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In the real-time formalism of the finite-temperature field theory, we compute the one-loop gluon self-
energy in a semiquark-gluon plasma (QGP) where a background fieldQ has been introduced for the vector
potential, leading to a nontrivial expectation value for the Polyakov loop in the deconfined phase. Explicit
results of the gluon self-energies up to the next-to-leading order in the hard-thermal-loop approximation are
obtained. We find that for the retarded/advanced gluon self-energy, the corresponding contributions at next-
to-leading order are formally analogous to the well-known result at Q ¼ 0 where the background field
modification on the Debye mass is entirely encoded in the second Bernoulli polynomials. The same feature
is shared by the leading order contributions in the symmetric gluon self-energy where the background field
modification becomes more complicated, including both trigonometric functions and the Bernoulli
polynomials. These contributions are nonvanishing and reproduce the correct limit as Q → 0. In addition,
the leading order contributions to the retarded/advanced gluon self-energy and the next-to-leading order
contributions to the symmetric gluon self-energy are completely new as they only survive at Q ≠ 0.
Given the above results, we explicitly verify that the Kubo-Martin-Schwinger condition can be satisfied in a
semi-QGP with a nonzero background field.

DOI: 10.1103/PhysRevD.106.054033

I. INTRODUCTION

The nature of the quark-gluon plasma (QGP), a primor-
dial state of matter generated in ultrarelativistic heavy-ion
experiments has been systematically studied over the last
decades. Understanding the deconfining phase transition
from the normal hadronic matter to the QGP is one of the
most important goals in high-energy nuclear physics. Near
the critical temperature Tc, a tough challenge to achieve
such a goal emerges because of the failure of the perturba-
tion theory based on weak coupling expansion [1–3]. In a
region from Tc to ∼4Tc, numerical simulations on the
lattice provide a powerful tool to study the nonperturbative
physics in the partially deconfined system which is termed
a semi-QGP [4]. Although the wealth of information on the
thermodynamics in equilibrium has been obtained from
lattice QCD [5–9], due to the well-known sign problem,
exploring the equation of state at very large baryon
chemical potential remains to be solved.
An alternative solution is to develop effective theories to

investigate the properties of the strongly interacting matter.

As shown in lattice simulations for pure SUðNÞ gauge
theories, a significant increase of the order parameter for
deconfinement was observed in the semi-QGP region
where the Polyakov loop is nonzero but less than unity
[10–12]. Such a notable feature can be described by
considering a classical background field Acl

0 for the vector
potential which is a diagonal matrix in the color space,
ðAcl

0 Þab ¼ δabQa=g with the matrix elements satisfyingP
N
a¼1Q

a ¼ 0 for SUðNÞ gauge group. Accordingly, the
effective potential or free energy can be computed pertur-
batively by using a constrained path integral [13–20]. The
resulting effective potential attains at the minimum at
vanishing background field, indicating a deconfining phase
at all temperatures. To drive the system to confinement,
nonperturbative contributions have been introduced in the
matrix models that generate a complete repulsion of
eigenvalues of the thermal Wilson line. In recent years,
much attention has been paid to the developments of the
matrix models which have already had great success in
studying the QCD phase transition [21–26].
In the meanwhile, many phenomenological applications

have been considered in the semi-QGP where the focus was
put on the influence of the background field on the
corresponding physical quantities such as transport coef-
ficients and electromagnetic probes, see Refs. [27–32] for
examples. In this work, we concentrate on the real-time
gluon self-energy in the presence of a background field.
Being crucial in many processes involving soft momentum
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exchange, the gluon self-energy has been extensively
studied in previous works where a widely used calcula-
tional technique is the so-called Hard-Thermal-Loop (HTL)
approximation [33]. Besides the HTL gluon self-energies in
equilibrium [34], the investigation on the viscous correc-
tions shows the existence of unstable modes of the plasma
due to a rapid exponential growth of the soft gluon fields
[35–37]. In addition, the HTL gluon self-energy in a semi-
QGP has been computed in the imaginary time formalism
[38]. The most surprising outcome is that there is an
anomalous contribution ∼T3 appearing in the gluon self-
energy that vanishes at zero background field.
In the real-time formalism, the gluon self-energy

becomes a 2 × 2 matrix. The four components are not
independent, therefore, it is more useful to write the gluon
self-energy in terms of the three independent components
in Keldysh representation [39], namely,

ΠR¼Π11þΠ12; ΠA¼Π11þΠ21; ΠF¼Π11þΠ22: ð1Þ

In the absence of the background field, by analytically
continuing the result in imaginary time, one can easily get
the retarded and advanced gluon self-energies as denoted by
ΠR andΠA, respectively. Furthermore, the symmetric gluon
self-energy ΠF in an equilibrium QGP can be obtained via
the Kubo-Martin-Schwinger (KMS) condition [40,41]

ΠFðPÞ ¼ ð1þ 2nðp0ÞÞsgnðp0ÞðΠRðPÞ − ΠAðPÞÞ; ð2Þ

wherenðp0Þ is theBose-Einstein distribution function.When
a nonzero background field is considered, a Q-dependent
modification on the distribution function needs to be taken
into account. Furthermore, besides the normal∼T2 terms, the
aforementioned anomalous contribution ∼T3 remains in the
retarded/advanced gluon self-energy after analytical continu-
ation. As a result, one cannot expect a trivial extension of
Eq. (2) from Q ¼ 0 to Q ≠ 0. Therefore, the computation
of the real-time gluon self-energies as well as the verification
of the KMS condition in a semi-QGP with a nonzero
background fieldwill be themain concern in the currentwork.
The rest of the paper is organized as follows. In Sec. II, we

briefly review the double line basis as commonly used when
computing in a background field and summarize the
corresponding Feynman rules in the real-time formalism.
In Sec. III, we compute the one-loop retarded/advanced
gluon self-energy in a semi-QGP up to the next-to-leading
order (NLO) in the HTL approximation and discuss the Q
modifications on the Debye screening mass. The same
analysis on the symmetric gluon self-energy is carried out
in Sec. IV. With the obtained results, in Sec. V we explicitly
verify that theKMScondition can be satisfied order by order
by the HTL approximated gluon self-energies in a semi-
QGP where Q ≠ 0. Conclusions and outlook are given in
Sec. VI. In addition, some details of the calculation of the
contributions from the pure gauge part can be found in

AppendixA.A reorganization of the LOcontributions of the
symmetric gluon self-energy is discussed in Appendix B.

II. THE FEYNMAN RULES IN THE
DOUBLE LINE BASIS

For completeness, we briefly review the double line basis
[38,42] which is defined by the generators of the funda-
mental representation,

ðtabÞcd ¼
1ffiffiffi
2

p Pab
cd; ð3Þ

where the projection operator is given by

Pab
cd ¼ Pab;dc ¼ Pba;cd ¼ δacδ

b
d −

1

N
δabδcd: ð4Þ

The normalization of generators reads

trðtabtcdÞ ¼ 1

2
Pab;cd: ð5Þ

For SUðNÞ gauge theories, the color indices a, b, c and d
run from 1 to N. There are N2 − N off-diagonal generators
tab with a ≠ b which are the ladder operators of the Cartan
basis. They are orthogonal to each other and normalized as
trðtabtbaÞ ¼ 1=2 with fixed a and b. The N diagonal
generators are not independent, satisfying

P
N
a¼1 t

aa ¼ 0

and the normalization becomes trðtaatbbÞ ¼ ðδab − 1=NÞ=2
where no summation over a and b applies.
The great advantage of computation in the over-complete

double line basis is that the classical covariant derivative
Dcl

μ acting upon the fields has a very simple form in
momentum space. In the fundamental representation,
Dcl

μ ¼ ∂μ − igAcl
μ with Acl

μ ¼ Acl
0 δμ0. When this covariant

derivative acts upon a quark field, we have Dcl
0 ψa →

−iðp0 þQaÞψa. Similarly, in the adjoint representation,
Dcl

μ ¼ ∂μ − ig½Acl
μ ; � � ��. Acting upon a bosonic field, it gives

Dcl
0 t

ab → −iðp0 þQa −QbÞtab. In any case, there is only a
constant and color-dependent shift in the energies.
Given the QCD Lagrangian LQCD, we expand the gauge

fields around some fixed classical values as Aμ ¼ Acl
μ þ Bμ

where Bμ corresponds to the quantum fluctuation. With the
standard procedure, the corresponding Feynman rules in
the double line basis can be derived. For example, the
inverse bare gluon propagator in momentum space reads

δS
δBba

μ ðPÞδBdc
ν ð−PÞ¼

�
ðPabÞ2δμν−

�
1−

1

ξ

�
Pab
μ Pab

ν

�
Pab;cd;

ð6Þ

where the action S ¼ R
d4xLQCD and ξ is the gauge

fixing parameter. The Q-dependent momentum Pab is
given by Pab ¼ ðp0 þQa −Qb;pÞ. Notice that due to
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the over-completeness of the basis, upon inversion, the
explicit form of the diagonal components of the gluon
propagator cannot be uniquely determined. However, such
an ambiguity is absent in the calculation of the gluon self-
energy after performing the sum over the color indices [43].
The complete Feynman rules in the imaginary time

formalism can be found in Ref. [38]. On the other hand,
to compute in the real-time formalism, one has to double
the field degrees of freedom so that the propagators become
a 2 × 2 matrix. In order to get the Feynman rules in the
presence of the background field, we follow Refs. [27,44]

and take the background field only for the part in imaginary
time (not in real time) along a complex time path [34]. As a
result, the corresponding Feynman rules become very
simple because the background field acting as an imaginary
chemical potential only affects the statistical distributions
of the thermal partons.
Let us denote the bare gluon propagator as

Gab;cd
μν ðK;QabÞ ¼ −gμνPab;cdDðK;QabÞ with no summa-

tion over a or b andQab ≡Qa −Qb. Here, DðK;QabÞ is a
2 × 2 matrix which reads

DðK;QabÞ ¼
� i

K2þiϵ 0

0 −i
K2−iϵ

�
þ 2πδðK2Þ

�
nðk0;QabÞ nðk0;QabÞ þ θð−k0Þ

nðk0;QabÞ þ θðk0Þ nðk0;QabÞ

�
; ð7Þ

where θðk0Þ is the Heaviside step function and the Q-dependent distribution function is defined as

nðk0;QabÞ ¼
( 1

eðjk0 j−iQabÞ=T−1
≡ nabþ ðk0Þ for k0 > 0

1

eðjk0 jþiQabÞ=T−1
≡ nab− ðk0Þ for k0 < 0

: ð8Þ

In the Keldysh representation, the retarded, advanced and symmetric propagator can be obtained as the following:

DR=AðKÞ ¼ D11ðK;QabÞ −D12ðK;QabÞ ¼ i
K2 � i sgnðk0Þϵ

;

DFðK;QabÞ ¼ D11ðK;QabÞ þD22ðK;QabÞ ¼ 2πð1þ 2nðk0;QabÞÞδðK2Þ: ð9Þ

Here, þ and − correspond to the retarded and advanced
propagators, respectively and sgnðk0Þ is the sign function.
As we can see, the nonzero background field alters only the
symmetric propagator.

The bare quark propagator can be obtained in a similar
way which we denote as G̃abðK;QaÞ ¼ =KδabD̃ðK;QaÞ
with no summation over a. The matrix elements of
D̃ðK;QaÞ read

D̃ðK;QaÞ ¼
� i

K2þiϵ 0

0 −i
K2−iϵ

�
þ 2πδðK2Þ

�
ñðk0;QaÞ ñðk0;QaÞ þ θð−k0Þ

ñðk0;QaÞ þ θðk0Þ ñðk0;QaÞ

�
; ð10Þ

where the fermionic distribution function is given by

ñðk0;QaÞ ¼
� 1

eðjk0 j−iQaÞ=Tþ1
≡ ñaþðk0Þ for k0 > 0

1
eðjk0 jþiQaÞ=Tþ1

≡ ña−ðk0Þ for k0 < 0
: ð11Þ

Accordingly, the three independent components in the
Keldysh representation take the following forms:

D̃R=AðKÞ ¼ D̃11ðK;QaÞ − D̃12ðK;QaÞ

¼ i
K2 � i sgnðk0Þϵ

;

D̃FðK;QaÞ ¼ D̃11ðK;QaÞ − D̃12ðK;QaÞ
¼ 2πð1 − 2ñðk0;QaÞÞδðK2Þ: ð12Þ

In addition, the ghost propagator can be obtained from
the gluon propagator by dropping the metric tensor −gμν.
The Feynman rules for various vertices are listed in Fig. 1.
For later use, we also define the periodic Bernoulli
polynomials,

B2lðxÞ ¼
X∞
n¼1

ð−1Þl−1 2ð2lÞ!
ð2πnÞ2l cosð2πxnÞ; ð13Þ

which satisfy

2lB2l−1ðxÞ ¼
d
dx

B2lðxÞ: ð14Þ

It is easy to show that the above defined Bernoulli
polynomials are periodic functions of x, with period 1.
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For 0 ≤ x ≤ 1, the second and third Bernoulli polynomials
which are relevant in this work read

B2ðxÞ ¼ x2 − xþ 1

6
; B3ðxÞ ¼ x3 −

3

2
x2 þ 1

2
x: ð15Þ

For arbitrary values of x, the argument of the above
Bernoulli polynomials should be understood as x − ½x�
with [x] the largest integer less than x, which is nothing but
the modulo function.
In the following, we compute the real-time gluon self-

energies at one-loop order where four Feynman diagrams
as shown in Fig. 2 contribute.1 We are interested in the
physical “11” component of the gluon self-energy which
can be written as Π11 ¼ ðΠR þ ΠA þ ΠFÞ=2. For conven-
ience, the calculation of the retarded/advanced and sym-
metric gluon self-energies will be carried out separately.

III. THE RETARDED/ADVANCED GLUON SELF-
ENERGY IN A SEMI-QUARK-GLUON PLASMA

We start by considering the quark-loop diagram for the
retarded gluon self-energy. Using the Feynman rules as
provided in Sec. II, we can show

Πab;cd
R;μν ðP;QÞ¼Πab;cd

11;μν ðP;QÞþΠab;cd
12;μν ðP;QÞ

¼ ig2Nf

X
ef

ðtabÞefðtcdÞfe
Z

d4K
ð2πÞ4Tr½γμ=Qγν=K�

× ½D̃11ðQ;QfÞD̃11ðK;QeÞ
−D̃21ðQ;QfÞD̃12ðK;QeÞ�: ð16Þ

In the above equation, K ¼ PþQ and an overall factor
(−1) coming from the fermion loop has been included. In
addition, the minus sign in the square bracket appears due
to the type-2 field. Performing the trace over the γ-matrices
and expressing the bare propagators in terms of the three

(a) (b) (c) (d)

FIG. 2. Feynman diagrams contributing to the one-loop gluon self-energy.

(a)

(c)

(d)

(b)

FIG. 1. Feynman rules for vertices in the double line notation where the structure constant is given by fab;cd;ef ¼
iffiffi
2

p ðδadδadδad − δadδadδadÞ.

1Although we adopt the double line notation in this work, for
simplicity, the Feynman diagrams are drawn in the usual manner,
i.e., the gluon and ghost lines are not doubled.
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independent components in the Keldysh representation,
we arrive at

Πab;cd
R;μν ðP;QÞ¼ ig2Nf

X
ef

Pab;fePcd;ef

×
Z

d4K
ð2πÞ4 ð2KμKν−PμKν−KμPν−gμνQ ·KÞ

× ½D̃FðK;QeÞD̃AðQÞþD̃RðKÞD̃FðQ;QfÞ�:
ð17Þ

Notice that terms proportional to D̃RðKÞD̃RðQÞ or
D̃AðKÞD̃AðQÞ are independent of the background field
and dropped in the above equation because their contri-
butions vanish after integrating over k0.
Furthermore, for vanishing background field, the two

terms, ∼D̃FðKÞD̃AðQÞ and ∼D̃RðKÞD̃FðQÞ, contribute
equally to the retarded gluon self-energy. Although this
is no longer true in the semi-QGP, there exists a simple
relation between the two terms as given by the following
equation:

Z
d4K
ð2πÞ4 ð2KμKν − PμKν − KμPν − gμνQ · KÞD̃RðKÞD̃FðQ;QfÞ

¼
Z

d4Q
ð2πÞ4 ½2QμQν þ PμQν þQμPν − gμνQ · ðPþQÞ�D̃RðPþQÞD̃FðQ;QfÞ

¼
Z

d4K
ð2πÞ4 ½2KμKν − PμKν − KμPν − gμνK · ðK − PÞ�D̃RðP − KÞD̃Fð−K;QfÞ

¼
Z

d4K
ð2πÞ4 ½2KμKν − PμKν − KμPν − gμνK · ðK − PÞ�D̃AðK − PÞD̃FðK;−QfÞ: ð18Þ

In the third line of the above equation, the variableQ is changed into−K. In addition, we have used D̃RðP − KÞ ¼ D̃AðK − PÞ
and replaced D̃Fð−K;QfÞ with D̃FðK;−QfÞ which is valid under the integration

R
dk0 with the delta function δðK2Þ.

To proceed further, we should make use of the HTL approximation. Taking the spatial components as an example, we
will encounter the following integral:

i
Z

d4K
ð2πÞ4 ½2kikj − pikj − kipj − gijðK − PÞ · K�D̃FðK;QeÞD̃AðQÞ

¼
Z

d3k
ð2πÞ3

1

k

�
½2kikj − pikj − kipj þ gijðp0k − k · pÞ� ñeþðkÞ

−2p0kþ 2k · pþ P2 − iϵ

þ ½2kikj − pikj − kipj þ gijð−p0k − k · pÞ� ñe−ðkÞ
2p0kþ 2k · pþ P2 þ iϵ

�
: ð19Þ

Changing the integral variable k → −k, the leading order
(LO) contribution can be written as the following compact
form

Z
d3k
ð2πÞ3

1

k

2kikj
−2p0kþ2k ·p− iϵ

ðñeþðkÞ− ñe−ðkÞÞ

¼ 1

p0

Z
dk
2π2

k2ðñeþðkÞ− ñe−ðkÞÞ
Z

dΩ
4π

p0

k̂ik̂j
−p0þ k̂ ·p− iϵ

;

ð20Þ

where k̂ is defined as k=k. We should mention that the LO
contribution vanishes in the limit of zero background field
because the two distribution functions ñeþðkÞ and ñe−ðkÞ
become identical. In semi-QGP with a nonvanishing back-
ground field, integrating over k leads to a contribution
∼iT3B3ðq̃eÞ=p0 where the third Bernoulli polynomial
B3ðxÞ is given by Eq. (15). Here, we also define the
dimensionless background field q ¼ Q=ð2πTÞ and
q̃e ¼ qe þ 1=2 ¼ Qe=ð2πTÞ þ 1=2.
The NLO contribution can be obtained as the

following:
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Z
d3k
ð2πÞ3

ñeþðkÞ þ ñe−ðkÞ
k

�
−pikj − pjki þ gijðp0k − k · pÞ

−2p0kþ 2k · p − iϵ
−

2kikjP2

ð−2p0kþ 2k · p − iϵÞ2
�

¼
Z

d3k
ð2πÞ3

1

2
ðñeþðkÞ þ ñe−ðkÞÞ

�
pl∂

�
−k̂ik̂j

−p0 þ k̂ · p − iϵ

�
=∂kl þ

∂k̂i
∂kj

�

¼
Z

dk
4π2

k2
∂ðñeþðkÞ þ ñe−ðkÞÞ

∂k

Z
dΩ
4π

p0

k̂ik̂j
−p0 þ k̂ · p − iϵ

¼ −
Z

dk
2π2

kðñeþðkÞ þ ñe−ðkÞÞ
Z

dΩ
4π

p0

k̂ik̂j
−p0 þ k̂ · p − iϵ

; ð21Þ

where we have integrated by part to get the final expression.
Technically, the above calculation does not involve anything
new as compared to the vanishing background case. After
integrating over k, we find that instead of a contribution∼T2

at vanishing background field, when Q ≠ 0, the above
equation gives rise to a contribution ∼T2B2ðq̃eÞ where
modifications due to the nonzero background field are
entirely encoded in the second Bernoulli polynomial B2ðxÞ.
The other Lorentz components can be computed in a

similar way and the result up to NLO reads

i
Z

d4K
ð2πÞ4 ½2KμKν − PμKν − KμPν

− gμνðK − PÞ · K�D̃FðK;QeÞD̃AðQÞ

¼ −
1

p0

Z
dk
2π2

k2ðñeþðkÞ − ñe−ðkÞÞΓð1Þ
μν ðPÞ

−
Z

dk
2π2

kðñeþðkÞ þ ñe−ðkÞÞΓð2Þ
μν ðPÞ; ð22Þ

where the integral over the solid angle leads to the
following dimensionless functions

Γð1Þ
μν ðPÞ ¼

Z
dΩ
4π

p0

K̂μK̂ν

P · K̂ þ iϵ
;

Γð2Þ
μν ðPÞ ¼

Z
dΩ
4π

�
MμMν − p0

K̂μK̂ν

P · K̂ þ iϵ

�
; ð23Þ

where K̂μ ¼ ð1;−k̂Þ and Mμ is the heat-bath vector, which
in the local rest frame is given by Mμ ¼ ð1; 0; 0; 0Þ. These
two functions have nothing to do with the background field
and satisfy

Γð1Þ
μν ðPÞ ¼ MμMν − Γð2Þ

μν ðPÞ: ð24Þ

In terms of the mutually orthogonal projection operators

AμνðPÞ and BμνðPÞ, one can express Γð2Þ
μν ðPÞ as

Γð2Þ
μν ðPÞ ¼ ΠTðPÞAμνðPÞ þ ΠLðPÞBμνðPÞ; ð25Þ

where longitudinal and transverse structure functions are
given by

ΠTðPÞ ¼
p2
0

2p2

�
p2
0 − p2

2p0p
ln
p0 þ pþ iϵ
p0 − pþ iϵ

− 1

�
;

ΠLðPÞ ¼
p2
0

p2

�
1 −

p0

2p
ln
p0 þ pþ iϵ
p0 − pþ iϵ

�
; ð26Þ

and the two projection operators read

AμνðPÞ ¼ −gμν þ
PμPν

P2
þ M̃μM̃ν

M̃2
;

BμνðPÞ ¼ −
P2

ðM · PÞ2
M̃μM̃ν

M̃2
: ð27Þ

In the above equation, M̃μ is orthogonal to Pμ which is
defined as

M̃μ ¼ Mμ −
M · P
P2

Pμ: ð28Þ

According to Eq. (18), the other contribution in the
retarded gluon self-energy can be obtained by changingQe

into −Qf in Eq. (22). Then, we arrive at

Πab;cd
R;μν ðP;QÞ ¼ −g2Nf

X
ef

�
1

p0

Z
dk
2π2

k2½ðñeþðkÞ − ñe−ðkÞÞ

− ðñfþðkÞ − ñf−ðkÞÞ�Γð1Þ
μν ðPÞ

þ
Z

dk
2π2

k½ðñeþðkÞ þ ñe−ðkÞÞ

þ ðñfþðkÞ þ ñf−ðkÞÞ�Γð2Þ
μν ðPÞ

�
Pab;fePcd;ef:

ð29Þ

At Q ¼ 0, the gluon self-energy is simply proportional
to an identity matrix in the color space.2 Switching on the
background field, on the other hand, the color structure
becomes nontrivial as indicated by the following equation:

2When the standard choice for the generators of a gauge group
is adopted, the identity matrix is δAB where A and B refer to
adjoint indices running from 1 to N2 − 1 for SUðNÞ. With the
double line notation, the identity matrix is given by Pab;cd.
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X
ef

Pab
efP

cd
fe ¼

�
δaeδbf −

1

N
δabδef

��
δcfδde −

1

N
δcdδef

�

¼ δadδbcje¼a;f¼c −
1

N
δabδcd

			
e¼f¼a

−
1

N
δabδcd

			
e¼f¼c

þ 1

N2
δabδcd

X
e

			
f¼e

: ð30Þ

For the off-diagonal components ∼δadδbc, the color indices e and f in the Bernoulli polynomials in Eq. (29) are replaced by
a and c, respectively. On the other hand, by requiring e ¼ f, there are no diagonal components ∼δabδcd existing in the LO
contribution. Explicitly, the retarded gluon self-energy takes the following form:

Πab;cd
R;μν

			
LO
ðP;QÞ ¼ −

g2

2π2p0

Nfδ
adδbc

Z
k2dk½ðñaþðkÞ − ña−ðkÞÞ − ðñcþðkÞ − ñc−ðkÞÞ�Γð1Þ

μν ðPÞ

¼ i
T
p0

Nf

6
g2T2δadδbcGfðqa; qcÞΓð1Þ

μν ðPÞ; ð31Þ

at LO in the HTL approximation and the corresponding result at NLO is given by

Πab;cd
R;μν

				
NLO

ðP;QÞ ¼ g2

2π2
Nf

Z
kdk

�
δabδcd

2

N

�
ðñaþðkÞ þ ña−ðkÞÞ þ ðñcþðkÞ þ ñc−ðkÞÞ −

1

N

X
e

ðñeþðkÞ þ ñe−ðkÞÞ
�

− δadδbc½ðñaþðkÞ þ ña−ðkÞÞ þ ðñcþðkÞ þ ñc−ðkÞÞ�
�
Γð2Þ
μν ðPÞ

¼ Nf

6
g2T2

�
δabδcd

1

N
F ð2Þ

f ðqa;qcÞ − δadδbcF ð1Þ
f ðqa; qcÞ

�
Γð2Þ
μν : ð32Þ

In the above equations, we have used the following
fermionic integrals:

Z
kdkðñaþðkÞ þ ña−ðkÞÞ ¼ −2π2T2B2ðq̃aÞ;Z
k2dkðñaþðkÞ − ña−ðkÞÞ ¼ −i

8π3T3

3
B3ðq̃aÞ; ð33Þ

and the Q-dependent functions are defined by

Gfðqa;qcÞ¼ 8πðB3ðq̃aÞ−B3ðq̃cÞÞ;
F ð1Þ

f ðqa;qcÞ¼−6ðB2ðq̃aÞþB2ðq̃cÞÞ;

F ð2Þ
f ðqa;qcÞ¼ 12

N

X
e

B2ðq̃eÞ−12ðB2ðq̃aÞþB2ðq̃cÞÞ: ð34Þ

The three Feynman diagrams from the pure gauge part in
Fig. 2 lead to the following contribution, which takes a
form analogous to Eq. (17),3

Πab;cd
R;μν ðP;QÞ¼ ig2

X
efgh

fab;fe;ghfcd;hg;ef

×
Z

d4K
ð2πÞ4ð2KμKν−PμKν−KμPν−gμνQ ·KÞ

× ½DFðK;QefÞDAðQÞþDRðKÞDFðQ;QghÞ�:
ð35Þ

As compared to Eq. (17), the only nontrivial difference lies in
the color structures. In addition, following the same analysis
as given in Eq. (18), it can be shown that the two terms in the
square bracket give a similar contribution to the retarded
gluon self-energy, in other words,DRðKÞDFðQ;QghÞ can be
replaced by DFðK;QhgÞDAðQÞ in the above equation.
Summing over the color indices in Eq. (35), we obtain

X
efgh

fab;fe;ghfcd;hg;ef ¼ −
1

2
ðδaeδfhδbg − δahδbfδegÞ

× ðδcgδhfδde − δcfδdhδgeÞ

¼ 1

2

�
δabδcdjef¼ac

gh¼ac
þ δabδcdjef¼ca

gh¼ca

− δadδbc
X
e

			
f¼c
gh¼ea

− δadδbc
X
f

			
e¼a

gh¼cf

�
:

ð36Þ
3Some details of the calculation in the double line basis can be

found in Appendix A.

REAL-TIME HARD-THERMAL-LOOP GLUON SELF-ENERGY IN … PHYS. REV. D 106, 054033 (2022)

054033-7



The integral over the hard momentum K in Eq. (35) can be
carried out with the same procedures as used in the
calculation of the quark-loop diagram. Therefore, it is
straightforward to obtain the contributions from the pure
gauge part which are given by

Πab;cd
R;μν

				
LO
ðP;QÞ ¼ −i

T
p0

N
3
g2T2δadδbcGgðqa; qcÞΓð1Þ

μν ðPÞ;

ð37Þ
at LO, while the NLO result reads

Πab;cd
R;μν

				
NLO

ðP;QÞ ¼ N
3
g2T2

�
δabδcd

1

N
F ð2Þ

g ðqa; qcÞ

− δadδbcF ð1Þ
g ðqa; qcÞ

�
Γð2Þ
μν ðPÞ: ð38Þ

Here, qac¼qa−qc¼ðQa−QcÞ=ð2πTÞ and the following
bosonic integrals are used,Z

kdkðnacþ ðkÞ þ nac− ðkÞÞ ¼ 2π2T2B2ðqacÞ;Z
k2dkðnacþ ðkÞ − nac− ðkÞÞ ¼ i

8π3T3

3
B3ðqacÞ: ð39Þ

Similar as before, we also define the Q-dependent func-
tions for the pure gauge part,

Ggðqa; qcÞ ¼
4π

N

X
e

ðB3ðqaeÞ þ B3ðqecÞÞ;

F ð1Þ
g ðqa; qcÞ ¼ 3

N

X
e

ðB2ðqaeÞ þ B2ðqecÞÞ;

F ð2Þ
g ðqa; qcÞ ¼ 6B2ðqacÞ: ð40Þ

Summing up the above results, the final expression
for the retarded gluon self-energy Πab;cd

R;μν ðP;QÞ can be
obtained as

Πab;cd
R;μν

			
LO
ðP;QÞ ¼ Πano

R;μνðP;QÞ

¼ i
T
p0

δadδbc½m2
fGfðqa; qcÞ

−m2
gGgðqa; qcÞ�Γð1Þ

μν ðPÞ; ð41Þ

and

Πab;cd
R;μν

				
NLO

ðP;QÞ ¼ Πnor
R;μνðP;QÞ

¼ −
�
m2

f

�
δadδbcF ð1Þ

f ðqa; qcÞ − 1

N
δabδcdF ð2Þ

f ðqa; qcÞ
�

þm2
g

�
δadδbcF ð1Þ

g ðqa; qcÞ − 1

N
δabδcdF ð2Þ

g ðqa; qcÞ
��

Γð2Þ
μν ðPÞ; ð42Þ

where m2
f and m2

g denote the fermionic and bosonic
contributions in the Debye mass square, respectively. By
definition, m2

D ¼ m2
f þm2

g with m2
f ¼ g2T2Nf=6 and

m2
g ¼ g2T2N=3.
Following the terminology in Ref. [43], we introduce

Πano
R;μνðP;QÞ in Eq. (41) to denote the anomalous contribu-

tions in the retarded gluon self-energy. These contributions
arise atLO in theHTLapproximation,∼g2T3=p0, andarenot

transverse since PμΓð1Þ
μν ðPÞ ≠ 0. According to Eq. (31), the

integral over k involves a difference between two distribution
functions ðneþðkÞ − ne−ðkÞÞ, therefore, the anomalous con-
tributions only show up at Q ≠ 0. In addition, Eq. (41) is
antisymmetric under the interchange of the color indices
a ↔ c, we can easily show the following identity,

X
abcd

Pab;cdΠab;cd
R;μν

				
LO
ðP;QÞ ¼ 0: ð43Þ

Accordingly, terms associated with ðneþðkÞ þ ne−ðkÞÞ
lead to the normal contributions Πnor

R;μνðP;QÞ in Eq. (42).

They emerge at NLO, ∼g2T2, where the same dimension-

less function Γð2Þ
μν ðPÞ as at Q ¼ 0 is now multiplied by a

Q-dependent mass squared defined as

ðM2
DÞab;cdðQÞ

¼ m2
f

�
δadδbcF ð1Þ

f ðqa; qcÞ − 1

N
δabδcdF ð2Þ

f ðqa; qcÞ
�

þm2
g

�
δadδbcF ð1Þ

g ðqa; qcÞ − 1

N
δabδcdF ð2Þ

g ðqa; qcÞ
�
:

ð44Þ

As we can see, modifications on the Debye mass due to the
nonzero background field can be entirely encoded in the
second Bernoulli polynomials B2ðxÞ. Then, we can express
the normal contributions as

Πnor
R;μνðP;QÞ ¼ −ðM2

DÞab;cdðQÞΓð2Þ
μν ðPÞ: ð45Þ
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Obviously, the above gluon self-energy is transverse

because the dimensionless function Γð2Þ
μν ðPÞ is orthogonal

to Pμ.
Considering vanishing background field, we find

Gfðqa;qcÞ¼Ggðqa;qcÞ¼0 and the other four Q-dependent
functions in Eqs. (34) and (40) equal one. Therefore, the
retarded gluon self-energy reduces to the following well-
known result as expected,

Πab;cd
R;μν ðP;Q → 0Þ ¼ −m2

DΓ
ð2Þ
μν ðPÞPab;cd: ð46Þ

Given the above discussions, the calculation of the
advanced gluon self-energy is trivial. As compared to
the retarded one, the only difference is that the þiϵ
description is now replaced by −iϵ in Eq. (26). In addition,
these results can be also obtained from the imaginary time
gluon self-energy as obtained in Ref. [38] after an ana-
lytical continuation iωn þ iQab → p0 � iϵ where ωn is the
bosonic Matsubara frequency.

IV. THE SYMMETRIC GLUON SELF-ENERGY
IN A SEMI-QUARK-GLUON PLASMA

It is also interesting to study the symmetric gluon self-
energy in a semi-quark-gluon plasma which has not been

addressed in previous studies. As is well known, at
vanishing background field, the three independent gluon
self-energies in the Keldysh representation satisfy the KMS
condition as given by Eq. (2). Therefore, the LO contri-
bution of Πab;cd

F;μν ðP;Q ¼ 0Þ can be simply obtained from
Πab;cd

R=A;μνðP;Q ¼ 0Þ at NLO (the LO contribution vanishes
as discussed in the previous section) where the HTL
approximation should also be imposed on the distribution
function, leading to an extra ∼T=p0 enhancement.
However, in the presence of a nonzero background field,
the KMS condition does not appear to be a trivial extension
of that at Q ¼ 0 because one has to incorporate some new
terms whenQ ≠ 0, such as the nonzero LO contributions in
the retarded/advanced gluon self-energy. In the following,
we present the explicit calculation for Πab;cd

F;μν ðP;QÞ up to
NLO in the HTL approximation which is the same order as
we compute for the retarded and advanced ones. As we will
see, such a calculation is necessary to understand the KMS
condition in a semi-QGP with Q ≠ 0.

A. The leading order contributions in the
HTL approximation

Summing the “11” and “22” components, the contribu-
tion from the quark-loop diagram can be obtained as

Πab;cd
F;μν ðP;QÞ ¼ Πab;cd

11;μν ðP;QÞ þ Πab;cd
22;μν ðP;QÞ

¼ ig2Nf

X
ef

ðtabÞefðtcdÞfe
Z

d4K
ð2πÞ4 Tr½γμ=Qγν=K�½D̃11ðQ;QfÞD̃11ðK;QeÞ þ D̃22ðQ;QfÞD̃22ðK;QeÞ�

¼ ig2Nf

X
ef

Pab;fePcd;ef

Z
d4K
ð2πÞ4 ð2KμKν − PμKν − KμPν − gμνQ · KÞ

× ½D̃FðQ;QfÞD̃FðK;QeÞ − ðD̃RðKÞ − D̃AðKÞÞðD̃RðQÞ − D̃AðQÞÞ�

¼ ig2Nf

X
ef

Pab;fePcd;ef

Z
d4K
ð2πÞ4 ð2KμKν − PμKν − KμPν − gμνQ · KÞ

× 4π2δðK2ÞδðQ2Þ½ð1 − 2ñðq0;QfÞÞð1 − 2ñðk0;QeÞÞ − sgnðq0Þsgnðk0Þ�; ð47Þ

where we used D̃RðKÞ − D̃AðKÞ ¼ 2πδðK2Þsgnðk0Þ. After
performing the integral over k0 and keeping only the LO
contributions in the HTL approximation, the symmetric
gluon self-energy can be written as

Πab;cd
F;ij ðP;QÞ ¼ i2πg2Nf

X
ef

Z
d3k
ð2πÞ3

k̂ik̂j
p

½ð2ñfþðkÞñeþðkÞ

− ñfþðkÞ − ñeþðkÞÞδðk̂ · p̂ − p0=pÞ
þ ð2ñf−ðkÞñe−ðkÞ − ñf−ðkÞ − ñe−ðkÞÞ
× δðk̂ · p̂þ p0=pÞ�Pab;fePcd;ef: ð48Þ

To make the notations compact in the above equation, we
take the spatial components as an example. As before, the
corresponding integral over the solid angle is independent
of the background field which leads to

Z
dΩk̂ik̂jδðk̂ · p̂� p0=pÞ ¼ Π0

TðPÞ
�
δij −

pipj

p2

�

þ Π0
LðPÞ

pipj

p2
; ð49Þ

where the two structure functions take simpler forms as
compared to Eq. (26),
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Π0
TðPÞ ¼ π

p2 − p2
0

p2
θðp2 − p2

0Þ and

Π0
LðPÞ ¼ 2π

p2
0

p2
θðp2 − p2

0Þ: ð50Þ

The other Lorentz components can be computed in a
similar way and we can show that

Πab;cd
F;μν ðP;QÞ ¼ i

g2

4π2p
Nf

X
ef

Pab;fePcd;ef

×
Z

k2dk
X
σ¼�

½2ñfσðkÞñeσðkÞ− ñfσðkÞ− ñeσðkÞ�

×ΛμνðPÞ: ð51Þ

In the above equation, the dimensionless function ΛμνðPÞ is
given by

ΛμνðPÞ≡ Π0
TðPÞAμνðPÞ þ Π0

LðPÞBμνðPÞ; ð52Þ

and the two projection operators AμνðPÞ and BμνðPÞ are the
same as before which have been defined in Eq. (27).
Equation (51) indicates that nonzero background field

only modifies the integral over k as the distribution
functions are Q-dependent now. Performing the integral
in Eq. (51), we arrive at

Πab;cd
F;μν

			
LO
ðP;QÞ ¼ i

T
p
m2

f

�
1

2
δadδbc cotðπqacÞGfðqa; qcÞ

þ 1

N
δabδcdF ð2Þ

f ðqa;qcÞ
�
ΛμνðPÞ: ð53Þ

As compared to Πab;cd
R;μν jLOðP;QÞ, the most important differ-

ence lies in the fact that the LO terms in the HTL
approximation have a nonvanishing contribution to
Πab;cd

F;μν ðP;QÞ even at Q ¼ 0. In the above result, to avoid
an ambiguous expression of the type “∞ · 0” which origi-
nates from ∼ cotðπqacÞGfðqa;qcÞ, the special case qa ¼ qc

should be understood as qa → qc � ϵ. Consequently, one
can show that

B3ðq̃aÞ − B3ðq̃cÞ → �3B2ðq̃cÞϵ and

cotðπqacÞ → �1=ðπϵÞ: ð54Þ

Therefore, in this limit of Q → 0, the square bracket in
Eq. (53) reduces to −Pab;cd.
The LO contributions from the pure gauge part to

Πab;cd
F;μν ðP;QÞ are similar to those from the quark-loop

diagram. In particular, one only needs to do the following
replacements in Eq. (48),

Nf

X
ef

Pab;fePcd;ef →
X
efgh

fab;fe;ghfcd;hg;ef;

ñe�ðkÞ → −nef� ðkÞ; and ñf�ðkÞ → −ngh� ðkÞ:
ð55Þ

By using a set of bosonic integrals, the results of the pure
gauge part can be simply obtained as the following:

Πab;cd
F;μν

			
LO
ðP;QÞ ¼ i

T
p
m2

g

�
−
1

2
δadδbc cotðπqacÞGgðqa; qcÞ

þ 1

N
δabδcdF ð2Þ

g ðqa;qcÞ
�
ΛμνðPÞ; ð56Þ

where the square bracket also reduces to −Pab;cd in this
limit of Q → 0.
Adding up Eqs. (53) and (56), the final result for the

symmetric gluon self-energy at LO can be shown as

Πab;cd
F;μν

			
LO
ðP;QÞ¼ i

T
p

�
m2

f

�
1

2
δadδbc cotðπqacÞGfðqa;qcÞ

þ 1

N
δabδcdF ð2Þ

f ðqa;qcÞ
�

þm2
g

�
−
1

2
δadδbc cotðπqacÞGgðqa;qcÞ

þ 1

N
δabδcdF ð2Þ

g ðqa;qcÞ
��

ΛμνðPÞ; ð57Þ

which is proportional to g2T3=p and reproduces the correct
behavior at vanishing background field,

Πab;cd
F;μν ðP;Q → 0Þ ¼ −i

Tm2
D

p
ΛμνðPÞPab;cd: ð58Þ

Compared with the NLO result for the regarded gluon
self-energy, both Eqs. (42) and (57) are formally analogous
to their counterparts atQ ¼ 0. The influence of the nonzero
background field amounts to a modification on the Debye
mass. However, such a modification turns out to be more
complicated for the symmetric gluon self-energy where
both trigonometric functions and the Bernoulli polynomials
are included.
Given the fact that the LO symmetric gluon self-energy

has a nonzero contribution atQ ¼ 0, we may consider it as
a normal contribution. However, there exists an ambiguity
because one can artificially introduce a term which van-
ishes at Q ¼ 0, and thus gives an anomalous contribution.
Subtracting such a contribution from the original result, we
can define the so-called normal contributions. It turns out to
be interesting to make such a reorganization for the LO
symmetric gluon self-energy. Detailed discussions can be
found in Appendix B.
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B. The next-to-leading order contributions
in the HTL approximation

It is also important to explore the NLO contributions to
the symmetric gluon self-energy. Just like the LO
Πab;cd

R;μν ðP;QÞ, these contributions are completely new as
they only survive in a nonzero background field. More
importantly, as we will show later, they are necessary to
demonstrate the KMS condition at NLO in the HTL
approximation.
There are three kinds of contributions arising at NLO.

Dropping the term ∼KμKν in Eq. (47), the first kind of
contribution can be obtained as

Πab;cd
F;ij ðP;QÞ

			
I

¼ iπg2Nf

X
ef

Pab;fePcd;ef

×
Z

d3k
ð2πÞ3

−p̂ik̂j − k̂ip̂j

k
½ð2ñfþðkÞñeþðkÞ − ñfþðkÞ

− ñeþðkÞÞδðk̂ · p̂ − p0=pÞ þ ð2ñf−ðkÞñe−ðkÞ
− ñf−ðkÞ − ñe−ðkÞÞδðk̂ · p̂þ p0=pÞ�: ð59Þ

Here, we also take the spatial components as an example
and other components in the Lorentz space can be
discussed in a similar way. Notice that the term
∼gμνQ · K does not appear in the above equation because
it has no contribution due to the delta functions. In addition,

the distribution function ñðq0;QfÞ is approximated to
ñðk0;QfÞ, and the subleading term in δðQ2Þ is neglected,
namely δðQ2Þ ≈ δðk̂ · p̂ ∓ p0=pÞ=ð2kpÞ where the minus
sign corresponds to the positive energy k0 ¼ k while the
plus sign is for k0 ¼ −k.
Performing the integral over the solid angle, we arrive at

Πab;cd
F;ij ðP;QÞ

			
I

¼ −i
g2

2π

p0

p
Nf

pipj

p2
θðp2 − p2

0Þ
X
ef

Pab;fePcd;ef

×
Z

kdk½ð2ñfþðkÞñeþðkÞ − ñfþðkÞ − ñeþðkÞÞ

− ð2ñf−ðkÞñe−ðkÞ − ñf−ðkÞ − ñe−ðkÞÞ�: ð60Þ

We should mention the above result is not proportional
to ΛijðPÞ although one may naively expect such a
proportionality.
The second kind of contribution at NLO comes from the

following expansion of the distribution function for soft p0,

ñð�k − p0;QfÞ ¼ ñf�ðkÞ ∓ ñf�ðkÞðñf�ðkÞ − 1Þp0

T
þ � � � :

ð61Þ

Picking up the subleading term which is suppressed by a
factor of p0=T, the resulting NLO contribution reads

Πab;cd
F;ij ðP;QÞ

				
II
¼−i2πg2Nf

X
ef

Pab;fePcd;ef p0

T

Z
d3k
ð2πÞ3

k̂ik̂j
p

f½2ñfþðkÞðñfþðkÞ−1ÞñeþðkÞ− ñfþðkÞðñfþðkÞ−1Þ�δðk̂ · p̂−p0=pÞ

− ½2ñf−ðkÞðñf−ðkÞ−1Þñe−ðkÞ− ñf−ðkÞðñf−ðkÞ−1Þ�δðk̂ · p̂þp0=pÞg; ð62Þ

where we keep ∼KμKν in Eq. (47) and other terms such as
∼KμPν and ∼KνPμ should be dropped which lead to higher
order contributions. For the same reason, we also take
δðQ2Þ ≈ δðk̂ · p̂ ∓ p0=pÞ=ð2kpÞ in the above equation.

The integral over the solid angle is the same as
the LO contribution, therefore, the second kind of con-
tribution at NLO is proportional to ΛijðPÞ. Then, we can
show that

Πab;cd
F;ij ðP;QÞ

			
II
¼ i

g2

4π2
p0

p
NfΛijðPÞ

X
ef

Pab;fePcd;ef

Z
k2dk

�
∂ñfþðkÞ
∂k

−2
∂ñfþðkÞ
∂k

ñeþðkÞ−
∂ñf−ðkÞ
∂k

þ2
∂ñf−ðkÞ
∂k

ñe−ðkÞ
�
: ð63Þ

Now we turn to the third kind of contribution which takes a very similar form as Eq. (48),

Πab;cd
F;ij ðP;QÞ

				
III

¼ i2πg2Nf

X
ef

Pab;fePcd;ef

Z
d3k
ð2πÞ3

k̂ik̂j
p

�
½2ñfþðkÞñeþðkÞ − ñfþðkÞ − ñeþðkÞ�δNLO

�
k̂ · p̂ − p0=pþ P2

2kp

�

þ ½2ñf−ðkÞñe−ðkÞ − ñf−ðkÞ − ñe−ðkÞ�δNLO
�
k̂ · p̂þ p0=pþ P2

2kp

��
: ð64Þ
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As we can see the only difference is that in Eq. (64), we keep the subleading term P2=ð2kpÞ in the delta functions where the
superscript “NLO” means that only the NLO contributions should be kept in the integral over the solid angle, namely,

Z
dΩk̂ik̂jδ

�
k̂ · p̂�p0=pþ P2

2kp

�
≡
Z

dΩk̂ik̂jδLO
�
k̂ · p̂�p0=pþ P2

2kp

�
þ
Z

dΩk̂ik̂jδNLO
�
k̂ · p̂�p0=pþ P2

2kp

�
; ð65Þ

where the first integral on the right-hand side of the above equation is actually given by Eq. (49) where the term P2=ð2kpÞ is
not relevant, while the second one is given by

Z
dΩk̂ik̂jδNLO

�
k̂ · p̂� p0=pþ P2

2kp

�
¼ �p0

k

�
ΛijðPÞ − 2π

pipj

p2
θðp2 − p2

0Þ
�
: ð66Þ

Using Eq. (66), we can express Πab;cd
F;ij ðP;QÞjIII as

Πab;cd
F;ij ðP;QÞ

				
III
¼ −i

g2

4π2
p0

p
Nf

�
ΛijðPÞ − 2π

pipj

p2
θðp2 − p2

0Þ
�X

ef

Pab;fePcd;ef

Z
kdk

×½ð2ñfþðkÞñeþðkÞ − ñfþðkÞ − ñeþðkÞÞ − ð2ñf−ðkÞñe−ðkÞ − ñf−ðkÞ − ñe−ðkÞÞ�: ð67Þ

Interestingly, we find that the first kind of contribution as given in Eq. (60) is completely canceled by the above equation
and the remaining terms are simply proportional to ΛijðPÞ. By combining Eqs. (60), (63), and (67), the symmetric gluon
self-energy at NLO takes the following form:

Πab;cd
F;μν ðP;QÞ

			
NLO

¼ −i
g2

4π2
p0

p
NfΛμνðPÞ

X
ef

Pab;fePcd;ef

Z
k2dk

��
∂ñfþðkÞ
∂k

Ñ e
þðkÞ −

∂ñeþðkÞ
∂k

Ñ f
þðkÞ

�

−
�
∂ñf−ðkÞ
∂k

Ñ e
−ðkÞ −

∂ñe−ðkÞ
∂k

Ñ f
−ðkÞ

��
; ð68Þ

where Ñ f
�ðkÞ ¼ ñf�ðkÞ − 1=2. The other Lorentz compo-

nents can be obtained in a similar way, therefore, the
corresponding details are omitted here. Notice that
for the “00” component, the first two kinds of contributions
are both proportional to Λ00ðPÞ, while the third kind of
contribution is not involved in NLO calculation.
According to Eq. (68), it is clear to see that the NLO

contribution in Πab;cd
F;μν ðP;QÞ vanishes when Q ¼ 0 or

Qe ¼ Qf. This is analogous to the retarded gluon self-
energy at LO. Therefore, no diagonal component exists
and Πab;cd

F;μν ðP;QÞjNLO is considered as an anomalous
contribution.
We can further integrate over k in Eq. (68) by making use

of the following equation:

1

T2

Z
k2dk

�
∂ñfþðkÞ
∂k

Ñ e
þðkÞ −

∂ñeþðkÞ
∂k

Ñ f
þðkÞ

�

¼ i cotðπqfeÞ½Li2ð−ei2πqfÞ þ Li2ð−ei2πqeÞ�
− csc2ðπqfeÞ½Li3ð−ei2πqfÞ − Li3ð−ei2πqeÞ�; ð69Þ

where the polylogarithm functions can be related to the
Bernoulli polynomials via

Li2ð−ei2πqfÞ þ Li2ð−e−i2πqfÞ ¼ 2π2B2ðq̃fÞ;

Li3ð−ei2πqfÞ − Li3ð−e−i2πqfÞ ¼ i
4π3

3
B3ðq̃fÞ: ð70Þ

Consequently, the final result for the Πab;cd
F;μν ðP;QÞ at NLO

in the HTL approximation can be expressed as

Πab;cd
F;μν ðP;QÞ

				
NLO

¼ p0

2p
δadδbc

�
m2

f

�
1

2
csc2ðπqacÞGfðqa; qcÞ þ cotðπqacÞF ð1Þ

f ðqa; qcÞ
�

þm2
g

�
−
1

2
csc2ðπqacÞGgðqa; qcÞ þ cotðπqacÞF ð1Þ

g ðqa; qcÞ
��

ΛμνðPÞ: ð71Þ
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Given the above discussions about the quark loop
diagram, calculations for the pure gauge part are straight-
forward, although rather tedious. We only provide the
corresponding result which is given in the second line of the
above equation. As compared to the LO result in Eq. (57)
which is pure imaginary, the NLO contribution is real and
suppressed by a factor of p0=T. We would like to mention
that although the NLO symmetric gluon self-energy is also
an anomalous contribution as it vanishes at Q ¼ 0, unlike
the LO retarded gluon self-energy, it is transverse due to the
vanishment of PμΛμνðPÞ. On the other hand, a similar
identity as Eq. (43) also holds for the NLO symmetric
gluon self-energy.
Finally, a vanishing result from Eq. (71) is required in the

special case whereQ ¼ 0 orQa ¼ Qc. However, this is not
very obvious based on the above given expressions. In fact,
taking qa → qc � ϵ and making a Taylor expansion for
infinitely small ϵ, both of the two terms associated with
different trigonometric functions in the square bracket have
contributions at successive orders ∼1=ϵ, ∼ϵ0, ∼ϵ and so on.
However, the divergent and finite parts in the Taylor series
are exactly canceled, leaving a vanishing result as expected.

V. THE KUBO-MARTIN-SCHWINGER
CONDITION IN A SEMI-QUARK-GLUON PLASMA

With the HTL gluon self-energies computed up to NLO
in Secs. III and IV, we can study the KMS condition in a
semi-quark-gluon plasma. As a natural extension of the
KMS condition at Q ¼ 0, it can be expressed as

Πab;cd
F;μν ðP;QÞ ¼ ð1þ 2nðp0;QabÞÞsgnðp0Þ

× ðΠab;cd
R;μν ðP;QÞ − Πab;cd

A;μν ðP;QÞÞ: ð72Þ

A formal derivation of the above equation can be carried
out by following a similar procedure as used in the Q ¼ 0
case. As already mentioned before, the introduced back-
ground field acts like an imaginary chemical potential. In
analogy to an ordinary chemical potential, it only brings a
Q dependence in the distribution function as given in
Eqs. (8) and (11).
For timelike gluons, studying the KMS condition is

rather trivial because the symmetric gluon self-energy
vanishes due to the θ function and meanwhile the retarded
and advanced ones become identical. In the following, we
consider only the spacelike gluons with p2

0 < p2.
Let us first recall what happens in zero background field.

To verify Eq. (72), one can make use of the following
relation among the dimensionless functions,4

Γð2Þ
R;μνðPÞ − Γð2Þ

A;μνðPÞ ¼ i
p0

2p
ΛμνðPÞ; ð73Þ

which can be obtained via the identity

ln
p0þpþ iϵ
p0−pþ iϵ

− ln
p0þp− iϵ
p0−p− iϵ

¼−2πi for p2
0<p2: ð74Þ

Furthermore, the external momentum p0 is considered to
be soft in the HTL approximation, i.e., p0 ≪ T, and the
bosonic distribution function can be expanded as

ð1þ 2nðp0;Q ¼ 0ÞÞsgnðp0Þ ≈
2T
p0

þ p0

6T
þ � � � ; ð75Þ

where higher order terms are power suppressed for
p0=T ≪ 1 and should be dropped for consistency if only
the LO (nonvanishing) contributions in the gluon self-
energies are taken into account. Then, it is easy to show the
validity of Eq. (72) based on Eqs. (46) and (58). Notice that
the bosonic distribution function is enhanced by ∼T=p0,
therefore, a T3 behavior can be found on the right-hand
side of Eq. (72) which matches the T dependence in the
symmetric gluon self-energy.
It is certainly interesting to ask if the KMS condition can

hold when Q ≠ 0. For the diagonal components of the
gluon self-energies, Eq. (72) becomes

Πaa;cc
F;μν ðP;QÞ ¼ ð1þ 2nðp0;Qaa ¼ 0ÞÞsgnðp0Þ

× ðΠaa;cc
R;μν ðP;QÞ − Πaa;cc

A;μν ðP;QÞÞ: ð76Þ

Given the explicit results of the HTL gluon self-energies, the
above equation is valid because the diagonal components of
the gluon self-energies at Q ≠ 0 can be simply obtained
from those atQ ¼ 0 bymultiplying aQ-dependent function
which is the same for the retarded/advanced and symmetric
solutions, see Eqs. (42) and (57). In addition, the distribution
function for diagonal gluons is not affected by the back-
ground field, therefore, Eq. (75) can apply. It is worthwhile
to mention that for the symmetric gluon self-energy, the
diagonal components are taken from the LO contribution,
while for the retarded/advanced one, they arise at NLO in the
HTL approximation. This is actually in analogy with that in
zero background field.
For off-diagonal components, the KMS condition reads

Πac;ca
F;μν ðP;QÞ ¼ ð1þ 2nðp0;QacÞÞsgnðp0Þ

× ðΠac;ca
R;μν ðP;QÞ − Πac;ca

A;μν ðP;QÞÞ; ð77Þ

where the bosonic distribution function becomes Q de-
pendent. As a result, there is no enhancement in nðp0;QacÞ
when p0 is small. Instead, for p0=T ≪ 1 we find that

ð1þ 2nðp0;QacÞÞsgnðp0Þ ¼ i cotðπqacÞ þ p0

2T
csc2ðπqacÞ

þ � � � ; qa ≠ qc: ð78Þ
4Γð2Þ

R;μνðPÞ is given by Eq. (25), while Γð2Þ
A;μνðPÞ can be obtained

by changing þiϵ into −iϵ in the same equation.
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For later use, we write

ð1þ 2nðp0;QacÞÞsgnðp0ÞjLO ≡ i cotðπqacÞ; qa ≠ qc;

ð79Þ
ð1þ2nðp0;QacÞÞsgnðp0ÞjNLO≡ p0

2T
csc2ðπqacÞ; qa ≠qc:

ð80Þ
Given the above expansion, it is not a surprise to see the
trigonometric functions in our result for Πab;cd

F;μν ðP;QÞ as
they also show up in the KMS condition.
The off-diagonal components of Πab;cd

F;μν ðP;QÞ at LO are
proportional to T3 as shown in Eq. (57). Clearly, to show
the KMS condition, one needs to include only the LO terms

in the retarded/advanced gluon self-energies in order to
match the power of T. Using Eq. (41), we get

Πac;ca
R;μν

			
LO
ðP;QÞ−Πac;ca

A;μν

			
LO
ðP;QÞ

¼ i
T
p0

½m2
fGfðqa;qcÞ−m2

gGgðqa;qcÞ�½Γð1Þ
R;μνðPÞ−Γð1Þ

A;μνðPÞ�

¼ T
2p

½m2
fGfðqa;qcÞ−m2

gGgðqa;qcÞ�ΛμνðPÞ; qa ≠qc:

ð81Þ

Taking also the LO term in the expansion of the
Q-dependent distribution function, according to Eq. (78),
it can be shown that

ð1þ 2nðp0;QacÞÞsgnðp0ÞðΠac;ca
R;μν ðP;QÞ − Πac;ca

A;μν ðP;QÞÞ
¼LOð1þ 2nðp0;QacÞÞsgnðp0Þ

			
LO
ðΠac;ca

R;μν

			
LO
ðP;QÞ − Πac;ca

A;μν

			
LO
ðP;QÞÞ

¼ i
T
2p

cotðπqacÞ½m2
fGfðqa; qcÞ −m2

gGgðqa; qcÞ�ΛμνðPÞ; qa ≠ qc; ð82Þ

which is nothing but the off-diagonal components of
Πab;cd

F;μν jLOðP;QÞ as given in Eq. (57). Thus, the KMS
condition in Eq. (77) is explicitly verified at LO. Here, the
involved contributions in both symmetric and retarded/
advanced gluon self-energies come from the same order in
the HTL approximation. This is very different from theKMS
condition for diagonal components where the LO terms in
Πaa;cc

R=A;μνðP;QÞ vanish and the corresponding NLO contribu-

tions ∼T2 can be related to the LOΠaa;cc
F;μν ðP;QÞ via Eq. (76)

thanks to the enhanced bosonic distribution function.

According to the above discussions, when considering
only the LO contributions in the symmetric gluon self-
energy, the verification of KMS conditions requires a
computation of Πab;cd

R=A;μνðP;QÞ up to NLO in the HTL
approximation. However, the off-diagonal components in
the NLO Πab;cd

R=A;μνðP;QÞ which are related to the LO
symmetric gluon self-energy via the KMS condition when
Q ¼ 0 are missing in our discussion for nonzero back-
ground field. In fact, with Q ≠ 0, these missing terms
satisfy the following equation:

Πac;ca
R;μν

			
NLO

ðP;QÞ − Πac;ca
A;μν

			
NLO

ðP;QÞ ¼ −½m2
fF

ð1Þ
f ðqa; qcÞ þm2

gF
ð1Þ
g ðqa; qcÞ�½Γð2Þ

R;μνðPÞ − Γð2Þ
A;μνðPÞ�

¼ −i
p0

2p
½m2

fF
ð1Þ
f ðqa; qcÞ þm2

gF
ð1Þ
g ðqa; qcÞ�ΛμνðPÞ; qa ≠ qc: ð83Þ

As compared to Eq. (81), the above contribution is suppressed by a factor of p0=T and turns out to be useful to verify the
KMS condition Eq. (77) at NLO.
As suggested by Eq. (78), there are two sources that contribute when studying the KMS condition Eq. (77) at NLO.

Explicitly, we can show that

ð1þ 2nðp0;QacÞÞsgnðp0ÞðΠac;ca
R;μν ðP;QÞ − Πac;ca

A;μν ðP;QÞÞ

¼NLOð1þ 2nðp0;QacÞÞsgnðp0Þ
				
LO
ðΠac;ca

R;μν

				
NLO

ðP;QÞ − Πac;ca
A;μν

				
NLO

ðP;QÞÞ

þ ð1þ 2nðp0;QacÞÞsgnðp0Þ
				
NLO

ðΠac;ca
R;μν

				
LO
ðP;QÞ − Πac;ca

A;μν

				
LO
ðP;QÞÞ

¼ p0

2p
cotðπqacÞ½m2

fF
ð1Þ
f ðqa; qcÞ þm2

gF
ð1Þ
g ðqa; qcÞ�ΛμνðPÞ

þ p0

4p
csc2ðπqacÞ½m2

fGfðqa; qcÞ −m2
gGgðqa; qcÞ�ΛμνðPÞ; qa ≠ qc: ð84Þ
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By comparing Eq. (84) with Eq. (71) which is obtained by a
direct calculation of Πab;cd

F;μν jNLOðP;QÞ, the validity of
Eq. (77) at NLO in the HTL approximation is verified.
When we expand the distribution function in Eq. (78)

with p0 ≪ T, we implicitly assume Q ∼ T, so that the
dimensionless background field q ∼Oð1Þ. Notice that a
special case where q ∼ p0=T leads to a different expansion
of the distribution function which can be expressed as

ð1þ 2nðp0;QacÞÞsgnðp0Þ ¼
1

1 − i2πq̂ac
2T
p0

þ � � � ;

for qa ≠ qc; ð85Þ

where qa=q̂a ¼ p0=T with q̂a ∼Oð1Þ and higher order
terms suppressed by powers of p0=T are dropped. To verify
the KMS condition for the off-diagonal components in this
special case, we need to also expand the Bernoulli poly-
nomials in the gluon self-energies for small p0=T.
According to Eq. (41), the LO contribution to the retarded
solution becomes

Πac;ca
R;μν

			
LO
ðP;QÞ ¼ −i2πq̂acm2

DΓ
ð1Þ
μν ðPÞ þ � � � ;

for q ∼ p0=T ≪ 1: ð86Þ

At the same order ∼g2T2, there is another contribution
which can be obtained from Eq. (42) by setting Q ¼ 0.
Therefore, the final result reads

Πac;ca
R;μν ðP;QÞ ¼ −m2

Dði2πq̂acΓð1Þ
μν ðPÞ þ Γð2Þ

μν ðPÞÞ þ � � � ;
for q ∼ p0=T ≪ 1: ð87Þ

Based on the above equation, it is easy to show

Πac;ca
R;μν ðP;QÞ−Πac;ca

A;μν ðP;QÞ¼−i
p0

2p
m2

Dð1− i2πq̂acÞΛμνðPÞ:

ð88Þ

On the other hand, the symmetric gluon self-energy is
simply given by Eq. (58) when expanding Eq. (57) for
q ∼ p0=T ≪ 1 and dropping the higher order contributions.
Together with Eqs. (85) and (88), the KMS condition is
proved to hold in the special case where the background
field is at order ∼p0=T.
It is interesting to point out that the anomalous con-

tribution in the retarded/advanced gluon self-energy is
∼g2T3=p0 when the background field Q ∼ T. However,
for small Q where Q ∼ p0 or q ∼ p0=T, the anomalous
contribution becomes comparable to ΠR=A at Q ¼ 0 which
is proportional to the Debye mass square. As a result, theQ
modification on the retarded/advanced solution is not
negligible even for small background field. On the contrary,
for the symmetric gluon self-energy, such aQ modification

is power suppressed as compared to the result at vanishing
background field.
To conclude, our discussion confirms that in general,

using the real-time gluon self-energies computed in the
HTL approximation, the KMS condition is satisfied order
by order for p0=T ≪ 1. As demonstrated in this work, it is a
highly nontrivial extension from Q ¼ 0 to Q ≠ 0 due to
some new features arising in the off-diagonal components.

VI. CONCLUSIONS AND OUTLOOK

We computed the one-loop gluon self-energy up to the
next-to-leading order in the HTL approximation where a
background field Q has been introduced for the vector
potential, leading to a nontrivial expectation value for the
Polyakov loop in the deconfined phase. The explicit results
for the retarded/advanced and symmetric gluon self-energies
in the Keldysh representation have been obtained.
Some new terms which only survived at nonvanishing

background ground were found in our computations. For
the retarded/advanced gluon self-energy, they came from
the LO contributions which were proportional to g2T3=p0,
enhanced by a factor of T=p0 as compared to the results at
Q ¼ 0. For the symmetric gluon self-energy, on the other
hand, these new terms arose at NLO and were suppressed
by p0=T as compared to the LO contributions. It is worth
pointing out that these anomalous contributions are propor-
tional to δadδbc and anti-symmetric when flipping the color
indices a ↔ c, therefore, Eq. (43) is valid simply because
the projection operator Pac;ca is symmetric under a ↔ c. In
addition, the NLO contributions in ΠR=A as well as the LO
contribution in ΠF are formally analogous to the well-
known result computed in the completely deconfined QGP.
The influence of the nonzero background field merely
amounts to a modification on the Debye mass. According
to Eqs. (42) and (57), we found that the fermionic
modification differs from the bosonic one and such a
modification is also different for the retarded/advanced
and symmetric solutions of the gluon self-energies. In the
limit Q → 0, both of these contributions reproduce the
desired results as shown in Eqs. (46) and (58).
With the obtained results, we also verified that the KMS

condition can be satisfied in a semi-QGP with nonzero
background field. It is a nontrivial extension fromQ ¼ 0 to
Q ≠ 0, especially for the off-diagonal components where
the statistic distributions for the soft gluons depend on the
background field, hence have no Bose enhancement
∼T=p0. In this case, we found that the anomalous con-
tributions played an important role which guaranteed the
order-by-order satisfaction of the KMS condition in the
HTL approximation.
In this work, all the computations were carried out within

the HTL perturbation theory where however, nonzero
values of Q cannot be consistently generated because
the corresponding equations of motion of the background
field require the system to always stay in the completely
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deconfined phase where Q vanishes. To quantitatively
study the background field modification on the gluon
self-energies, one needs to specify the values of Q at a
given temperature by using either the lattice simulations on
the Polyakov loops, or the equations of motion based on
effective theories in the semi-QGP. In fact, some other
unphysical behaviors have also been found in recent works
where only perturbative contributions were taken into
account [43,45,46]. Naively, one may relate these problems
to the nontransversality of the retarded gluon self-energy.
A further analysis [46] has shown that gauge invariant
sources, which are nonlinear in the gauge potential A0,
generate a novel constrained contribution to the gluon self-
energy in the perturbation theory. It exactly cancels the
nontransverse term ∼MμMν, and thus the total gluon self-
energy remains transverse. It is obvious that the KMS
condition is not affected by dropping this nontransverse
term, however, for any gauge invariant source, it was found
that there exists an unexpected discontinuity in the free
energy appearing at order ∼g3 as the background field
vanishes. In addition, including the anomalous contribu-
tion, either with or without the nontransverse term, one
encountered an ill-defined static limit in the resummed
gluon propagator [43]. Therefore, developing effective
theories to study the physics in semi-QGP appears to be
necessary.
In Ref. [47], a new contribution coming from two-

dimensional ghost fields embedded isotropically into four
dimensions was added to the perturbative gluon self-
energy. As a result, the LO anomalous contributions in
Eq. (41) have been completely canceled, leading to an
effective retarded gluon self-energy which is given by
Eq. (45) with the Q-dependent mass squared shifted by a
dimensional constant. If we naively assume the same also
happens to the symmetric gluon self-energy,5 then it can be
shown that the effective gluon self-energies satisfy the
KMS condition provided that the background field only
affects the statistical distributions of the hard particles, in
other words, ð1þ 2nðp0;QabÞÞsgnðp0Þ should be approxi-
mated by 2T=p0 even for the off-diagonal components
because the distribution function here is for the soft gluons.
However, we have to admit that there seems no physical
reason to make such an assumption. On the other hand,
acknowledging the effective retarded gluon self-energy
proposed in Ref. [47], it turns out to be necessary to ignore
the Q dependence in the distribution functions of the soft
particles. Suppose that Eq. (79) was used, the off-diagonal
components of the resulting effective Πac;ca

F;μν ðP;QÞ would
become antisymmetric when we flip the color indices a and

c. This is obviously contradictory to the desired result when
taking the limit Q → 0.
The current work is an important step towards a full

study on the gluon self-energy and other related physics in
a semi-QGP. Properly incorporating the nonperturbative
contributions based on effective theories, in particular,
when the model in Ref. [47] is adopted, how the two-
dimensional ghost fields would affect the symmetric gluon
self-energy is obviously an interesting topic which still
needs to be further investigated.
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APPENDIX A: CONTRIBUTIONS FROM PURE
GAUGE PART TO THE REAL-TIME GLUON

SELF-ENERGIES

In this Appendix, we provide some details about the
calculations of the real-time gluon self-energies in a pure
gauge theory. We adopt the double line notation and focus
on the color structures of each Feynman diagram. The
outcome will explicitly show that the total contribution
from the pure gauge part is similar to the quark-loop
diagram which is also in analogy with what happened in the
zero background field.
We start by considering the gluon-loop diagram. Using

the Feynman rules as given in Sec. II, it can be shown that6

Πð1Þab;cd
R;μν ðP;QÞ ¼Πð1Þab;cd

11;μν ðP;QÞþΠð1Þab;cd
12;μν ðP;QÞ

¼ i
2

X
colors

Z
d4K
ð2πÞ4 ½D11ðQ;QghÞD11ðK;QefÞ

−D21ðQ;QghÞD12ðK;QefÞ�
× ð−gσσ0 Þð−gρρ0 ÞVab;ē f̄;gh

L;μρσ ðP;Q;KÞ
×Vcd;ḡ h̄;ef

R;νρ0σ0 ðP;Q;KÞPef;ē f̄Pgh;ḡ h̄; ðA1Þ

where K ¼ PþQ and the pre-factor 1=2 is the symmetry
factor. In the above equation, all the color indices except a,
b, c and d need to be summed. In addition, we use VL=R to
denote the Feynman rules for the left and right vertex,
respectively. Using the following identitiesX

ē f̄

fab;ē f̄;ghPef;ē f̄ ¼ fab;fe;gh;

X
ḡ h̄

fcd;ḡ h̄;efPgh;ḡ h̄ ¼ fcd;hg;ef; ðA2Þ
5In this case, all the anomalous contributions from Eqs. (B1),

(B3), and (71) should be dropped and the effective symmetric
gluon self-energy is given by Eq. (B5) where the same constant
shift applies to the Q-dependent mass squared.

6To be more clear about the Lorentz and color indices used in
Eq. (A1), one can refer to Fig. 3.

YUBIAO WANG, QIANQIAN DU, and YUN GUO PHYS. REV. D 106, 054033 (2022)

054033-16



where the two structure constants fab;ē f̄;gh and fcd;ḡ h̄;ef come from the left and right vertex, respectively, the sum over color
indices ē, f̄, ḡ and h̄ can be carried out. In terms of the retarded/advanced and symmetric bare propagators, Eq. (A1) can be
expressed as

Πð1Þab;cd
R;μν ðP;QÞ ¼ i

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ þDAðQÞDFðK;QefÞ�fab;fe;ghfcd;hg;efLð1Þ

μν ðP;Q;KÞ; ðA3Þ

where the Lorentz structure is fully contained in Lð1Þ
μν ðP;Q;KÞ. Since it has nothing to do with the background field, a

straightforward calculation gives that

Lð1Þ
μν ðP;Q;KÞ ¼ ½ðPþ KÞρgμσ þ ð−K −QÞμgρσ þ ðQ − PÞσgρμ�gσσ0

× ½ð−PþQÞσ0gνρ0 þ ð−Q − KÞνgρ0σ0 þ ðK þ PÞρ0gσ0ν�gρρ0

¼ ½ðPþ KÞ2 þ ðP −QÞ2�gμν þ 10KμKν − 5ðKμPν þ KνPμÞ − 2PμPν: ðA4Þ

Turning to the ghost-loop diagram [see Fig. 2(c)], the
corresponding calculation is very similar to the above. It is
easy to show the following:

Πð2Þab;cd
R;μν ðP;QÞ ¼ −

i
4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ

þDAðQÞDFðK;QefÞ�
× fab;fe;ghfcd;hg;ef2KμQν: ðA5Þ

In order to get a final result as given by Eq. (35), we need to
rewrite the above equation with a more symmetric form. By
changing the variables Q → −K0 and K → −Q0, we can
show that

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ þDAðQÞDFðK;QefÞ�KμQν

¼
Z

d4Q0

ð2πÞ4 ½DFð−K0;QghÞDRð−Q0Þ

þDAð−K0ÞDFð−Q0;QefÞ�Q0
μK0

ν

¼
Z

d4K0

ð2πÞ4 ½DFðK0;QhgÞDAðQ0Þ

þDRðK0ÞDFðQ0;QfeÞ�Q0
μK0

ν; ðA6Þ

where we changed d4Q0 into d4K0 because K0 ¼ PþQ0.
In addition, under the sign change of the momentum in
the symmetric propagator, the flip of the color indices in the
last line in Eq. (A6) is due to the definition of the
distribution function as given by Eq. (8). By realizing
the fact that the product of the two structure constants in
Eq. (A5) is invariant under the interchanges of color
indices, h ↔ e and g ↔ f, it can be shown that

Πð2Þab;cd
R;μν ðP;QÞ ¼ i

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ

þDAðQÞDFðK;QefÞ�
× fab;fe;ghfcd;hg;efLð2Þ

μν ðP;Q;KÞ; ðA7Þ

where

Lð2Þ
μν ðP;Q;KÞ ¼ −ð2KμQν þ 2QμKνÞ=2

¼ −2KμKν þ PμKν þ KμPν: ðA8Þ

Finally, we consider the tadpole diagram [see Fig. 2(d)]
which can be expressed as

Πð3Þab;cd
R;μν ðP;QÞ ¼ 3

4
g2
X
colors

Z
d4K
ð2πÞ4DFðK;QefÞ

× ðfab;ef;ijfcd;ji;fe − fab;fe;ijfcd;ef;jiÞgμν:
ðA9Þ

Notice that one of the three terms in the four-gluon vertex
(see the Feynman rules in Fig. 1) vanishes becauseP

gh f
ij;ef;ghPef;gh ¼ 0 where the projection operator

comes from the gluon propagator. Clearly, the above
equation needs to be rewritten in a form analogous to
the corresponding results from the other two Feynman
diagrams. To do so, we first express Eq. (A9) in the
following form:

FIG. 3. Gluon-loop diagram contributing to the one-loop gluon
self-energy.
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Πð3Þab;cd
R;μν ðP;QÞ¼ 3

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QfeÞ

þDFðK;QefÞ�fab;fe;ijfcd;ji;efgμν: ðA10Þ

To get the above equation, the color indices e and f in
DFðK;QefÞfab;ef;ijfcd;ji;fe in Eq. (A9) have been inter-
changed, and the resulting DFðK;QfeÞ is then replaced by
DFðQ;QfeÞ which is valid under the integral

R
d4K.

Furthermore, for the contribution associated with
DFðQ;QfeÞ, we can insert a term −iDRðKÞðK2 þQ2Þ
into Eq. (A10) because such an inserted term is effectively
“1” under the integral thanks to the delta function in the
propagator. Similarly, a term −iDAðQÞðK2 þQ2Þ can be
also inserted into the above equation for the contribution
associated with DFðK;QefÞ. Consequently, we arrive at

Πð3Þab;cd
R;μν ðP;QÞ ¼ i

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ

þDAðQÞDFðK;QefÞ�
× fab;fe;ghfcd;hg;efLð3Þ

μν ðP;Q;KÞ; ðA11Þ

with Lð3Þ
μν ðP;Q;KÞ ¼ −3ðK2 þQ2Þgμν.

Summing up the above results, the total contribution from
the pure gauge part to the retarded gluon self-energy reads

Πab;cd
R;μν ðP;QÞ ¼ i

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDRðKÞ

þDAðQÞDFðK;QefÞ�
× fab;fe;ghfcd;hg;efLμνðP;Q;KÞ; ðA12Þ

where

LμνðP;Q;KÞ ¼ Lð1Þ
μν ðP;Q;KÞ þ Lð2Þ

μν ðP;Q;KÞ
þ Lð3Þ

μν ðP;Q;KÞ
≈ 8KμKν − 4KμPν − 4PμKν − 4Q · Kgμν:

ðA13Þ

Here, we drop terms ∼PμPν which give contributions
beyond NLO in the HTL approximation. At this point, it
is clear to see Eq. (A12) is identical to Eq. (35).
Given the above calculations, the corresponding contribu-

tions to the symmetric gluon self-energy from Figs. 2(b)–2(d)
can be obtained straightforwardly. Notice that the tadpole
diagram does not contribute to Πab;cd

F;μν ðP;QÞ. However, in
order to show its similarity with Eq. (A11), we can write such
a zero result as

Πð3Þab;cd
F;μν ðP;QÞ¼ i

4
g2
X
colors

Z
d4K
ð2πÞ4 ½DFðQ;QghÞDFðK;QefÞ

− ðDRðKÞ−DAðKÞÞ
× ðDRðQÞ−DAðQÞÞ�fab;fe;ghfcd;hg;efð−3Þ
× ðK2þQ2Þgμν: ðA14Þ

The above equation vanishes due to a product of delta
functions δðK2ÞδðQ2Þ from the propagators. As a result,

the symmetric gluon self-energyΠðiÞab;cd
F;μν ðP;QÞwith i¼1, 2,

3 can be simply obtained from the retarded solutions

ΠðiÞab;cd
R;μν ðP;QÞ as given in Eqs. (A3), (A7), and (A11) by

the following replacement:

DFðQ;QghÞDRðKÞ þDAðQÞDFðK;QefÞ
⟶ DFðQ;QghÞDFðK;QefÞ − ðDRðKÞ
−DAðKÞÞðDRðQÞ −DAðQÞÞ: ðA15Þ

Thus, up to NLO in the HTL approximation, the three
diagrams in the pure gauge part lead to the following
contributions to the symmetric gluon self-energy

Πab;cd
F;μν ðP;QÞ ¼ ig2

X
efgh

fab;fe;ghfcd;hg;ef
Z

d4K
ð2πÞ4

× ð2KμKν − PμKν − KμPν − gμνQ · KÞ
× ½DFðQ;QghÞDFðK;QefÞ − ðDRðKÞ
−DAðKÞÞðDRðQÞ −DAðQÞÞ�: ðA16Þ

As we can see, the above equation is analogous to the quark-
loop contribution toΠab;cd

F;μν ðP;QÞwhich is given by Eq. (47).

APPENDIX B: REORGANIZATION OF THE
LO SYMMETRIC GLUON SELF-ENERGY

As shown in Eqs. (46) and (58), both the NLO ΠR=A and
the LO ΠF can reproduce the correct limit at Q ¼ 0. For
nonzero background field, however, they get different
modifications on theDebyemass. In fact, such a background
field modification originates from the integral over k where
the integrand of the retarded solution consists of a sum of
two distribution functions, see Eq. (32). On the other hand,
according to Eq. (51), the corresponding integral in the
symmetric solution involves a more complicated combina-
tion of the distribution functions. In order to show more
similarities between the two, it appears to be interesting to
artificially introduce a term to the LO symmetric gluon self-
energy which vanishes at Q ¼ 0, and thus gives the
anomalous contribution. Subtracting it from Eq. (57), we
can define the so-called normal contribution.
Taking the fermionic part [Eq. (51)] as an example,

explicitly, we can write
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Πano
F;μνðP;QÞ ¼ −i

g2

4π2p
Nfδ

adδbc
Z

k2dk½ðñaþðkÞ − ñcþðkÞÞ2 þ ðña−ðkÞ − ñc−ðkÞÞ2�ΛμνðPÞ

¼ i
T
p
m2

fδ
adδbc½F ð1Þ

f ðqa; qcÞ þ 1

2
cotðπqacÞGfðqa; qcÞ�ΛμνðPÞ; ðB1Þ

and

Πnor
F;μνðP;QÞ ¼ i

g2T
4π2p

Nf

Z
kdk

�
δabδcd

4

N

�
ñaþðkÞ þ ña−ðkÞ þ ñcþðkÞ þ ñc−ðkÞ −

1

N

X
e

ðñeþðkÞ þ ñe−ðkÞÞ
�

− 2δadδbcðñaþðkÞ þ ña−ðkÞ þ ñcþðkÞ þ ñc−ðkÞÞ
�
ΛμνðPÞ

¼ i
T
p
m2

f

�
δabδcd

1

N
F ð2Þ

f ðqa; qcÞ − δadδbcF ð1Þ
f ðqa; qcÞ

�
ΛμνðPÞ: ðB2Þ

The above anomalous contribution shares some similar-
ities with Πano

R;μνðP;QÞ as given in Eq. (41). They both come
from the LO terms in the HTL approximation and contain
only the off-diagonal components. In addition, the anoma-
lous contribution vanishes whenQ ¼ 0 or qa ¼ qc because
a difference between two distribution functions appears in
the integrand in Eq. (B1). Similar as before, to avoid an
“∞ · 0” ambiguity in our analytical result, qa ¼ qc should
be understood as qa → qc � ϵ. Then the second line in
Eq. (B1) equals zero as expected. However, different from
Eq. (41), such an artificially introduced anomalous con-
tribution is orthogonal to Pμ and does not satisfy a similar
relation as given by Eq. (43).
Although it is trivial to show that the sum of Eqs. (B1)

and (B2) is identical to Eq. (53), the motivation for
separating Eq. (51) into the above two parts becomes clear
when we look at the normal contributions. According to
Eqs. (42) and (B2), the background field modification on
m2

f which involves only B2ðxÞ is exactly the same for both
the retarded/advanced and symmetric gluon self-energies.
Consequently, theQ-dependent mass squared as defined in
Eq. (44) is universal to describe the background field
modification on the normal contributions in all the three
independent real-time gluon self-energies. Furthermore, it
also turns out to be meaningful when we include non-
perturbative contributions in the gluon self-energy which

however, is beyond the scope of current work and we only
provide a very preliminary discussion at the end of Sec. VI.
A similar consideration also applies to the pure gauge

part and the corresponding anomalous and normal con-
tributions are given by the following equations:

Πano
F;μνðP;QÞ ¼ i

T
p
m2

gδ
adδbc

�
F ð1Þ

g ðqa; qcÞ

−
1

2
cotðπqacÞGgðqa;qcÞ

�
ΛμνðPÞ; ðB3Þ

Πnor
F;μνðP;QÞ ¼ i

T
p
m2

g

�
δabδcd

1

N
F ð2Þ

g ðqa; qcÞ

− δadδbcF ð1Þ
g ðqa; qcÞ

�
ΛμνðPÞ: ðB4Þ

Finally, we can also express the normal contributions of
the LO symmetric gluon self-energy as

Πnor
F;μνðP;QÞ ¼ −i

T
p
ðM2

DÞab;cdðQÞΛμνðPÞ; ðB5Þ

where ðM2
DÞab;cdðQÞ has been already defined in Eq. (44).
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