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The universal fragmentation functions of gluon into the flavored quarkonia Bc and (polarized) B�
c are

computed within NRQCD factorization framework at the lowest order in velocity expansion and strong
coupling constant. It is mandatory to invoke the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi renormaliza-
tion program to render the NRQCD short-distance coefficients UV finite in a pointwise manner. The
calculation is facilitated with the sector decomposition method, with the final results presented with high
numerical accuracy. This knowledge is useful to enrich our understanding toward the large-pT behavior of

Bð�Þ
c production at LHC experiment.
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I. INTRODUCTION

Like parton distribution functions (PDFs), fragmentation
functions (FFs) are process-independent functions that
encapsulate the nonperturbative hadronization effect and
play a central role in QCD phenomenology of collider
physics. In accordance with the celebrated QCD factori-
zation theorem [1], the inclusive production rate of an
identified hadron H at large transverse momentum in high
energy collision experiment is dictated by the fragmenta-
tion mechanism:

dσ½Aþ B → HðpTÞ þ X�
¼

X
i

dσ̂½Aþ B → iðpT=zÞ þ X� ⊗ Di→Hðz; μÞ

þOð1=p2
TÞ; ð1Þ

where A, B represent two colliding particles, dσ̂ denotes the
inclusive rate for producing the parton i, Di→HðzÞ is the
fragmentation function for the parton i into H, which
characterizes the probability for i to transition into any final
state containing the hadronH specifying the fractional light-
cone momentum z with respect to the parent parton i. The
sum in (1) is extended over all species of partons, i ¼ q; q̄; g.

Similar to the PDFs, the scale dependence of fragmentation
functions is also governed by the celebrated Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. Taking
the gluon fragmentation into the hadron H as example, the
DGLAP equation reads

d
d lnμ2

Dg→Hðz;μÞ ¼
X
i

Z
1

z

dξ
ξ
Pigðξ;αsðμÞÞDi→H

�
z
ξ
;μ

�
;

ð2Þ

where μ is interpreted as the renormalization scale, and
PigðξÞ are the corresponding splitting kernels. Once this FF
is deduced at some initial scale μ0 by any means, one then
deduces its form at any other scale μ by solving the evolution
equation (2).
The fragmentation functions for light hadrons such as π,

K, p;…, are hopelessly nonperturbative objects, which can
only be extracted from experimental data. On the contrary,
it was realized in the mid-1990s that FFs for heavy
quarkonia need not be genuinely nonperturbative entities,
which nevertheless can be largely understood in perturba-
tive QCD by the virtue of asymptotic freedom [2,3]. This
philosophy is systematically embodied in the modern
nonrelativistic QCD (NRQCD) factorization framework
[4], that is, the quarkonium FFs can be expressed as the
sum of products of short-distance coefficients (SDCs) and
long-distance yet universal NRQCD matrix elements, with
the series organized by the velocity expansion [2,3]. Since
the nonperturbative NRQCD matrix elements are merely
numbers rather than functions, the profiles of the quarkonia
FFs are largely determined by perturbation theory, therefore
NRQCD factorization approach is endowed with strong
predictive power.
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During the past three decades, a number of fragmenta-
tion functions for S-wave=P-wave charmonia/bottomonia
have been investigated in the context of NRQCD factori-
zation approach, typically at lowest order in αs (for a very
incomplete list, see [2,3,5–25]. With the advance of higher-
order calculational technique, the SDCs associated with
some S-wave quarkonium FFs have recently been calcu-
lated through the next-to-leading order (NLO) in αs
[14,19,26–29].
Unlike J=ψ and ϒ, the Bc meson is the unique heavy

quarkonium which is composed of two different heavy
flavors: the b and c̄ quarks. It is interesting to understand
the production mechanism of this special heavy meson in
hadron collision environment. The LO fragmentation

functions for b=c̄ → Bð�Þ
c was computed long ago. The

NLO perturbative correction has also been recently avail-
able. Due to the rich gluon content inside the proton in
small x region, it is also of great phenomenological

incentive to study the g → Bð�Þ
c fragmentation functions

to predict their production rates at LHC. To produce a Bc
meson in this case, one has to first create a pair of cc̄ and
another pair of bb̄, therefore the perturbative order of this
LO fragmentation process is already comparable with that

of the NLO QCD correction to b=c̄ → Bð�Þ
c . Thus, the

computation of the g → Bð�Þ
c fragmentation functions at LO

is already rather challenging technically, which have never
been considered before. The aim of this work is to fill
this gap, by computing the fragmentation functions for

g → Bð�Þ
c at lowest order in velocity expansion and αs, by

invoking the sector decomposition technique widely used
in the area of multiloop computation.
The paper is organized in the following way. We first

present the definition of the fragmentation functions for

g → Bð�Þ
c following Collins and Soper, and the desired

NRQCD factorization formula in Sec. II. In Sec. III, we
illustrate the matching procedure, the strategy of loop
integral computation and the subtraction of the UV diver-
gences, and present the numerical results for the short-

distance coefficients and g → Bð�Þ
c fragmentation functions.

Finally, we summarize in Sec. IV.

II. FRAGMENTATION FUNCTION
AND ITS NRQCD FACOTRIZATION

In literature there are several different strategies to
extract the quarkonium FFs. Among them, the most
systematic approach is to start from the gauge-invariant
operator definition for the fragmentation functions pio-
neered by Collins and Soper long ago [30] (Note that this
definition was first used by Ma to compute the quarkonium
FFs in NRQCD [6]). One great virtue of this operator-based
approach is to render the renormalization program trans-
parent. According to the operator definition given in [30],
the g-to-Bð�Þ

c fragmentation function is expressed as (see
also [15,17]):

D
g→Bð�Þ

c
ðz; μÞ ¼ −gμνzD−3

2πkþðN2
c − 1ÞðD − 2Þ

Z þ∞

−∞
dx−e−ik

þx−

× h0jGþμ
c ð0ÞΦ†ð0; 0; 0⊥Þcb

X
X

jBð�Þ
c ðPÞ þ XihBð�Þ

c ðPÞ þ XjΦð0; x−; 0⊥ÞbaGþν
a ð0; x−; 0⊥Þj0i: ð3Þ

D ¼ 4 − 2ε signifies the space-time dimensions, and μ is
the renormalization scale associated with this nonlocal
composite operator. Gμν is the matrix-valued gluon
field-strength tensor in the adjoint representation of
SUðNcÞ. Here it is convenient to adopt the light-cone
coordinates. Any four-vector Aμ ¼ ðA0; A1; A2; A3Þ can be
recast in the light-cone format Aμ¼ðAþ;A−;A⊥Þ, with
A�≡ 1ffiffi

2
p ðA0�A3Þ and A⊥ ≡ ðA1; A2Þ. We assume to work

in a frame where the Bc meson is moving along the z
direction with the þ-momentum Pþ, Moreover, kþ ¼
Pþ=z denotes the þ-component momentum of injected
by the gluon field strength operator. The symbol X
indicates collectively those unobserved light hadrons ac-
companying the Bc.
The eikonal factor Φð0; x−; 0⊥Þ in (3) is a path-ordered

exponential of the gluon field, inserted to ensure the gauge
invariance of the FF:

Φð0; x−; 0⊥Þba ¼ P exp

�
igs

Z
∞

x−
dy−Aþð0þ; y−; 0⊥Þ

�
ba
;

ð4Þ
where Aμ designates the matrix-valued gluon field in the
adjoint representation, gs is the QCD coupling constant,
and P denotes the path-ordering.
The key observation underlying the NRQCD factoriza-

tion that, prior to forming a Bc state via soft interaction,
the b and c̄ quarks have to be first created with slow relative
momentum, also within small distance ∼1=mc;b, which
necessarily involves hard momentum transfer, thus can
be studied in perturbation theory owing to asymptotic
freedom of QCD. At the lowest order in velocity expansion,
NRQCD factorization [4] allows one to refactorize

the g → Bð�Þ
c FFs into the product of the SDCs and the

long-distance NRQCD matrix elements:
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Dg→Bc
ðz; μÞ ¼ dg→Bc

ðz; μÞ h0jO
Bc
1 ð1S0Þj0i
M3

þ � � � ; ð5aÞ

Dg→B�
c
ðz; μÞ ¼ dg→B�

c
ðz; μÞ h0jO

B�
c

1 ð3S1Þj0i
M3

þ � � � ; ð5bÞ

where M ¼ mb þmc, D is the dimension of space-time,
dg→Hðz; μÞ is the desired SDCs for H ¼ Bc; B�

c, and
the corresponding NRQCD production operators are
defined by

OBc
1 ð1S0Þ ¼ χ†cψb

X
X

jBc þ XihBc þ Xjψ†
bχc; ð6aÞ

OB�
c

1 ð3S1Þ ¼ χ†cσψb

X
X

jB�
c þ Xi · hB�

c þ Xjψ†
bσχc; ð6bÞ

where ψb and χ†c are the NRQCD field operators that
annihilate a b quark and a c̄ quark, respectively.
Using the vacuum saturation approximation, these vac-

uum NRQCD matrix elements can be approximated by the
radial wave function at the origin for Bð�Þ

c in phenomeno-
logical potential model:

hOBc
1 ð1S0Þi ≃

Nc

2π
jRð0Þj2;

hOBc
1 ð3S1Þi ≃ ðD − 1ÞNc

2π
jRð0Þj2: ð7Þ

III. COMPUTATION OF THE
FRAGMENTATION FUNCTIONS

A. Matching procedure

We can proceed to calculate the SDCs dH1 ðzÞ by the
standard perturbative matching technique, i.e., by replacing
the physicalH state in (5)with the free quark pairbc̄ carrying
the appropriate quantum number. Concretely speaking, one

replaces Bc by a fictitious meson bc̄ð1Sð1Þ0 Þ, and replaces B�
c

by the quark state bc̄ð3Sð1Þ1 Þ. Computing the left side of (5)
using perturbative QCD, combined with the following
vacuum matrix elements in perturbative NRQCD:

hObc̄
1 ð1S0Þ ¼ 2Nc; hObc̄

1 ð3S1Þ ¼ 2NcðD − 1Þ; ð8Þ

we can directly solve the SDC dH1 ðzÞ, order by order in αs.
The fragmentation function defined in (3) is manifestly

gauge-invariant. In practical calculation, we specialize to
Feynman gauge for simplicity.We use a privateMathematica
code to automatically generate the Feynman diagrams and
the associated cut amplitudes that correspond to the pertur-
bative fragmentation function defined in (3). The Feynman
rules for the eikonal propagator and vertex [30], as well as
those for conventionalQCDpropagators andvertices are also
implemented with the aid of the package QGRAF [31]. There

are seven diagrams on each side of the cut, so in total 49 cut
diagrams at lowest order in αs. A simplifying feature is that
the gluon propagator cannot be attached to the eikonal line at
this perturbative order. For concreteness, in Fig. 1 we exhibit
a typical LO cut diagram associated with the perturbative
FF Dg→bc̄.
The cut-amplitude structure of fragmentation function

stems from the insertion of the asymptotic out states in (3).
Consequently, the corresponding cut-line phase space
integration measure reads [15,17]

dΦn¼4πMBc
δ

�
kþ−Pþ−

Xn
i¼1

kþi

�Y2
i¼1

dkþi
2kþi

dD−2ki⊥
ð2πÞD−1 θðkþi Þ;

ð9Þ
where ki (i ¼ 1, 2) stands for the momentum of the ith on-
shell quark line (b̄ and c) that passes through the cut. The
integration over kþi can be transformed into a parametric
integration in a finite interval, but the integration over the
transverse momentum ki;⊥ are completely unbounded, i.e.,
from −∞ to þ∞. This feature may persuade us that
integration over ki;⊥ could be regarded as loop integration
in D − 2-dimensional spacetime, with D ¼ 4 − 2ε.
Throughout this work, we adopt the dimensional regulari-
zation to regularize occurring UV divergences.
To project the bc̄ pair onto the intended color/spin/

orbital/color states, it is convenient to employ the covariant
projector technique to expedite the calculation. At the
lowest order in velocity expansion, it is legitimate to

partition the quark momenta inside the fictitious Bð�Þ
c state

commensurate to their mass ratio: pc̄ ¼ rP, pb ¼ r̄P, with
r≡mc=ðmb þmcÞ and r̄≡mb=ðmb þmcÞ. One then
make the following substitutions in the quark amplitude

FIG. 1. Representative cut Feynman diagram for perturbative
gluon fragmentation function Dg→bc̄ðzÞ at LO in αs. The cap
represents the gluonic field strength operatorGþν

a , and double line
signifies the eikonal line.
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to project out the desired contributions from the bc̄ð1Sð1Þ0 Þ
and bc̄ð3Sð1Þ1 Þ [32]:

vðpc̄ÞūðpbÞ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8mbmc
p ðpc̄ −mcÞγ5ðpb þmbÞ ⊗

1cffiffiffiffiffiffi
Nc

p ;

for 1Sð1Þ0 ð10aÞ

vðpc̄ÞūðpbÞ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8mbmc
p ðpc̄ −mcÞ=ε�ðpb þmbÞ ⊗

1cffiffiffiffiffiffi
Nc

p ;

for 3Sð1Þ1 ð10bÞ

with p2
b ¼ m2

b, p
2
c̄ ¼ m2

c, and εμðPÞ designates the polari-
zation vector for the fictitious B�

c meson.
With the aid of the above projectors (10), we employ the

packages FeynCalc/FormLink [33,34] to conduct the Dirac/
color trace operation. We also use the package APART [35]
to simplify the amplitude by the method of partial fraction
to make the integrand simpler.

B. Phase space integration and DGLAP
renormalization

It is appealing to use some modern multiloop technique
such as the reverse unitarity method and integration by parts
(IBP) to deal with phase space integration in (9). The gluon

fragmentation into cc̄ð3Sð1Þ1 Þ and cc̄ð1Pð1Þ
1 Þ have been ana-

lytically calculated in this manner [23,24,28]. Nevertheless,
it turns out to be a quite subtle issue to use these techniques to
deal with our case. In this work, similar to [27,29], we
choose to apply the sector decompositionmethod [36,37] to
evaluate the phase space integration as given in (9).
Consequently, wewill present our final results in an entirely
numerical manner. In our opinion, the approach adopted in
this work appears to be more amenable to automated
calculation, and yield more accurate numerical predictions
than the complicated subtraction approach first developed in
[19] (see also [26,38,39]).
We first combine all the propagators in a cut diagram

using Feynman parametrization, then accomplish two-loop
integration over k1;2⊥ in D − 2-dimensional spacetime. We
are then left with multifold integrals over Feynman param-
eters, which can be numerically calculated by the package
FIESTA [40] which is based on the sector decomposition
algorithm [36,37]. This method is typically useful with
many finite multivariable parametric integrals as output,
with various UV poles explicitly isolated.
Upon summing all 49 cut diagrams, we find the total cut

amplitude still contains a single uncanceled pole, whose
coefficient varies with the momentum fraction z. This pole
is clearly of UV origin, from the large k1;2⊥ integration
region in (9). This is a clear sign that the bare fragmentation
function requires an additional operator renormalization,
following the DGLAP paradigm [20,30]:

DMS
g→Hðz;μÞ

¼Dg→Hðz;μÞ−
X
q¼b;c̄

1

ϵ

Z
1

z

dy
y
PqgðyÞDq→Hðz=y;μÞ; ð11Þ

where PqgðyÞ represents the splitting kernel for g → q:

PqgðyÞ ¼
αsðμÞ
2π

TF½y2 þ ð1 − yÞ2� þOðα2sÞ; ð12Þ

with TF ¼ 1=2.
The heavy-quark-to-Bð�Þ

c fragmentation functions at LO
in αs are known long ago [5]. Recasting the results in the
NRQCD factorization language, we have

Db→Bc
ðz; μÞ ¼ db→Bc

ðz; μÞ h0jO
Bc
1 ð1S0Þj0i
M3

þ � � � ; ð13aÞ

Db→B�
c
ðz; μÞ ¼ db→B�

c
ðz; μÞ h0jO

B�
c

1 ð3S1Þj0i
M3

þ � � � ; ð13bÞ

Db→B�T
c
ðz; μÞ ¼ db→B�T

c
ðz; μÞ h0jO

B�
c

1 ð3S1Þj0i
M3

þ � � � : ð13cÞ

where the second equation implies the polarization-
summed B�

c, and the last one implies the transversely
polarized B�

c (denoted by B�T
c henceforth)1 For the c̄

fragmentation into Bð�Þ
c , one simply makes the exchange

r ↔ r̄ in above expressions.
The corresponding short-distance coefficients in (13) at

LO in αs read [25]:

db→Bc
ðzÞ ¼ α2sC2

F

12N2
c

zð1− zÞ2
r2ð1− r̄zÞ6

× ½6− 18ð1− 2rÞzþð21− 74rþ 68r2Þz2
− 2r̄ð6− 19rþ 18r2Þz3þ 3r̄2ð1− 2rþ 2r2Þz4�;

ð14aÞ

db→B�
c
ðz; μÞ ¼ α2sC2

F

12N2
c

zð1 − zÞ2
r̄2ð1 − rzÞ6

× ½2 − 2ð3 − 2rÞzþ 3ð3 − 2rþ 4r2Þz2
− 2r̄ð4 − rþ 2r2Þz3 þ r̄2ð3 − 2rþ 2r2Þz4�;

ð14bÞ

db→B�T
c
ðz; μÞ ¼ α2sC2

F

12N2
c

zð1 − zÞ2
r̄2ð1 − rzÞ6

× ½2 − 2ð3 − 2rÞzþ ð9 − 4rþ 10r2Þz2
− 2r̄ð4þ rÞz3 þ 3r̄2z4�: ð14cÞ

1One can readily deduce the longitudinally polarized B�
c

fragmentation through Db→B�L
c
ðzÞ ¼ Db→B�

c
ðzÞ −Db→B�T

c
ðzÞ.
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For our purpose, we need compute these LO quark
fragmentation functions to OðϵÞ in (11). Note in (11) the
UV pole is subtracted in accordance with the MS procedure.
After implementing the DGLAP renormalization pro-

gram, we then obtain the pointwise UV-finite SDCs for the

g-to-Bð�Þ
c FFs (defined in the MS scheme). It is convenient

to divide them into two parts:

dg→Hðz; μÞ ¼ α3s ½cH0 ðzÞ ln
μ2

M2
þ cH1 ðzÞ�; ð15Þ

with the logarithmic part given by

α3scH0 ðzÞ ¼
X
q¼b;c̄

Z
1

z

dy
y
PqgðyÞdq→Hðz=yÞ: ð16Þ

The logarithmic coefficient function of cH0 ðzÞ can be
obtained in closed form. Here we consider three cases, with
H ¼ Bc, B�

c, and B�T
c :

cBc
0 ðzÞ ¼ C2

F

48πN2
cr2

�
12zð1 − zÞ ln z − 2

r̄5
½2rð5 − 6rþ 3r2Þ þ 3r̄ð1 − 6rþ 10r2 − 8r3 þ 2r4Þz − 6r̄5z2� ln 1 − r̄z

r

þ 1

15r̄5ð1 − r̄zÞ5r ½4ð6þ 40r2 − 105r3 þ 90r4 − 31r5Þ − r̄ð168 − 255rþ 1760r2 − 3255r3 þ 2460r4 − 758r5Þz

þ r̄2ð528 − 1650rþ 6925r2 − 9870r3 þ 6375r4 − 1678r5Þz2
− 5r̄3ð192 − 876rþ 2759r2 − 3123r3 þ 1659r4 − 342r5Þz3
þ 5r̄4ð216 − 1224rþ 3109r2 − 2814r3 þ 1182r4 − 174r5Þz4
− r̄5ð744 − 4755rþ 10075r2 − 7200r3 þ 2250r4 − 180r5Þz5 þ 6r̄6ð48 − 325rþ 585r2 − 315r3 þ 60r4Þz6

− 6r̄7ð8 − 55rþ 85r2 − 30r3Þz7�
�
þ ðr ↔ r̄Þ; ð17aÞ

and

cB
�
c

0 ðzÞ ¼ C2
F

144πN2
cr2

�
12ðzð1 − zÞ þ 4rz2Þ ln z − 6

r̄5
½2þ 2r3 − r̄ð1þ 6r − 10r2 þ 8r3 − 2r4Þz − 2r̄5ð1 − 4rÞz2� ln 1 − r̄z

r

þ 1

5r̄4ð1 − r̄zÞ5r ½2ð12þ 17rþ 2r2 þ 17r3 þ 12r4Þ − ð168 − 65rþ 370r2 − 585r3 þ 470r4 − 238r5Þz

þ r̄ð528 − 710rþ 3045r2 − 4440r3 þ 3245r4 − 1038r5Þz2
− 5r̄2ð192 − 436rþ 1695r2 − 2373r3 þ 1605r4 − 414r5Þz3
þ 5r̄3ð216 − 654rþ 2383r2 − 3186r3 þ 1970r4 − 434r5Þz4
− r̄4ð744 − 2645rþ 9165r2 − 11580r3 þ 6390r4 − 1140r5Þz5

þ 6r̄5ð48 − 185rþ 615r2 − 725r3 þ 340r4 − 40r5Þz6 − 2r̄6ð24 − 95rþ 305r2 − 330r3 þ 120r4Þz7�
�

þ ðr ↔ r̄Þ; ð17bÞ
cB

�T
c

0 ðzÞ ¼ C2
F

144πN2
cr2

�
8zð1 − ð1 − 4rÞzÞ ln z − 4

r̄5
½2ð1þ rÞ − r̄ð1þ 8r − 12r2 þ 8r3 − 2r4Þz − 2r̄5ð1 − 4rÞz2� ln 1 − r̄z

r

þ 2

15r̄4ð1 − r̄zÞ5r ½2ð12þ 22rþ 47r2 − 28r3 þ 7r4Þ − ð168þ 5rþ 840r2 − 1575r3 þ 880r4 − 198r5Þz

þ r̄ð528 − 490rþ 4145r2 − 6630r3 þ 4045r4 − 968r5Þz2
− 5r̄2ð192 − 356rþ 1951r2 − 2871r3 þ 1755r4 − 402r5Þz3
þ 5r̄3ð216 − 564rþ 2527r2 − 3492r3 þ 2038r4 − 430r5Þz4
− r̄4ð744 − 2335rþ 9275r2 − 12060r3 þ 6450r4 − 1140r5Þz5

þ 6r̄5ð48 − 165rþ 605r2 − 735r3 þ 340r4 − 40r5Þz6 − 2r̄6ð24 − 85rþ 295r2 − 330r3 þ 120r4Þz7�
�

þ ðr ↔ r̄Þ; ð17cÞ
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Notice all of cH0 are regular near z ¼ 0.

cBc
0 ðzÞ⟶z→0 C2

F

180πN2
cr̄5r3

½r̄ð6þ 6rþ 46r2 − 59r3 þ 31r4Þ

þ 15r2ð5 − 6rþ 3r2Þ ln r� þ ðr ↔ r̄Þ; ð18aÞ

cB
�
c

0 ðzÞ⟶z→0 C2
F

360πN2
cr̄5r3

½r̄ð12þ 17rþ 2r2 þ 17r3 þ 12r4Þ

þ 30rð1þ r3Þ ln r� þ ðr ↔ r̄Þ; ð18bÞ

cB
�T
c

0 ðzÞ⟶z→0 C2
F

360πN2
cr̄5r3

½r̄ð12þ 22rþ 47r2 − 28r3 þ 7r4Þ

þ 30rð1þ rÞ ln r� þ ðr ↔ r̄Þ: ð18cÞ

C. Numerical results

It is quite challenging, if possible, from the sector
decomposition approach to deduce the analytic expressions
for those nonlogarithmic coefficient functions cH1 ðzÞ in
(15). We are content to knowing their numerical values
to very high precision within relatively short time. For

FIG. 2. Profiles of nonlogarithmic coefficient functions cH1 ðzÞ defined in (15).

TABLE I. Numerical values of nonlogarithmic coefficient functions cH1 ðzÞ introduced in (15), for H ¼ Bc, B�
c, and B�T

c .

z Bc B�
c B�T

c z Bc B�
c B�T

c

0.05 0.4331101 0.9824315 0.6589912 0.55 0.2280349 0.0994856 0.0695023
0.10 0.4867564 0.8066066 0.5452066 0.60 0.1886068 0.0776735 0.0543129
0.15 0.4963966 0.6547864 0.4451087 0.65 0.1509164 0.0603226 0.0421736
0.20 0.4839731 0.5271039 0.3600146 0.70 0.1155837 0.0461855 0.0322497
0.25 0.4590161 0.4211974 0.2888957 0.75 0.0832644 0.0342556 0.0238663
0.30 0.4265974 0.3343628 0.2302324 0.80 0.0547023 0.0238138 0.0165418
0.35 0.4265974 0.3343628 0.2302324 0.85 0.0308205 0.0145346 0.0100606
0.40 0.3502768 0.2074592 0.1438627 0.90 0.0128651 0.006692 0.0046142
0.45 0.3095808 0.1625875 0.1130914 0.95 0.0024351 0.0014133 0.0009705
0.50 0.26858 0.1272286 0.088722 0.99 0.0000291 0.0000185 0.0000127
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numerical investigation, we adopt the following input
parameters:

mc ¼ 1.5GeV; mb ¼ 4.8GeV; αsðMÞ¼ 0.199; ð19Þ

and jRð0Þj2 ¼ 1.642 GeV3 [41].
For the reader’s convenience, in Table I we have

enumerated the values of cH1 ðzÞ for some typical values
of z. We also plot these functions in Fig. 2.
In Fig. 3, we also plot the various fragmentation

functions Dg→HðzÞ for H ¼ Bc; B�
c and B�T

c as function
of z. We observe that these functions are regular near z ¼ 0.

IV. SUMMARY

In summary, in this work we have computed the g-to-Bð�Þ
c

fragmentation functions within NRQCD factorization
framework, at the lowest order in velocity expansion and
αs. We start from the Collins and Soper’s gauge-invariant
operator definition, which makes the renormalization pro-
gram transparent. We have employed an automated
approach based on sector decomposition strategy to conduct
the phase space integral in dimensional regularization. It
turns out that, within tolerable amount of time, this method
yields better numerical accuracy than the conventional NLO
subtraction method. After implementing DGLAP

renormalization procedure, we obtain the UV finite
NRQCD short-distance coefficient functions in a pointwise
manner. We hope that our results are helpful to strengthen

our understanding ofBð�Þ
c production at large-pT at the LHC

experiment.
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Note added.—After this work was finished and while we
were preparing the manuscript, a preprint has appeared very

recently [42], which also computes the gluon-to-Bð�Þ
c

fragmentation functions in NRQCD factorization approach,
albeit using the conventional subtraction method.

FIG. 3. The profiles of the fragmentation functions Dg→Hðz; μÞ with mc ¼ 1.5GeV and mb ¼ 4.8 GeV, and jRð0Þj2 ¼ 1.642 GeV3.
The uncertain band is obtained by sliding μ from M=2 to 2M, with the central line taken at μ ¼ M ¼ mb þmc.
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APPENDIX: THE NUMERICAL COMPARISON
BETWEEN OUR WORK AND REF. [42]

In [42], the authors present the NLO g → Bð�Þ
c fragmen-

tation functions as

DNLO
g→BcðB�

cÞðz; μFÞ

¼ αs
2π

ln
μ2F
4M2

Z
1

z

� X
Q¼b̄;c

PQgðyÞDLO
Q→BcðB�

cÞðz=yÞ
�
dy
y

þ α3s jRSð0Þj2
M3

fðzÞ: ðA1Þ

They also present polynomial interpolations of the non-
logarithmic part fðzÞ of the short-distance coefficients of
the fragmentation functions for conventions of phenom-
enological applications, which are

fðzÞ ¼ −61.309z8 þ 269.569z7 − 491.879z6 þ 484.568z5

− 280.805z4 þ 97.865z3 − 20.199z2 þ 1.888z

þ 0.300; ðA2Þ

for g → Bc, and

fðzÞ ¼ −300.413z8 þ 1282.128z7 − 2253.159z6

þ 2105.108z5 − 1123.528z4 þ 336.215z3

− 45.194z2 − 3.034zþ 1.870; ðA3Þ

for g → B�
c. They are related to the expressions in our

convention as

fðzÞ ¼ Nc

2π
½2cBc

0 ðzÞ ln 2þ cBc
1 ðzÞ�; ðA4Þ

for Bc, and

fðzÞ ¼ 3Nc

2π
½2cB�

c
0 ðzÞ ln 2þ cB

�
c

1 ðzÞ�; ðA5Þ

for B�
c. In Table II, we list the numerical values of fðzÞ in

our calculations and those by employing the polynomial
interpolations (A2) and (A3) given in [42], for comparison.
One can see that the interpolated expressions in (A2) and
(A3) agree with our numerical results reasonably well.
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