga’y]gpp,
+ (P - Q)z]g;w + 10K/4Ku

-5(K,P,+K,P,)—2P,P,. (A4)

where we changed d*Q’ into d*K’ because K’ = P + Q.
In addition, under the sign change of the momentum in
the symmetric propagator, the flip of the color indices in the
last line in Eq. (A6) is due to the definition of the
distribution function as given by Eq. (8). By realizing
the fact that the product of the two structure constants in
Eq. (AS5) is invariant under the interchanges of color
indices, h <> e and g <> f, it can be shown that

My (P, Q) = / K (0. 2")D4(K)
color%
+Da(Q)D F(K Q)]
X fab.fe.ghfcd,hg.efﬁl(lzy) (P, Q, K), (A7)

where

£ (P, 0.K) = —(2K,0, +20,K,)/2

= -2K,K, +P,K, +K,P,. (A8)

Finally, we consider the tadpole diagram [see Fig. 2(d)]
which can be expressed as

/ d* K
colors

% (fab,ef,ljfcd,/l,fe

ngﬂide(P Q

K, Q)
_ fab,fe.ijfcd,ef,ji)gﬂ
(A9)

Notice that one of the three terms in the four-gluon vertex
(see the Feynman rules in Fig. 1) vanishes because
S flelghpelah — 0 where the projection operator
comes from the gluon propagator. Clearly, the above
equation needs to be rewritten in a form analogous to
the corresponding results from the other two Feynman
diagrams. To do so, we first express Eq. (A9) in the
following form:
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ng;;de(P Q

F(0, Q)

/ a* K
colors

-+DF<,anfMV&wﬂ%ﬁd@w.<A1m

To get the above equation, the color indices e and f in
Dp(K, Q¢F) fabelij fedjife in Eq. (A9) have been inter-
changed, and the resulting D (K, Q/¢) is then replaced by
Dy(0Q,Q'¢) which is valid under the integral [ d*K.
Furthermore, for the contribution associated with
Dp(Q, Q7¢), we can insert a term —iDg(K)(K? + Q?)
into Eq. (A10) because such an inserted term is effectively
“1” under the integral thanks to the delta function in the
propagator. Similarly, a term —iD,(Q)(K? + Q?) can be
also inserted into the above equation for the contribution
associated with Dy (K, Q%/). Consequently, we arrive at

ao,ca d4K
(P, Q) = / Q- 2PulK)
colors
+ DA(Q)Dr(K, Q)]
x fabfeghpedhgef £3)(p 0 K), (All)

with £5) (P, 0,K) = =3(K? + 0%)g,.-
Summing up the above results, the total contribution from
the pure gauge part to the retarded gluon self-energy reads

ab,cd l 2 d4K
HR/w (P’Q) Z DF Q Q )DR( )
colors
+ DA(Q)DF(K’ Qef)]
% fab,fe,ghfcd,hgffﬁﬂb(P’ 0, K), (AlZ)
where
£,,(P.Q.K) = L) (P.Q.K) + L1} (P, 0.K)
+LY(P,Q.K)
~8K,K,—4K,P,—4P,K,—40-Kg,,.
(A13)

Here, we drop terms ~P,P, which give contributions
beyond NLO in the HTL approximation. At this point, it
is clear to see Eq. (A12) is identical to Eq. (35).

Given the above calculations, the corresponding contribu-
tions to the symmetric gluon self-energy from Figs. 2(b)-2(d)
can be obtained straightforwardly. Notice that the tadpole
diagram does not contribute to H‘}'fl;jd(P, Q). However, in
order to show its similarity with Eq. (A11), we can write such
a zero result as

fﬁ”PQJZZ/fK #(Q.Q")Dp(K.QY)
colors
— (Dr(K) = D4(K))
X (Dr(Q) =DA(Q))]f01 e sk fedhoel(-3)
X (K*+ 0%) g, (A14)

The above equation vanishes due to a product of delta
functions §(K?)5(Q?) from the propagators. As a result,
the symmetric gluon self-energy H;f);f “d(p,Q)withi=1,2,

3 can be simply obtained from the retarded solutions

H%;):f’“i(P, Q) as given in Egs. (A3), (A7), and (Al1) by

the following replacement:

Dp(Q. Q" )Dg(K) + D4 (Q)Dr(K, Q)
— Dp(Q, Q")Dp(K, Q) — (Dr(K)
— DA(K))(Dr(Q) — Da(Q))-
Thus, up to NLO in the HTL approximation, the three

diagrams in the pure gauge part lead to the following
contributions to the symmetric gluon self-energy

(A15)

HanMid< 0) =i gzef% fab.fe.gh ped.hgef / (‘;;I;
X (ZKﬂKD -P,K,-K,P,—9,0- K)
x [Dp(Q, Q")Dp(K, Q) — (Dg(K)
— D4(K))(Dr(Q) — D4(Q))]. (A16)

As we can see, the above equation is analogous to the quark-

loop contribution to IT§7,¢* (P, Q) which is given by Eq. (47).

APPENDIX B: REORGANIZATION OF THE
LO SYMMETRIC GLUON SELF-ENERGY

As shown in Egs. (46) and (58), both the NLO Il 4 and
the LO Il can reproduce the correct limit at Q = 0. For
nonzero background field, however, they get different
modifications on the Debye mass. In fact, such a background
field modification originates from the integral over k where
the integrand of the retarded solution consists of a sum of
two distribution functions, see Eq. (32). On the other hand,
according to Eq. (51), the corresponding integral in the
symmetric solution involves a more complicated combina-
tion of the distribution functions. In order to show more
similarities between the two, it appears to be interesting to
artificially introduce a term to the LO symmetric gluon self-
energy which vanishes at Q =0, and thus gives the
anomalous contribution. Subtracting it from Eq. (57), we
can define the so-called normal contribution.

Taking the fermionic part [Eq. (51)] as an example,
explicitly, we can write
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2

s, (P, Q) = -

N6 [ R () = 75 ()7 + (72 (6) = 7 6 A (P)

= i () 5 ot G (o o (), (B1)
and
mer (P, Q) = if: 27;) kdk{é“”é“’% [ﬁi(k) + 7% (k) + 1S (k) + a< (k) — % zg:(fzi(k) + in(k))]
20995 (6)+ 7 6)+ 75 6) + 700 [ (P)
= 0 o P ) = 590 () ) (82)

The above anomalous contribution shares some similar-
ities with g}, (P, Q) as given in Eq. (41). They both come
from the LO terms in the HTL approximation and contain
only the off-diagonal components. In addition, the anoma-
lous contribution vanishes when @ = 0 or q = q° because
a difference between two distribution functions appears in
the integrand in Eq. (B1). Similar as before, to avoid an

oo - 0” ambiguity in our analytical result, q* = q“ should
be understood as Q¢ — q° = ¢. Then the second line in
Eq. (B1) equals zero as expected. However, different from
Eq. (41), such an artificially introduced anomalous con-
tribution is orthogonal to P* and does not satisfy a similar
relation as given by Eq. (43).

Although it is trivial to show that the sum of Egs. (B1)
and (B2) is identical to Eq. (53), the motivation for
separating Eq. (51) into the above two parts becomes clear
when we look at the normal contributions. According to
Egs. (42) and (B2), the background field modification on
m]% which involves only B,(x) is exactly the same for both

the retarded/advanced and symmetric gluon self-energies.
Consequently, the Q-dependent mass squared as defined in
Eq. (44) is universal to describe the background field
modification on the normal contributions in all the three
independent real-time gluon self-energies. Furthermore, it
also turns out to be meaningful when we include non-
perturbative contributions in the gluon self-energy which

however, is beyond the scope of current work and we only
provide a very preliminary discussion at the end of Sec. VI.
A similar consideration also applies to the pure gauge
part and the corresponding anomalous and normal con-
tributions are given by the following equations:

T .
15, (. Q) = 17 w3 7{ ()

_ %cot(ﬂq“c)gg(q“, qf)} A, (P),  (B3)

T
M5, (P.Q) = i~ (.

m; |:5ab50d %]:(2
- ) [An(P). (B

Finally, we can also express the normal contributions of
the LO symmetric gluon self-energy as

mer, (P, Q) = —i% (M2)eb<d(Q)A,, (P).  (BS)

where (M?3)<d(Q) has been already defined in Eq. (44).
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