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We derive exact yet practical covariant equations of quantum field theory describing a tetraquark in
terms of a mix of four-quark states 2q2q̄, and two-quark states qq̄. A feature of our approach is that it avoids
the overcounting problems that usually plague quantum field theory formulations of few-body covariant
equations (the only exception being the two-body Bethe-Salpeter equation). This is achieved by describing
the coupling of 2q2q̄ to qq̄ states through the use of model operators that contract a four-quark
qq̄-irreducible Green function down to a two-quark qq̄ Bethe-Salpeter kernel. Although the model chosen
in the current work describes the four-quark dynamics in terms of meson-meson and diquark-antidiquark
states, the derived equations have a form that is exact, as all corrections due to the use of a particular model
are taken into account through the use of a well-defined special four-point amplitude Δ entering the
equations. The equations are in agreement with those obtained previously by consideration of disconnected
interactions; however, despite being more general, they have been derived here in a much simpler and more
transparent way.
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I. INTRODUCTION

In quantum field theory (QFT) the number of particles is
not conserved. This fact necessitates a careful consideration
of the theoretical description, as well as the precise
definition of an exotic particle. In particular, this applies
to the case of a tetraquark, an exotic bound state of two
quarks and two antiquarks (2q2q̄) whose existence has
recently been evidenced [1–3]. That the 2q2q̄ system
couples to qq̄ states makes the tetraquark a more compli-
cated object than often assumed. This is made clear in
Fig. 1, which expresses the 2q2q̄ Green function Gð4Þ in
terms of its qq̄-irreducible1 part Gð4Þ

ir and its qq̄-reducible

part Mð4−2Þ
ir Gð2ÞMð2−4Þ

ir . Not only is the last, qq̄-reducible

term of Fig. 1 necessary for a complete description of a
tetraquark, but its presence also demonstrates that any pole
in the two-body qq̄ Green function Gð2Þ will automatically
appear inGð4Þ, thus making a pole inGð4Þ (the signature of a
2q2q̄ bound state), an inadequate criterion for a tetraquark.
In this paper we are concerned with the formulation of

covariant equations describing the 2q2q̄ bound state while
taking into account the coupling to qq̄ channels as
illustrated in Fig. 1. We shall refer to these equations as
“tetraquark equations” even though our formulation does
not depend on any specific definition of a tetraquark;
nevertheless, we point out that the context of our derivation
provides an ideal setting for considering such a precise
definition, a task which we will return to in a separate work.
Our approach is motivated by recent efforts to describe

tetraquarks using covariant few-body equations where the
underlying dynamics is dominated by meson-meson (MM)
and diquark-antidiquark (DD̄) components [4–6]. The
initial such formulation [4] was based on an analysis of
only the qq̄-irreducible part of the 2q2q̄ Green function,

Gð4Þ
ir , although this fact was not emphasized at the time. The

present paper therefore addresses the more recent formu-
lations of covariant few-body equations describing the four-
body 2q2q̄ system where coupling to two-body qq̄ states is
included [5,6]. The ultimate goal of such equations is to
describe tetraquarks in terms of identical poles in the full
2q2q̄ and qq̄ Green functions, Gð4Þ and Gð2Þ, respectively.
Unfortunately there is currently no consensus on the form
such equations take [6].
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1In this work we use the commonly used definition of
“irreducibility,” namely, a Feynman diagram with any number
of external quark legs is n-particle irreducible if it cannot be
divided into two parts separating initial states from final states by
cutting n quark lines where at least one of the cut quark lines is
internal. In particular, we apply this definition to skeleton
Feynman diagrams as we assume all propagators and vertices
in such diagrams are fully dressed.

PHYSICAL REVIEW D 106, 054024 (2022)

2470-0010=2022=106(5)=054024(10) 054024-1 Published by the American Physical Society

https://orcid.org/0000-0002-9366-9533
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.054024&domain=pdf&date_stamp=2022-09-22
https://doi.org/10.1103/PhysRevD.106.054024
https://doi.org/10.1103/PhysRevD.106.054024
https://doi.org/10.1103/PhysRevD.106.054024
https://doi.org/10.1103/PhysRevD.106.054024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


A serious issue facing all relativistically covariant
derivations of equations that couple four-body to two-body
states, is the appearance of overcounted terms. This type of
overcounting first came to light in the analogous problem
of formulating covariant few-body equations for the pion-
two-nucleon (πNN) system where coupling to two-nucleon
ðNNÞ states is included [7]; there, it was found that, in order
to attain overcounting-free equations where all possible
two-body interactions are retained, special subtraction
terms needed to be introduced and certain three-body
forces needed to be retained. Although covariant few-body
equations for the coupled qq̄ − 2q2q̄ system can be derived
in an analogous manner to that for the NN − πNN system,
as in Ref. [7], current interest is in formulating a less
detailed approach that applies specifically to the case where
the qq̄ − 2q2q̄ system is dominated by MM and DD̄
components. It is in this context that we would like to
revisit the formulation of the coupled qq̄ − 2q2q̄ system. In
the process, we aim to help resolve the differences between
the aforementioned tetraquark equations by presenting a
derivation that does not involve the introduction of any
explicit disconnected contributions to two-body (qq̄) inter-
actions, viewed as potentially problematic in Ref. [6], but
which were pivotal to our previous derivation [5].
The key idea of our new approach is to first construct a

model for the Green function Gð4Þ
ir describing the 2q2q̄

system without coupling to qq̄ states, and then express the
qq̄ kernel Kð2Þ (the driving kernel for Gð2Þ) in terms of

Gð4Þ
ir as

Kð2Þ ¼ Δþ Að2−4ÞGð4Þ
ir A

ð4−2Þ; ð1Þ

where operators Að4−2Þ (Að2−4Þ) describe the transitions
2q2q̄ ← qq̄ (qq̄ ← 2q2q̄) in the chosen model, and Δ is
defined as the qq̄ four-point function consisting of all
contributions not accounted for by the last term of Eq. (1).
A feature of this approach is that the usual problems of
overcounting (encountered in formulations of covariant
few-body equations) are avoided, and the final tetraquark
equations have a coupled form that is exact no matter

what model is chosen for Gð4Þ
ir and Að4−2Þ (Að2−4Þ). Within

the MM-DD̄ model, these equations take the form given
by Eq. (46).
Despite the very different approach presented here, the

tetraquark equations resulting from the new derivation are
in agreement with those of Ref. [5], and moreover, are
obtained in a simpler and much more transparent way.

II. TETRAQUARK POLES
AND WAVE FUNCTIONS

In the context of QFT, to formulate a few-body approach
for a system of particles where some of them can be
absorbed by others (e.g., π by N in the πNN system or a qq̄
pair that is annihilated in the 2q2q̄ system) one starts with
the general structure of the full few-body Green function,
which in the case of the 2q2q̄ system is manifested by the
decomposition

Gð4Þ ¼ Gð4Þ
ir þGð4−2Þ

ir Gð2Þ−1
0 Gð2ÞGð2Þ−1

0 Gð2−4Þ
ir ; ð2Þ

where Gð2Þ
0 is the disconnected part of the two-body qq̄

Green function Gð2Þ corresponding to the independent

propagation of q and q̄ in the s channel, and Gð2−4Þ
ir

(Gð4−2Þ
ir ) is the sum of all qq̄-irreducible diagrams corre-

sponding to the transition qq̄ ← 2q2q̄ (2q2q̄ ← qq̄).

Equation (2) is illustrated in Fig. 1 where Gð4−2Þ
ir Gð2Þ−1

0 ≡
Mð4−2Þ

ir and Gð2Þ−1
0 Gð2−4Þ

ir ≡Mð2−4Þ
ir . The main problem is

then to express Gð2−4Þ
ir and Gð4−2Þ

ir in terms of Gð4Þ
ir , while

Gð4Þ
ir can be expressed in terms of four-body scattering

equations that are valid in the absence of qq̄ annihilation.
The contribution of Gð4Þ

ir to the qq̄ Green function Gð2Þ

takes place through the Bethe-Salpeter kernel Kð2Þ, which,
by definition, is qq̄ irreducible and is related to Gð2Þ
through the Dyson equation2

Gð2Þ ¼ Gð2Þ
0 þ Gð2Þ

0 Kð2ÞGð2Þ: ð3Þ

In particular, Gð4Þ
ir contributes to Kð2Þ via a 2q2q̄-reducible

term of the form

Kð2Þ
4q−red ¼ Að2−4ÞGð4Þ

ir A
ð4−2Þ; ð4Þ

where Að4−2Þ (Að2−4Þ) is some amplitude (of course qq̄
irreducible) corresponding to the transition 2q2q̄ ← qq̄
(qq̄ ← 2q2q̄). Note that the full 2q2q̄-reducible part of

Kð2Þ consists ofKð2Þ
4q−red, as defined by Eq. (4), together with

extra 2q2q̄-reducible terms. More specifically, with Gð4Þ
ir

being the sum of all four-body diagrams that are qq̄

FIG. 1. Field theoretic structure of the 2q2q̄ Green function Gð4Þ, where Gð4Þ
ir is the qq̄-irreducible part of Gð4Þ, Gð2Þ is the qq̄ Green

function, with Mð4−2Þ
ir and Mð2−4Þ

ir being qq̄-irreducible 2q2q̄ ← qq̄ and qq̄ ← 2q2q̄ transition amplitudes, respectively.

2It is worth noting that our definition of Kð2Þ is different from
the one used in Ref. [6].
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irreducible, the expression Að2−4ÞGð4Þ
ir A

ð4−2Þ either contains
all 4q-reducible diagrams some of which are overcounted,
or only a part of them with no overcounting. In the first
case, 4q-reducible terms need to be subtracted from

Að2−4ÞGð4Þ
ir Að4−2Þ in order to obtain the full 2q2q̄-reducible

part of Kð2Þ, whereas in the second case, the missing 4q-
reducible terms should be added. The case of overcounting
is rooted in the ambiguity of some 4q cuts, in contrast to 2q
cuts where there is no such ambiguity. The full analysis of
these terms and the function Að2−4Þ (Að4−2Þ) would be
similar to the one used for the πNN system in the covariant
approach of Ref. [7], but this will be investigated
elsewhere.
Ultimately, we shall be interested in the case where Gð4Þ

and Gð2Þ display simultaneous poles corresponding to a
tetraquark of mass M, so that as P2 → M2 where P is the
total momentum of each system,

Gð4Þ → i
ΨΨ̄

P2 −M2
; Gð2Þ → i

Gð2Þ
0 Γ�Γ̄�Gð2Þ

0

P2 −M2
: ð5Þ

In Eq. (5),Ψ is the tetraquark four-body ð2q2q̄Þ bound state
wave function, while Γ� is the form factor for the
disintegration of a tetraquark into a qq̄ pair. We note that
the definition ofΨ and Γ� via the pole parts ofGð4Þ andGð2Þ

in Eq. (5), together with Eq. (2) relatingGð4Þ andGð2Þ, leads
to the relation between Ψ and Γ�,

Ψ ¼ Gð4−2ÞΓ�: ð6Þ

As is evident from Eq. (3) and the second of the relations
in Eq. (5), a tetraquark state will also satisfy the two-body
(not four-body) equation,

Γ� ¼ Kð2ÞGð2Þ
0 Γ�: ð7Þ

It is Eq. (7) that will be used in this paper to formulate
the tetraquark equations. This will be achieved by first

constructing Gð4Þ
ir using the four-body equations of

Khvedelidze and Kvinikhidze [8], then making approx-
imations where a pole ansatz is used for all quark pair
scattering amplitudes and where single-scattering terms are
neglected in the four-body t matrix expression of Eq. (16),
and then using Eq. (4) to generate the essential part of the
qq̄ kernel.

III. TETRAQUARK FEW-BODY EQUATIONS

The approach used here to derive covariant equations for
the coupled qq̄ − 2q2q̄ system is different from that
employed by us in Ref. [5]. Instead of incorporating
coupling to qq̄ states right from the outset, as embodied
in the full four-body Green function Gð4Þ, here we first
consider a formulation of four-body tetraquark equations
for the case where there is no coupling to qq̄ states; that is,

we first consider a formulation based on Gð4Þ
ir , the qq̄-

irreducible part of Gð4Þ. Coupling to qq̄ states is then
achieved by generating the qq̄ kernel Kð2Þ through a simple
contraction of four-body to two-body states as in Eq. (4).
One can express Gð4Þ

ir in terms of the qq̄-irreducible four-

body interaction kernel Kð4Þ
ir through the Dyson equation

Gð4Þ
ir ¼ Gð4Þ

0 þ Gð4Þ
0 Kð4Þ

ir G
ð4Þ
ir ; ð8Þ

where Gð4Þ
0 is the fully disconnected part of Gð4Þ. For

simplicity, we start out by treating the quarks as distin-
guishable particles; however, the full antisymmetry of
quark states will be taken into account shortly. The kernel

Kð4Þ
ir can be formally expressed as

Kð4Þ
ir ¼ Kð4Þ

2F þ Kð4Þ
3F ; ð9Þ

where Kð4Þ
2F consists of only pair-wise interactions, and Kð4Þ

3F
consists of all other contributions, necessarily involving
three- and four-body forces. Assigning labels 1,2 to the

quarks and 3,4 to the antiquarks, one can write Kð4Þ
2F as a

sum of three terms whose structure is illustrated in Fig. 2,
and correspondingly expressed as

Kð4Þ
2F ¼

X
aa0

Kð4Þ
aa0 ¼

X
α

Kð4Þ
α ; ð10Þ

where the index a ∈ f12; 13; 14; 23; 24; 34g enumerates
six possible pairs of particles, the double index aa0 ∈
fð13; 24Þ; ð14; 23Þ; ð12; 34Þg enumerates three possible
two pairs of particles, and the Greek index α is used
as an abbreviation for aa0 such that α ¼ 1 denotes
aa0 ¼ ð13; 24Þ, α ¼ 2 denotes aa0 ¼ ð14; 23Þ, and α ¼ 3

denotes aa0 ¼ ð12; 34Þ. Thus Kð4Þ
aa0 describes the part of the

four-body kernel where all interactions are switched off
except those within the pairs a and a0. As is well known

FIG. 2. Structure of the terms Kð4Þ
α (α ¼ 1, 2, 3) making up the four-body kernel Kð4Þ

2F where only two-body forces are included.
The three terms are summed as in Eq. (10).
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[4,5,8], Kð4Þ
aa0 can be expressed in terms of the two-body

kernels Kð2Þ
a and Kð2Þ

a0 as

Kð4Þ
aa0 ¼ Kð2Þ

a G0
a0
−1 þ Kð2Þ

a0 G
0
a
−1 − Kð2Þ

a Kð2Þ
a0 ; ð11Þ

where Kð2Þ
a Kð2Þ

a0 is a subtraction term needed to avoid
overcounting (present even when coupling to two-body
channels is neglected), and where G0

a (G0
a0) is the two-body

disconnected Green function for particle pair a (a0). It is
also useful to introduce the corresponding four-body qq̄-

irreducible t matrix Tð4Þ
ir defined by equation

Gð4Þ
ir ¼ Gð4Þ

0 þGð4Þ
0 Tð4Þ

ir G
ð4Þ
0 : ð12Þ

One can similarly express Tð4Þ
ir as a sum of three terms [8]

Tð4Þ
ir ¼

X
aa0

T ð4Þ
aa0 ¼

X
α

T ð4Þ
α ð13Þ

with components T ð4Þ
α satisfying Faddeev-like equations

T ð4Þ
α ¼ Tð4Þ

α þ
X
β

Tð4Þ
α δ̄αβG

ð4Þ
0 T ð4Þ

β ; ð14Þ

where δ̄αβ ¼ 1 − δαβ and where the Greek subscripts run
over the three possible “two pairs” of particles as in

Eq. (10). In Eq. (14), Tð4Þ
α is the t matrix corresponding

to kernel Kð4Þ
α , that is

Tð4Þ
α ¼ Kð4Þ

α þ Kð4Þ
α Gð4Þ

0 Tð4Þ
α ; ð15Þ

with Tð4Þ
α being expressed in terms of two-body t matrices

Tð2Þ
a and Tð2Þ

a0 as

Tð4Þ
α ¼ Tð4Þ

aa0 ¼ Tð2Þ
a G0

a0
−1 þ Tð2Þ

a0 G
0
a
−1 þ Tð2Þ

a Tð2Þ
a0 : ð16Þ

A. Tetraquark equations with no coupling to qq̄ states

To compare with the existing approaches [4–6], our aim
is to describe the tetraquark using two-body equations
that couple identical meson-meson (MM), and diquark-

antidiquark (DD̄) channels. To this end we consider Gð4Þ
ir in

the approximation

Tð4Þ
aa0 ¼ Tð2Þ

a Tð2Þ
a0 ; ð17aÞ

where the two-body t matrices Tð2Þ
a and Tð2Þ

a0 are expressed
in the bound state pole approximation

Tð2Þ
a ¼ iΓaDaΓ̄a; ð17bÞ

where DaðPaÞ ¼ 1=ðP2
a −m2

aÞ is the propagator for the
bound particle (diquark, antidiquark, or meson) in the
two-body channel a. Showing explicit dependence on

momentum variables, Tð2Þ
a , for a ¼ 12, can be expressed as

Tð2Þ
12 ðp0

1p
0
2; p1p2Þ ¼ iΓðp0

1p
0
2ÞD12ðPÞΓ̄ðp1p2Þ, where P ¼

p1 þ p2 is the total off-mass-shell momentum of the bound
particle.
In the current context, the signature for a tetraquark is the

existence of a pole in Gð4Þ
ir . In turn, this means the existence

of a four-body tetraquark wave function Ψir ≡Gð4Þ
0 ψ for

the case where all coupling to qq̄ states is switched off. We
therefore begin by considering the corresponding bound
state form factor ψ for the case of two indistinguishable
quarks and two indistinguishable antiquarks, and relate it
to the corresponding form factor ψd for distinguishable
quarks as

ψ ¼ 1

4
ð1 − P12Þð1 − P34Þψd; ð18Þ

where Pij is the operator exchanging the quantum numbers
of particles i and j. The Faddeev-like equations for ψd

are [4,8]

ψd ¼
X
α

ψd
α; ð19aÞ

ψd
α ¼

X
β

Tð4Þ
α δ̄αβG

ð4Þ
0 ψd

β; ð19bÞ

where δ̄αβ ¼ 1 − δαβ and the Greek subscripts run over the
three possible “two pairs” of particles as in Eq. (10). Using
the approximations of Eq. (17), one can write

Tð4Þ
α ¼ Tð2Þ

a Tð2Þ
a0 ¼ i2ΓaΓa0DaDa0 Γ̄aΓ̄a0 ≡ −ΓαDαΓ̄α; ð20Þ

where Γα ≡ ΓaΓa0 , Γ̄α ≡ Γ̄aΓ̄a0 , and Dα ≡DaDa0 . Further,
defining the vertex functions ϕd

α by the relation

ψd
α ¼ ΓαDαϕ

d
α; ð21Þ

it follows from Eq. (19b) that

ϕd
α ¼

X
β

VαβDβϕ
d
β; ð22Þ

where

Vαβ ¼ −δ̄αβΓ̄αG
ð4Þ
0 Γβ: ð23Þ

Noting that Γ12 ¼ −Γ21 and Γ34 ¼ −Γ43, it follows that
V12 ¼ V21, V23 ¼ −V13, and V32 ¼ −V31.
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We can now use Eq. (18) to derive MM and DD̄
components of the tetraquark form factor ψ in the case
of indistinguishable quarks. These are defined by the pole
contributions to ψ at p2

13 ¼ M2
π, p2

24 ¼ M2
π , p2

14 ¼ M2
π ,

p2
23¼M2

π , p2
12 ¼ M2

D, and p
2
34 ¼ M2

D, where pij ¼ pi þ pj

is the total momentum of particles i and j,Mπ is the mass of
the meson and MD is the mass of the diquark or anti-
diquark. To this end consider the use of Eq. (22) in Eq. (18):

ψ ¼ 1

4
ð1 − P14Þð1 − P34Þ½Γ1D1ϕ

d
1ðp13; p24Þ þ Γ2D2ϕ

d
2ðp14; p23Þ þ Γ3D3ϕ

d
3ðp12; p34Þ�;

¼ 1

4
Γ13Γ24D1½ϕd

1ðp13; p24Þ þ ϕd
1ðp24; p13Þ� −

1

4
Γ14Γ23D2½ϕd

1ðp23; p14Þ þ ϕd
1ðp14; p23Þ�

þ 1

4
Γ14Γ23D2½ϕd

2ðp14; p23Þ þ ϕd
2ðp23; p14Þ� −

1

4
Γ13Γ24D1½ϕd

2ðp24; p13Þ þ ϕd
2ðp13; p24Þ� þ Γ12Γ34D3ϕ

d
3ðp12; p34Þ;

¼ 1

2
Γ13Γ24D1½ϕS

1ðp13; p24Þ − ϕS
2ðp13; p24Þ� þ

1

2
Γ14Γ23D2½ϕd

2ðp14; p23Þ − ϕd
1ðp14; p23Þ� þ Γ12Γ34D3ϕ

d
3ðp12; p34Þ;

¼ 1

2
Γ13Γ24D1ϕMðp13; p24Þ −

1

2
Γ14Γ23D2ϕMðp14; p23Þ þ Γ12Γ34D3ϕDðp12; p34Þ; ð24Þ

where

ϕS
1ðp; qÞ ¼

1

2
½ϕd

1ðp; qÞ þ ϕd
1ðq; pÞ�; ð25aÞ

ϕS
2ðp; qÞ ¼

1

2
½ϕd

2ðp; qÞ þ ϕd
2ðq; pÞ� ð25bÞ

are symmetric functions under the exchange of the meson
quantum numbers, and

ϕMðp; qÞ ¼ ϕS
1ðp; qÞ − ϕS

2ðp; qÞ; ð26aÞ

ϕDðp; qÞ ¼ ϕd
3ðp; qÞ ð26bÞ

define theMM and DD̄ components of the tetraquark form
factor ψ where quarks are identical.
To derive equations for the tetraquark vertex functions

for identical quarks, we first write out Eq. (22) for distin-
guishable quarks using notation V13 ¼ V1D, V23 ¼ V2D,
V31 ¼ VD1, V32 ¼ VD2, and ϕD ¼ ϕd

12;34:

ϕd
1 ¼ V12D2ϕ

d
2 þ V1DD3ϕD; ð27aÞ

ϕd
2¼V21D1ϕ

d
1þV2DD3ϕD¼V12D1ϕ

d
1−V1DD3ϕD; ð27bÞ

ϕD ¼VD1D1ϕ
d
1þVD2D2ϕ

d
2 ¼VD1ðD1ϕ

d
1 −D2ϕ

d
2Þ: ð27cÞ

Then, subtracting the second line from the first, we obtain a
set of two equations for ϕ− ¼ ϕd

1 − ϕd
2 and ϕD,

ϕ− ¼ −V12D2ϕ− þ 2V1DD3ϕD;

¼ −2V12

�
1

2
MM

�
ϕ− þ 2V1DDD̄ϕD; ð28aÞ

ϕD ¼ VD1D1ϕ− ¼ 2VD1

�
1

2
MM

�
ϕ−; ð28bÞ

where we used D1 ¼ D2 ≡MM, D3 ≡DD̄. Equation (28)
can be written in matrix form as

�
ϕ−

ϕD

�
¼ 2

�−V12 V1D

VD1 0

��1
2
MM 0

0 DD̄

��
ϕ−

ϕD

�
: ð29Þ

To finally derive the tetraquark equations in the case of
indistinguishable quarks, note that according Eq. (25),

ϕM ¼ ΦS
1 −ΦS

2 ¼ ΦS
− ¼ 1

2
½ϕ−ðp; qÞ þ ϕ−ðq; pÞ�;

¼ 1

2
ð1þ PÞϕ−; ð30Þ

where P is permutation operator of the meson state labels.
Thus, symmetrizing Eq. (28) with respect to meson legs
gives

ϕM¼−2
1

2
ð1þPÞV12

�
1

2
MM

�
ϕ−þ2

1

2
ð1þPÞV1DDD̄ϕD;

¼−2
1

2
ð1þPÞV12

�
1

2
MM

�
ϕMþ2V1DDD̄ϕD; ð31aÞ

ϕD ¼ 2VD1

�
1

2
MM

�
ϕ− ¼ 2VD1

�
1

2
MM

�
ϕM; ð31bÞ

where we have used the following symmetry properties of
V12 and V1D:

ð1þ PÞV12 ¼ ð1þ PÞV12

1

2
ð1þ PÞ; ð32aÞ

1

2
ð1þ PÞV1D ¼ V1D: ð32bÞ

Equation (31) can be written in matrix form as
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ϕ ¼ VGM
0 ϕ; ð33Þ

where

ϕ ¼
�
ϕM

ϕD

�
; GM

0 ¼
� 1

2
MM 0

0 DD̄

�
; ð34Þ

and

V ¼
�−ð1þ PÞV12 2V1D

2VD1 0

�
; ð35Þ

thereby revealing V of Eq. (35) to be the interaction kernel
for the coupled MM −DD̄ system. The elements of V
involve the potentials

V12 ¼ −Γ̄1G
ð4Þ
0 Γ2 ¼ −Γ̄13Γ̄24G

ð4Þ
0 Γ14Γ23; ð36aÞ

V1D ¼ −Γ̄1G
ð4Þ
0 Γ3 ¼ −Γ̄13Γ̄24G

ð4Þ
0 Γ12Γ34; ð36bÞ

VD1 ¼ −Γ̄3G
ð4Þ
0 Γ1 ¼ −Γ̄12Γ̄34G

ð4Þ
0 Γ13Γ24; ð36cÞ

as illustrated in Fig. 3. With the kernel matrix V established,
one can determine the t matrix T defined by

T ¼ V þ VGM
0 T; ð37Þ

and thereafter GM
0 þ GM

0 TG
M
0 , which is the matrix

Green function in coupled MM-DD̄ space corresponding

to Gð4Þ
ir .

B. Tetraquark equations with coupling to qq̄ states

In the previous section we derived the tetraquark
equations without coupling to qq̄ states, Eq. (33), and

we established the model form for the Green function Gð4Þ
ir ,

which carries the signature pole for the 2q2q̄ bound state in
the absence of coupling to qq̄ states. We now use this form
to establish tetraquark equations with coupling to qq̄ states,
where the 2q2q̄ bound state is now signaled by a pole in the
full Green function Gð4Þ.3

As indicated by Eq. (4), the contribution of Gð4Þ
ir to the

4q-reducible part of the two-body qq̄ kernel Kð2Þ, occurs
via the term Kð2Þ

4q−red, which is constructed by sandwiching

Gð4Þ
ir between amplitudes Að4−2Þ and Að2−4Þ corresponding

to the transitions 2q2q̄ ← qq̄ and qq̄ ← 2q2q̄, respectively.
These amplitudes contract 4q states to 2q states and,
in general, should be chosen within a model or

approximation. In the present case of coupled MM-DD̄
channels, this contraction can be expressed as

Kð2Þ
4q−red ¼ N̄ðGM

0 þ GM
0 TG

M
0 ÞN; ð38Þ

where N̄ ¼ ðN̄M; N̄DÞ is the two-component amplitude
whose elements N̄M and N̄D describe transitions of
two-meson and diquark-antidiquark states to the quark-
antiquark state, qq̄ ← MðpÞMðkÞ and qq̄ ← DðpÞD̄ðkÞ,
respectively. Similarly, N ¼ ðNM;NDÞ describes transi-
tions MðpÞMðkÞ ← qq̄ and DðpÞD̄ðkÞ ← qq̄. Explicitly,
these transition amplitudes are given by

N̄M ¼ S23ðΓp
13Γk

24þΓk
13Γ

p
24Þ; N̄D ¼ S23Γ

p
12Γk

34; ð39aÞ

NM ¼ðΓ̄p
13Γ̄k

24þ Γ̄k
13Γ̄

p
24ÞS23; ND ¼ Γ̄p

12Γ̄k
34S23; ð39bÞ

where S23 is the quark propagator connecting quark lines 2
and 3. Equations (39a) and (39b) are illustrated in Fig. 4.
Using the formal solution to Eq. (37),

T ¼ ð1 − VGM
0 Þ−1GM−1

0 −GM−1
0 ; ð40Þ

we can write the general expression for the two-body qq̄
kernel as

Kð2Þ ¼ Δþ Kð2Þ
4q−red;

¼ Δþ N̄GM
0 ð1 − VGM

0 Þ−1N; ð41Þ

where Δ is defined to be the sum of all qq̄-irreducible
contributions allowed by QFT that are not accounted for by

(a) (b) (c)

FIG. 3. The potentials making up the elements of the coupled
channelMM −DD̄ kernel matrix V of Eq. (35): (a) V12, (b) V1D,
and (c) VD1. Solid lines represent quarks or antiquarks, dashed
lines represent mesons, and double lines represent diquarks and
antidiquarks.

FIG. 4. Illustration of Eqs. (39a) and (39b). Lines have the same
meaning as in Fig. 3.

3Although it is not necessary for there to be a bound state pole
in Gð4Þ

ir in order for there to be a bound state pole in Gð4Þ, it is
worth noting that any bound state pole in Gð4Þ

ir will not appear
Gð4Þ. This is further discussed in the Appendix.
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the last term of Eq. (41). In particular,Δ includes correction
terms that account for the difference between the approx-
imations used in Eq. (17), and exact QFT, thus making
Eq. (41) an exact expression for Kð2Þ. Just this clear
definition of Δ allows one to improve the precision of
the equations by taking into account effects in a systematic
way. It is important to note that in this model, none of the
2q2q̄-reducible diagrams in the last term of Eq. (41) are
overcounted, therefore Δ should not contain counterterms
for eliminating overcounting.4 As such, Δ can be used in
future studies to take into account effects such as one-gluon
exchange, one-meson exchange, etc.
Equation (33) constitutes the matrix form of the

tetraquark equations without coupling to qq̄ states. It
expresses the column matrix ϕ of tetraquark form factors
ϕM and ϕD, in terms of potentials contained in matrix V.
To derive the corresponding tetraquark equations with
coupling to qq̄ states, we simply use the kernel Kð2Þ of
Eq. (41) in Eq. (7), the bound state equation for the
tetraquark form factor Γ�:

Γ� ¼ Kð2ÞGð2Þ
0 Γ�;

¼ ½Δþ N̄GM
0 ð1 − VGM

0 Þ−1N�Gð2Þ
0 Γ�;

¼ ΔGð2Þ
0 Γ� þ N̄GM

0 Φ; ð42Þ

where

Φ ¼ VGM
0 Φþ NGð2Þ

0 Γ�: ð43Þ

Equation (43) is the matrix form of the sought-after
tetraquark equations with coupling to qq̄ states. It expresses
the column matrixΦ of tetraquark form factorsΦM andΦD

in terms of both the potentials contained in matrix V, and
the tetraquark form factor Γ� describing the disintegration
of a tetraquark into a qq̄ pair. We can write Eq. (43)
explicitly as

�ΦM

ΦD

�
¼
�ð1þPÞΓ̄MG

ð4Þ
0 P34ΓM −2Γ̄MG

ð4Þ
0 ΓD

−2Γ̄DG
ð4Þ
0 ΓM 0

�

×

�1
2
MM 0

0 DD̄

��ΦM

ΦD

�
þ
�
NM

ND

�
Gð2Þ

0 Γ�; ð44Þ

whereΓM¼Γ13Γ24, Γ̄M¼ Γ̄13Γ̄24,ΓD¼Γ12Γ34, Γ̄D¼ Γ̄12Γ̄34,
and Pij is the operator exchanging quarks i and j, therefore

Γ̄MG
ð4Þ
0 P34ΓM ¼ Γ̄13Γ̄24G

ð4Þ
0 Γ14Γ23;

Γ̄MG
ð4Þ
0 ΓD ¼ Γ̄13Γ̄24G

ð4Þ
0 Γ12Γ34: ð45Þ

Thus the tetraquark equations with coupling to qq̄ included
take the form of three coupled equations

ΦM ¼ ð1þPÞΓ̄MG
ð4Þ
0 P34ΓM

MM
2

ΦM −2Γ̄MG
ð4Þ
0 ΓDDD̄ΦD

þNMG
ð2Þ
0 Γ�; ð46aÞ

ΦD ¼ −2Γ̄DG
ð4Þ
0 ΓM

MM
2

ΦM þ NDG
ð2Þ
0 Γ�; ð46bÞ

Γ� ¼ ΔGð2Þ
0 Γ� þ N̄M

MM
2

ΦM þ N̄DDD̄ΦD; ð46cÞ

which are illustrated in Fig. 5. SinceΔ is defined in away that
makes the expression used forKð2Þ exact, Eq. (46) represents
an exact form of the tetraquark equations in QFT.
A nice feature of the present approach is the flexibility in

the choice of the 4q ↔ 2q transition amplitudes Að2−4Þ

(Að4−2Þ) used to expose the contribution of the 4q Green

FIG. 5. Illustration of the tetraquark equations, (46a)–(46c), with coupling to qq̄ states included. Tetraquark form factors ΦM
(displayed in red) couple to two mesons (dashed lines), tetraquark form factorsΦD (displayed in blue) couple to diquark and antidiquark
states (double lines), and the tetraquark form factors Γ� (displayed in yellow) couple to qq̄ states (solid lines). The amplitude Δ
(displayed in green) represents all contributions to the qq̄ kernel Kð2Þ that are not included in the last term of Eq. (41).

4In fact our choice of the last term of Eq. (41) in this note is
motivated by physics arguments and the possibility of close
comparison with existing studies.
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function Gð4Þ
ir in the qq̄ kernel Kð2Þ—see Eq. (4) defining

Kð2Þ
4q−red. No matter what model is chosen to describe Gð4Þ

ir

(the presentMM-DD̄ model being just one such example),
these transition amplitudes can be chosen accordingly, in
this way turning the universal form for Kð2Þ given by
Eq. (1), into a model-specific one like that of Eq. (41) (of
course each of the quantities N̄, GM

0 , T, and N would then
need to be redefined according to the chosen model). If
there is any overcounting or undercounting due to the
particular choice made for Að2−4Þ (Að4−2Þ), as discussed in
Sec. II, then compensating terms would be included in the
term Δ of Eq. (1) defining Kð2Þ. With this understanding,
Eq. (46) can be viewed as representative of exact tetraquark
equations using any chosen model. It is noteworthy that

such equations will contain the term ΔGð2Þ
0 Γ�, as in the last

of the three tetraquark equations of Eq. (46), which is
essential for including important mechanisms outside the
considered model (for example one gluon exchange in the
MM −DD̄ model we have been considering). A feature of
this term is the fact that Δ is clearly defined, thereby
allowing for a precise control of what is included and what
is neglected in any calculation.
Particularly noteworthy is how easy it is to deal with

overcounted terms in the above approach compared with the
handling of such terms in other formulations of covariant
few-body equations (as in Refs. [5,7], for example): if the
last term of Eq. (1) contains overcounted terms for any
chosenmodel, then subtraction terms are simply included in
Δ (being a four-point amplitude, Δ does not suffer from
overcounting itself). However, in the present case of the
MM-DD̄model, the transition amplitudes Að4−2Þ and Að2−4Þ
are taken from our 2014 paper [5], and this choice does not
lead to overcounting at all.

IV. CONCLUSIONS

We have derived a set of covariant coupled equations for
the tetraquark, Eq. (46), using a model of recent interest
where the two-body qq̄, qq, and q̄ q̄ interactions are
dominated by the formation of a meson, a diquark, and
an antidiquark, respectively. Despite the use of this model,
the derived equations constitute an exact form of tetraquark
equations in QFT since all differences between the model
used and exact QFT are accounted for by correction terms
included in the term Δ. Using our approach, similar
equations easily follow for any choice of model of quark
interactions. Equations (46) determine the form factorsΦM,
ΦD, and Γ� of the tetraquark, describing its disintegration
into two identical mesons, a diquark-antidiquark pair, and a
quark-antiquark pair. As such, they extend the purely four-
body (4q) tetraquark equations of Ref. [4] to include
coupling to two-body(2q) qq̄ states.
The motivation for the present work comes from the need

to resolve the lack of agreement between two previous

attempts to derive tetraquark equations with 4q-2q mixing.
The first of these was our derivation of 2014 [5] using a
careful but involved incorporation of disconnected qq̄
interactions as a means of incorporating qq̄ annihilation
into a 4q description. The second of these was a recent
derivation [6] where coupling to 2q channels was included
phenomenologically, and where some doubt was expressed
regarding the incorporation of disconnected qq̄ inter-
actions. Our present derivation of Eq. (46) has therefore
been based on a method that avoids any explicit introduc-
tion of disconnected qq̄ interactions, and which, in the
absence of approximations for Δ, provides an exact
field-theoretic description. It is therefore gratifying to note
that in the absence of the term Δ, Eq. (46) coincides with
the equations derived by us in Ref. [5]. Indeed, setting
Δ ¼ 0 in Eq. (46c) and substituting into Eq. (44) givesΦ in
the form presented in Ref. [5]5:

Φ¼
��ð1þPÞΓ̄MG

ð4Þ
0 P34ΓM −2Γ̄MG

ð4Þ
0 ΓD

−2Γ̄DG
ð4Þ
0 ΓM 0

�
þNGð2Þ

0 N̄

�

×

� 1
2
MM 0

0 DD̄

�
Φ: ð47Þ

Here NGð2Þ
0 N̄ is the qq̄ reducible part of the kernel which is

denoted by Vqq̄ in Ref. [5]. It accounts for the qq̄ admixture

through the qq̄ propagator Gð2Þ
0 . By contrast, the tetraquark

equations of Ref. [6] are not consistent with the general
form prescribed by Eq. (46).
Finally, it is worth noting that in comparison with our

previous derivation [5], the approach taken in the present
work allows for the derivation of the tetraquark equations in
a much simpler and more clear way.
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APPENDIX: POLE STRUCTURE OF Gð4Þ

In our approach, we first consider equations for the
bound state of the 2q2q̄ system in the absence of coupling
to qq̄ channels, and in this case the 4q bound state is
signaled by a pole at P2 ¼ M2

0 in the qq̄-irreducible Green

function Gð4Þ
ir , where P is the total momentum and M0 is a

“bare” tetraquark mass. Then, after incorporating coupling
to qq̄ channels, the bound state is instead signaled by a pole
at P2 ¼ M2 in the full 2q2q̄ Green function Gð4Þ, where M
is the “physical” tetraquark mass. In view of this, and the

5The expression in the square bracket in Eq. (47) may appear
to come with an opposite sign in Ref. [5], but this is not the case
as the definitions of Γ̄M , ΓM, Γ̄D, ΓD, N̄, and N used in Ref. [5]
differ from the ones used here.
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direct connection between Gð4Þ
ir and Gð4Þ expressed by

Fig. 1, it should be emphasized that Gð4Þ will only exhibit

just a single pole (at the physical mass M) even if Gð4Þ
ir still

has a pole at a different mass M0. Although this may be
self-evident, here we shall prove it mathematically. To do
this, we write Eq. (2) as

Gð4Þ ¼ Gð4Þ
ir þMð4−2Þ

ir Gð2ÞMð2−4Þ
ir ðA1Þ

and note that the pole in Gð4Þ
ir originates from the use of a

corresponding kernel Kð4Þ
ir in the equation

Gð4Þ
ir ¼ Gð4Þ

0 þ Gð4Þ
0 Kð4Þ

ir G
ð4Þ
ir ; ðA2Þ

and similarly, the pole in Gð2Þ originates from the use of a
kernel Kð2Þ in the equation

Gð2Þ ¼ Gð2Þ
0 þ Gð2Þ

0 Kð2ÞGð2Þ: ðA3Þ

Then, by exposing the term Gð4Þ
ir within M4−2

ir ;M2−4
ir and

Kð2Þ as follows:

M4−2
ir ≡Gð4Þ

ir Aþ As; M2−4
ir ≡ ĀGð4Þ

ir þ Ās;

Kð2Þ ≡ Δs þ ĀGð4Þ
ir A; ðA4Þ

we show below that the above equations can be used in
Eq. (A1) to write Gð4Þ as

Gð4Þ ¼ ½1þ AsG
ð2Þ
Δ Ā�Gð4Þ

þ ½1þ AGð2Þ
Δ Ās� þ AsG

ð2Þ
Δ Ās ðA5Þ

and similarly Gð2Þ as

Gð2Þ ¼ Gð2Þ
Δ þGð2Þ

Δ ĀGð4Þ
þ AGð2Þ

Δ ; ðA6Þ

where Gð2Þ
Δ is the Green function driven by kernel Δs, and

Gð4Þ
þ is the solution to the four-body equation driven by the

sum of the kernel Kð4Þ
ir and AGð2Þ

Δ Ā,

Gð4Þ
þ ¼ Gð4Þ

0 þ Gð4Þ
0 ½Kð4Þ

ir þ AGð2Þ
Δ Ā�Gð4Þ

þ : ðA7Þ

What Eqs. (A5) and (A6) show is that Gð4Þ and Gð2Þ each
have just one pole, this being the shared pole due to the

Green function Gð4Þ
þ . Moreover, Eq. (A7) shows that this

shared pole is shifted with respect to the pole of Gð4Þ
ir

generated in Eq. (A2). It is also clear that because Kð4Þ
ir is

combined in the sum Kð4Þ
ir þ AGð2Þ

Δ Ā, it does not generate a
pole separately.

1. Proofs of (A5)–(A7)
By pulling out Gð4Þ

ir from M4−2
ir and M2−4

ir , and exposing

Gð4Þ
ir in the kernel Kð2Þ driving Eq. (A3), one obtains

Eq. (A4) where the main (physically important) parts of the
terms As, Ās, and Δs are 4q-irreducible, although they also
contain some 4q reducible parts for fixing overcounting or

undercounting suffered by ĀGð4Þ
ir A (recall that subscript

“ir” stands for “2q irreducible”).
With Kð2Þ being a sum of two terms Δs and ĀGð4Þ

ir A, it
will be useful to consider Eq. (A3) as a special case of the
generic two-potential equation

G ¼ G0 þ G0ðK1 þ K2ÞG; ðA8Þ

which may be expressed equivalently as

G ¼ G1 þG1K2G; ðA9Þ

where

G1 ¼ G0 þG0K1G1: ðA10Þ

Equation (A9) can also be written as

G ¼ G1 þG1T2G1; ðA11Þ

where K2G ¼ T2G1 and GK2 ¼ G1T2. One also has that

T2 ¼ K2 þ K2G1T2; ðA12Þ

¼ K2 þ K2GK2: ðA13Þ

Setting K1¼Δs, K2¼ ĀGð4Þ
ir A, G¼Gð2Þ, G0 ¼ Gð2Þ

0 , and

G1 ¼ Gð2Þ
Δ , Eq. (A3) can thus be expressed equivalently as

Gð2Þ ¼ Gð2Þ
Δ þGð2Þ

Δ ĀGð4Þ
ir AG

ð2Þ; ðA14Þ

where

Gð2Þ
Δ ¼ Gð2Þ

0 þGð2Þ
0 ΔsG

ð2Þ
Δ : ðA15Þ

Further defining

Gð4Þ
þ ¼ Gð4Þ

ir þGð4Þ
ir AG

ð2ÞĀGð4Þ
ir ; ðA16Þ

and multiplying this equation from the left by Ā and from
the right by A results in Eq. (A13) with

T2 ¼ ĀGð4Þ
þ A: ðA17Þ

Equation (A11) then becomes Eq. (A6). One then has that
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Gð4Þ ¼ Gð4Þ
ir þM4−2

ir Gð2ÞM2−4
ir ;

¼ Gð4Þ
ir þGð4Þ

ir AG
ð2ÞĀGð4Þ

ir þ AsGð2ÞĀGð4Þ
ir þ Gð4Þ

ir AG
ð2ÞĀs þ AsGð2ÞĀs;

¼ Gð4Þ
þ þ AsG

ð2Þ
Δ ĀGð4Þ

þ þ Gð4Þ
þ AGð2Þ

Δ Ās þ As½Gð2Þ
Δ þ Gð2Þ

Δ ĀGð4Þ
þ AGð2Þ

Δ �Ās;

¼ ½1þ AsG
ð2Þ
Δ Ā�Gð4Þ

þ ½1þ AGð2Þ
Δ Ās� þ AsG

ð2Þ
Δ Ās; ðA18Þ

where Eq. (A6) and the following relation has been used:

Gð4Þ
ir AG

ð2Þ ¼ Gð4Þ
ir A½1þGð2ÞĀGð4Þ

ir A�Gð2Þ
Δ ;

¼ ½Gð4Þ
ir þ Gð4Þ

ir AG
ð2ÞĀGð4Þ

ir �AGð2Þ
Δ

¼ Gð4Þ
þ AGð2Þ

Δ : ðA19Þ

This proves Eq. (A5). To prove Eq. (A7), reset the generic

variables to K1¼Kð4Þ
ir , K2¼AGð2Þ

Δ Ā, G ¼ Gð4Þ
þ , G0 ¼ Gð4Þ

0 ,

and G1 ¼ Gð4Þ
ir . Then Eq. (A2) is just a statement of

Eqs. (A10) and (A16), after the use of Eq. (A19), which
is just a statement of Eq. (A9). Equation (A7) then follows
immediately.
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