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Relations for low-energy coupling constants in baryon chiral perturbation
theory derived from the chiral quark model
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The quark model symmetry can be adopted to establish relations between the low-energy constants
(LECs) in the baryon chiral perturbation theory (y PT) if one assumes that a baryon-baryon-meson coupling
is described equivalently by a quark-quark-meson coupling at the quark level. Through the correspondence
between the SU(2) description and the SU(3) description for the same coupling vertex at the quark level,
we find some relations between the LECs in SU(2),pr and SU(3),pr up to the third chiral order.

The SU(3), pr LEC relations at the same order are also obtained. The numerical analysis roughly supports
these relations. In the situation that the available experimental data are not enough, one may employ such

constraints to reduce the number of LECs.
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I. INTRODUCTION

Chiral perturbation theory (yPT), an effective theory of
quantum chromodynamics (QCD) based on the chiral
symmetry and its spontaneous breaking, is designed to
describe low-energy pion interactions [I-4]. Both the
Lagrangian and amplitude are organized order by order
in the chiral expansion (expansion parameter p: hadron
momentum or pion mass) in this theory. Usually, a
consistent power counting scheme is required to decide
the needed Lagrangian terms for a calculated amplitude.
Since the structures of the interaction are just constrained
by symmetries, the number of allowed terms are infinite
and one has to introduce an unknown low-energy constant
(LEC) in front of each term of the Lagrangian. Such
coefficients can be determined phenomenologically before
their connections to QCD are clear. In practice, determining
the LECs is always a problem in the application of the
theory.

Up to now, chiral Lagrangians in meson and baryon
sectors have been constructed to high orders. In Refs.
[5-16], one can find the chiral Lagrangians in the light
meson sector up to the O(p?) order. In the light baryon
sector, terms up to the one-loop order have been obtained
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[17-24]. In the heavy quark hadron case, both meson
[25-30] and baryon [30-37] chiral Lagrangians up to the
O(p*) order are also explored. The large number of LECs at
high orders makes it difficult to achieve accurate high-order
calculations in theoretical investigations.

Practically, one may extract the needed LECs from various
experiments or lattice simulations [38—43]. However, the
available data are usually not enough for this purpose when
high-order corrections are involved. To reduce the number of
unknown parameters, studies from different considerations
are essential. One may turn to resonance saturation [44—49],
large N, [50-54], or quark model [55,56]. There are also
efforts to determine the LEC values from the fundamental
QCD [57-60]. Constraints on the LECs from symmetries,
although they cannot give accurate values, are also helpful for
us to understand the strong interactions; e.g., to what extent
can one understand the hyperon interactions from the nucleon
interactions? In the present study, we shall derive some
relations between LECs by considering the quark model
symmetry.

The flavor symmetry is useful in getting LEC relations.
For the pion-nucleon system, one may adopt either SU(2)
or SU(3) chiral Lagrangian to describe their interactions.
Since the number of terms at the same order is different for
these two cases, the relations like D + F = g4 can be
derived. Here, g, is the coefficient of the leading order
7NN coupling term in the SU(2) baryon chiral perturbation
theory and D and F are LECs in the three-flavor version.
Since baryons are made of three quarks, more relations
are possible if one adopts the chiral quark model (yQM)
[61-63] and the quark wave functions (w.f.) of the baryons.
Noticing that the quarks in the SU(2) and SU(3) chiral
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quark models are all in the fundamental representation
and the coupling constants may be equal (called g% in
our leading Lagrangians), the hadron-level coupling con-
stants can be related. In the mentioned example, we have

w.f.

D =2g, and F =%g,. The chiral quark model is just a
“bridge” for our purpose and the relevant coupling constant
g1 does not appear in the final expression. The procedure to
get such relations is

w.f.

SU(2)ypr <4——— SU(2)you =-—» SUB)you —» SUB)ypr

ga = 3g% g%

What we want to do is to find more LEC relations by
extending the idea in this example to high-order terms.
This paper is organized as follows. In Sec. I1, we collect all
the baryon Lagrangians up to the third chiral order. We also
construct relevant Lagrangians at the quark level. In Sec. I11,
the nonrelativistic reduction for the coupling terms and the
baryon wave functions in the quark model are presented. In
Secs. IV and V, the relations of coupling constants between
¥PT and yQM in the two-flavor and three-flavor cases are
given, respectively. Then we present the coupling constant
relations between SU(2), ), and SU(3) oy in Sec. VI. The
final LEC relations between SU(2),pr and SU(3),pr are
also extracted in Sec. VI. Section VII presents some
numerical analyses and Sec. VIII is for some discussions.

3
g D =g} = 59a,
A F

II. LAGRANGIANS IN yPT AND yQM

To get the LEC relations, we need the complete chiral
Lagrangians and classify the terms based on their struc-
tures. According to the power counting rules, the trans-
formation properties (charge conjugation, parity, and
Hermiticity) of various building blocks, and the reduction
procedure, one can obtain the minimal chiral-invariant
Lagrangians. The explicit forms of the interaction terms
up to O(p*) have been given in Refs. [18-21]. Here, we
restrict our discussions up to the third chiral order and we
collect the adopted terms in Tables I-111. They are classified
into 1, 5, and 16 groups separated by hlines for O(p'),
O(p?), and O(p?) Lagrangians, respectively. The first

TABLEL The O(p') chiral-invariant Lagrangians in SU(2), pr/, o> SU(3) ,0m»> and SU(3), pr. We use i to label the interaction terms
and gy, g, and D/F to denote the coupling constants in SU(2),pr, SU(2,3),op» and SU(3),pr, respectively. y in SU(2), o), means v,

of Eq. (3) and (- --) means trace in flavor space.

SU(Q’);(PT/)(QM SU(3);(QM SU(3);(PT

i 94/ 94 i 4 i D+F i D-F

! STy rsy 1 3 Pury,ys® 1 3 (Bu"y,rsB) 2 3 (By,rsBu")
TABLE II.  The O(p?) chiral-invariant Lagrangians in SU(2),pr/,0m> SU(3),0m» and SU(3),pr. We use i to label the interaction

terms and a;, B;, ¢;, and d; to denote the coupling constants in SU(2),pr, SU(2),om> SU(3),0um> and SU(3),pr, respectively. y in

SU(2),om means y, of Eq. (3) and (- - -) means trace in flavor space. The fifth term in SU(2), pr/,ou Vanishes because (v#) = (a*) = 0.

SU(Q’))(PT/)(QM SU(3))(QM SU(S))(PT

i a,»/ﬁ,« i Ci i d,‘ i d,‘

1 W',y 1 P (u'u, )Y 1 (Bu*u,B) 3 (BButu,)
2 Yuru, ¥ 2 (Bu"Bu,) 4 (BB)(u!u,)

2 W' u 3 Yo,V 5 i(Bu'u’c,,B) 7 i(Bu")(u”o,,B)

6 i(Bo,, Bu'u”)

3 w(u'u”) D,y 4 Y (u'u*)D,, ¥ 8 (Bu'u”D,,B) 10 (BD,, Bu"u”)
5 Yu'u'D,, ¥ 9 (Bu"D,,Bu”) 11 (BD,,B) (u"u*)

4 l/_/fl-:—yo'ﬂul// 6 li]flfayuql 12 <B /j:g/wB> 13 <BU,ube/f>

5 P (f¥)ouw =0

6 iy 7 _lpf{Jr\P 14 <l:3)?+B> 16 (BB)(r+)

7 o 3 Wy 15 (BB7.)
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TABLE III.

The O(p?) chiral-invariant Lagrangians in SU(2),pr/,0ms SU(3),0m> and SU(3),pr. We use i to label the interaction

terms and a;, $;, c;, and d; to denote the coupling constants in SU(2),pr, SU(2),0y> SU(3),om> and SU(3),pr, respectively. y in

SU(2),oy means y, of Eq. (3) and (- -

-) means trace in flavor space. The symbol [- -

|, stands for [- -

-] + H.c. The tenth and 13th terms

in SU(2),pr/,om Vanish because (v*) = (a*) = 0.
SU(z))(PT/)(QM SU(3))(QM SU(3))(PT
i a,«/ﬂ,» i C; i di i di
1 o (uu, ) uty,ysy 1 P u, ) uy,rs'Y 1 [(Butw,u’y,ysB)|, 7 (By,ysBu'u u,)
2 l/_/<uﬂuy>“;4}/u}/5w 2 ‘?<Mﬂub>u/¢7@7l51p 2 <Buﬂu u/ﬂ/u}/SB> 8 [(BYV}’SBM M””y }+
3 ?(uﬂuuuu>71/}/5l}l 3 <Buﬂu;47v75Buy> 9 <€;7075Bu >< uu>
4 [‘I’u"l,tﬂl,t’“g/,J}/S‘I‘}+ 4 [(Bu*uty, ysBu, M 10 (By,ysB)(u” u"u,)
5 (Buty,ysBu'u,) 1 [(Bu'u,)(uy,ysB)] .,
6 [<Buﬂyby58u/‘u”>}+
3 EuwapW (W u*u*) Dy 5 eﬂbiﬂ‘i’(u/‘u”uﬂDP‘I‘ 12 €3y (Bu' u* u* D’ B) 15 €2y (BD"Butu* u*)
6 €y Pt v DPY 13 &y (Butu? D’ Bu?) 16 &2 (BD” B) (u u” u*)
14 €3y (Bu* D’ Bt u”)
4 W () uty,ysDyw 7 Y(u'u)u'y,ysD,¥Y 17 [(Buu’uty,ysD,B)), 23 [(By,ysD,;Butu*u*)]
5 W (W u? ) utyysDyw 8 Y(wut)u'y,ysD,,¥ 18 (Bu*utu*y,ysD,,B) 24 (By,rsD,;Bu"u'u’)
9 ‘P(u”u”uj)yMySDM\P 19 <Bu”u‘yﬂy5DmBu‘) 25 <B}/ﬂy5DbﬂB><u"u”ul>
10 [Pwuu'y,ysD,¥). 20 [(Bu'u'y,ysD,Bu’)l, 26 (By,rsD,Bu')(u‘u’)
21 [(Bu'y,ysDyButu’)], 27 [(Butu')(uty,ysD,;B)],
22 (Bu”yMySDMBu”uﬂ)
6 [Wu,h** Dy, 11 [‘i‘uﬂh*‘”Db‘I‘]+ 28 [(Bu n“D,B)]. 30 [(T?h"”)(u,,D,,B)]+
29 [(BD, Bu,h**)] |
7 [Wu' D, 12 Wuh**D,,, ¥, 31 [(Buh**D,,,;B)] 33 [(Bh*)(u*D,,,B)]
32 [(BD lBu”h”'{ﬂ
8 iy (u'h**)6,, Dy 13 ¥ (u' o, D, ¥ 34 li(Bu*h**6,,D;B)]. 36 [i(Bo,,D;Bu*h**)]
14 [P ho,,D;¥], 35 i(Bu'c,,D,Bh*") 37 i(Bo,,D;B) (" h**)
9 [il/_/fiyuﬂyUYSW}+ 15 [ILP iyuuYD}/ST]+ 38 [l< f+yu;4YDySB>]+ 40 [l<Bu;l><f/j—yynyB>]+
39 [i(By,ysBf )],
10 e, (f)u'D’y -0 16 i€, P (f* u)D'Y 41 e, (BffYw'D’B)], 44 i€, (BD’ Bf u")]
11 i€, (f' u*) Dy 17 lie,, YfYu*D, V], 42 i€,,,,(Bf" D’ Bu*) 45 i€,,,,(BD’ B) (f"* u*)
43 i€,,,(Bu*D’ Bf"!)
12 AV e DY 18 YV, f''D,¥Y 46 i(BV,f"'D,B) 47 i(BD,BV,, f*’)
13 (VYD =0
14 [l.l/_/f/ibulj/”]/5DMl//}+ 19 [iq‘f’f”/ly”ySDqu]Jﬁ 43 [i<B.fﬁbulyy75DMB>]+ 50 [i<Bul><.fﬁry}/ﬂ}/5DbiB>}+
49 [i<B}//4}/SDu/IBf/ful>]+
15 [wu, f* D], 20 Wu,f*D,¥Y], 51 [@?uﬂ f*D,B)|, 53 [(Bf*)(u,D,B)],
52 [(BD, Bz@f’i”)]+
16 iy (" )6, Dy 21 ¥ (u* f*o,,D,¥ 54 li(Bu" f*0,,D,B)], 59 i(Bu*c,,D,Bf")
17 l/_/< f > MD v 22 i\ij<u”fli/1>0leylP 55 [l<B #f GﬂD B>]+ 60 [Z<B ;wD/lB“ﬂfM>]+
23 [i(Pu f“0,,D,¥], 56 i(Bf“o,)D,Bu") 61 li(Bo,,D,Bu* f)]
24 [iPu f“6,,D,¥], 57 i(Bf“ WDABu”> 62 i(Bo,,D;B) (u )
58 i(Bu*o,,D,Bf") 63 i(Bo MD B) (ut f4)
18 y'/VMf’i”y,,ySI// 25 ‘i]vuflf%/VSlP 64 <B ”flu‘ynyB> 65 <B]/”]/SBva/iD>
19 W)y sy 26 W7, )y,ysY 66 [(Bu'717,75B)] . 70 (By,rsB)(u'z )
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TABLE III. (Continued)

SU(Z))(PT/)(QM SU(?’))(QM SU(3))(PT
i a,«/ﬂ,» i C; i di i di
20 W'y sy 27 W) yrsY 67 (B v,vsBu) 71 (Buy,ysB)(x+)
28 (Wuy y,rs ¥, 68 (Bu'y,rsBy+) 72 (By,ysBu)(r.)

69 [(By,rsBu'y ).
21 WLy s 29 7L yrsY 73 i(B7 y,rsB) 75 i(By,rsB) (k)
22 WGl ) vy sy 30 W OE)yrsY 74 i(By,rsBpt)
23 lipu7_D,w] 31 [(Wu'y_D,Y|, 76 [i(Bu*7_D,B)], 78 [i(By_){(u"D,B)],

77 [i(BD,Buty_)],
(third) columns list terms in the two-flavor (three-flavor)  (v,) = (a,) = 0. The resulting terms (the fifth term in

baryon yPT. The involved baryon fields are

4 _ 0
l//=<n>, B= ) —\2/—5—1-\% n o |. (1)
== =0 —2A
- - V6

Other definitions are [18-21]

w = i{u’ (" —ir)u —u(o* —il*)u'},

)

="+ a’,

¢=rx2 or 't

=yt — g,
v =u'yu' +uyfu, ¥ =2By(s +ip)
mw = VHEyr + VVuk,

= uF " +ut Fu,

= uFPu’ — u' R u = -Vru¥ + Vi,
P — 0 — 1 — i1, 1,
P g )

1. . .
= E{u’(af‘ — i u+u(o" —il")u'},

2= uVrut + uVhyu = iy, _é{)(”F’ ut},
VFO = 40 + [[*, 0],
Viy = oy — irfy + iylV,
D'B = ¢"B + [T, B],
DHy = o'y + Ty,

D,),..= D,D;D, - -- + full permutation of D’s. (2)

Here, A' (i = 1,2, ...,8) are the Gell-Mann matrices, 7’
(i = 1,2, 3) are the Pauli matrices, and B, is a constant related
to the quark condensate. For the scalar (s), pseudoscalar (p),
vector (v,), and axial-vector (a,) external sources, we take

Table II, the tenth and 13th terms in Table III) related to
(f) in SU(2),pr would vanish and could actually be
removed. For convenience [18], we also separate the matrix
X, into two parts: the trace part (y,) and the traceless part
T =24 - Ni/ {(x4+) with N being the number of flavor. The

matrices y_ and y/, are treated similarly.

In the Lagrangians, we use g4 and D/F to denote the
leading order coupling coefficients in the SU(2) yPT and
SU(3) yPT, respectively. For high-order terms, here we
simply use the symbols «; and d; to denote the LECs in
SU(2) and SU(3) yPTs, respectively. The terms in the
tables are classified into different groups so that the items in
the same group contribute to the same vertex structure.

In principle, the matrix of a coupling vertex can be
calculated at both hadron and quark levels. When adopting
the yQM to find LEC relations, we use the approximations
illustrated in Fig. 1. We assume that the coupling of a
baryon with the pions is due to the coupling of one quark
with the external pions; i.e., two quarks are just spectators.
Therefore, we also need the high-order coupling terms in
the yQM. In a similar way to construct the pion-nucleon
Lagrangians, the perturbative Lagrangians in the yQM can
be obtained. We also list them in the Tables I, II, and III.
Since both nucleons and the u# and d quarks are in the
fundamental representation of the flavor group SU(2), the
terms in SU(2), o) and SU(2),,py have the same forms, but
the matter field is now

w—>wq=(2)- (3)

Compared with the two-flavor case, the SU(3),,), has

more structures at O(p?) and O(p?). They are illustrated in
the second columns of Tables [-III, where

y=|dl. (4)

In the leading order Lagrangians, there is only one coupling
term in both SU(2),4y and SU(3),oy- The coupling

054023-4
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—_—— = ~ —_—— =

FIG. 1.

Schematic figure for the approximation we adopt. A baryon-baryon-meson coupling in yPT is approximately described by a

quark-quark-meson coupling at the quark level. Two quarks in the baryons are treated as spectators.

constants are the same and we use g to denote it. For high-
order terms, we use f; and c; to denote the coupling
constants in SU(2),oy and SU(3),oy respectively. For
convenience, we also call them LECs.

III. NONRELATIVISTIC REDUCTION
AND BARYON WAVE FUNCTIONS

Employing baryon wave functions to find LEC relations
means that we need to reduce the covariant formalism
of the Lagrangian to the nonrelativistic form. From
Tables I-1II, there are three Lorentz structures we should
deal with. Their reductions read

Ty = Wi

0, =0
1177/"751//%2117”5"%—>{ . v );
wyuoyy, (H=k)

ijky Tk o
waﬂbwzzeﬂyaﬁval/_IvSﬂWﬁ - {6 WHO- l//H’ (ﬂ Ly ])
0, (other)
(5)

1y

where S =Ztyso*v,, w,=-5"w (v* is the baryon
4-velocity), and ywp is the large component of y. With
the reduced baryon-meson interaction term, it is easy to
get the coupling matrix element at the hadron level.
Adopting the approximation shown in Fig. 1 and the quark
wave functions of the baryons, one can calculate the same
matrix element at the quark level. Then the relation between
the coupling coefficients in yPT and yQM follows from
matching. Details will be given later.

In the quark model, the octet baryon flavor-spin wave
functions are [64]

b

lPFS:\/i

(¢MS ®)(MS + ¢MA ®ZMA) (6)

where the flavor wave functions ¢™5 and ¢4 and the spin
wave functions yMS and yM4 are constructed with the
SU(3) and SU(2) Clebsch-Gordan coefficients [65,66],
respectively. For our purpose, one may just focus on the
spin-up baryon states in the following calculation.
Explicitly, these wave functions read

Pt = 35l ® @11 = L1 = 1) + du © 21 = 11 = 111) = d @ (141 + 111 =24 11))

1

ny 3\/5[udd ® (N =20 + 1) +dud @ (I =211 + M) +ddu @ (P11 + 1M1 = 2111)),

BF = - fusu ® (2144 = L1 = 10) 4+ suu ® 241 = 11 = 11) = uus @ (144 + 411 =211,

3v2
1

=3

%

[1]

—> O

3v2

[1]

[dsd @ (2111 = 411 = 114) +5dd @ (2411 = 14 = 114) = dds ® (141 + 411 =211 ),
=~ luss ® (1 =200 4 110+ sus ® (1 =2000 + 111) + 55w ® (144 + 141 = 2010)]

= 55108 @ (2204 LI+ 1) + s © (2011 + U1+ 110+ 5sd @ (141 + 111 =210

%) = < [(dsu-+usd) ® (2141 = L1 = 114) + s+ sud) ® (2411 = 141 = 111)

6
+ (dus + uds) @ (=M1 = LM+ 2110,

Ay = —_— [(dsu—usd) @ (11 = M) + (sdu — sud) @ (111 = M) + (uds — dus) @ (111 — I 11)]. (7)

2V/3

054023-5
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Note that we have added a minus sign for the wave
functions of T, 29, and A. Without these additional signs,
the relations D = ¢ and F =2 g cannot be consistently
obtained when one uses coupling vertices related to these
baryons.

In our investigation, besides the calculation term by
term, we also confirm the obtained relations with a
computer program. To do that, one rewrites the above
nucleon wave functions in a two-flavor description as the
form

o . . ,
fo I~ [(US)LX}’Z<US>(1./)W1 + (UA)l’xyZ(UA)a,pm]qzq;Q2
V2
= Wapmd, 4295, (8)

where i, x, y, z are flavor indices (1 represents p or u and 2
represents n or d), a, p, T, i are spin indices (1 represents 1
and 2 represents |,), and the U coefficients may be obtained
with

1 1
(US)i,xyz = % (5ix€yz + 5iy€xz) ’ (UA)i,xyz = 7§€xyéiz .

©)

The W coefficients can also be read out from Eq. (7)
directly. It is easy to get the following properties:

ixyz ixzy iyxz __ iyzx izyx 1,7Xy
Wa,pm - Wasﬂ’?‘f - Wﬂ‘a‘fﬂ’? - Wa,mﬂ - Waa'?‘fl’ - W“q’]ﬂ‘f’
(10)
J

B’

VIRV P 2 .,
W W =5 5+ 25
yzmn

Py ix sjx'
— 5 (616 60,8 6767 656,). (1)

Similarly, one may rewrite the octet wave functions in the
three-flavor description as

By - ﬁ [(TS)U’X}Z(US)a,pm + (TA)lj,xyZ(UA)a,pm]Q;ngq;

= X 42 q (12)

where i, j, x, v, z=1, 2, 3 (a, p, 7, n = 1, 2) are flavor
(spin) indices and

y 1 .
Tg],xyz _ (51x€yz] + 6ly€xz])’
V6
i xy 1 R R
T = 7 (5@% - g(stfeW) (13)

The modified phases for =¥, Z°, and A have been counted
in Tg and T 4. The X coefficients may also be read out from
Eq. (7) directly. One has

[JXYZ __ 3l X2y VXTI oyl ayx _ yijzxy,
Xapin = Xappe = Xazpn = Xawmp = Xanip = Xanpe s

(14)

e i S oo, 2 - 2
Zxab,x )ZXZ’;?;?Z :§5tx5/b5ax 5ap5ﬂp’ _5(5lj5ax 5bx+51x5jx 5ab)5ap5ﬂp’ +§(51a6/b5xx —Slagix 5bx)5aﬁ5pp’

yam

1, ... b o 1, . . o i, ,
+§(51./6uh6xx 4 slagix 5bx _ 5za6./h5xx )5(”)5/}[)/ +§(61x6_/x 5uh _ 51x5./b5ax 4 i §ax 6bx _ 51}5ab5xx )5(1/15 ,

IV. LEC RELATIONS IN THE SU(2) CASE

Since there is no difference between the flavor-spin
structures of Lagrangians in SU(2),pr and SU(2),y the
LEC relations should be simple. At the leading order, the
nonrelativistic forms of the coupling terms in yPT and
¥QM are

Ef_l ‘6 L

N= ngll/HO' uypy= 29A‘lfy,ﬁ0'ﬁa Uy o

L= iy =L e (16)
q— ng‘/’q" uy, = ngwq,p’Gp’pu Yap:

To be specific, we consider the p; — py — % coupling

case. Then the matrix element at the hadron level is

op'*

(15)

M ~ gaq3(prlosts|py) = 9aqs. (17)

where g5 is the z-component pion momentum and 63/75 is
the third Pauli matrix. The calculation for the same vertex at
the quark level is

3

— () _(i 5
M~ digilpr| Yoy e |py) = Jdhas. (18)
i=1

where i labels quarks and the wave function of p, in Eq. (7)
is used. Therefore, we have g, =3 gf.

At the second chiral order, there are five groups of
structures we need to consider. Extending the above

054023-6
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TABLEIV. Coupling constant relations between SU(2),pr and
SU(2),0m-

Group SU(Q2),pr © SU(2),0m

O(p') 1 ga =394
O(Pz) 1 ay =3p;

2 ) = %ﬂz;

3 az = 3ﬁ3,

4 g = %ﬂ4;

5 ag = Po, a7 = 3f;.
O(P3) 1 a = %ﬁl’ A = %ﬁﬁ

3 a4 = %/’74, s = §ﬂ5§

4 = Ps;

5 a; = pr;

6 ag = Pg;

7 a =3 Po;

8 ay = 3p1;

9 app = Pra;

10 ay =3P

11 a5 = Pis;

12 a6 = Pre> a7 = Pi7s

13 g = %ﬂ]s;

_ _5p8 .

14 a9 = Pro, ay = gﬁzo’

5 .

15 A = §ﬂ217 an = Pun;
16 a3 = Pas.

procedure gives six coupling constant relations. Note that
there are two structures in the fifth group. The description at
the quark level and that at the hadron level for the coupling
types may be not one to one. When one adopts y, instead of
J. in the sixth term, the contributions of the two structures
should be considered together and the resulting relations are
ag = f¢ and a; = P¢ + 3f;. When the traceless field 7, is
adopted, the resulting relations are simply ag = fq
and a; = 3f.

At the third chiral order, we have sixteen groups of
LECs. Similar to the considerations at O(p?), one gets 21
relations. All the obtained relations between SU(2),pr and

SU(2) ,om up to O(p?) are summarized in Table IV. There

are four types of LEC relations corresponding to respective
nonrelativistic interacting structures

1 = a; =3p;, c—a=p, T a; = p,
5
TQ® o0 — q; =§ﬂ,-. (19)

These results are consistent with the quark model calcu-
lation by using the Wigner-Eckart theorem [67]. Although
high-order chiral Lagrangians involve more pion fields, no
more types of LEC relations in the adopted approxima-
tion exist.

To confirm the obtained relations with a computer
program, it is convenient to define the function (at leading
order)

Gli,a = j.B:0.7) = ga(0) o (7)"

§ : Jx yz X xyixyvz
3gA Wﬂ Pl 0)/) 'p ) WllA,PT’?‘
yz. o

(20)

In studying a vertex at the quark level, /7 acts on the
specific quark (e.g., the third quark). From vanishing
G(i,a = j,p;0,7), one gets the relation between g, and
g1. In the above example, one recovers the relation g, =
%QZ by setting i=j=a=pf -1, 6 > 03, and 7 - 73.
Other choices of i, j, a, #, 0,7 do not change the result. At
high orders, one may define other G functions in a similar
way. Note that the unit matrix other than the Pauli matrix
may be used in the definition, depending on the spin-flavor
structures of the coupling terms. The relations in Table IV
and the correspondences in Eq. (19) are easy to confirm by
considering various couplings.

V. LEC RELATIONS IN THE SU(3) CASE

In this case, since the baryons are in the adjoint
representation but the quarks are in the fundamental
representation, there is no one-to-one correspondence
between the quark-level description and the hadron-level
description for a given coupling type. One should consider
all the coupling terms in the same group together. We use
the leading order Lagrangians as an example to illustrate
the procedure. The nonrelativistic forms of the coupling
terms read

Ly~ (D+ F){Bj;6 -uBy) + (D — F)(B},6 - Byu),
L,~ g ¥o- u¥. (21)

The py — py — ° coupling and the = — X7 — z° coupling
are determined by D+ F and F at the hadron level,
respectively, while they are both determined by ¢ at the
quark level. The equivalence between hadron-level calcu-
lation and quark-level calculation gives D + F = % gl and
F= % gZ, respectively. Therefore, we have D = gZ and
F = %gﬁ, which is consistent with Ref. [68]. Other cou-
pling considerations do not change this result if the
consistent wave functions in Eq. (7) are adopted.

Noticing the calculation difference between SU(3) and
SU(2), we get relations between c; and d; at the second and
third orders, which are collected in Table V. From the
results, relations between d’s can also be established. Some
d’s are set to zero so that the LEC relations from different
coupling vertices are consistent.
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TABLE V. Coupling constant relations between SU(3),,pr and SU(3),,y-

Group SU(3),pr © SU(3),0m
o(p') 1 D =g, F =3g.
o(p*) 1 dy=—ds =cy,d, =0, dy =3c; + ¢,
2 ds =5ds =3c3,d; =0
3 dg:—dm:()S,dQZO,d“ :3C4+C5;
4 dyy = 5dy3 =3 c;
5 dyy = —dis = ¢7, djg =3¢y
op?) 1 dy = %(201 + ¢y +2¢4), dy = 5d; = 262, dy =ds = —3dy = —d,, :%(ch —¢3), dy =dsg =0,
dy = ¢ (10¢; — 3¢y + 2¢4), dig = ¢ (=10¢; — Ty 4 6¢3 — 4ey);
2 diy = —d\s = cg, di3 = dyy =0, djg = 3¢5 + cg;
3 di; = %(67 +2¢g + 2¢yp), dig = Sdoy = %C% dig =dy = —%d% =—dy = %(—Cﬁ +2cg), dyy = dy; =0,
dyy = (3¢5 + 10cg + 2¢49), das = ¢ (=Tc7 — 10cg + 6¢9 — 4c1p);
4 dyy = —dyy = cy1, d3p = 0;
5 dy = —dy =cpp, d3 =0;
6 d34:5d36:%014’ d3s =0, d372013—%614§
7 dyg = 5dy9 =3cy5, dag = 0;
8 dy = —dy = 17, dgp = dy3 =0, dys = 3c16 + 20173
0 dys = —dy7 = C133
10 dyg = S5dy = %C19, dsp = 0;
11 dsy = —dsy = ¢, ds3 = 0;
12 dsy = Sdgy = %023’ dss = 5dg; = %024’ dse = ds7 = dsg = dsg = 0, dgp = ¢ —%6’23’ de3 = ¢ —%Cz4§
13 dey = S5dgs = §c25;
14 des = Sdeo = 3028’ de7 = deg = 0, d7g = ¢3¢ —%Cm’ dy = 5dp = %C272
15 dy3 = Sdyy = %ng, d7s = c30;
16 drg = —dy7 = ¢31, d7g = 0.

Since the situation in the SU(3) case is more compli-
cated than the SU(2) case, the correspondences similar to
Eq. (19) seem to be lost. In fact, from the fact that SU(2) is
a subgroup of SU(3) and there are always two ways for the

|

octet-octet-octet coupling ((BAB) and (BBJ)), one under-
stands that some correspondences should exist. It is found
that the LEC relations can be obtained with the following
structure correspondences:

(BB) » V¥ = (combination of several d’s) = 3(combination of several ¢’s),

(BAB) — WPA¥ = (combination of several d’s) = (combination of several ¢’s),

(BB1) — WPA¥ = (combination of several d’s) = —(combination of several c’s),

- - 5
(BAoB) — Wlo¥ = (combination of severald’s) = 3 (combination of several ¢’s),

- - 1
(BoBA4) - YAo¥ = (combination of severald’s) = 3 (combination of several ¢’s),

(BoB) — Yo = (combination of several d’s) = (combination of several ¢’s). (22)

The first, second, fourth, and sixth correspondences are
easy to understand. To get the third and fifth correspond-
ences, one may study the couplings B3(4%),,B3;
and B3(4%);,0B3 or other couplings irrelevant with
(BAB) and (BloB). The LECs for the structures of
(BABA), (BA){AB), (BAcBJ), and (BA){cAB) can be set

[

to zero in the adopted approximation. Before employing
these correspondences, one needs to reorganize the
Lagrangian terms in the same group with the help of
the Cayley-Hamilton relations. For example, the
complicated group-1 terms at O(p?) should be reorganized
to be
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(dy = dy + dy) ) (B(wu,u* + u'iu,)y,7°B) + (ds — dy + dyy) (By,y* B(w'u,u¥ + uuu,))
+ dy(B(uu + uuh)y,y Bu,) + de(Bu,y,r’ B(uu* + u*ut))
+ (ds + dyy ) (Butu, y,r°Bu¥) + (ds + dy,) (Bu*y,y° Bu'u,)

2 — 2 _
+ <d2 + §d6> <B”u7u}’53><uﬂuy> + <d7 +§d4) <B}’y}’53“ﬂ><’4’luy>

1 1 2 - 1 1 2 _
+ | 5d> +5ds — 5 dyy | (Buy,y’ B)(w'u,) + | 3 ds + 5dy + doy — S dyy ) (By,y’ Bu®) (uu,)
2 3 3 3 2 3
2 1., 1.2 1 o
+ §d1+§d2+§d7 +§d8+d10+§d11 (By,y’B)(u'u,u”), (23)

where X indicates the traceless part of X. Then a set of LEC
equations according to the above correspondences and thus
the relations in Table V can be obtained.

To confirm the calculation with computer, one may
define various G functions similar to the SU(2) case. At
leading order, the definition is

G(i,j,a— a,b,p;0,)
= (0)[(D + F)(2)“8" + (D = F)5*/(2)"]

3K (6) (A XU, (24)

From the vanishing G, the above results D = g% and F =
%gz are recovered by considering various couplings.
However, one should note that B;;, B,,, and B33 contain
both X° and A. The combination of several G functions is
needed when the relevant couplings are involved. For
example, if one extracts the relations from the X™-z77-A
coupling, X°-z°-A coupling, and A-y-A coupling, the
equations we need to study should be

D (1) G(1.2.a = x.x.;0.2) =0,

X

Z(’%)xx(ﬂg)ny(x’x’a -V y?ﬁ’ o, /1) = 0’

Xy

Z(AS)XX()VS)ny(X’x’a - y?ﬂ; o, /1) =0, (25)

X,y

respectively. By defining different G functions at high
orders and considering various coupling vertices, all the
results in Table V can be recovered.

VI. LEC RELATIONS IN yQM AND xPT

To find LEC relations between SU(3), pr and SU(2) ,p7,
we also need to know relations between f; and ¢;. Now we
consider this issue.

|

At the leading order, we adopted gZ to denote the
coupling constants in both SU(3), ), and SU(2) ., since
there is only one coupling term. At the second and third
orders, the situation is different. One picks up the SU(2)
sector in the Lagrangian of SU(3) ,om DY replacing the field
¢ = ')l with ¢ = 7'z’ and using the Cayley-Hamiltonian
relations for 2 x 2 matrices X, Y, and Z

YZ+ZY =Y(Z)+ Z(Y) + (YZ) = (Y)(Z),
XYZ+YZX +ZXY = % (XY)Z+ (YZ)X + (ZX)Y

+ XY(Z) + YZ(X) + ZX(Y)
- (XY)(Z) = (YZ)(X)
— (ZX)(Y) + 3(XYZ)]. (26)

The matching between this sector and the Lagrangian of
SU(2),om gives the coupling constant relations between
p’s and c’s. We list all the obtained relations in Table VI.
Not all the coupling constants in SU(3), ), can be con-
stra_lined by those in SU (_2))(QM' The O(p?) terms
;W u,ut)y,rs¥ and  coW(ututut)y,ysD,¥  always
involve the s quark contribution. We use nc to denote this
case in the table.

Combining the relations in Table VI with those in
Tables IV and V, one gets the final LEC relations between
SU(3),pr and SU(2),pr. They are shown in the third
column of Table VII. All the relations are simple. There are
LECs on which we cannot get constraints from the
SU(2),pr- The processes that can constrain them must
involve strange quark contributions.

We also consider the LEC relations by picking up the
SU(2),py terms in the SU(3),py Lagrangian, i.e., without
using the yOM. They are helpful crosschecks for the results
we obtain. From Tables I-III, there are 6 flavor structures
in the SU(3),p; Lagrangian, (BYB), (BBY), (BYBZ),
(BB)(Y), (BY)(ZB), and (BBY)(Z). It is not necessary to
consider the following terms:
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TABLE VL. Coupling constant relations between SU(3),oy
and SU(2), - The leading order coupling constants are both gl

nc means that there is no constraint from the coupling constants
in SU(2),ou-

_ _ 1. .
Pro = €26 + Cogs oo = €27 + 3283
_ _1 .
Pa1 = €29, far = §Ca0 + €305
Pz = ca.

Group SU(3),om © SU2),0m

o(p") 1 gl =gl
O(p?) 1 P =c —0—%02;

2 P = c3;

3 B3 = cs+ 3¢5

4 Ps = c6;

5 Be = c7, 1 = c7 + cs.
O(p?) 1 fi = ci + ¢y, fr = 3, 3 (n0);

2 f3=cs+ %C6§

3 Pa = c7, Ps = cg + c195 €9 (n0);

4 Bs = ci;

5 b7 =c;

6 Pg = ci3+cias

7 Bo = ci5;

8 B =cig +cirs

9 P2 = cig;

10 Pia = cio;

11 Bis = ¢20;

12 Bie = ca1 + €23, Pr7 = Cop + Co4;

13 B = ¢25;

14

15

16

aan =y~ (b 0)

(BYBZ) = BinjkBkth'

_ _ Y Y B
- <B31 B32) ( ! 12> < l3)233, (29)
Yo Y2/ \ B

(BY)(ZB) = B;;Y By Zy

_ _ Y3 B3
— | B3; Bz y Zy Iz B )
23 23

(30)

and

because they always involve s-quark contributions. The
structure of the remaining terms one needs to consider is
just like (BYB) or (BB)(Y). Note that one should replace
they, toy, — N% (r.) and then let Y = y, when using this

feature (similarly for 7_ and j#%). Replacing the 3 x 3
matrix B with the 2 x 1 matrix y and the 3 x 3 pion
matrices with the 2 x 2 pion matrices, one gets the needed
terms. According to the Cayley-Hamilton relations in
Eq. (26), one finds the LEC relations listed in the fourth
column of Table VII.

Let us move on to the comparison of the results obtained
with and without using yQM. Obviously, the results with
using yQM contain all the relations obtained without using
QM and the quark model symmetry leads to more LEC
relations. This is easy to understand by analyzing the O(p')
relations D = % gy and F = %gA. In the method without
2 QM, the extractionof D + F = g, does notinvolve hyperon
interactions. In the method with yQM, however, the hyperon
interactions are considered to give more constraints in the
approximation that the s quarks are just spectators.

In the large N, limit, one may also derive some relations
between the LECs. Noticing the symbol difference, we find
that the relations F/D =2/3 at O(p') and dsy = d33 =
dys =0, dy = —dy, dyy=15dy, dy3=>5dy, dg=
deg = 0, and dgs — Sdgo = 3 (d7) — 5d7,) at O(p?) are con-
sistent with the large N, analysis performed in Refs. [53,54].

VII. NUMERICAL ANALYSIS

The LEC relations obtained in Table VII are approximate
results. They are certainly affected by symmetry breaking
and corrections from low order Lagrangians. An example is
the matching relations at O(p?) presented in Ref. [69]. It is
helpful for us to check our approximate relations by taking
a look at some numerical values. Now we consider this
issue order by order.

A. O(p') LECs

The SU(2) coupling constant g, is extracted from the
neutron beta decay and we take g, = 1.2694 £ 0.0028 here
[70]. The SU(3) LECs D and F are determined to be 0.80
and 0.50, respectively, by fitting the semileptonic decays
B — B’ + e~ + 1, [71]. Recently, a lattice calculation gives

D =0.730(},), F = 0447, and F/D = 0.612(}3) [38].
These results confirm the well-known relation g4 = D + F.
The relations D = %gA, F = %gA, and F/D = 2/3 are also

roughly satisfied.

B. O(p?) LECs

The LEC names we adopt differ from those in the
literature. It is necessary to set up the relations between our
LECs and those in the literature when using their values. In
the SU(2) case, we take the values from Ref. [72] which are
compatible with those in Refs. [73,74]. In the SU(3) case,
we refer to [75]. The investigations of pion-nucleon
scatterings in these two papers are both conducted to the
third chiral order. With the help of the Cayley-Hamilton
relation for traceless 3 x 3 matrices given in Ref. [76]
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TABLE VII.  LEC relations between SU(2),pr and SU(3),pr. nc means that there is no constraint from the LECs in SU(2),py-

Group With yOM Without y QM
o(p') 1 D =3gs F =3y, D +F = g,.
O(pZ) 1 (24} :%d|+d4:—%d3+d4, d2:0, oy :%d|+d4,
2 a2:d5 :5d67 d’] :0, a2:d5;
3 a3:%d8+d11:_%d10+d117 dy = 0; a3=%d8+d11§
4 a4 = dp = 5d3; ay =dj;
=d
5 ag =dis = —dis, @y = Ldy +dig = —dys + dyg. %o = e
6 14 15 7 2¢%14 16 215 16 a; = %d14 +d16 _%(dlét +d15)'
op’) 1 ay +3a =dy =5dy —4ds, dy = ds = —3dy = —d, ay =d; —}dy, ay = dy;
Qy = dz = 5d7, d4 = d6 = 0, dlo (HC);
2 az = %dlz +dig = —%dls +dig, diz =djy =0; az = %dlz —djs;
a4 = dig = Sdoy, as +la4 =dy7 = Sdy3 —4dyg, dig = dyy = _§d26 = —dyy, 1
3 2 4 a, =dg, as = dy; —Ldg;
dyy = dy; = 0, dps (nc); 4 1875 1772718
4 as = dyg = —dy9, d3p = 0; ag = dg;
5 a; = d3; = —dz, d33 = 0; a7 = dyy;
6 ag = dsy + dy; = 5d36 + dy;, d3s = 0; ag = dsy + ds7;
7 ay = d38 = 5d39, d40 = O, Qg = d38;
8 ay =dyy +dys = —day +dys, dyp = dyz = 0; = dyy + dys;
9 Qy = dye = —dy7; Qyy = dye}
10 Ay = d48 = 5d49, dSO = 0, Ay = d48;
11 ajs = ds; = —dsy, ds3 = 0; a5 = dsy;
Ay = dsq + dey = Sdgy + dgy, oy7 = dss + dgy = Sdg + dgs,
12 16 54 62 4 6i A 62_ d17 B d55 N 063 61 63 g = d54 + d627 g = d55 +d63;
56 = ds7 = dsg = dsg = U;
13 a1g = dg4 = Sdgs; ag = dgs;
14 a9 = dgg + dy9 = Sdgo + d7g, de7 = deg = 0, a9 = dge + dyo,
) = %d66 +dy = %d69 +dy = %d66 + 5d7; Q) = %dee —%dés +d7;
Ay = d
15 ay = dy3 = Sdug, Ay = 15dz3 + dos = Ly, + dis; S
21 73 74> 02 = 15473 75 = 3074 + d7s = édn _ %d74 +dos;
16 a3 = dqg = —dp7, d7g = 0. a3 = dgg.

<Bu"><Buﬂ> = <Bu/‘Buﬂ> + (BBuﬂu"> + <Bu"uﬂB> - % <BB)<u”uﬂ), (31)

we get the correspondences

SU(2)

c3 — 201 = —6.74(38) GeV ™1,

¢4 — 205 = 3.74(16) GeV ™,

¢y — —4agm? = 4.08(19) GeV ™!,
c1 — ar = —1.26(14) GeV ™!,

SU(3)

Cy —dy+2dy = —6.75+0.14 GeV 1,

Cy — dy = 1.57 +0.06 GeV 1,

Cy — —2(dg + 2dy1)m? = 5.30 + 0.35 GeV ™ ';

Co — dia +2d16 — 2(dis + di5) = —1.79 £ 0.30 GeV ™ ';
bp +br — dig = —0.42 4+ 0.0GeV ™1

bp —bp — dis = 0.54 4+ 0.0 GeV .

at O(p?), where m is the baryon mass in the chiral quark limit. One sees that the relations 2a; = d, + 2d,, a, = ds,
203 = dg + 2dy, 207 = dy4 + 2dy¢, and dy4 = —d;5 are roughly satisfied.

In Ref. [77], the authors also studied the pion-nucleon scatterings up to the third chiral order. The numerical values with
our notations are d; 4 2dy=-7.63(6) GeV~', 1ds=134(1) GeV™', -m(3ds+d;;)=142(2) GeV?, and
Ydiy+ dig—%(diy + dis) = —1.36(6) GeV~'. The signs are all consistent but the numerical deviations for the relations
oy =ds and 2a; = dy4 + 2d,¢ are slightly larger. The relativistic correction probably has larger effects on ds
and %d14 + dis-

In the same paper, the kaon-nucleon scatterings are also explored. Since the O(p?) LECs are not included, we just take a
look at the relations to the second order. From the LEC combinations and the numerical values, one gets
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SU(3)

o] — %ﬁl — %’yl — —%dg + d4 = —720(6) GeVﬁl;

By — 3 — 3dg = 0.183(2) GeV ™ ;

20[4 + %54 — %74 — —%d15 + le — %(d14 + d15) = —225(12) GeVﬁl;
205 4 B2 + 372 = m(—3dio + di1) = —2.70(4) GeV ™

—Bs 4 v4 — diy = —0.406(1) GeV

—2004 + 2y4 — dys = 2.18(12) GeV 1.

Obviously, only ds = 5d, and the signs for the relations d; + 2d, = —d; + 2d,, dg + 2dy; = —dyo + dy1, and d4 = —d5
are confirmed. However, it does not mean that the LEC relations we obtain are incorrect since the values of O(p?) LECs
may be changed after the O(p*) LECs are determined with enough experimental data.

C. O(p®) LECs
At this order, the comparison between the LECs in Refs. [72,75] and ours gives

SU(2)

dy + dy — —2mag = 3.3(7) GeV 2,
ds — —mags = 0.50(35) GeV 2,
—2m(ag + ao3) = 4.3(1.0) GeV 2, —dmdqg = —4.52 £ 2.61 GeV ™~ 2;

ds — 12m3a; = —2.7(6) GeV ™2, Hy — 24m3ds; = —6.71 £ 2.12 GeV ™~ 2;

dyy —dys — —4mag = —6.1(1.2) GeV ™2, Hy — —4m(dsy + ds7) = —6.69 & 0.57 GeV 2.

SU(3)
Hy — —2mdsg = 4.68 £ 0.23 GeV ™ 2;
Hy — —4m(dag + drg) = 4.84 + 2.57 GeV ™%

With these numbers, one finds that the relations ag = dog,
a7 =ds), ag = dsy +dy;, and ag + ax3 = dpg + dqg are
roughly satisfied, but the relation a,; = ds¢ cannot be
confirmed. Note that the loop corrections from kaon and eta
have been included in the study of pion-nucleon scattering
in Ref. [75]. Such corrections probably affect largely on the
value of dy.

From Ref. [72], one gets —md,3 = 3.25(5) GeV~2,
—%md31 = 061(2) GeV_z, %(d34 +d37) = 145(3) GeV_z,
—md76 = —032(13) GCV_Z, and —m(dzg + d76) =
2.93(14) GeV=2. Of the relations ag = dag, a7 = ds,
ag = d3y + d37, and ag + a3 = dyg + dyg, the signs are
all consistent and ag + @3 = dyg + dqg is roughly satis-
fied. Again, the relation a,3 = d7¢ is not confirmed.
Compared to the heavy baryon formalism [75], it seems
that the relativistic correction has larger effects on the
relations.

VIII. DISCUSSIONS

At the quark level, there are no structures similar to the
O(p?)e; and ¢g terms in the SU(2),oy. The coupling
constants c3 and ¢y do not get constraints from SU(2), o
but it does not mean ¢; = ¢9 = 0. These two terms involve
s-quark contributions. A direct consequence is that the
extraction of O(p?)d,, and d,5 must rely on s-quark related
processes. In our approximation (Fig. 1), some LECs in
SU(3),pr are found to be zero. This means that such terms
are negligible in some calculations when the available
experimental data are not enough to determine all the LECs.

The obtained relations are just approximately correct.
They are affected by flavor symmetry breaking and chiral
corrections. We have assumed that the coupling of the pion
fields with a baryon is described by the coupling of the
pions with only one quark inside the baryon. If the
couplings with different quarks are considered as shown
in Fig. 2, the obtained LEC relations should also be
improved. We leave the discussions in a future work. In
the adopted chiral Lagrangians, the external sources v, and
a, are traceless. If terms with (v,) #0,(a,) #0 are
constructed, one can find more relations and some relations
would be revised accordingly.

The present study involves at most O(p?) chiral
Lagrangians. At higher orders, the LEC relations between
xPT and yQM are not difficult to get according to Egs. (19)
and (22), once the required yQM Lagrangians are con-
structed. The LEC relations between SU(2),pr and
SU(3),pr can also be obtained. In those cases, because
the number of terms is increased, more SU(3) LECs cannot
be constrained by the SU(2) LECs. The uncertainties in
numerical results should be larger and the consideration of
corrections to the relations would be more essential.

FIG. 2. Possible corrections to a baryon-baryon-meson cou-
pling at the quark level.
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To summarize, we obtain some LEC relations (Table VII)
between SU(2),pr and SU(3),pr at the orders O(p'),
O(p?),and O( p)g) by employing the quark model symmetry
in the approximation illustrated in Fig. 1. The LEC relations
between different SU(3), py terms at the same order are also
found concurrently. The study in this work gives some
vanishing LECs. The numerical analysis confirms our results
to some extent. With such relations, the number of LECs to be
determined from the experimental data can be reduced.
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