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Octet baryon axial, induced pseudoscalar, and pseudoscalar form factors are computed using a
symmetry-preserving treatment of a vector × vector contact interaction (SCI), thereby unifying them
with an array of other baryon properties and analogous treatments of semileptonic decays of pseudoscalar
mesons. The baryons are treated as quark-plus-interacting-diquark bound states, whose structure is
obtained by solving a Poincaré-covariant Faddeev equation. The approach is marked by algebraic
simplicity and involves no free parameters, and, since it is symmetry preserving, all consequences of partial
conservation of the axial current are manifest. It is found that SCI results are consistent with only small
violations of SU(3)-flavor symmetry, an outcome which may be understood as a dynamical consequence of
emergent hadron mass. The spin-flavor structure of the Poincaré-covariant baryon wave functions is
expressed in the presence of both flavor-antitriplet–scalar diquarks and flavor-sextet–axial-vector diquarks
and plays a key role in determining all form factors. Considering neutral axial currents, SCI predictions for
the flavor separation of octet baryon axial charges and, therefrom, values for the associated SU(3) singlet,
triplet, and octet axial charges are obtained. The results indicate that, at the hadron scale ζH, valence
degrees of freedom carry roughly 50% of an octet baryon’s total spin. Since there are no other degrees of
freedom at ζH, the remainder may be associated with quarkþ diquark orbital angular momentum.

DOI: 10.1103/PhysRevD.106.054031

I. INTRODUCTION

The proton (p) is the only stable hadron. It is the best
known bound state in the baryon octet, every other member
of which decays. In many respects, the semileptonic decays
of these baryons are the simplest to understand theoreti-
cally, because the initial and final states involve only one
strongly interacting particle. The archetypal process is
neutron (n) β decay: n → pe−ν̄e, the study of which has
a long history [1,2]. Notwithstanding that, kindred decays

of hyperons have also attracted much attention [3,4], in
part because they additionally enable access to the
Cabibbo-Kobayashi-Maskawa matrix element jVusj and
thereby complement that provided by Kl3 decays (see
Sec. 12.2.2 in Ref. [5]).
Within the Standard Model, the semileptonic decay

B → B0l−νl, where B and B0 are octet baryons and l
denotes a lepton, involves a valence-quark g in B trans-
forming into a valence-quark f in B0. Two Poincaré-
invariant form factors are required to describe the associated
axial-vector transition matrix element:

JB
0B

5μ ðK;QÞ ≔ hB0ðP0ÞjA fg
5μð0ÞjBðPÞi ð1aÞ

¼ ūB0 ðP0Þγ5
�
γμGB0B
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Here, GB0B
A ðQ2Þ is the axial form factor and GB0B

P ðQ2Þ is
the induced pseudoscalar form factor; P and P0 are,
respectively, the momenta of the initial- and final-state
baryons, defined such that the on-shell conditions are
fulfilled, Pð0Þ · Pð0Þ ¼ −m2

B;B0 , with mB;B0 being the baryon
masses (we work in the Euclidean metric); 2MB0B ¼
mB0 þmB; and uB;B0 ðPÞ are the associated Euclidean
spinors. (We have suppressed the spin label. See
Appendix B in Ref. [6] for details.) Furthermore, K ¼
ðPþ P0Þ=2 is the average momentum of the system and
Q ¼ P0 − P the transferred momentum between initial and
final states:

−K2 ¼ 1

2
ðm2

B0 þm2
BÞ þ

1

4
Q2≕

1

2
ΣB0B þ 1

4
Q2; ð2aÞ

− K ·Q ¼ 1

2
ðm2

B0 −m2
BÞ≕

1

2
ΔB0B: ð2bÞ

Hereafter, we consider the isospin symmetry limit
mu ¼ md ≕ml, i.e., degenerate light quarks, and treat
the s valence quark as roughly 20 times more massive
[5], viz. ms ≈ 20ml. The general flavor structure is
described by the Gell-Mann matrices fλjjj ¼ 1;…; 8g so
that the flavor-nonsinglet axial current operator can be
written

A fg
5μðxÞ ¼ q̄ðxÞT fgγ5γμqðxÞ; ð3Þ

where q ¼ column½u; d; s� and T fg is the valence-quark
flavor transition matrix. Hence, e.g., the s → u transition is
described by T us ¼ ðλ4 þ iλ5Þ=2.
A related form factor, GB0B

5 ðQ2Þ, is associated with an
analogous pseudoscalar current

JB
0B

5 ðK;QÞ ≔ hB0ðP0ÞjPfg
5 ð0ÞjBðPÞi ð4aÞ

¼ ūB0 ðP0Þγ5G5ðQ2ÞuBðPÞ; ð4bÞ

where Pfg
5 ðxÞ ¼ q̄ðxÞT fgγ5qðxÞ is the flavor-nonsinglet

pseudoscalar current operator. This form factor is important
because, among other things, owing to dynamical chiral
symmetry breaking, a corollary of emergent hadron mass
(EHM) [7–12], one has a partial conservation of the axial
current (PCAC) relation for each baryon transition
ð2mfg ¼ mf þmgÞ:

0 ¼ QμJB
0B

5μ ðK;QÞ þ 2imfgJB
0B

5 ðK;QÞ ð5aÞ

⇒ GB0B
A ðQ2Þ − Q2

4M2
B0B

GB0B
P ðQ2Þ ¼ mfg

MB0B
GB0B

5 ðQ2Þ: ð5bÞ

Note that the product mfgGB0B
5 ðQ2Þ is renormalization

point invariant, not either of these two factors alone.

The identities in Eqs. (5) are valid for all Q2. They state
that the longitudinal part of the axial-vector current is
completely determined by the kindred pseudoscalar form
factor and possesses a strength modulated by the ratio of
the sum of current-quark masses involved in the transition
divided by the sum of the masses of the baryons involved.
The former are determined by Higgs boson couplings into
quantum chromodynamics (QCD), whereas the latter are
largely determined by the scale of EHM. Hence, this Q
divergence is a measure of the interplay between nature’s
two known mass-generating mechanisms.
Specializing to the case of neutron β decay, Eqs. (5)

entail the well-known Goldberger-Treiman relation and
ensure reliability of the pion pole dominance approxima-
tion for Gpn

P . Considering instead a prominent hyperon
decay, e.g., Λ → pe−ν̄e, one recognizes thatG

pΛ
5 has a pole

at the charged kaon mass, i.e., when Q2 þm2
K ¼ 0. Since

GpΛ
A is tied to the transverse part of the axial current, so

regular in the neighborhood of m2
K, then GpΛ

P also has a
pole at mK. Furthermore, defining a KpΛ form factor as
follows:

GpΛ
5 ðQ2Þ≕ m2

K

Q2 þm2
K

2fK
mu þms

GKpΛðQ2Þ; ð6Þ

where fK is the kaon leptonic decay constant, then Eqs. (5)
entail

GpΛ
A ð0Þ ¼ 2fK

mp þmΛ
GKpΛð0Þ; ð7Þ

providing an estimate of the KpΛ coupling in terms of the
axial-vector Λ → p transition form factor at the maximum
recoil point. As we shall see in our analysis, this relation is
accurate to better than 1%.
The evidently diverse physics relevance of octet baryon

axial-vector transitions highlights the importance of cal-
culating the associated form factors. However, despite their
being some of the simplest baryonic processes to consider,
this does not mean their calculation is simple. Studies of
meson semileptonic transitions [13–17] have revealed that
delivering predictions for the required processes demands
reliable calculations of the Poincaré-covariant hadron wave
functions and the related axial-vector interaction currents
and careful symmetry-preserving treatments of the matrix
elements involved.
Given their role in understanding modern neutrino

experiments [18–22], the nucleon axial and pseudoscalar
form factors have recently been the focus of many studies,
using continuum and lattice methods, e.g., Refs. [23–28].
Regarding hyperon semileptonic decays, analyses using an
array of tools may be found, e.g., in Refs. [29–37]. Herein,
we employ continuum Schwinger function methods
(CSMs) [38–40] to complement this body of work on
octet baryon axial-vector transitions. Namely, we construct
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approximations to the transition matrix elements using
solutions to a symmetry-preserving collection of integral
equations for the relevant n-point Schwinger functions,
n ¼ 2–6. This is now possible following development of a
realistic axial current for baryons [24,25].
One could extend to hyperons the QCD-kindred frame-

work used in Refs. [24–26] to compute all form factors
associated with the nucleon axial and pseudoscalar cur-
rents. However, that would require significant effort. An
expeditious alternative is to simplify the analysis by using
the symmetry-preserving formulation of a vector × vector
contact interaction (SCI) introduced in Refs. [41–43]. In so
doing, one ensures algebraic simplicity and, very impor-
tantly, provides for the parameter-free unification of octet
baryon axial-vector transitions with an array of other
baryon properties [44–47] and studies of the semileptonic
decays of pseudoscalar mesons [13,14,17]. By choosing
this approach, we are profiting from numerous studies
[45–56] which have revealed that, when interpreted judi-
ciously, SCI predictions provide a valuable quantitative
guide. In fact, SCI results typically deliver both a useful
first estimate of a given observable and a means of checking
the validity of algorithms employed in calculations that rely
(heavily) upon high-performance computing.
In Sec. II, we sketch the Faddeev equation used to

describe baryons as quark-plus-interacting-diquark bound
states and the current which guarantees preservation of all
PCAC identities. The description is complemented by an
extensive Appendix, which provides a detailed explanation
of the SCI and its results for every element that appears in
the Faddeev equations and currents. Using that information,
Sec. III presents and analyzes SCI predictions for octet
baryon axial, induced pseudoscalar, and pseudoscalar
transition form factors. This is followed in Sec. IV with
a discussion of the flavor separation of octet baryon axial
charges and their relation to the fraction of baryon spin
carried by valence degrees of freedom. Section V is a
summary and perspective.

II. BARYONS AND THEIR AXIAL CURRENT

Our analyses of octet baryon axial-vector transition form
factors rest on solutions of the Poincaré-covariant Faddeev
equation, depicted figuratively in Fig. 1, which, when
inserted into the diagrams drawn in Fig. 2, deliver a result
for the current in Eq. (1) that ensures Eqs. (5) and all their
corollaries for each transition. Details are presented in
Refs. [24,25]. For subsequent use, in Table I we identify a
useful separation of the current in Fig. 2.
Evidently, we have adopted the quark-plus-interacting-

diquark picture of baryon structure introduced in
Refs. [57–59], of which an updated perspective is provided
in Refs. [60–63]. In this approach, there are two contribu-
tions to binding within a baryon [64]. One part is expressed
in the formation of tight (but not pointlike) quarkþ quark
correlations. It is augmented by the attraction generated by

the quark exchange depicted in the shaded area in
Fig. 1, which ensures that diquark correlations within the
baryon are fully dynamical. Namely, no quark is special,
because each one participates in all diquarks to the fullest
extent allowed by its quantum numbers. The continual
rearrangement of the quarks guarantees, inter alia, that
the baryon’s dressed-quark wave function complies
with Pauli statistics. The spin-flavor wave function of JP ¼
1=2þ ground-state baryons is overwhelmingly dominated
by flavor-antitriplet–scalar and flavor-sextet–axial-vector
diquarks [43,46,47,54,56,63,65].
The first step in our analysis of octet baryon transitions

is the SCI calculation of every line, amplitude, and vertex
in Figs. 1 and 2. These calculations are described in

FIG. 1. Figurative representation of the integral equation for the
Poincaré-covariant matrix-valued function Ψ, which is the
Faddeev amplitude for a baryon with total momentum P ¼ pq þ
pd ¼ kq þ kd constituted from three valence quarks, two of
which are always contained in a nonpointlike, interacting diquark
correlation. Ψ describes the relative momentum correlation
between the dressed quarks and diquarks. Legend: shaded
rectangle, Faddeev kernel; single line, dressed-quark propagator
(Appendix A 1); Γ, diquark correlation amplitude; double line,
diquark propagator (Appendix A 2). Ground-state J ¼ 1=2þ
baryons contain both flavor-antitriplet–scalar and flavor-sextet–
axial-vector diquarks (Appendix A 3).

FIG. 2. Currents that ensure PCAC for on-shell baryons which
are described by the Faddeev amplitudes produced by the equation
depicted in Fig. 1: single line, dressed-quark propagator; undulat-
ing line, axial or pseudoscalar current; Γ, diquark correlation
amplitude; double line, diquark propagator; χ, seagull terms.
A legend is provided in Table I with details in Appendix A 4.
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Appendix A. Combining the results and using sensibly
chosen projection operators, one readily arrives at predic-
tions for the baryon axial and pseudoscalar form factors in
Eqs. (1b) and (4b). Note that Eq. (1a) entails that GB0B

A is
entirely determined by the Q-transverse part of the baryon
axial current [25].

III. CALCULATED FORM FACTORS

A. Axial

In the isospin-symmetry limit, there are six distinct
charged current semileptonic transitions between octet
baryons. We record our predictions for the associated
GAðQ2 ¼ 0Þ values in Table II. In the Cabibbo model of
such transitions, which assumes SU(3)-flavor symmetry,
the couplings in Table II are described by just two distinct
parameters (see Table 1 in Ref. [4]): D and F. In these
terms, a least-squares fit to the SCI results produces

D ¼ 0.78; F ¼ 0.43; F=D ¼ 0.56; ð8Þ

with a mean absolute relative error between SCI results and
Cabibbo fit of just 3(2)%. Evidently, confirming the
conclusion of many studies, the SCI predicts that the
violation of SU(3) symmetry in these transitions is small.
This is also manifest in the comparison between n → p and
Ξ0 → Σþ. The former is a d → u transition, and the latter is
s → u; yet, in the Cabibbo model,GΣþΞ0

A ð0Þ ¼ Gpn
A ð0Þ, and

this identity is accurate to 4% in the SCI calculation.
Likewise in experiment.
It is worth providing additional context for the results in

Eq. (8). We therefore note that a covariant baryon chiral
perturbation theory analysis of semileptonic hyperon
decays yields D ¼ 0.80ð1Þ, F ¼ 0.47ð1Þ, and F=D ¼
0.59ð1Þ [30]; and a three-degenerate-flavor lattice QCD
(lQCD) computation yields F=D ¼ 0.61ð1Þ [37].
In considering the empirical fact of approximate SU(3)-

flavor symmetry in the values of octet baryon axial
transition charges, one should note that it is not a direct
consequence of any basic symmetry. Hence, the apparent
near symmetry is actually a dynamical outcome. The
underlying source of any SU(3)-flavor symmetry breaking
is the Higgs-boson-generated splitting between the current
masses of the s and l ¼ u, d valence quarks. However, as
noted above, ms=ml ≈ 20. Therefore, something must be
strongly suppressing the expression of this difference in
observable quantities.
The responsible agent is EHM [7–12]. For example,

leptonic weak decays of pseudoscalar mesons proceed via
the axial current and fK=fπ ≈ 1.2. These decay constants
are order parameters for chiral symmetry breaking, and that
effect is predominantly dynamical for nature’s three lighter
quarks (see Fig. 2.5 in Ref. [10]). Similarly, considering the
axial form factors for semileptonic decays of heavyþ light
pseudoscalar mesons to light vector meson final states, one
finds SU(3)-flavor symmetry breaking on the order of 10%
[17]. Finally, comparing the hadron-scale valence-quark
distribution functions of the kaon and pion, one learns that
the u quark carries 6% less of the kaon’s light-front
momentum than does the u quark in the pion [66,67].
Focusing on the case in hand, i.e., octet baryon semi-

leptonic transitions, ms=ml ≈ 20 leads to a dressed-quark
mass ratio Ms=Ml ≈ 1.4—Table IX—namely, a huge
suppression owing to EHM. In turn, this is expressed as
an ∼14% difference in diquark masses, smaller differences
in diquark correlation amplitudes, and, consequently,
differences of even smaller magnitude (∼3%) between
the leading scalar-diquark components of the Faddeev
amplitudes of the baryons involved. In addition,
Tables XII and XIII reveal that the s → u and d → u
quark-level weak transitions are similar in strength—
unsurprising given that these axial vertices are obtained

TABLE I. Enumeration of terms in the current drawn in Fig. 2.

1. Diagram 1, two distinct terms: hJiSq—probe strikes dressed quark with scalar-diquark spectator—and hJiAq—probe strikes
dressed quark with axial-vector diquark spectator.

2. Diagram 2: hJiAAqq —probe strikes axial-vector diquark with dressed-quark spectator.
3. Diagram 3: hJifSAgqq —probe mediates transition between scalar and axial-vector diquarks, with dressed-quark spectator.
4. Diagram 4, three terms: hJiSSex—probe strikes dressed quark “in flight” between one scalar-diquark correlation and another;

hJifSAgex —dressed quark in flight between a scalar-diquark correlation and an axial-vector correlation; and hJiAAex —in flight
between one axial-vector correlation and another.

5. Diagrams 5 and 6—seagull diagrams describing the probe coupling into the diquark correlation amplitudes: hJisg. There is
one contribution from each diagram to match every term in diagram 4.

TABLE II. SCI predictions for gB
0B

A ¼ GB0B
A ðQ2 ¼ 0Þ compared

with experiment [5] and other calculations: Lorentz covariant
quark model [29]; covariant baryon chiral perturbation theory
[30]; and a lQCD study [35], which used large pion masses
(mπ ¼ 0.55–1.15 GeV) and quoted error estimates that are
primarily statistical.

n → p Σ− → Λ Λ → p Σ− → n Ξ0 → Σþ Ξ− → Λ

SCI 1.24 0.66 −0.82 0.34 1.19 0.23

[5] 1.28 0.57(3) −0.88ð2Þ 0.34(2) 1.22(5) 0.31(6)
[29] 1.27 0.63 −0.89 0.26 1.25 0.33
[30] 1.27 0.60(2) −0.88ð2Þ 0.33(2) 1.22(4) 0.21(4)
[35] 1.31(2) 0.66(1) −0.95ð2Þ 0.34(1) 1.28(3) 0.27(1)
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by solving Bethe-Salpeter equations akin to those that yield
the diquark correlation amplitudes. Finally, therefore,
regarding the n→p: Ξ0→Σþ comparison, e.g., Table III
reveals that the scalar-diquark components dominate the
transition; hence, these transitions should have similar
strengths.
Table III highlights a curious feature of the quarkþ

diquark picture; namely, the s → u quark Σ− → n transition
receives no contribution from diagram 1 in Fig. 2, because
the only scalar-diquark component in Σ− is d½ds� and the
neutron contains no ½ds� diquark. Nevertheless, scalar
diquarks are still dominant contributors to gnΣ

−

A via diagrams
3 and 4. It is alsoworth recalling that, since axial form factors
derive solely fromQ-transverse pieces of the baryon current
[25], there are no seagull contributions to GB0B

A .
Notwithstanding the dominance of scalar-diquark

components, Table III reveals that axial-vector correlations
also play a material role in the transitions. For instance,
hJiSAqq is large in all cases yet would vanish if axial-vector
diquarks were ignored in forming the picture of baryon
structure. Their impact is further highlighted below.
Our calculated SCI result for Gpn

A ðQ2 ¼ xm2
NÞ is reliably

interpolated using the function in Eq. (B1) with the
coefficients in Table XV(a). It is drawn in Fig. 3(a) and
compared with both the CSM prediction from Ref. [25],
produced with QCD-like momentum dependence for all
elements in Figs. 1 and 2, and a dipole fit to low-Q2 data
[68]. As usual with SCI predictions, the x≲M2

l results are
quantitatively sound (Ml is the dressed mass of the lighter
quarks—Table IX), but form factor evolution with increas-
ing x is too slow [41–43]; i.e., SCI form factors are too hard
at spacelike momenta.
The complete array of ground-state octet baryon axial

transition form factors is plotted in Fig. 3(b). Interpolations
of these functions are obtained using Eq. (B1) and the
appropriate coefficients from Table XV(a).
Figure 3(c) presents the curves in Fig. 3(b) renormalized

to unity at x ¼ 0 along with the pointwise average of the
renormalized functions. Introducing a dimensionless radius
squared associated with the curves drawn, viz.

ðr̂B0B
A Þ2 ¼ −6MB0B

d
dQ2

½GB0B
A ðQ2Þ=GB0B

A ð0Þ�; ð9Þ

in terms of which the usual radius is rB
0B

A ¼ r̂B
0B

A =MB0B, one
arrives at the following comparisons:

r̂Σ
−Λ

A =r̂pnA r̂ΛpA =r̂pnA r̂nΣ
−

A =r̂pnA r̂Σ
þΞ0

A =r̂pnA r̂ΛΞ
−

A =r̂pnA
1.22 0.89 0.90 1.05 1.00

; ð10Þ

which quantify the pattern that can be read “by eye” from
Fig. 3(c). Evidently, removing the MB0B kinematic factor

(a)

(b)

(c)

FIG. 3. (a) Gpn
A ðx ¼ Q2=m2

NÞ: SCI result computed herein,
solid red curve; prediction from Ref. [25], short-dashed purple
curve within like-colored band; and dipole fit to data [68], long-
dashed gold curve within like-colored band. (b) Complete array
of SCI predictions for octet baryon axial transition form factors:
GB0B

A ðx ¼ Q2=M2
B0BÞ. (c) As in (b), but with each form factor

normalized to unity at x ¼ 0. The thinner solid black curve is a
pointwise average of the six transition form factors.

TABLE III. Diagram separation of octet baryon axial transition
charges, presented as a fraction of the total listed in Table II,
row 1, and made with reference to Fig. 2.

hJiSq hJiAq hJiAAqq hJifSAgqq hJiSSex hJifSAgex hJiAAex
gpnA 0.29 0.013 0.072 0.35 0.19 0.051 0.028
gΣ

−Λ
A 0.27 0.016 0.023 0.42 0.28 −0.008
gpΛA 0.45 0.083 0.33 0.082 0.044 0.013
gnΣ

−

A 0.13 −0.051 0.57 0.42 −0.076 0.008
gΣ

þΞ0

A 0.41 0.011 0.064 0.36 0.12 0.020 0.013
gΛΞ

−

A 1.02 −0.072 0.12 0.12 −0.28 0.023 0.076
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has revealed a fairly uniform collection of axial transition
form factors: The mean value of the ratio in Eq. (10) is
1.01(13). Given that SCI form factors are typically hard,
the individual SCI radii are likely too small; nevertheless,
their size relative to r̂pnA should be a reliable guide. So, for a
physical interpretation of these ratios, we note that,
comparing the SCI result for r̂pnA with that in Ref. [25],
one has r̂pnASCI=r̂

pn
A½25� ¼ 0.76 and r̂pnA½25� ¼ 3.40ð4Þ. The

dipole fit to data in Fig. 3(a) yields rpnA½68� ¼ 3.63ð24Þ.
Considering the x dependence of the axial transition

form factors displayed in Fig. 3(c), it is worth noting that at
x ¼ 2 the mean absolute value of the relative deviation
from the average curve is 16(8)%. Apparently, the magni-
tude of SU(3)-flavor symmetry breaking increases withQ2,
i.e., as details of baryon structure are probed with higher
precision. This may also be highlighted by comparing
the x ¼ 2 values of the n → p and Ξ0 → Σþ curves in
Fig. 3(c): At x ¼ 2, the ratio is ≈1.2. It would be unity in
the case of SU(3)-flavor symmetry.

B. Induced pseudoscalar

The SCI result for the n → p induced pseudoscalar
transition form factor, GPðxÞ, is reliably interpolated
using the function in Eq. (B1b) with the coefficients in
TableXV(b). It is drawn in Fig. 4(a) and comparedwith both
theCSMprediction fromRef. [25], producedwithQCD-like
momentum dependence for all elements in Figs. 1 and 2,
and results from a numerical simulation of lQCD [28].
Evidently, there is fair agreement between the SCI result and
calculations with a closer connection to QCD.
Muon capture experiments (μþ p → νμ þ n) determine

the induced pseudoscalar charge

g�p ¼ mμ

2mN
GpðQ2 ¼ 0.88m2

μÞ; ð11Þ

where mμ is the muon mass. The SCI yields g�p ¼ 10.3.
For comparison, we record that Ref. [25] predicts
g�p ¼ 8.80ð23Þ, the MuCap Collaboration reports g�p ¼
8.06ð55Þ [69,70], and the world average value is g�p ¼
8.79ð1.92Þ [71]. Consequently, one might infer that the SCI
result is ≲15% too large. In assessing this outcome, it is
worth recalling that our SCI analysis is largely algebraic
and parameter-free.
With reference to Fig. 2, a diagram breakdown of

GB0B
P ð0Þ is presented in Table IV. One again notes the

dominance of scalar-diquark correlations and 0þ ↔ 1þ
transitions in forming the induced pseudoscalar transition
charges. In these cases, however, each form factor also
receives seagull contributions. They are largest for
Ξ− → Λ, in which the final state has all three possible
types of scalar-diquark correlation. Here, the seagull terms
must compensate for the strong contribution from diagram
1. The seagull contributions are also significant for Λ → p
and Σ− → n: In the former transition, they interfere

constructively with diagram 4 to compensate for a large
diagram 1 contribution; in the latter, they interfere destruc-
tively with diagram 4. These effects are required by PCAC
and ensured by our SCI.
The full set of ground-state octet baryon induced pseu-

doscalar transition form factors is plotted in Fig. 4(b).
Division by the factorRðxÞ, defined in Eq. (B1c), removes
kinematic differences associated with quark and baryon

(a)

(b)

(c)

FIG. 4. (a) ðml=MNÞGpn
P ðx ¼ Q2=m2

NÞ: SCI result computed
herein, solid red curve; prediction from Ref. [25], short-dashed
purple curve within like-colored band; and lQCD results [28],
green points. (b) Complete array of SCI predictions for octet
baryon axial transition form factors: GB0B

P ðx ¼ Q2=M2
B0BÞ=RðxÞ,

Eqs. (B1b) and (B1c). (c) As in (b), but with each form factor
normalized to unity at x ¼ 0. The thinner solid black curve is a
pointwise average of the other six curves.
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masses and pseudoscalar meson poles. Interpolations of
these functions are provided by Eq. (B1b) with the appro-
priate coefficients from Table XV(b). Figure 4(c) redraws
these curves renormalized to unity at x ¼ 0 along with the
pointwise average of the rescaled functions. On the dis-
played domain, the average is similar to the n → p curve;
and at x ¼ 2, the mean absolute value of the relative
deviation from the average curve is 20(14)%. Once again,
these panels reveal that the size of SU(3)-flavor symmetry
breaking increases with Q2. In this instance, comparing the
x ¼ 2 values of the n → p and Ξ0 → Σþ curves in Fig. 4(c),
the ratio is ≈1.2, namely, alike in size with that for the axial
transition form factors.

C. Pseudoscalar

Akin to Eq. (6), the πNN form factor is defined via the
pseudoscalar current in Eq. (4):

GπNNðQ2Þ fπ
mN

m2
π

Q2 þm2
π
¼ ml

mN
Gpn

5 ðQ2Þ: ð12Þ

In these terms, the Goldberger-Treiman relation reads

Gpn
A ð0Þ ¼ ml

mN
Gpn

5 ð0Þ: ð13Þ

Reviewing Eqs. (B1) and Table XV, it is apparent that the
relation is satisfied in our SCI. Furthermore, one can read
the value of the πNN coupling constant from the residue of
Gpn

5 ðQ2Þ at Q2 þm2
π ¼ 0:

gπNN
fπ
mN

¼ lim
Q2þm2

π→0
ð1þQ2=m2

πÞ
ml

mN
Gpn

5 ðQ2Þ ð14aÞ

¼SCI1.24: ð14bÞ

The SCI prediction is in fair agreement with that obtained
using QCD-kindred momentum dependence for all ele-
ments in Figs. 1 and 2, viz. 1.29(3) [25]; extracted from
pion-nucleon scattering data [72], 1.29(1); inferred from the
Granada 2013 np andpp scattering database [73], 1.30; and

determined in a recent analysis of nucleon-nucleon scatter-
ing using effective field theory and related tools [74], 1.30.
Couplings for all pseudoscalar transitions, defined by

analogy with Eq. (14a), are listed in Table V. Plainly,
GPfgB0Bð0ÞðfPfg

=MB0BÞ provides a good approximation to
the on-shell value of the coupling in all cases except the
Ξ−Λ transition, which is somewhat special owing to the
spin-flavor structure of the Λ, Eq. (A19c). This was
highlighted in connection with Table IV. Nevertheless,
even in this case, the t ¼ 0 value is a reasonable guide.
The values in Table V may be compared with quark-

soliton model results (see Table 3 in Ref. [33]). Converted
using empirical baryon masses and meson decay constants,

the mean value of δgr ≔ fjgSCIPfgB0B=g
½33�
PfgB0B − 1jg is 0.18(17).

Similar comparisons can be made with the couplings
used in phenomenological hyperon þ nucleon potentials
[75,76], yielding δgr ¼ 0.21ð17Þ and 0.15(14), respectively.
The dynamical coupled channels study of nucleon reso-
nances in Ref. [77] uses SU(3)-flavor symmetry to express
hyperon þ nucleon couplings in terms of gπNN . Relative to
those couplings, one finds δgr ¼ 0.17ð15Þ. Rescaling the
value of gπNN employed therein to match the SCI pre-
diction, then δgr ¼ 0.16ð14Þ. In this last case, the difference
from zero is an indication of the size of SU(3)-flavor
symmetry violation in fgPfgB0Bg. These comparisons with
phenomenological potentials suggest that the SCI predic-
tions for the couplings in Table V could serve as useful
constraints in refining such models.
With reference to Fig. 2, a diagram breakdown of

GB0B
5 ð0Þ is listed in Table VI. Once more, it will be

observed that scalar-diquark correlations dominate and
0þ ↔ 1þ transitions are important in building the pseu-
doscalar transition charges. Moreover, the pattern of dia-
gram contributions is similar to that seen in GB0B

P ð0Þ, again
largely as a consequence of Eq. (5): Recall, seagulls play no
role in GB0B

A ð0Þ.
The SCI result for the n → p pseudoscalar transition form

factor, G5ðxÞ, is reliably interpolated using the function in
Eq. (B1b) with the coefficients in Table XV(c). It is plotted
in Fig. 5(a) and compared with both the CSM prediction
from Ref. [25], obtained using QCD-like momentum
dependence for all elements in Figs. 1 and 2, and results
from a numerical simulation of lQCD [28]. The SCI result
is harder than the CSM prediction in Ref. [25], which

TABLE IV. Diagram separated contributions to Q2 ¼ 0 values
of octet baryon induced pseudoscalar transition form factors,
GB0B

P , presented as a fraction of the total listed in Table XV(b),
column 1, and made with reference to Fig. 2.

hJiSq hJiAq hJiAAqq hJifSAgqq hJiex hJisg
gpnP 0.54 0.051 0.072 0.35 0.018 −0.039
gΣ

−Λ
P 0.43 0.054 0.023 0.42 0.023 0.051
gpΛP 0.81 0.073 0.32 −0.064 −0.14
gnΣ

−

P 0.46 −0.047 0.56 −0.19 0.22
gΣ

þΞ0

P 0.66 0.036 0.061 0.33 −0.048 −0.033
gΛΞ

−

P 1.57 −0.23 0.10 0.091 0.13 −0.66

TABLE V. Row 1: pseudoscalar transition couplings defined by
analogy with Eq. (14a). Row 2: value of this quantity at t ¼ 0
instead of at t ¼ −m2

Pfg
. Row 3: relative difference between

rows 1 and 2.

πpn πΛΣ KpΛ KnΣ KΣΞ KΛΞ

gPfgB0B
fPfg
MB0B

1.24 0.66 −0.83 0.34 1.21 0.25

t ¼ 0 1.24 0.66 −0.82 0.34 1.19 0.23
% difference 0.16 0.15 1.5 1.8 1.7 9.1
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should be closer to reality; hence, one may consider the
possibility that the lQCD result is also too hard.
Figure 5(b) depicts the complete set of ground-state octet

baryon pseudoscalar transition form factors, each divided
by the factor RðxÞ so as to remove kinematic differences
associated with masses and pseudoscalar meson poles.
Interpolations of these functions are indicated by Eq. (B1b)
with the appropriate coefficients from Table XV(c). In
Fig. 5(c), we depict each of the curves in Fig. 5(b) after
renormalization to unity at x ¼ 0 alongside the pointwise
average of the renormalized functions. At x ¼ 2, the mean
absolute value of the relative deviation from the average
curve is 7(5)%. Focusing on the Ξ0 → Σþ curves in Fig. 5
(c), at x ¼ 2, the ratio is ≈1.2, similar to that found with
GΣΞ

A;P. We note that although GΛΞ−

5 ðxÞ=RðxÞ is not mono-
tonically decreasing with increasing x on the domain
displayed, GΛΞ−

5 ðxÞ is.

IV. VALENCE SPIN FRACTION

The axial transition form factors considered above
involve three distinct isospin multiplets and a singlet,
which in the isospin symmetry limit may be characterized
by the following four baryons: p, Σþ, Ξ−, andΛ. Following
Ref. [26], we consider neutral-current processes and
perform a flavor separation of GB

A in each case. The Q2 ¼
0 values of the results obtained thereby define a flavor
separation of octet baryon axial charges:

gpA ¼ gpAu − gpAd; ð15aÞ

gΣ
þ

A ¼ gΣ
þ

Au − gΣ
þ

As ; ð15bÞ

gΞ
−

A ¼ −gΞ−

Ad − gΞ
−

As ; ð15cÞ

gΛA ¼ gΛAu þ gΛAd − gΛAs: ð15dÞ

The flavor-separated charges are of particular interest,
because gBAh measures the valence-h-quark’s contribution to
the light-front helicity of baryon B, i.e., the difference
between the light-front number density of h quarks with
helicity parallel to that of the baryon and the kindred

density with helicity antiparallel. For each baryon, one may
subsequently define the singlet, triplet, and octet axial
charges, respectively:

aB0 ¼ gBAu þ gBAd þ gBAs; ð16aÞ
aB3 ¼ gBAu − gBAd; ð16bÞ

aB8 ¼ gBAu þ gBAd − 2gBAs: ð16cÞ

TABLE VI. Diagram separated contributions to Q2 ¼ 0 values
of octet baryon pseudoscalar transition form factors, presented as
a fraction of the total listed in Table XV(c), column 1, and made
with reference to Fig. 2.

hJiSq hJiAq hJiAAqq hJifSAgqq hJiex hJisg
gpn5 0.51 0.048 0.083 0.38 0.017 −0.039
gΣ

−Λ
5 0.40 0.050 0.025 0.44 0.039 0.048
gpΛ5 0.71 0.094 0.35 −0.032 −0.12
gnΣ

−

5 0.36 −0.057 0.59 −0.068 0.18
gΣ

þΞ0

5 0.57 0.028 0.073 0.38 −0.015 −0.028
gΛΞ

−

5 1.49 −0.20 0.14 0.13 0.040 −0.60

(a)

(b)

(c)

FIG. 5. (a) ðml=MNÞGpn
5 ðx ¼ Q2=m2

NÞ: SCI result, solid red
curve; prediction from Ref. [25], short-dashed purple curve
within like-colored band; lQCD results [28], green points.
(b) Complete array of SCI predictions for octet baryon axial
transition form factors: GB0B

P ðx ¼ Q2=M2
B0BÞ=RðxÞ, Eqs. (B1b)

and (B1c). (c) As in (b), but with each form factor normalized to
unity at x ¼ 0. The thinner solid black curve is a pointwise
average of the other six curves.
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aB0 is the fraction of the spin of baryon B that is carried by
valence quarks [78]. Computed in the SCI, this quantity is
associated with the hadron scale, ζH ¼ 0.33 GeV
[66,67,79,80], whereat all properties of the hadron are
carried by valence degrees of freedom. Consequently, any
difference between the SCI value of aB0 and unity should
measure the fraction of the baryon’s spin stored in quark þ
diquark orbital angular momentum.
The information provided in Appendix A is sufficient to

complete the calculation of the charges in Eq. (15). TableVII
reports the contributions to each charge from the diagrams in
Fig. 2. Qualitatively, the results are readily understood using
the legend in Table I, the spin-flavor structure of each
baryon, specified in Eqs. (A19), and the Faddeev amplitudes
in Table XI. For instance, regarding the s quark in theΛ, the
s½ud� quarkþ diquark combination is strong in the Faddeev
amplitude, so gΛAs receives a dominant diagram 1 scalar-
diquark bystander contribution; the valence s quark is never
isolated alongside an axial-vector diquark, and hence
hJiAs ≡ 0; and the other leading contribution is from diagram
3, which is fed by the strong u½ds� − d½us� combination
transforming into ufdsg − dfusg. Concerning u and d
quarks in theΛ, the u ↔ d antisymmetry of the amplitude’s
spin-flavor structure entails that whatever contribution gΛAu
receives, −gΛAd will be of the same size with opposite sign
(weak charges of the u and d quarks are equal and opposite);
and diagrams involving scalar diquarks must dominate,
because such diquarks are most prominent in the Faddeev
amplitude.
Notwithstanding the dominance of scalar-diquark con-

tributions in all cases, a material role for axial-vector
diquarks is also apparent. We highlighted this with the
importance of u½ds� − d½us� ↔ ufdsg − dfusg in the Λ;
and it is also worth emphasizing the size of the hJAq i
contribution, which for singly represented valence
quarks in p, Σþ is much larger in magnitude and has
the opposite sign to that connected with the doubly
represented quark.

The summed results for each gBAf and the associated
singlet, triplet, and octet axial charges are listed in
Table VIII: The pattern of the SCI predictions is similar
to that in a range of other studies (see Table III in Ref. [34]).
Using this information, we first report the following axial
charge ratios for each baryon:

gpAd=g
p
Au gΣ

þ
As =g

Σþ
Au gΞ

−

Ad=g
Ξ−

As gΛAðuþdÞ=g
Λ
As

−0.50 −0.34 −0.43 −0.40
: ð17Þ

Evidently, the ratio of axial charges for singly and doubly
represented valence quarks is roughly the same in each
baryon, viz. 0.42ð7Þ, if one interprets uþ d as effectively
the singly represented quark in theΛ. Furthermore, the ratio
is smallest in magnitude when the singly represented quark
is heavier than that which is doubly represented.
It is also worth recalling that the SCI produces results

that are consistent with only small violations of SU(3)-
flavor symmetry, Eq. (8). Thus, one may compare the
proton results in Table VIII with the following flavor-
symmetry predictions:

gpAd
gpAu

¼ F −D
2F

¼ −0.39; ap8 ¼ 3F −D
F þD

¼ 0.43: ð18Þ

There is a reasonable degree of consistency.
Such accord is important, because textbook-level analy-

ses yield gpAd=g
p
Au ¼ −1=4 in nonrelativistic quark models

with uncorrelated wave functions. The enhanced magni-
tude of the SCI result can be traced to the presence of axial-
vector diquarks in the proton, namely, the fact that the
Fig. 2, diagram 1 contribution arising from the fuug
correlation, in which the probe strikes the valence d quark,
is twice as strong as that from the fudg, in which it strikes
the valence u quark. The relative negative sign means this
increases jgdAj at a cost to guA. Consequently, the highly
correlated proton wave function obtained as a solution of
the Faddeev equation in Fig. 1 places a significantly larger
fraction of the proton’s light-front helicity with the valence
d quark.

TABLE VII. With reference to Fig. 2, diagram contributions to
flavor-separated octet baryon axial charges, Eq. (15). “0” entries
are omitted. Naturally, in the isospin-symmetry limit, the results
for Σ− are obtained by making the replacement gΣ

þ
Au → gΣ

−

Ad and for
the Ξ0, via gΞ

−

Ad → gΞ
0

Au.

hJiSq hJiAq hJiAAqq hJifSAgqq hJiSSex hJifSAgex hJiAAex
gpAu 0.36 −0.016 0.11 0.22 0.13 0.028
−gpAd 0.031 −0.022 0.22 0.24 −0.064 0.007
gΣ

þ
Au 0.40 −0.008 0.15 0.14 0.15 0.023
−gΣþ

As 0.064 −0.014 0.17 0.085 −0.014 0.001
−gΞ−

Ad 0.013 −0.020 0.20 0.24 −0.044 0.005
−gΞ−

As −0.61 0.019 −0.066 −0.24 −0.026 −0.005
gΛAu 0.086 −0.014 0.019 −0.087 −0.17 0.035
−gΛAd −0.086 0.014 −0.019 0.087 0.17 −0.035
−gΛAs −0.36 −0.044 −0.21 −0.038 −0.016 −0.003

TABLE VIII. Net flavor-separated and SU(3) baryon axial
charges obtained by combining the entries in Table VII according
to Eqs. (15) and (16). 0 entries are omitted. Recall that these
results are for the elastic and neutral processes; hence, the aB3
entries need not exactly match those in row 1 in Table II.

B gBAu gBAd gBAs aB0 aB3 aB8

p 0.83 −0.41 0.42 1.24 0.42
Σþ 0.85 −0.29 0.56 0.85 1.42
Ξ− −0.40 0.93 0.53 0.40 −2.26
Λ −0.13 −0.13 0.67 0.41 −1.61
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The enhancement remains when all elements in Figs. 1
and 2 express QCD-like momentum dependence, but with
reduced magnitude [25]: gpAd=g

u
Au ¼ −0.32ð2Þ. Relative to

that analysis, the larger size of the SCI result likely owes to
the momentum independence of the Bethe-Salpeter and
Faddeev amplitudes it generates. This limits the suppres-
sion of would-be soft contributions; e.g., the two-loop hJiSSex
contribution in row 2 in Table VII is roughly 5 times larger
than the analogous term in Ref. [25], significantly enhanc-
ing the magnitude of gpAd.
Referring to Table VIII, aB3 and aB8 are conserved

charges; i.e., they are the same at all resolving scales ζ.
This is not true of the individual terms in their definitions,
Eqs. (16b) and (16c): The flavor-separated valence quark
charges gBAu, g

B
Ad, and g

B
As evolve with ζ [78]. Consequently,

the value of aB0 , which is identified with the fraction of the
baryon’s total J ¼ 1=2 carried by its valence degrees of
freedom, changes with scale—it diminishes slowly with
increasing ζ; and, as noted above, the SCI predictions in
Table VIII are made with reference to the hadron scale
ζ ¼ ζH ¼ 0.33 GeV [66,67,79,80].
Textbook-level analyses yield aB0 ¼ 1 in nonrelativistic

quark models with uncorrelated wave functions. So, in such
pictures, all the baryon’s spin derives from that of the
constituent quarks. Herein, on the other hand, considering
the hadron scale, then the valence degrees of freedom in
octet baryons carry roughly one-half the total spin. The
mean is

āB0 ¼ 0.50ð7Þ: ð19Þ

Since there are no other degrees of freedom at this scale and
the Poincaré-covariant baryon wave function obtained from
the Faddeev amplitude discussed in Appendix A 3 properly
describes a J ¼ 1=2 system, then the remainder of the total
J must be lodged with quarkþ diquark orbital angular
momentum. In keeping with such a picture, this remainder
is largest in systems with the lightest valence degrees of
freedom: ap0 ≈ aΛ0 < aΣ0 ≈ aΞ0 . A detailed discussion of
these and related issues will be presented elsewhere [81].

V. SUMMARY AND PERSPECTIVE

Using a symmetry-preserving treatment of a vector ×
vector contact interaction (SCI), we delivered predictions
for the axial, induced-pseudoscalar, and pseudoscalar
transition form factors of ground-state octet baryons,
thereby furthering progress toward a goal of unifying an
array of baryon properties [44–47] with analogous treat-
ments of semileptonic decays of heavyþ heavy and
heavyþ light pseudoscalar mesons to both pseudoscalar
and vector meson final states [14,17]. The study required an
extensive body of calculations, demanding solutions of a
collection of integral equations for an array of relevant
n ¼ 2–6-point Schwinger functions, e.g., gap, Bethe-
Salpeter, and, of special importance, Faddeev equations

that describe octet baryons as quark-plus-interacting-
diquark bound states. Naturally, being symmetry preserv-
ing, all mathematical and physical expressions of partial
conservation of the axial current (PCAC) are manifest.
Our implementation of the SCI has four parameters, viz.

the values of a mass-dependent quarkþ antiquark coupling
strength chosen at the current masses of the u=d, s, c, and b
quarks. Since their values were fixed elsewhere [14], the
predictions for octet baryons presented herein are param-
eter-free. The merits of the SCI are its algebraic simplicity;
paucity of parameters; simultaneous applicability to a wide
variety of systems and processes; and potential for
revealing insights that connect and explain numerous
phenomena.
Regarding octet baryon axial transition form factors GA,

SCI results are consistent with a small violation of SU(3)-
flavor symmetry (Sec. III A); and our analysis revealed this
outcome to be a dynamical consequence of emergent
hadron mass. Namely, the generation of a nuclear size
mass scale in the strong interaction sector of the Standard
Model acts to mask the impact of Higgs-boson-generated
differences between the current masses of lighter quarks.
Furthermore, the spin-flavor structure of the Poincaré-
covariant baryon wave functions, expressed in the presence
of both flavor-antitriplet scalar diquarks and flavor-sextet
axial-vector diquarks, plays a key role in determining the
axial charges and form factors. Notably, while scalar-
diquark contributions are dominant, axial-vector diquarks
nevertheless play a material role, which is especially visible
in the values of the flavor-separated charges. Thus, here, as
with many other quantities [61,82,83], a sound description
of observables requires the presence of axial-vector corre-
lations in the wave functions of ground-state octet baryons.
Octet baryon induced-pseudoscalar transition form fac-

tors GP are also described well by our SCI (Sec. III B).
Qualitatively, the same formative elements are at work with
GP as withGA. The material difference is the role of seagull
terms in the current (Fig. 2). GA is associated with the
transverse part of the baryon axial current and, hence,
receives no seagull contributions. On the other hand,
seagull terms contribute to all calculated induced pseudo-
scalar form factors, being particularly significant for
Ξ− → Λ, Λ → p, and Σ− → n. Each GPðQ2Þ exhibits a
pole at Q2 þm2

P , where mP ¼ mπ; mK , the pion or kaon
mass, depending on whether the underlying weak quark
transition is d → u or s → u.
Owing to PCAC, which entails that the longitudinal

part of the axial-vector current is completely determined by
the kindred pseudoscalar form factor, then in every case
there is an intimate connection between the induced
pseudoscalar and pseudoscalar transition form factors
GP;5. Consequently, viewed from the correct perspective,
all said aboutGP applies equally toG5. A new feature is the
link between G5 and a number of meson þ baryon
couplings, which can be read from the residue of G5 at

CHENG, SERNA, YAO, CHEN, CUI, and ROBERTS PHYS. REV. D 106, 054031 (2022)

054031-10



Q2 þm2
P ¼ 0 (Table V). Thus computed, the SCI predic-

tion for the πpn coupling is in fair agreement with other
calculations and phenomenology.
Working with neutral axial currents, we obtained SCI

predictions for the flavor separation of octet baryon axial
charges and, therefrom, values for the associated SU(3)-
flavor singlet, triplet, and octet axial charges (Sec. IV). The
singlet charge relates to the fraction of a baryon’s total
angular momentum carried by its valence quarks. The SCI
predicts that, at the hadron scale ζH ¼ 0.33 GeV, this
fraction is roughly 50%. Since there are no other degrees
of freedom at ζH, the remainder may be associated with
quark þ diquark orbital angular momentum.
Numerous analyses have shown that, when viewed

prudently, SCI results typically provide a useful quantita-
tive guide. Notwithstanding this, it is worth checking the
predictions described herein using the QCD-kindred frame-
work that has been employed widely in studying properties
of the nucleon, Δ-baryon, and their low-lying excitations
[24–26,62,84–86]. This is especially true of the results for
octet baryon spin structure. In addition, with continuing
progress in developing the ab initio Poincaré-covariant
three-body Faddeev equation approach to baryon structure
[87–90], it should soon be possible to deliver octet baryon
axial and pseudoscalar current form factors independently
of the quarkþ diquark scheme. Comparisons between
the results obtained in the different frameworks should
serve to improve both. Naturally, too, an extension of the
analyses herein to baryons containing one or more heavy
quarks would also be valuable; especially, e.g., given the
role that Λb → Λce−ν̄e may play in testing lepton flavor
universality [91].
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APPENDIX A: SCI PROPAGATORS,
AMPLITUDES, AND CURRENTS

1. Contact interaction

The basic element in the continuum analysis of hadron
bound states is the quarkþ antiquark scattering kernel.
At leading order in a widely used symmetry-preserving
approximation scheme (rainbow-ladder truncation) [92,93],
it can be written

Kα1α
0
1
;α2α02

¼ G μνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ðA1aÞ

G μνðkÞ ¼ G̃ ðk2ÞTk
μν; ðA1bÞ

where k ¼ p1 − p0
1 ¼ p0

2 − p2, with p1;2 and p0
1;2 being,

respectively, the initial and final momenta of the scatterers,
and k2Tk

μν ¼ k2δμν − kμkν.
G̃ is the defining element; and it is now known that,

owing to the emergence of a gluon mass scale [94–97], G̃ is
nonzero and finite at infrared momenta. Hence, it can be
written as follows:

G̃ ðk2Þ ¼k2≃0 4παIR
m2

G
: ðA2Þ

In QCD [97], mG ≈ 0.5 GeV and αIR ≈ π. Following
Ref. [14], we retain this value of mG and, exploiting the
fact that a SCI cannot support relative momentum between
meson bound-state constituents, simplify the tensor in
Eqs. (A1):

KCI
α1α

0
1
;α2α02

¼ 4παIR
m2

G
½iγμ�α1α01 ½iγμ�α2α02 : ðA3Þ

An elementary form of confinement is expressed in the
SCI by including an infrared regularizing scale Λir when
defining all integral equations relevant to bound-state
problems [98]. This expedient excises momenta below
Λir and so eliminates quarkþ antiquark production thresh-
olds [99]. The standard choice is Λir ¼ 0.24 GeV ¼
1=½0.82 fm� [41], which introduces a confinement length
scale that is roughly the same as the proton radii [100].
All integrals in SCI bound-state equations require ultra-

violet regularization. This step breaks the link between
infrared and ultraviolet scales that is characteristic of QCD.
Consequently, the associated ultraviolet mass scales Λuv
become physical parameters. They may be interpreted as
upper bounds on the domains whereupon distributions
within the associated systems are practically momentum
independent.
For a quark of flavor f, the SCI gap equation is

S−1f ðpÞ ¼ iγ · pþmf

þ 16π

3

αIR
m2

G

Z
d4q
ð2πÞ4 γμSfðqÞγμ; ðA4Þ

where mf is the f-quark current mass. Using a Poincaré-
invariant regularization, the solution is

S−1f ðpÞ ¼ iγ · pþMf; ðA5Þ

with Mf, the dynamically generated dressed-quark mass,
obtained as the solution of

Mf ¼ mf þMf
4αIR
3πm2

G
Ciu0 ðM2

fÞ; ðA6Þ

where (τ2uv ¼ 1=Λ2
uv, τ2ir ¼ 1=Λ2

ir)
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Ciu0 ðσÞ ¼
Z

∞

0

dss
Z

τ2ir

τ2uv

dτe−τðsþσÞ

¼ σ½Γð−1; στ2uvÞ − Γð−1; στ2irÞ�: ðA7Þ

The “iu” superscript stresses that the function depends on
both the infrared and ultraviolet cutoffs and Γðα; yÞ is the
incomplete gamma function. In general, functions of the
following type arise in SCI bound-state equations:

C̄iun ðσÞ ¼ Γðn − 1; στ2uvÞ − Γðn − 1; στ2irÞ; ðA8Þ

Ciun ðσÞ ¼ σC̄iun ðσÞ, n ∈ Z≥.
The SCI analysis of pseudoscalar mesons in Ref. [14]

improved upon that in Ref. [42] by keeping all light-quark
parameter values therein but fixing the s-quark current
mass ms and K-meson ultraviolet cutoff ΛK

uv through a
least-squares fit to measured values of mK and fK, while
imposing the relation

αIRðΛK
uvÞ½ΛK

uv�2 ln
ΛK
uv

Λir
¼ αIRðΛπ

uvÞ½Λπ
uv�2 ln

Λπ
uv

Λir
: ðA9Þ

This procedure eliminates one parameter by imposing the
physical constraint that any increase in the momentum-
space extent of a hadron wave function should be matched
by a reduction in the effective coupling between the
constituents. We use the u=d and s values herein. The
procedure was also implemented for the c quark and D
meson and b̄ quark and B meson; and the complete set of
results is reproduced in Table IX. The evolution of Λuv
with mP is described by the following interpolation
ðs ¼ m2

PÞ:

ΛuvðsÞ ¼ 0.306 ln½19.2þ ðs=m2
π − 1Þ=2.70�: ðA10Þ

2. Diquarks

One now has all information necessary to specify the
dressed-quark propagators that appear when solving Fig. 1
for octet baryons. The next step is to compute the SCI
diquark correlation amplitudes. The forms of the relevant
Bethe-Salpeter equations are written in Sec. 2.2.2 in
Ref. [43], along with the structure of their solutions, which
can be expressed as follows:

aΓJP
fgðKÞ ¼ Ta

3̄c
⊗ ΓJP

fgðKÞ ¼ Ta
3̄c
⊗ tJfg ⊗ ΓJP

fgðKÞ; ðA11Þ

where the color-antitriplet character is expressed in
fTa

3̄c
;a¼1;2;3g¼fiλ2;iλ5;iλ7g, using Gell-Mann matri-

ces; the flavor structure is expressed via

t0ud ¼

2
64

0 1 0

−1 0 0

0 0 0

3
75; t0us ¼

2
64

0 0 1

0 0 0

−1 0 0

3
75;

t0ds ¼

2
64
0 0 0

0 0 1

0 −1 0

3
75;

t1uu ¼

2
64
p
2 0 0

0 0 0

0 0 0

3
75; t1ud ¼

2
64
0 1 0

1 0 0

0 0 0

3
75;

t1us ¼

2
64
0 0 1

0 0 0

1 0 0

3
75; t1dd ¼

2
64
0 0 0

0
p
2 0

0 0 0

3
75;

t1ds ¼

2
64
0 0 0

0 0 1

0 1 0

3
75; t1ss ¼

2
64
0 0 0

0 0 0

0 0
p
2

3
75; ðA12Þ

and the Dirac structure in

Γ0þ
fgðKÞ ¼ γ5

�
iE½fg� þ

γ · K
2MR

F½fg�

�
C; ðA13aÞ

Γ1þ
fgðKÞ ¼ TK

μνγνCEffgg; ðA13bÞ

where K is the correlation’s total momentum, MR ¼
MfMg=½Mf þMg�, and C ¼ γ2γ4 is the charge conjugation
matrix. As initially observed in Ref. [101], owing to
similarities between their respective Bethe-Salpeter equa-
tions, one may consider a color-antitriplet JP diquark as
being the partner to a color-singlet J−P meson. Thus, the JP

diquark Bethe-Salpeter equations are solved using the
dressed-quark propagators described above and the values
of Λuv associated with the J−P mesons [46,54]. The
calculated diquark masses and canonically normalized
amplitudes required herein are listed in Table X. (As

TABLE IX. Couplings αIR=π, ultraviolet cutoffs Λuv, and
current-quark masses mf , f ¼ u=d, s, c, b, that deliver a good
description of flavored pseudoscalar meson properties, along with
the dressed-quark masses M and pseudoscalar meson masses mP
and leptonic decay constants fP they produce; all obtained with
mG ¼ 0.5 GeV and Λir ¼ 0.24 GeV. Empirically, at a sensible
level of precision [5], mπ ¼ 0.14, fπ ¼ 0.092; mK ¼ 0.50,
fK ¼ 0.11; mD ¼ 1.87, fD ¼ 0.15; mB ¼ 5.30, fB ¼ 0.14.
(We assume isospin symmetry and list dimensioned quantities
in GeV.)

Quark αIR=π Λuv m M mP fP

π l ¼ u=d 0.36 0.91 0.0068u=d 0.37 0.14 0.10
K s̄ 0.33 0.94 0.16s 0.53 0.50 0.11
D c 0.12 1.36 1.39c 1.57 1.87 0.15
B b̄ 0.052 1.92 4.81b 4.81 5.30 0.14
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explained in Appendix C in Ref. [13], when using the SCI it
is necessary to slightly modify the canonical normalization
procedure for a given diquark correlation amplitude,
resulting in a ≲4% recalibration, which is already included
in Table X.)
The scalar and axial-vector diquark propagators take

standard forms:

Δ½fg�ðKÞ ¼ 1

K2 þm2
½fg�

; ðA14aÞ

Δffgg
μν ðKÞ ¼

�
δμν þ

KμKν

m2
ffgg

�
1

K2 þm2
ffgg

; ðA14bÞ

where the masses are taken from Table X.

3. Faddeev amplitudes

All elements necessary to compose the octet baryon
Faddeev kernels are now in hand, and we complete this task
following Sec. III in Ref. [43]. The value of Λuv in each
Faddeev equation is chosen to be the scale associated with
the lightest diquark in the bound state, because this is
always the smallest value and, hence, the dominant
regularizing influence.
Any J ¼ 1=2þ octet solution of the resulting Faddeev

equation can be written as follows:

ΨðPÞ ¼ ψðPÞuðPÞ; ðA15Þ

where the positive energy spinor satisfies

ūðPÞðiγ · PþMÞ ¼ 0 ¼ ðiγ · PþMÞuðPÞ; ðA16Þ

is normalized such that ūðPÞuðPÞ ¼ 2M, and

2MΛþðPÞ ¼
X
σ¼�

uðP; σÞūðP; σÞ ¼ M − iγ · P; ðA17Þ

where in this line we have made the spin label explicit. (See
Appendix A in Ref. [43] for more details.) Using
Eq. (A15), then the complete SCI solution for ψðPÞ is a
sum of the following Dirac structures (P̂2 ¼ −1):

ψS ðPÞ ¼ sID; ψA
μ ðPÞ ¼a1iγ5γμ þa2γ5P̂μ: ðA18Þ

As usual, Ψ̄ðPÞ ¼ ΨðPÞ†γ4 ¼ ūðPÞγ4ψðPÞ†γ4.
Faddeev equation dynamics determines the values of the

coefficients: fs;a1;2g, each of which is a vector in flavor
space. The spin-flavor intertwining is determined by the
quantum numbers of the baryon under consideration.
Herein, we have the following structures:

Ψp ¼

2
64
r1 u½ud�
r2 dfuug
r3 ufudg

3
75; ðA19aÞ

Ψn ¼

2
64
r1 d½ud�
r2 ufddg
r3 dfudg

3
75; ðA19bÞ

ΨΛ ¼ 1ffiffiffi
2

p

2
64
r1 −

ffiffiffi
2

p
s½ud�

r2 u½ds� − d½us�
r3 ufdsg − dfusg

3
75; ðA19cÞ

ΨΣþ ¼

2
64
r1 u½us�
r2 sfuug
r3 ufusg

3
75; ðA19dÞ

ΨΞ0 ¼

2
64
r1 s½us�
r2 sfusg
r3 ufssg

3
75: ðA19eÞ

Since we work in the isospin symmetry limit, the Σ0;−

and Ξ− structures may be obtained from those above by
applying an isospin-lowering operator. These states are
mass degenerate with those written explicitly.
Solving the Faddeev equations, one obtains the masses

and amplitudes listed in Table XI. The row labels
therein refer to those identified in Eqs. (A19). Regarding
the masses, we note that the values are deliberately
0.20(2) GeVabove experiment [5], because Fig. 1 describes
the dressed-quark core of each baryon. To constitute a
complete baryon, resonant contributions should be
included in the Faddeev kernel. Such “meson cloud” effects
are known to lower the mass of octet baryons by ≈0.2 GeV
[102,103]. (Similar effects are reported in quark models
[104,105].) Their impact on baryon structure can be
estimated using dynamical coupled-channels models
[39,106], but that is beyond the scope of contemporary
Faddeev equation analyses. Instead, we depict all form
factors in terms of x ¼ Q2=M2

B0B, a procedure that has
proved efficacious in developing sound comparisons with
experiment [26,39,84–86].

TABLE X. Masses and canonically normalized correlation
amplitudes obtained by solving the diquark Bethe-Salpeter
equations. Recall that we work in the isospin-symmetry limit.
(Masses listed in GeV. Amplitudes are dimensionless.)

m½ud� E½ud� F½ud� m½us� E½us� F½us�
0.78 2.71 0.31 0.94 2.78 0.37

mfuug Efuug mfusg Efusg mfssg Efssg
1.06 1.39 1.22 1.16 1.33 1.10
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Notwithstanding these remarks, the quarkþ diquark
picture of baryon structure produces a Σ − Λ mass splitting
that is commensurate with experiment. This is because the
Λ is primarily a scalar-diquark system, whereas the Σ has
more axial-vector strength: Scalar diquarks are lighter than
axial-vector diquarks.
The Faddeev amplitudes in Table XI are unit normalized.

In calculating observables, one must use the canonically
normalized amplitude that is defined via the baryon’s
Dirac form factor in elastic electromagnetic scattering,
F1ðQ2 ¼ 0Þ. To wit, for a baryon B, with nu u valence
quarks, nd d valence quarks and ns s valence quarks, one
decomposes the Dirac form factor as follows:

FB
1 ðQ2 ¼ 0Þ
¼ nueuFBu

1 ð0Þ þ ndedFBd
1 ð0Þ þ nsesFBs

1 ð0Þ; ðA20Þ

where eu;d;s are the quark electric charges, expressed in
units of the positron charge. It is subsequently straightfor-
ward to calculate the single constant factor that, when used
to rescale the unit-normalized Faddeev amplitude for B,
ensures FBu

1 ð0Þ ¼ 1 ¼ FBd
1 ð0Þ ¼ FBs

1 ð0Þ. So long as one
employs a symmetry-preserving treatment of the elastic
scattering problem, it is guaranteed that a single factor
ensures all three flavor-separated electromagnetic form
factors are unity at Q2 ¼ 0. Explicit examples are provided
elsewhere [44].

4. Baryon currents

Using the propagators and amplitudes described above,
one can write the explicit form of the baryon current
indicated in Fig. 2. Their content is most compactly
expressed by associating a flavor-space column vector
with the baryon spinor so that, e.g., one may reexpress
Eqs. (A18) and (A19e) as follows:

ΨΞ0 ¼ ΨS ½us�
Ξ0 fs þ ΨA fusg

Ξ0 fs þ ΨA fssg
Ξ0 fu; ðA21Þ

where fu ¼ column½1; 0; 0�, fd ¼ column½0; 1; 0�, and
fs ¼ column½0; 0; 1�. The column vector that should be
used is determined by B and the specified diquark. We
denote the related row vector by f̄h, h ¼ u, d, s, and also
define

S ¼ diagonal½Su; Sd; Ss�; ðA22Þ

where the quark propagators are drawn from Appendix A 1.

a. Diagram 1

This diagram expresses two contributions, Table I:

J1
5ðμÞðK;QÞ ¼ JqS

5ðμÞðK;QÞ þ JqA
5ðμÞðK;QÞ: ðA23Þ

Using the notation just introduced,

JqS
5ðμÞ ¼

Z
l
Ψ̄S

B0 ðP0Þf̄f

×Sðl0þÞΓfg
5ðμÞðQÞSðlþÞΔ0þð−lÞfgΨS

B ðPÞ; ðA24aÞ

JqA
5ðμÞ ¼

Z
l
Ψ̄A

B0αðP0Þf̄f

×Sðl0þÞΓfg
5ðμÞðQÞSðlþÞΔ1þ

αβð−lÞfgΨA
BβðPÞ; ðA24bÞ

where lð0Þ
� ¼ l� Pð0Þ, the diquark propagators are given in

Eqs. (A14), and
R
l represents our regularized four-dimen-

sional momentum-space integral with, matching the
Faddeev equation procedure, Λuv chosen to be the ultra-
violet cutoff associated with the lightest diquark in the

B⟶
g→f

B0 process.
The remaining elements in Eqs. (A24) are Γfg

5 ≕ T fgΓfg
5

and Γfg
5μ ≕ T fgΓfg

5μ, viz. the dressed-quarkþ pseudoscalar,
−quarkþ axial-vector vertices that express the g → f
quark transition. Their calculation is exemplified in
Eqs. (A.21)–(A.28) in Ref. [17], and we adapt those results
to all g → f transitions considered herein. Notably, our
implementation of the SCI guarantees the following (and
other) Ward-Green-Takahashi identities (kþ ¼ kþQ,
m ¼ diagonal½mu;md;ms�):

QμΓ
fg
5μðkþ; kÞ þ imΓfg

5 ðkþ; kÞ þ iΓfg
5 ðkþ; kÞm

¼ S−1ðkþÞiγ5T fg þ iγ5T fgS−1ðkÞ: ðA25Þ

b. Diagram 2

There is only one term in this case, i.e., probe strikes
axial-vector diquark with dressed-quark spectator:

TABLE XI. Masses and unit normalized Faddeev amplitudes
obtained by solving the octet baryon Faddeev equations defined
by Fig. 1. The row label superscript refers to Eqs. (A19): For the
Λ baryon, r2 is a scalar-diquark combination; otherwise, it is axial
vector. Canonically normalized amplitudes, explained in con-
nection with Eq. (A20), are obtained by dividing the amplitude
entries in each row by the following numbers: np;n

c ¼ 0.157,
nΛ

c ¼ 0.177, nΣ
c ¼ 0.190, and nΞ

c ¼ 0.201. (Masses listed in
GeV. Amplitudes are dimensionless. Recall that we work in the
isospin-symmetry limit.)

Mass sr1 sr2 ar21 ar22 ar31 ar32
p 1.15 0.88 −0.38 −0.063 0.27 0.044
n 1.15 0.88 0.38 0.063 −0.27 −0.044
Λ 1.33 0.66 0.62 −0.41 −0.084
Σ 1.38 0.85 −0.46 0.15 0.22 0.041
Ξ 1.50 0.91 −0.29 0.021 0.29 0.052
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J2
5ðμÞðK;QÞ ¼ JA

0A
5ðμÞðK;QÞ ðA26aÞ

¼
Z
l
Ψ̄A 0

B0αðP0Þf̄hSðlÞΔ1þ
αρð−l0

−Þ

× ΓA0A
5ðμÞ;ρσð−l0

−;−l−ÞΔ1þ
σβð−l−ÞfhΨA

BβðPÞ; ðA26bÞ

where ΓA0A
5ðμÞ;ρσ is the axial-vector diquark pseudoscalar

(axial-vector) vertex. The associated form factors must
be calculated; to that end, we adapt the procedure detailed
in Ref. [25]. The results are collected in Appendix A 5, with
those relevant here given in Eq. (A34).

c. Diagram 3

There are two terms in this case, i.e., in the presence of a
dressed-quark spectator, the probe strikes an axial-vector
(scalar) diquark, inducing a transition to a scalar (axial-
vector) diquark. Writing the former explicitly:

J3
5ðμÞðK;QÞ ¼ JSA

5ðμÞðK;QÞ ðA27aÞ

¼
Z
l
Ψ̄S

B0 ðP0Þf̄hSðlÞΔ0þð−l0
−Þ

× ΓSA
5ðμÞ;σð−l0

−;−l−ÞΔ1þ
σβð−l−ÞfhΨA

BβðPÞ; ðA27bÞ

where ΓSA
5ðμÞ;σ is the axial-vector → scalar-diquark transition

vertex. Again, the associated form factors must be
calculated, a task we complete following Ref. [25]. The
results are collected in Appendix A 5, with those relevant
here given in Eq. (A35). Naturally, ΓAS

5ðμÞ;σðl0;lÞ ¼
−ΓSA

5ðμÞ;σðl0;lÞ.

d. Diagram 4

Here, the probe strikes a dressed-quark in flight, emitted
in the breakup of one diquark and en route to formation of
another:

J4
5ðμÞðK;QÞ ¼

X
J
P1
1
;J

P2
2
¼S ;A

Z
l

Z
k
Ψ̄J

P2
2

B0 ðP0Þf̄h0ΔJ
P2
2 ðkqqÞSðkÞ

× ΓJ
P1
1 ðlqqÞ½Sðkqq − lÞΓfg

5ðμÞðQÞSðlqq − kÞ�T

× Γ̄J
P2
2 ð−kqqÞSðlÞΔJ

P1
1 ðlqqÞfhΨ

J
P1
1

B ðPÞ;
ðA28Þ

where ð·ÞT denotes matrix transpose, Γ̄ðKÞ ¼ C†ΓðKÞTC,
and lqq ¼ −lþ P, kqq ¼ −kþ P0. We have suppressed
Lorentz indices, which can readily be restored once the
chosen transition is specified.
There are four terms in Eq. (A28); but as exploited in the

enumeration of Table I, symmetry relates SA to AS ;
namely, there are only three distinct contributions.

It is worth highlighting here that, in emulating the SCI
formulation of the Faddeev equation in Ref. [43], we have
used a variant of the so-called “static approximation” [107].
Consequently, the dressed-quark exchanged between the
diquarks in the Faddeev kernel (Fig. 1) is represented as

STðqÞ → g2B
Mf

; ðA29Þ

with gB ¼ 1.18. Consistency with this simplification is
achieved by writing

Sðkqq − lÞΓfg
5ðμÞðQÞSðlqq − kÞ

→ Γfg
5ðμÞðQÞg2B

�
1

Mf
þ 1

Mg

�
iγ ·QþMf þMg

Q2 þ ðMf þMgÞ2
: ðA30Þ

e. Diagrams 5 and 6

In a quark-plus-interacting-diquark picture of baryons, it
is typically necessary to include “seagull terms” in order to
ensure that relevant Ward-Green-Takahashi identities are
satisfied [108]. Those relevant to the currents in Eqs. (1)
and (4) are given in Ref. [25]. Adapted to our SCI, they read

J5
5ðμÞðK;QÞ ¼

X
J
P1
1
;J

P2
2
¼S ;A

Z
l

Z
k
Ψ̄J

P2
2

B0 ðP0Þf̄h0ΔJ
P2
2 ðkqqÞ

× SðkÞχJ
P1
1
fg

5ðμÞ ðlqqÞSðkqq − lÞTΓ̄J
P2
2 ð−kqqÞ

× SðlÞΔJ
P1
1 ðlqqÞfhΨ

J
P1
1

B ðPÞ; ðA31aÞ

J6
5ðμÞðK;QÞ ¼

X
J
P1
1
;J

P2
2
¼S ;A

Z
l

Z
k
Ψ̄J

P2
2

B0 ðP0Þf̄h0ΔJ
P2
2 ðkqqÞ

× SðkÞΓJ
P1
1 ðlqqÞSðlqq − kÞTχ̄J

P2
2
fg

5ðμÞ ð−kqqÞ

× SðlÞΔJ
P1
1 ðlqqÞfhΨ

J
P1
1

B ðPÞ; ðA31bÞ

where, with mPfg
denoting the mass of the fḡ pseudoscalar

meson,

χJ
Pfg

5μ ðQÞ ¼ −
iQμ

Q2 þm2
Pfg

½γ5T fgΓJPðQÞ

þ ΓJPðQÞðγ5T fgÞT�; ðA32aÞ

iχJ
Pfg

5 ðQÞ ¼ −
1

2mfg

im2
Pfg

Q2 þm2
Pfg

½γ5T fgΓJPðQÞ

þ ΓJPðQÞðγ5T fgÞT�; ðA32bÞ

χ̄J
Pfg

5μ ðQÞ ¼ −
iQμ

Q2 þm2
Pfg

½Γ̄JPðQÞγ5T fg

þ ðγ5T fgÞTΓ̄JPðQÞ�; ðA32cÞ
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iχ̄J
Pfg

5 ðQÞ ¼ −
1

2mfg

im2
Pfg

Q2 þm2
Pfg

½Γ̄JPðQÞγ5T fg

þ ðγ5T fgÞTΓ̄JPðQÞ�: ðA32dÞ

It is worth noting the following identity:

Qμχ
JPfg
5μ ðQÞ þ 2imfgχ

JPfg
5 ðQÞ

¼ −iγ5T fgΓJPðQÞ − ΓJPðQÞðiγ5T fgÞT ðA33Þ

and the kindred relation for the conjugate seagulls.

5. Diquark currents

InAppendixA 4,we saw that any study of baryonaxial and
pseudoscalar currents that exploits the quarkþ diquark
representation of baryon structure requires knowledge of
probeþ diquark form factors. We calculate them following
the procedure detailed in Sec. III. C. 4 in Ref. [25], which
employs the current depicted in Fig. 6. Considering the

systems involved, there are two form factors for each probe:
axial vector↔axial vector and axial vector ↔ pseudoscalar.

a. Axial-vector diquark transition form factors

Using the SCI and considering fhgg → fhfg transition,
the four diagrams in Fig. 6 translate into the following
expression:

ΓAA
5ðμÞ;ρσðl0;lÞ ¼ N3̄

ctrDF

Z
t
fiΓ̄fhfg

ρ ð−l0ÞSðt0þÞiΓfg
5ðμÞðQÞSðtþÞiΓfghg

σ ðlÞSð−tÞT

þ iΓ̄fhfg
ρ ð−l0ÞSðtÞiΓfghg

σ ðlÞ½Sð−t0−ÞiΓfg
5ðμÞðQÞSð−t−Þ�T

− iΓ̄fhfg
ρ ð−l0ÞSðt0þÞχfghgfg5ðμÞ;σ ðlÞSð−tÞT − χ̄fhfgfg

5ðμÞ;ρ ð−l0ÞSðtþÞiΓfghg
σ ðlÞSð−tÞTg; ðA34Þ

where we have made the Lorentz indices explicit, writing

with reference to Eq. (A11), e.g., Γ1þ
gh ¼ Γfghg

σ ; N 3̄
c ¼ 2 and

the trace is over Dirac and flavor structure; andQ ¼ l0 − l,

tð0Þ� ¼ t� lð0Þ.

b. Axial-vector–scalar-diquark transition form factors

Analogously for the fhgg → ½hf� transition, one has the
following expression for the process described in
Appendix A 4 c:

ΓSA
5ðμÞ;σðl0;lÞ ¼ N3̄

ctrDF

Z
t
fiΓ̄½hf�ð−l0ÞSðl0þÞiΓfg

5ðμÞðQÞSðtþÞiΓfghg
σ ðlÞSð−tÞT

þ iΓ̄½hf�ð−l0ÞSðtÞiΓfghg
σ ðlÞ½Sð−t0−ÞiΓfg

5ðμÞðQÞSð−t−Þ�T

− iΓ̄½hf�ð−l0ÞSðt0þÞχfghgfg5ðμÞ;σ ðlÞSð−tÞT − χ̄½hf�fg
5ðμÞ;ρð−l0ÞSðtþÞiΓfghg

σ ðlÞSð−tÞTg: ðA35Þ

As noted above, ΓAS
5ðμÞ;σðl0;lÞ ¼ −ΓSA

5ðμÞ;σðl0;lÞ.

c. Ward-Green-Takahashi identities

It is worth remarking here that, using Eqs. (A25) and
(A33) and kindred relations, one may straightforwardly
verify the following results:

0 ¼ QμΓAA
5μ;ρσðl0;lÞ þ i2mfgΓAA

5;ρσðl0;lÞ; ðA36aÞ

0 ¼ QμΓSA
5μ;ρðl0;lÞ þ i2mfgΓSA

5;ρðl0;lÞ: ðA36bÞ

These identities were established elsewhere [25]. Being
general, they can be used to constrain Ansätze for the
vertices involved. Nevertheless, herein, we compute the
SCI results directly.

d. Probe-diquark form factors

The expression in Eq. (A34) yields the following explicit
results:

ΓAA
5;ρσðl0;lÞ ¼ −

1

2mfg

m2
Pfg

Q2 þm2
Pfg

× εαβγδl̄γQδκ
AA
pfgðQ2ÞTl0

ραTl
σβ; ðA37aÞ

FIG. 6. Interaction vertex for the JP1

1 → JP2

2 diquark þ probe
interaction (l0 ¼ lþQ): single line, quark propagator; undulat-
ing line, pseudoscalar or axial current; Γ, diquark correlation
amplitude; double line, diquark propagator; χ, seagull interaction.
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ΓAA
5μ;ρσðl0;lÞ¼

�
εαβγδl̄γQδ

Qμ

Q2þm2
Pfg

κAAa1fg
ðQ2Þ

þεμαβγ½l̄γκ
AA
a2fg

ðQ2ÞþQγκ
AA
a3fg

ðQ2Þ�
�
Tl0
ραTl

σβ;

ðA37bÞ

where l̄ ¼ l0 þ l and on the domainQ2 ∈ ð−m2
Pfg

; 2M2
B0BÞ

the computed form factors κAAifgðQ2Þ, i ¼ p;a1;a2;a3, are
reliably interpolated using the following function:

κðs ¼ Q2Þ ¼ a0 þ a1s
1þ b1sþ b2s2

; ðA38Þ

with the coefficients listed in Tables XII, XIII (charged
currents), andXIV (neutral currents). Note that, owing to the
identities in Eqs. (A36), κAAp ð0Þ ¼ κAAa2

ð0Þ. Moreover, in the
isospin symmetry limit, mffdg ¼ mffug, f ¼ d, u; conse-
quently, κAAa3ud

≡ 0. Furthermore, in no case considered
herein does κAAa3

≠ 0 contributemore than 1% to any reported
quantity.

Turning to Eq. (A35), one finds

ΓSA
5;ρðl0;lÞ ¼ Tl

ραQα

m2
Pfg

Q2 þm2
Pfg

×
m½hf� þmfghg

2mfg
iκSApfgðQ2Þ; ðA39aÞ

ΓSA
5μ;ρðl0;lÞ ¼ Tl

ρα½m½hf� þmfghg�
�
δαμκ

SA
a1fg

ðQ2Þ

−
QμQα

Q2 þm2
Pfg

κSAa2fg
ðQ2Þ

�
; ðA39bÞ

where the form factors can again be interpolated using
Eq. (A38) with the coefficients listed in Tables XII–XIV.

TABLE XIII. Probe-diquark form factors for s → u transitions,
which can be interpolated using Eq. (A38) with the coefficients
listed here. Where written, f ¼ d, u because we assume isospin
symmetry; and the absence of an entry means the coefficient is
zero. [Every κðsÞ is dimensionless; so each coefficient in
Eq. (A38) has the mass dimension necessary to cancel that of
the associated sðGeV2Þ factor.]
ffsg → ffug a0 a1 b1 b2

κAAp 0.516 0.131 0.482
κAAa1

0.480 −0.087 0.318 −0.096
κAAa2

0.516 −0.093 0.325 −0.095
κAAa3

0.128 −0.019 0.416 −0.089

fssg → fusg a0 a1 b1 b2

κAAp 0.519 0.113 0.496
κAAa1

0.481 1.807 4.328 2.142
κAAa2

0.519 1.877 4.188 2.083
κAAa3

0.076 0.183 3.090 1.657

fdsg → ½ud� a0 a1 b1 b2

κSAp 0.742 0.173 0.304
κSAa1

0.742 0.248 0.568 −0.023
κSAa2

0.712 0.246 0.552 −0.023

fssg → ½us� a0 a1 b1 b2

κSAp 0.691 0.179 0.376
κSAa1

0.691 0.199 0.547 −0.024
κSAa2

0.666 0.195 0.527 −0.023

ffsg → ½uf� a0 a1 b1 b2

κSAp 0.651 0.144 0.301
κSAa1

0.651 0.242 0.574 −0.024
κSAa2

0.630 0.238 0.556 −0.023

TABLE XII. Probe-diquark form factors for d → u transitions,
which for practical purposes can be interpolated using Eq. (A38)
with the coefficients listed here. Where written, f ¼ d, u because
we assume isospin symmetry; and the absence of an entry means
the coefficient is zero. [Every κðsÞ is dimensionless, so each
coefficient in Eq. (A38) has the mass dimension necessary to
cancel that of the associated sðGeV2Þ factor.]
ffdg → ffug a0 a1 b1 b2

κAAp 0.470 0.173 0.598
κAAa1

0.467 0.023 0.598
κAAa2

0.470 0.023 0.598
κAAa3

fdsg → fusg a0 a1 b1 b2

κAAp 0.492 0.137 0.567
κAAa1

0.489 −0.095 0.444 −0.129
κAAa2

0.492 −0.096 0.444 −0.129
κAAa3

fffg ↔ ½ud� a0 a1 b1 b2

κSAp 0.649 0.094 0.182
κSAa1

0.649 0.327 0.751 −0.035
κSAa2

0.646 0.327 0.751 −0.035

fðu; dÞsg ↔ ½ðd; uÞs� a0 a1 b1 b2

κSAp 0.641 0.152 0.327
κSAa1

0.641 0.254 0.679 −0.031
κSAa2

0.638 0.254 0.679 −0.031
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APPENDIX B: INTERPOLATIONS OF SCI
BARYON FORM FACTORS

On t ¼ Q2 ∈ ð−m2
Pfg

; 2M2
B0BÞ, SCI form factors can

reliably be interpolated using the following functions:

GB0B
A ðsÞ ¼ g0 þ g1sþ g2s2

1þ l1sþ l2s2
; ðB1aÞ

GB0B
P;5 ðsÞ ¼

g0 þ g1sþ g2s2

1þ l1sþ l2s2
RðsÞ; ðB1bÞ

RðsÞ ¼
m2

Pfg

sþm2
Pfg

MB0B

mfg
; ðB1cÞ

with the coefficients listed in Table XV(a)–(c).

TABLE XV. (a) Interpolation parameters for octet baryon axial
transition form factors [Eq. (B1a)]. (b) Interpolation parameters
for octet baryon induced pseudoscalar transition form factors
[Eq. (B1b)]. (c) Interpolation parameters for octet baryon
pseudoscalar transition form factors [Eq. (B1c)]. [Every form
factor is dimensionless; so each coefficient in Eq. (B1a) has the
mass dimension necessary to cancel that of the associated
sðGeV2Þ factor.]
(a) g0 g1 g2 l1 l2

Gpn
A 1.24 1.97 0.29 2.44 1.12

GΛΣ−

A 0.66 1.19 0.16 2.73 1.48
−GpΛ

A 0.82 1.00 0.074 1.80 0.68
GnΣ−

A 0.34 0.43 0.093 1.86 0.75
GΣþΞ0

A 1.19 3.28 0.33 3.35 1.82
GΛΞ−

A 0.23 0.90 −0.011 4.42 2.14

(b) g0 g1 g2 l1 l2

Gpn
P 2.01 4.22 0.70 2.96 1.57

GΛΣ−

P 1.25 2.09 0.24 2.59 1.25
−GpΛ

P 1.18 1.91 0.15 2.18 0.80
GnΣ−

P 0.50 0.44 0.061 1.39 0.29
GΣþΞ0

P 1.97 2.38 0.060 1.84 0.43
GΛΞ−

P 0.40 1.34 −0.014 3.91 1.88

(c) g0 g1 g2 l1 l2

Gpn
5 1.24 0.13 0.12 0.19 0.13

GΛΣ−

5 0.66 0.19 0.075 0.36 0.18
−GpΛ

A 0.82 0.26 0.14 0.39 0.25
GnΣ−

5 0.34 −0.13 0.019 −0.30 0.050
GΣþΞ0

5 1.19 1.10 0.26 1.03 0.42
GΛΞ−

5 0.23 0.097 −0.014 0.73 −0.12

TABLE XIV. Probe-diquark form factors for g → g, g ¼ u, d, s,
neutral current transitions, which can be interpolated using
Eq. (A38) with the coefficients listed here. Where written,
f ¼ d, u because we assume isospin symmetry; and the absence
of an entry means the coefficient is zero. Note that κAAa3

≡ 0 in this
case. [Every κðsÞ is dimensionless; so each coefficient in
Eq. (A38) has the mass dimension necessary to cancel that of
the associated sðGeV2Þ factor.]
fffg → fffg a0 a1 b1 b2

κAAp 0.470 0.173 0.598
κAAa1

0.467 0.023 0.598
κAAa2

0.470 0.023 0.598

fssg → fssg a0 a1 b1 b2

κAAp 0.547 0.094 0.435
κAAa1

0.475 0.643 1.878 0.723
κAAa2

0.547 0.654 1.722 0.649

ffsg → ffsg a0 a1 b1 b2

κAApff 0.492 0.137 0.567
κAAa1ff

0.489 −0.095 0.444 −0.129
κAAa2ff

0.492 −0.096 0.444 −0.129
κAApss 0.564 0.106 0.416
κAAa1ss 0.494 0.462
κAAa2ss 0.564 0.469

fudg ↔ ½ud� a0 a1 b1 b2

κSAp 0.649 0.094 0.182
κSAa1

0.649 0.327 0.751 −0.035
κSAa2

0.646 0.327 0.751 −0.035

ffsg ↔ ½fs� a0 a1 b1 b2

κSApff 0.641 0.152 0.327
κSAa1ff

0.641 0.254 0.679 −0.031
κSAa2ff

0.638 0.254 0.679 −0.031
κSApss 0.742 0.160 0.310
κSAa1ss 0.742 0.186 0.455 −0.018
κSAa2ss 0.701 0.185 0.434 −0.017
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structure of the nucleon, Rep. Prog. Phys. 82, 076201
(2019).

[79] Z. F. Cui, M. Ding, J. M. Morgado, K. Raya, D. Binosi, L.
Chang, J. Papavassiliou, C. D. Roberts, J. Rodríguez-
Quintero, and S. M. Schmidt, Concerning pion parton
distributions, Eur. Phys. J. A 58, 10 (2022).

[80] Z. F. Cui, M. Ding, J. M. Morgado, K. Raya, D. Binosi, L.
Chang, F. De Soto, C. D. Roberts, J. Rodríguez-Quintero,
and S. M. Schmidt, Emergence of pion parton distribu-
tions, Phys. Rev. D 105, L091502 (2022).
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