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The quark model symmetry can be adopted to establish relations between the low-energy constants
(LECs) in the baryon chiral perturbation theory (χPT) if one assumes that a baryon-baryon-meson coupling
is described equivalently by a quark-quark-meson coupling at the quark level. Through the correspondence
between the SUð2Þ description and the SUð3Þ description for the same coupling vertex at the quark level,
we find some relations between the LECs in SUð2ÞχPT and SUð3ÞχPT up to the third chiral order.
The SUð3ÞχPT LEC relations at the same order are also obtained. The numerical analysis roughly supports
these relations. In the situation that the available experimental data are not enough, one may employ such
constraints to reduce the number of LECs.
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I. INTRODUCTION

Chiral perturbation theory (χPT), an effective theory of
quantum chromodynamics (QCD) based on the chiral
symmetry and its spontaneous breaking, is designed to
describe low-energy pion interactions [1–4]. Both the
Lagrangian and amplitude are organized order by order
in the chiral expansion (expansion parameter p: hadron
momentum or pion mass) in this theory. Usually, a
consistent power counting scheme is required to decide
the needed Lagrangian terms for a calculated amplitude.
Since the structures of the interaction are just constrained
by symmetries, the number of allowed terms are infinite
and one has to introduce an unknown low-energy constant
(LEC) in front of each term of the Lagrangian. Such
coefficients can be determined phenomenologically before
their connections to QCD are clear. In practice, determining
the LECs is always a problem in the application of the
theory.
Up to now, chiral Lagrangians in meson and baryon

sectors have been constructed to high orders. In Refs.
[5–16], one can find the chiral Lagrangians in the light
meson sector up to the Oðp8Þ order. In the light baryon
sector, terms up to the one-loop order have been obtained

[17–24]. In the heavy quark hadron case, both meson
[25–30] and baryon [30–37] chiral Lagrangians up to the
Oðp4Þ order are also explored. The large number of LECs at
high orders makes it difficult to achieve accurate high-order
calculations in theoretical investigations.
Practically, one may extract the needed LECs from various

experiments or lattice simulations [38–43]. However, the
available data are usually not enough for this purpose when
high-order corrections are involved. To reduce the number of
unknown parameters, studies from different considerations
are essential. One may turn to resonance saturation [44–49],
large Nc [50–54], or quark model [55,56]. There are also
efforts to determine the LEC values from the fundamental
QCD [57–60]. Constraints on the LECs from symmetries,
although they cannot give accurate values, are also helpful for
us to understand the strong interactions; e.g., to what extent
can one understand the hyperon interactions from the nucleon
interactions? In the present study, we shall derive some
relations between LECs by considering the quark model
symmetry.
The flavor symmetry is useful in getting LEC relations.

For the pion-nucleon system, one may adopt either SUð2Þ
or SUð3Þ chiral Lagrangian to describe their interactions.
Since the number of terms at the same order is different for
these two cases, the relations like Dþ F ¼ gA can be
derived. Here, gA is the coefficient of the leading order
πNN coupling term in the SUð2Þ baryon chiral perturbation
theory and D and F are LECs in the three-flavor version.
Since baryons are made of three quarks, more relations
are possible if one adopts the chiral quark model (χQM)
[61–63] and the quark wave functions (w.f.) of the baryons.
Noticing that the quarks in the SUð2Þ and SUð3Þ chiral
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quark models are all in the fundamental representation
and the coupling constants may be equal (called gqA in
our leading Lagrangians), the hadron-level coupling con-
stants can be related. In the mentioned example, we have

D ¼ 3
5
gA and F ¼ 2

5
gA. The chiral quark model is just a

“bridge” for our purpose and the relevant coupling constant
gqA does not appear in the final expression. The procedure to
get such relations is

What we want to do is to find more LEC relations by
extending the idea in this example to high-order terms.
This paper is organized as follows. In Sec. II, we collect all

the baryon Lagrangians up to the third chiral order. We also
construct relevant Lagrangians at the quark level. In Sec. III,
the nonrelativistic reduction for the coupling terms and the
baryon wave functions in the quark model are presented. In
Secs. IVand V, the relations of coupling constants between
χPT and χQM in the two-flavor and three-flavor cases are
given, respectively. Then we present the coupling constant
relations between SUð2ÞχQM and SUð3ÞχQM in Sec. VI. The
final LEC relations between SUð2ÞχPT and SUð3ÞχPT are
also extracted in Sec. VI. Section VII presents some
numerical analyses and Sec. VIII is for some discussions.

II. LAGRANGIANS IN χPT AND χQM

To get the LEC relations, we need the complete chiral
Lagrangians and classify the terms based on their struc-
tures. According to the power counting rules, the trans-
formation properties (charge conjugation, parity, and
Hermiticity) of various building blocks, and the reduction
procedure, one can obtain the minimal chiral-invariant
Lagrangians. The explicit forms of the interaction terms
up to Oðp4Þ have been given in Refs. [18–21]. Here, we
restrict our discussions up to the third chiral order and we
collect the adopted terms in Tables I–III. They are classified
into 1, 5, and 16 groups separated by hlines for Oðp1Þ,
Oðp2Þ, and Oðp3Þ Lagrangians, respectively. The first

TABLE I. TheOðp1Þ chiral-invariant Lagrangians in SUð2ÞχPT=χQM , SUð3ÞχQM, and SUð3ÞχPT . We use i to label the interaction terms
and gA, g

q
A, andD=F to denote the coupling constants in SUð2ÞχPT , SUð2; 3ÞχQM , and SUð3ÞχPT , respectively. ψ in SUð2ÞχQM means ψq

of Eq. (3) and h� � �i means trace in flavor space.

SUð2ÞχPT=χQM SUð3ÞχQM SUð3ÞχPT
i gA=g

q
A i gqA i Dþ F i D − F

1 1
2
ψ̄uμγμγ5ψ 1 1

2
Ψ̄uμγμγ5Ψ 1 1

2
hB̄uμγμγ5Bi 2 1

2
hB̄γμγ5Buμi

TABLE II. The Oðp2Þ chiral-invariant Lagrangians in SUð2ÞχPT=χQM , SUð3ÞχQM, and SUð3ÞχPT . We use i to label the interaction
terms and αi, βi, ci, and di to denote the coupling constants in SUð2ÞχPT , SUð2ÞχQM , SUð3ÞχQM, and SUð3ÞχPT , respectively. ψ in

SUð2ÞχQM means ψq of Eq. (3) and h� � �imeans trace in flavor space. The fifth term in SUð2ÞχPT=χQM vanishes because hvμi ¼ haμi ¼ 0.

SUð2ÞχPT=χQM SUð3ÞχQM SUð3ÞχPT
i αi=βi i ci i di i di

1 ψ̄huμuμiψ 1 Ψ̄huμuμiΨ 1 hB̄uμuμBi 3 hB̄Buμuμi
2 Ψ̄uμuμΨ 2 hB̄uμBuμi 4 hB̄Bihuμuμi

2 iψ̄uμuνσμνψ 3 iΨ̄uμuνσμνΨ 5 ihB̄uμuνσμνBi 7 ihB̄uμihuνσμνBi
6 ihB̄σμνBuμuνi

3 ψ̄huμuνiDμνψ 4 Ψ̄huμuνiDμνΨ 8 hB̄uμuνDμνBi 10 hB̄DμνBuμuνi
5 Ψ̄uμuνDμνΨ 9 hB̄uμDμνBuνi 11 hB̄DμνBihuμuνi

4 ψ̄fμνþ σμνψ 6 Ψ̄fμνþ σμνΨ 12 hB̄fμνþ σμνBi 13 hB̄σμνBfμνþ i
5 ψ̄hfμνþ iσμνψ → 0

6 ψ̄ χ̃þψ 7 Ψ̄χ̃þΨ 14 hB̄χ̃þBi 16 hB̄Bihχþi
7 ψ̄hχþiψ 8 Ψ̄hχþiΨ 15 hB̄Bχ̃þi
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TABLE III. The Oðp3Þ chiral-invariant Lagrangians in SUð2ÞχPT=χQM , SUð3ÞχQM , and SUð3ÞχPT . We use i to label the interaction
terms and αi, βi, ci, and di to denote the coupling constants in SUð2ÞχPT , SUð2ÞχQM , SUð3ÞχQM, and SUð3ÞχPT , respectively. ψ in

SUð2ÞχQM means ψq of Eq. (3) and h� � �imeans trace in flavor space. The symbol ½� � ��þ stands for ½� � �� þ H:c: The tenth and 13th terms

in SUð2ÞχPT=χQM vanish because hvμi ¼ haμi ¼ 0.

SUð2ÞχPT=χQM SUð3ÞχQM SUð3ÞχPT
i αi=βi i ci i di i di

1 ψ̄huμuμiuνγνγ5ψ 1 Ψ̄huμuμiuνγνγ5Ψ 1 ½hB̄uμuμuνγνγ5Bi�þ 7 hB̄γνγ5Buμuνuμi
2 ψ̄huμuνiuμγνγ5ψ 2 Ψ̄huμuνiuμγνγ5Ψ 2 hB̄uμuνuμγνγ5Bi 8 ½hB̄γνγ5Buνuμuμi�þ

3 Ψ̄huμuμuνiγνγ5Ψ 3 hB̄uμuμγνγ5Buνi 9 hB̄γνγ5Buνihuμuμi
4 ½Ψ̄uμuμuνγνγ5Ψ�þ 4 ½hB̄uνuμγνγ5Buμi�þ 10 hB̄γνγ5Bihuνuμuμi

5 hB̄uνγνγ5Buμuμi 11 ½hB̄uμuμihuνγνγ5Bi�þ
6 ½hB̄uμγνγ5Buμuνi�þ

3 εμνλρψ̄huμuνuλiDρψ 5 ϵμνλρΨ̄huμuνuλiDρΨ 12 εμνλρhB̄uμuνuλDρBi 15 εμνλρhB̄DρBuμuνuλi
6 ϵμνλρΨ̄uμuνuλDρΨ 13 εμνλρhB̄uμuνDρBuλi 16 εμνλρhB̄DρBihuμuνuλi

14 εμνλρhB̄uλDρBuμuνi
4 ψ̄huμuνiuλγμγ5Dνλψ 7 Ψ̄huμuνiuλγμγ5DνλΨ 17 ½hB̄uμuνuλγμγ5DνλBi�þ 23 ½hB̄γμγ5DνλBuμuνuλi�þ
5 ψ̄huμuνiuλγλγ5Dμνψ 8 Ψ̄huνuλiuμγμγ5DνλΨ 18 hB̄uνuμuλγμγ5DνλBi 24 hB̄γμγ5DνλBuνuμuλi

9 Ψ̄huμuνuλiγμγ5DνλΨ 19 hB̄uνuλγμγ5DνλBuμi 25 hB̄γμγ5DνλBihuμuνuλi
10 ½Ψ̄uμuνuλγμγ5DνλΨ�þ 20 ½hB̄uμuνγμγ5DνλBuλi�þ 26 hB̄γμγ5DνλBuμihuνuλi

21 ½hB̄uλγμγ5DνλBuμuνi�þ 27 ½hB̄uνuλihuμγμγ5DνλBi�þ
22 hB̄uμγμγ5DνλBuνuλi

6 ½ψ̄uμhμνDνψ �þ 11 ½Ψ̄uμhμνDνΨ�þ 28 ½hB̄uμhμνDνBi�þ 30 ½hB̄hμνihuμDνBi�þ
29 ½hB̄DνBuμhμνi�þ

7 ½ψ̄uμhνλDμνλψ �þ 12 ½Ψ̄uμhνλDμνλΨ�þ 31 ½hB̄uμhνλDμνλBi�þ 33 ½hB̄hμνihuλDμνλBi�þ
32 ½hB̄DμνλBuμhνλi�þ

8 iψ̄huμhνλiσμνDλψ 13 iΨ̄huμhνλiσμνDλΨ 34 ½ihB̄uμhνλσμνDλBi�þ 36 ½ihB̄σμνDλBuμhνλi�þ
14 ½iΨ̄uμhνλσμνDλΨ�þ 35 ihB̄uμσμνDλBhνλi 37 ihB̄σμνDλBihuμhνλi

9 ½iψ̄fμνþ uμγνγ5ψ �þ 15 ½iΨ̄fμνþ uμγνγ5Ψ�þ 38 ½ihB̄fμνþ uμγνγ5Bi�þ 40 ½ihB̄uμihfμνþ γνγ5Bi�þ
39 ½ihB̄γνγ5Bfμνþ uμi�þ

10 iεμνλρψ̄hfμνþ iuλDρψ → 0 16 iϵμνλρΨ̄hfμνþ uλiDρΨ 41 ½iεμνλρhB̄fμνþ uλDρBi�þ 44 ½iεμνλρhB̄DρBfμνþ uλi�þ
11 iεμνλρψ̄hfμνþ uλiDρψ 17 ½iϵμνλρΨ̄fμνþ uλDρΨ�þ 42 iεμνλρhB̄fμνþDρBuλi 45 iεμνλρhB̄DρBihfμνþ uλi

43 iεμνλρhB̄uλDρBfμνþ i
12 iψ̄∇μf

μν
þDνψ 18 iΨ̄∇μf

μν
þDνΨ 46 ihB̄∇μf

μν
þDνBi 47 ihB̄DνB∇μf

μν
þ i

13 iψ̄h∇μf
μν
þ iDνψ → 0

14 ½iψ̄fμνþ uλγμγ5Dνλψ �þ 19 ½iΨ̄fμνþ uλγμγ5DνλΨ�þ 48 ½ihB̄fμνþ uλγμγ5DνλBi�þ 50 ½ihB̄uλihfμνþ γμγ5DνλBi�þ
49 ½ihB̄γμγ5DνλBf

μν
þ uλi�þ

15 ½ψ̄uμfμν− Dνψ �þ 20 ½Ψ̄uμfμν− DνΨ�þ 51 ½hB̄uμfμν− DνBi�þ 53 ½hB̄fμν− ihuμDνBi�þ
52 ½hB̄DνBuμfμν− i�þ

16 iψ̄huμfνλ− iσμνDλψ 21 iΨ̄huμfνλ− iσμνDλΨ 54 ½ihB̄uμfνλ− σμνDλBi�þ 59 ihB̄uμσνλDμBfνλ− i
17 iψ̄huμfνλ− iσνλDμψ 22 iΨ̄huμfνλ− iσνλDμΨ 55 ½ihB̄uμfνλ− σνλDμBi�þ 60 ½ihB̄σμνDλBuμfνλ− i�þ

23 ½iΨ̄uμfνλ− σμνDλΨ�þ 56 ihB̄fνλ− σνλDμBuμi 61 ½ihB̄σνλDμBuμfνλ− i�þ
24 ½iΨ̄uμfνλ− σνλDμΨ�þ 57 ihB̄fνλ− σμνDλBuμi 62 ihB̄σμνDλBihuμfνλ− i

58 ihB̄uμσμνDλBfνλ− i 63 ihB̄σνλDμBihuμfνλ− i
18 ψ̄∇μfμν− γνγ5ψ 25 Ψ̄∇μfμν− γνγ5Ψ 64 hB̄∇μfμν− γνγ5Bi 65 hB̄γμγ5B∇νfμν− i
19 ψ̄huμχ̃þiγμγ5ψ 26 Ψ̄huμχ̃þiγμγ5Ψ 66 ½hB̄uμχ̃þγμγ5Bi�þ 70 hB̄γμγ5Bihuμχ̃þi

(Table continued)
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(third) columns list terms in the two-flavor (three-flavor)
baryon χPT. The involved baryon fields are

ψ ¼
�
p

n

�
; B¼

0
BBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA: ð1Þ

Other definitions are [18–21]

uμ ¼ ifu†ð∂μ − irμÞu − uð∂μ − ilμÞu†g;

u ¼ exp

�
iϕ
2fπ

�
; ϕ ¼ πiλi or πiτi;

rμ ¼ vμ þ aμ; lμ ¼ vμ − aμ;

χ� ¼ u†χu† � uχ†u; χ ¼ 2B0ðsþ ipÞ
hμν ¼ ∇μuν þ∇νuμ;

fμνþ ¼ uFμν
L u† þ u†Fμν

R u;

fμν− ¼ uFμν
L u† − u†Fμν

R u ¼ −∇μuν þ∇νuμ;

Fμν
L ¼ ∂

μlν − ∂
νlμ − i½lμ; lν�;

Fμν
R ¼ ∂

μrν − ∂
νrμ − i½rμ; rν�;

Γμ ¼ 1

2
fu†ð∂μ − irμÞuþ uð∂μ − ilμÞu†g;

χμ� ¼ u†∇̃μχu† � u∇̃μχ†u ¼ ∇μχ� −
i
2
fχ∓; uμg;

∇μO ¼ ∂
μOþ ½Γμ; O�;

∇̃μχ ¼ ∂
μχ − irμχ þ iχlμ;

DμB ¼ ∂
μBþ ½Γμ; B�;

Dμψ ¼ ∂
μψ þ Γμψ ;

Dνλρ��� ¼ DνDλDρ � � � þ full permutation of D’s: ð2Þ

Here, λi ði ¼ 1; 2;…; 8Þ are the Gell-Mann matrices, τi

(i ¼ 1, 2, 3) are thePaulimatrices, andB0 is a constant related
to the quark condensate. For the scalar (s), pseudoscalar (p),
vector (vμ), and axial-vector (aμ) external sources, we take

hvμi ¼ haμi ¼ 0. The resulting terms (the fifth term in
Table II, the tenth and 13th terms in Table III) related to
hfμνþ i in SUð2ÞχPT would vanish and could actually be
removed. For convenience [18], we also separate the matrix
χþ into two parts: the trace part hχþi and the traceless part
χ̃þ ¼ χþ − 1

Nf
hχþi with Nf being the number of flavor. The

matrices χ− and χμ� are treated similarly.
In the Lagrangians, we use gA and D=F to denote the

leading order coupling coefficients in the SUð2Þ χPT and
SUð3Þ χPT, respectively. For high-order terms, here we
simply use the symbols αi and di to denote the LECs in
SUð2Þ and SUð3Þ χPTs, respectively. The terms in the
tables are classified into different groups so that the items in
the same group contribute to the same vertex structure.
In principle, the matrix of a coupling vertex can be

calculated at both hadron and quark levels. When adopting
the χQM to find LEC relations, we use the approximations
illustrated in Fig. 1. We assume that the coupling of a
baryon with the pions is due to the coupling of one quark
with the external pions; i.e., two quarks are just spectators.
Therefore, we also need the high-order coupling terms in
the χQM. In a similar way to construct the pion-nucleon
Lagrangians, the perturbative Lagrangians in the χQM can
be obtained. We also list them in the Tables I, II, and III.
Since both nucleons and the u and d quarks are in the
fundamental representation of the flavor group SUð2Þ, the
terms in SUð2ÞχQM and SUð2ÞχPT have the same forms, but
the matter field is now

ψ → ψq ¼
�
u

d

�
: ð3Þ

Compared with the two-flavor case, the SUð3ÞχQM has
more structures atOðp2Þ andOðp3Þ. They are illustrated in
the second columns of Tables I–III, where

Ψ ¼

0
B@

u

d

s

1
CA: ð4Þ

In the leading order Lagrangians, there is only one coupling
term in both SUð2ÞχQM and SUð3ÞχQM. The coupling

TABLE III. (Continued)

SUð2ÞχPT=χQM SUð3ÞχQM SUð3ÞχPT
i αi=βi i ci i di i di

20 ψ̄hχþiuμγμγ5ψ 27 Ψ̄hχþiuμγμγ5Ψ 67 hB̄χ̃þγμγ5Buμi 71 hB̄uμγμγ5Bihχþi
28 ½Ψ̄uμχ̃þγμγ5Ψ�þ 68 hB̄uμγμγ5Bχ̃þi 72 hB̄γμγ5Buμihχþi

69 ½hB̄γμγ5Buμχ̃þi�þ
21 iψ̄ χ̃μ−γμγ5ψ 29 iΨ̄χ̃μ−γμγ5Ψ 73 ihB̄χ̃μ−γμγ5Bi 75 ihB̄γμγ5Bihχμ−i
22 iψ̄hχμ−iγμγ5ψ 30 iΨ̄hχμ−iγμγ5Ψ 74 ihB̄γμγ5Bχ̃μ−i
23 ½iψ̄uμχ̃−Dμψ �þ 31 ½iΨ̄uμχ̃−DμΨ�þ 76 ½ihB̄uμχ̃−DμBi�þ 78 ½ihB̄χ̃−ihuμDμBi�þ

77 ½ihB̄DμBuμχ̃−i�þ
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constants are the same and we use gqA to denote it. For high-
order terms, we use βi and ci to denote the coupling
constants in SUð2ÞχQM and SUð3ÞχQM, respectively. For
convenience, we also call them LECs.

III. NONRELATIVISTIC REDUCTION
AND BARYON WAVE FUNCTIONS

Employing baryon wave functions to find LEC relations
means that we need to reduce the covariant formalism
of the Lagrangian to the nonrelativistic form. From
Tables I–III, there are three Lorentz structures we should
deal with. Their reductions read

ψ̄ψ→ψ†
HψH;

ψ̄γμγ5ψ ≈2ψ̄vSμψv→

�
0; ðμ¼0Þ
ψ†
Hσ

kψH; ðμ¼kÞ ;

ψ̄σμνψ ≈2ϵμναβvαψ̄vSβψv→

�
ϵijkψ†

Hσ
kψH; ðμ¼ i;ν¼ jÞ

0; ðotherÞ ;

ð5Þ

where Sμ ¼ i
2
γ5σ

μνvν, ψv ¼ 1þ=v
2
ψ (vμ is the baryon

4-velocity), and ψH is the large component of ψ . With
the reduced baryon-meson interaction term, it is easy to
get the coupling matrix element at the hadron level.
Adopting the approximation shown in Fig. 1 and the quark
wave functions of the baryons, one can calculate the same
matrix element at the quark level. Then the relation between
the coupling coefficients in χPT and χQM follows from
matching. Details will be given later.
In the quark model, the octet baryon flavor-spin wave

functions are [64]

ΨFS ¼
1ffiffiffi
2

p ðϕMS ⊗ χMS þ ϕMA ⊗ χMAÞ ð6Þ

where the flavor wave functions ϕMS and ϕMA and the spin
wave functions χMS and χMA are constructed with the
SUð3Þ and SUð2Þ Clebsch-Gordan coefficients [65,66],
respectively. For our purpose, one may just focus on the
spin-up baryon states in the following calculation.
Explicitly, these wave functions read

p↑ ¼ 1

3
ffiffiffi
2

p ½udu ⊗ ð2↑↓↑ − ↓↑↑ − ↑↑↓Þ þ duu ⊗ ð2↓↑↑ − ↑↓↑ − ↑↑↓Þ − uud ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

n↑ ¼ 1

3
ffiffiffi
2

p ½udd ⊗ ð↑↓↑ − 2↓↑↑þ ↑↑↓Þ þ dud ⊗ ð↓↑↑ − 2↑↓↑þ ↑↑↓Þ þ ddu ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

Σþ
↑ ¼ −

1

3
ffiffiffi
2

p ½usu ⊗ ð2↑↓↑ − ↓↑↑ − ↑↑↓Þ þ suu ⊗ ð2↓↑↑ − ↑↓↑ − ↑↑↓Þ − uus ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

Σ−
↑ ¼ 1

3
ffiffiffi
2

p ½dsd ⊗ ð2↑↓↑ − ↓↑↑ − ↑↑↓Þ þ sdd ⊗ ð2↓↑↑ − ↑↓↑ − ↑↑↓Þ − dds ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

Ξ0
↑ ¼ −

1

3
ffiffiffi
2

p ½uss ⊗ ð↑↓↑ − 2↓↑↑þ ↑↑↓Þ þ sus ⊗ ð↓↑↑ − 2↑↓↑þ ↑↑↓Þ þ ssu ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

Ξ−
↑ ¼ 1

3
ffiffiffi
2

p ½sds ⊗ ð−2↑↓↑þ ↓↑↑þ ↑↑↓Þ þ dss ⊗ ð−2↓↑↑þ ↑↓↑þ ↑↑↓Þ þ ssd ⊗ ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ�;

Σ0
↑ ¼ 1

6
½ðdsuþ usdÞ ⊗ ð2↑↓↑ − ↓↑↑ − ↑↑↓Þ þ ðsduþ sudÞ ⊗ ð2↓↑↑ − ↑↓↑ − ↑↑↓Þ

þ ðdusþ udsÞ ⊗ ð−↑↓↑ − ↓↑↑þ 2↑↑↓Þ�;

Λ↑ ¼ −
1

2
ffiffiffi
3

p ½ðdsu − usdÞ ⊗ ð↓↑↑ − ↑↑↓Þ þ ðsdu − sudÞ ⊗ ð↑↓↑ − ↑↑↓Þ þ ðuds − dusÞ ⊗ ð↑↓↑ − ↓↑↑Þ�: ð7Þ

FIG. 1. Schematic figure for the approximation we adopt. A baryon-baryon-meson coupling in χPT is approximately described by a
quark-quark-meson coupling at the quark level. Two quarks in the baryons are treated as spectators.
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Note that we have added a minus sign for the wave
functions of Σþ, Ξ0, and Λ. Without these additional signs,
the relations D ¼ gqA and F ¼ 2

3
gqA cannot be consistently

obtained when one uses coupling vertices related to these
baryons.
In our investigation, besides the calculation term by

term, we also confirm the obtained relations with a
computer program. To do that, one rewrites the above
nucleon wave functions in a two-flavor description as the
form

Ni
α ¼

1ffiffiffi
2

p ½ðUSÞi;xyzðUSÞα;ρτη þ ðUAÞi;xyzðUAÞα;ρτη�qxρqyτqzη
≡Wi;xyz

α;ρτηqxρq
y
τqzη; ð8Þ

where i, x, y, z are flavor indices (1 represents p or u and 2
represents n or d), α, ρ, τ, η are spin indices (1 represents ↑
and 2 represents ↓), and theU coefficients may be obtained
with

ðUSÞi;xyz¼
1ffiffiffi
6

p ðδixϵyzþδiyϵxzÞ; ðUAÞi;xyz¼
1ffiffiffi
2

p ϵxyδiz:

ð9Þ

The W coefficients can also be read out from Eq. (7)
directly. It is easy to get the following properties:

Wi;xyz
α;ρτη ¼ Wi;xzy

α;ρητ ¼ Wi;yxz
α;τρη ¼ Wi;yzx

α;τηρ ¼ Wi;zyx
α;ητρ ¼ Wi;zxy

α;ηρτ;

ð10Þ

X
yzτη

Wj;x0yz
β;ρ0τηW

i;xyz
α;ρτη¼5

9
δixδjx

0
δαρδβρ0 þ

2

9
δijδxx

0
δαβδρρ0

−
1

9
ðδijδxx0δαρδβρ0 þδixδjx

0
δαβδρρ0 Þ: ð11Þ

Similarly, one may rewrite the octet wave functions in the
three-flavor description as

Bij
α ¼ 1ffiffiffi

2
p ½ðTSÞij;xyzðUSÞα;ρτη þ ðTAÞij;xyzðUAÞα;ρτη�qxρqyτqzη

≡ Xij;xyz
α;ρτη qxρq

y
τqzη; ð12Þ

where i, j, x, y, z ¼ 1, 2, 3 (α, ρ, τ, η ¼ 1, 2) are flavor
(spin) indices and

Tij;xyz
S ¼ 1ffiffiffi

6
p ðδixϵyzj þ δiyϵxzjÞ;

Tij;xyz
A ¼ 1ffiffiffi

2
p

�
δizϵxyj −

1

3
δijϵxyz

�
: ð13Þ

The modified phases for Σþ, Ξ0, and Λ have been counted
in TS and TA. The X coefficients may also be read out from
Eq. (7) directly. One has

Xij;xyz
α;ρτη ¼ Xij;xzy

α;ρητ ¼ Xij;yxz
α;τρη ¼ Xij;yzx

α;τηρ ¼ Xij;zyx
α;ητρ ¼ Xij;zxy

α;ηρτ ;

ð14Þ

X
yzτη

Xab;x0yz
β;ρ0τη Xij;xyz

α;ρτη ¼5

9
δixδjbδax

0
δαρδβρ0 −

2

9
ðδijδax0δbxþδixδjx

0
δabÞδαρδβρ0 þ

2

9
ðδiaδjbδxx0 −δiaδjx

0
δbxÞδαβδρρ0

þ1

9
ðδijδabδxx0 þδiaδjx

0
δbx−δiaδjbδxx

0 Þδαρδβρ0 þ
1

9
ðδixδjx0δab−δixδjbδax

0 þδijδax
0
δbx−δijδabδxx

0 Þδαβδρρ0 :
ð15Þ

IV. LEC RELATIONS IN THE SUð2Þ CASE
Since there is no difference between the flavor-spin

structures of Lagrangians in SUð2ÞχPT and SUð2ÞχQM, the
LEC relations should be simple. At the leading order, the
nonrelativistic forms of the coupling terms in χPT and
χQM are

LN ¼−
1

2
gAψ

†
Hσ ·uψH¼−

1

2
gAψ

j†
H;βσβα ·u

jiψ i
H;α;

Lq¼−
1

2
gqAψ

†
qσ ·uψq¼−

1

2
gqAψ

x0†
q;ρ0σρ0ρ ·u

x0xψx
q;ρ: ð16Þ

To be specific, we consider the p↑ − p↑ − π0 coupling
case. Then the matrix element at the hadron level is

M ∼ gAq3hp↑jσ3τ3jp↑i ¼ gAq3; ð17Þ

where q3 is the z-component pion momentum and σ3=τ3 is
the third Pauli matrix. The calculation for the same vertex at
the quark level is

M ∼ gqAq3hp↑j
X3
i¼1

σðiÞ3 τðiÞ3 jp↑i ¼
5

3
gqAq3; ð18Þ

where i labels quarks and the wave function of p↑ in Eq. (7)
is used. Therefore, we have gA ¼ 5

3
gqA.

At the second chiral order, there are five groups of
structures we need to consider. Extending the above
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procedure gives six coupling constant relations. Note that
there are two structures in the fifth group. The description at
the quark level and that at the hadron level for the coupling
types may be not one to one. When one adopts χþ instead of
χ̃þ in the sixth term, the contributions of the two structures
should be considered together and the resulting relations are
α6 ¼ β6 and α7 ¼ β6 þ 3β7. When the traceless field χ̃þ is
adopted, the resulting relations are simply α6 ¼ β6
and α7 ¼ 3β7.
At the third chiral order, we have sixteen groups of

LECs. Similar to the considerations at Oðp2Þ, one gets 21
relations. All the obtained relations between SUð2ÞχPT and
SUð2ÞχQM up to Oðp3Þ are summarized in Table IV. There
are four types of LEC relations corresponding to respective
nonrelativistic interacting structures

1 → αi ¼ 3βi; σ → αi ¼ βi; τ → αi ¼ βi;

τ ⊗ σ → αi ¼
5

3
βi: ð19Þ

These results are consistent with the quark model calcu-
lation by using the Wigner-Eckart theorem [67]. Although
high-order chiral Lagrangians involve more pion fields, no
more types of LEC relations in the adopted approxima-
tion exist.

To confirm the obtained relations with a computer
program, it is convenient to define the function (at leading
order)

Gði; α → j; β; σ; τÞ≡ gAðσÞβαðτÞji

− 3gqA
X
yz;τη

Wj;x0yz
β;ρ0τηðσÞρ0ρðτÞx

0xWi;xyz
α;ρτη:

ð20Þ

In studying a vertex at the quark level, σ=τ acts on the
specific quark (e.g., the third quark). From vanishing
Gði; α → j; β; σ; τÞ, one gets the relation between gA and
gqA. In the above example, one recovers the relation gA ¼
5
3
gqA by setting i ¼ j ¼ α ¼ β → 1, σ → σ3, and τ → τ3.

Other choices of i; j; α; β; σ; τ do not change the result. At
high orders, one may define other G functions in a similar
way. Note that the unit matrix other than the Pauli matrix
may be used in the definition, depending on the spin-flavor
structures of the coupling terms. The relations in Table IV
and the correspondences in Eq. (19) are easy to confirm by
considering various couplings.

V. LEC RELATIONS IN THE SUð3Þ CASE
In this case, since the baryons are in the adjoint

representation but the quarks are in the fundamental
representation, there is no one-to-one correspondence
between the quark-level description and the hadron-level
description for a given coupling type. One should consider
all the coupling terms in the same group together. We use
the leading order Lagrangians as an example to illustrate
the procedure. The nonrelativistic forms of the coupling
terms read

LB ∼ ðDþ FÞhB†
Hσ · uBHi þ ðD − FÞhB†

Hσ · BHui;
Lq ∼ gqAΨ†σ · uΨ: ð21Þ

The p↑ − p↑ − π0 coupling and the Σþ
↑ − Σ0

↑ − π0 coupling
are determined by Dþ F and F at the hadron level,
respectively, while they are both determined by gqA at the
quark level. The equivalence between hadron-level calcu-
lation and quark-level calculation gives Dþ F ¼ 5

3
gqA and

F ¼ 2
3
gqA, respectively. Therefore, we have D ¼ gqA and

F ¼ 2
3
gqA, which is consistent with Ref. [68]. Other cou-

pling considerations do not change this result if the
consistent wave functions in Eq. (7) are adopted.
Noticing the calculation difference between SUð3Þ and

SUð2Þ, we get relations between ci and di at the second and
third orders, which are collected in Table V. From the
results, relations between d’s can also be established. Some
d’s are set to zero so that the LEC relations from different
coupling vertices are consistent.

TABLE IV. Coupling constant relations between SUð2ÞχPT and
SUð2ÞχQM.

Group SUð2ÞχPT ⇔ SUð2ÞχQM

Oðp1Þ 1 gA ¼ 5
3
gqA.

Oðp2Þ 1 α1 ¼ 3β1;
2 α2 ¼ 5

3
β2;

3 α3 ¼ 3β3;
4 α4 ¼ 5

3
β4;

5 α6 ¼ β6, α7 ¼ 3β7.

Oðp3Þ 1 α1 ¼ 5
3
β1, α2 ¼ 5

3
β2;

2 α3 ¼ 3β3;
3 α4 ¼ 5

3
β4, α5 ¼ 5

3
β5;

4 α6 ¼ β6;
5 α7 ¼ β7;
6 α8 ¼ β8;
7 α9 ¼ 5

3
β9;

8 α11 ¼ 3β11;
9 α12 ¼ β12;
10 α14 ¼ 5

3
β14;

11 α15 ¼ β15;
12 α16 ¼ β16, α17 ¼ β17;
13 α18 ¼ 5

3
β18;

14 α19 ¼ β19, α20 ¼ 5
3
β20;

15 α21 ¼ 5
3
β21, α22 ¼ β22;

16 α23 ¼ β23.
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Since the situation in the SUð3Þ case is more compli-
cated than the SUð2Þ case, the correspondences similar to
Eq. (19) seem to be lost. In fact, from the fact that SUð2Þ is
a subgroup of SUð3Þ and there are always two ways for the

octet-octet-octet coupling (hB̄λBi and hB̄Bλi), one under-
stands that some correspondences should exist. It is found
that the LEC relations can be obtained with the following
structure correspondences:

hB̄Bi → Ψ̄Ψ ⇒ ðcombination of several d’sÞ ¼ 3ðcombination of several c’sÞ;
hB̄λBi → Ψ̄λΨ ⇒ ðcombination of severald’sÞ ¼ ðcombination of several c’sÞ;
hB̄Bλi → Ψ̄λΨ ⇒ ðcombination of severald’sÞ ¼ −ðcombination of several c’sÞ;

hB̄λσBi → Ψ̄λσΨ ⇒ ðcombination of severald’sÞ ¼ 5

3
ðcombination of several c’sÞ;

hB̄σBλi → Ψ̄λσΨ ⇒ ðcombination of severald’sÞ ¼ 1

3
ðcombination of several c’sÞ;

hB̄σBi → Ψ̄σΨ ⇒ ðcombination of several d’sÞ ¼ ðcombination of several c’sÞ: ð22Þ

The first, second, fourth, and sixth correspondences are
easy to understand. To get the third and fifth correspond-
ences, one may study the couplings B̄13ðλ3Þ11B31

and B̄13ðλ3Þ11σB31 or other couplings irrelevant with
hB̄λBi and hB̄λσBi. The LECs for the structures of
hB̄λBλi, hB̄λihλBi, hB̄λσBλi, and hB̄λihσλBi can be set

to zero in the adopted approximation. Before employing
these correspondences, one needs to reorganize the
Lagrangian terms in the same group with the help of
the Cayley-Hamilton relations. For example, the
complicated group-1 terms atOðp3Þ should be reorganized
to be

TABLE V. Coupling constant relations between SUð3ÞχPT and SUð3ÞχQM.

Group SUð3ÞχPT ⇔ SUð3ÞχQM

Oðp1Þ 1 D ¼ gqA, F ¼ 2
3
gqA.

Oðp2Þ 1 d1 ¼ −d3 ¼ c2, d2 ¼ 0, d4 ¼ 3c1 þ c2;
2 d5 ¼ 5d6 ¼ 5

3
c3, d7 ¼ 0

3 d8 ¼ −d10 ¼ c5; d9 ¼ 0; d11 ¼ 3c4 þ c5;
4 d12 ¼ 5d13 ¼ 5

3
c6;

5 d14 ¼ −d15 ¼ c7, d16 ¼ 3c8

Oðp3Þ 1 d1 ¼ 5
6
ð2c1 þ c2 þ 2c4Þ, d2 ¼ 5d7 ¼ 5

3
c2, d3 ¼ d5 ¼ − 5

4
d9 ¼ −d11 ¼ 5

6
ð2c1 − c2Þ, d4 ¼ d6 ¼ 0,

d8 ¼ 1
6
ð10c1 − 3c2 þ 2c4Þ, d10 ¼ 1

6
ð−10c1 − 7c2 þ 6c3 − 4c4Þ;

2 d12 ¼ −d15 ¼ c6, d13 ¼ d14 ¼ 0, d16 ¼ 3c5 þ c6;

3
d17 ¼ 5

6
ðc7 þ 2c8 þ 2c10Þ, d18 ¼ 5d24 ¼ 5

3
c7, d19 ¼ d22 ¼ − 5

4
d26 ¼ −d27 ¼ 5

6
ð−c7 þ 2c8Þ, d20 ¼ d21 ¼ 0,

d23 ¼ 1
6
ð−3c7 þ 10c8 þ 2c10Þ, d25 ¼ 1

6
ð−7c7 − 10c8 þ 6c9 − 4c10Þ;

4 d28 ¼ −d29 ¼ c11, d30 ¼ 0;
5 d31 ¼ −d32 ¼ c12, d33 ¼ 0;
6 d34 ¼ 5d36 ¼ 5

3
c14, d35 ¼ 0, d37 ¼ c13 − 2

3
c14;

7 d38 ¼ 5d39 ¼ 5
3
c15, d40 ¼ 0;

8 d41 ¼ −d44 ¼ c17, d42 ¼ d43 ¼ 0, d45 ¼ 3c16 þ 2c17;
9 d46 ¼ −d47 ¼ c18;
10 d48 ¼ 5d49 ¼ 5

3
c19, d50 ¼ 0;

11 d51 ¼ −d52 ¼ c20, d53 ¼ 0;
12 d54 ¼ 5d60 ¼ 5

3
c23, d55 ¼ 5d61 ¼ 5

3
c24, d56 ¼ d57 ¼ d58 ¼ d59 ¼ 0, d62 ¼ c21 − 2

3
c23, d63 ¼ c22 − 2

3
c24;

13 d64 ¼ 5d65 ¼ 5
3
c25;

14 d66 ¼ 5d69 ¼ 5
3
c28, d67 ¼ d68 ¼ 0, d70 ¼ c26 − 2

3
c28, d71 ¼ 5d72 ¼ 5

3
c27;

15 d73 ¼ 5d74 ¼ 5
3
c29, d75 ¼ c30;

16 d76 ¼ −d77 ¼ c31, d78 ¼ 0.
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ðd1 − d2 þ d11ÞhB̄ð guμuμuν þ guνuμuμÞγνγ5Bi þ ðd8 − d7 þ d11ÞhBγνγ5Bð guμuμuν þ guνuμuμÞi
þ d4hBðguμuν þ guνuμÞγνγ5Buμi þ d6hBuμγνγ5Bðguμuν þ guνuμÞi
þ ðd3 þ d11ÞhB guμuμ γνγ5Buνi þ ðd5 þ d11ÞhBuνγνγ5Bguμuμi
þ
�
d2 þ

2

3
d6

�
hBuμγνγ5Bihuμuνi þ

�
d7 þ

2

3
d4

�
hB̄γνγ5Buμihuμuνi

þ
�
1

2
d2 þ

1

3
d5 −

2

3
d11

�
hB̄uνγνγ5Bihuμuμi þ

�
1

3
d3 þ

1

2
d7 þ d9 −

2

3
d11

�
hB̄γνγ5Buνihuμuμi

þ
�
2

3
d1 þ

1

3
d2 þ

1

3
d7 þ

2

3
d8 þ d10 þ

1

3
d11

�
hB̄γνγ5Bihuμuμuνi; ð23Þ

where X̃ indicates the traceless part of X. Then a set of LEC
equations according to the above correspondences and thus
the relations in Table V can be obtained.
To confirm the calculation with computer, one may

define various G functions similar to the SUð2Þ case. At
leading order, the definition is

Gði; j; α → a; b; β; σ; λÞ
≡ ðσÞβα½ðDþ FÞðλÞaiδjb þ ðD − FÞδaiðλÞjb�
− 3gqAX

ab;x0yz
β;ρ0τη ðσÞρ0ρðλÞx0xXij;xyz

α;ρτη : ð24Þ

From the vanishing G, the above results D ¼ gqA and F ¼
2
3
gqA are recovered by considering various couplings.

However, one should note that B11, B22, and B33 contain
both Σ0 and Λ. The combination of several G functions is
needed when the relevant couplings are involved. For
example, if one extracts the relations from the Σþ-π−-Λ
coupling, Σ0-π0-Λ coupling, and Λ-η-Λ coupling, the
equations we need to study should be

X
x

ðλ8ÞxxGð1; 2; α → x; x; β; σ; λÞ ¼ 0;

X
x;y

ðλ3Þxxðλ8ÞyyGðx; x; α → y; y; β; σ; λÞ ¼ 0;

X
x;y

ðλ8Þxxðλ8ÞyyGðx; x; α → y; y; β; σ; λÞ ¼ 0; ð25Þ

respectively. By defining different G functions at high
orders and considering various coupling vertices, all the
results in Table V can be recovered.

VI. LEC RELATIONS IN χQM AND χPT

To find LEC relations between SUð3ÞχPT and SUð2ÞχPT ,
we also need to know relations between βi and ci. Now we
consider this issue.

At the leading order, we adopted gqA to denote the
coupling constants in both SUð3ÞχQM and SUð2ÞχQM since
there is only one coupling term. At the second and third
orders, the situation is different. One picks up the SUð2Þ
sector in the Lagrangian of SUð3ÞχQM by replacing the field
ϕ ¼ πiλi with ϕ ¼ πiτi and using the Cayley-Hamiltonian
relations for 2 × 2 matrices X, Y, and Z

YZ þ ZY ¼ YhZi þ ZhYi þ hYZi − hYihZi;

XYZ þ YZX þ ZXY ¼ 1

2
½hXYiZ þ hYZiX þ hZXiY

þ XYhZi þ YZhXi þ ZXhYi
− hXYihZi − hYZihXi
− hZXihYi þ 3hXYZi�: ð26Þ

The matching between this sector and the Lagrangian of
SUð2ÞχQM gives the coupling constant relations between
β’s and c’s. We list all the obtained relations in Table VI.
Not all the coupling constants in SUð3ÞχQM can be con-
strained by those in SUð2ÞχQM. The Oðp3Þ terms
c3Ψ̄huμuμuνiγνγ5Ψ and c9Ψ̄huμuνuλiγμγ5DνλΨ always
involve the s quark contribution. We use nc to denote this
case in the table.
Combining the relations in Table VI with those in

Tables IV and V, one gets the final LEC relations between
SUð3ÞχPT and SUð2ÞχPT . They are shown in the third
column of Table VII. All the relations are simple. There are
LECs on which we cannot get constraints from the
SUð2ÞχPT . The processes that can constrain them must
involve strange quark contributions.
We also consider the LEC relations by picking up the

SUð2ÞχPT terms in the SUð3ÞχPT Lagrangian, i.e., without
using the χQM. They are helpful crosschecks for the results
we obtain. From Tables I–III, there are 6 flavor structures
in the SUð3ÞχPT Lagrangian, hB̄YBi, hB̄BYi, hB̄YBZi,
hB̄BihYi, hB̄YihZBi, and hB̄BYihZi. It is not necessary to
consider the following terms:
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hB̄BYi ¼ B̄ijBjkYki →

�
B̄31 B̄32

��
B13

B23

�
Y33; ð27Þ

hB̄BYihZi¼ B̄ijBjkYkihZi→
�
B̄31 B̄32

��
B13

B23

�
Y33hZi;

ð28Þ

hB̄YBZi ¼ B̄ijYjkBklZli

→

�
B̄31 B̄32

��
Y11 Y12

Y21 Y22

��
B13

B23

�
Z33; ð29Þ

and

hB̄YihZBi ¼ B̄ijYjiBklZlk

→

�
B̄31 B̄32

��
Y13

Y23

��
Z31 Z32

��
B13

B23

�
;

ð30Þ

because they always involve s-quark contributions. The
structure of the remaining terms one needs to consider is
just like hB̄YBi or hB̄BihYi. Note that one should replace
the χ̃þ to χþ − 1

Nf
hχþi and then let Y ¼ χþ when using this

feature (similarly for χ̃− and χ̃μ�). Replacing the 3 × 3

matrix B with the 2 × 1 matrix ψ and the 3 × 3 pion
matrices with the 2 × 2 pion matrices, one gets the needed
terms. According to the Cayley-Hamilton relations in
Eq. (26), one finds the LEC relations listed in the fourth
column of Table VII.
Let us move on to the comparison of the results obtained

with and without using χQM. Obviously, the results with
using χQM contain all the relations obtained without using
χQM and the quark model symmetry leads to more LEC
relations. This is easy to understand by analyzing the Oðp1Þ
relations D ¼ 3

5
gA and F ¼ 2

5
gA. In the method without

χQM, theextractionofDþ F ¼ gA doesnot involve hyperon
interactions. In the method with χQM, however, the hyperon
interactions are considered to give more constraints in the
approximation that the s quarks are just spectators.
In the large Nc limit, one may also derive some relations

between the LECs. Noticing the symbol difference, we find
that the relations F=D ¼ 2=3 at Oðp1Þ and d30 ¼ d33 ¼
d35 ¼ 0, d31 ¼ −d32, d34 ¼ 5d36, d73 ¼ 5d74, d67 ¼
d68 ¼ 0, and d66 − 5d69 ¼ 3

2
ðd71 − 5d72Þ at Oðp3Þ are con-

sistent with the largeNc analysis performed in Refs. [53,54].

VII. NUMERICAL ANALYSIS

The LEC relations obtained in Table VII are approximate
results. They are certainly affected by symmetry breaking
and corrections from low order Lagrangians. An example is
the matching relations at Oðp2Þ presented in Ref. [69]. It is
helpful for us to check our approximate relations by taking
a look at some numerical values. Now we consider this
issue order by order.

A. Oðp1Þ LECs
The SUð2Þ coupling constant gA is extracted from the

neutron beta decay and we take gA ¼ 1.2694� 0.0028 here
[70]. The SUð3Þ LECs D and F are determined to be 0.80
and 0.50, respectively, by fitting the semileptonic decays
B → B0 þ e− þ ν̄e [71]. Recently, a lattice calculation gives

D ¼ 0.730ð11Þð11Þ, F ¼ 0.447ð6Þð7Þ, and F=D ¼ 0.612ð14Þð12Þ [38].

These results confirm the well-known relation gA ¼ Dþ F.
The relations D ¼ 3

5
gA, F ¼ 2

5
gA, and F=D ¼ 2=3 are also

roughly satisfied.

B. Oðp2Þ LECs
The LEC names we adopt differ from those in the

literature. It is necessary to set up the relations between our
LECs and those in the literature when using their values. In
the SUð2Þ case, we take the values from Ref. [72] which are
compatible with those in Refs. [73,74]. In the SUð3Þ case,
we refer to [75]. The investigations of pion-nucleon
scatterings in these two papers are both conducted to the
third chiral order. With the help of the Cayley-Hamilton
relation for traceless 3 × 3 matrices given in Ref. [76]

TABLE VI. Coupling constant relations between SUð3ÞχQM
and SUð2ÞχQM. The leading order coupling constants are both g

q
A.

nc means that there is no constraint from the coupling constants
in SUð2ÞχQM.

Group SUð3ÞχQM ⇔ SUð2ÞχQM

Oðp1Þ 1 gqA ¼ gqA.

Oðp2Þ 1 β1 ¼ c1 þ 1
2
c2;

2 β2 ¼ c3;
3 β3 ¼ c4 þ 1

2
c5;

4 β4 ¼ c6;
5 β6 ¼ c7, β7 ¼ 1

6
c7 þ c8.

Oðp3Þ 1 β1 ¼ c1 þ c4, β2 ¼ c2, c3 (nc);
2 β3 ¼ c5 þ 1

2
c6;

3 β4 ¼ c7, β5 ¼ c8 þ c10, c9 (nc);
4 β6 ¼ c11;
5 β7 ¼ c12;
6 β8 ¼ c13 þ c14;
7 β9 ¼ c15;
8 β11 ¼ c16 þ c17;
9 β12 ¼ c18;
10 β14 ¼ c19;
11 β15 ¼ c20;
12 β16 ¼ c21 þ c23, β17 ¼ c22 þ c24;
13 β18 ¼ c25;
14 β19 ¼ c26 þ c28, β20 ¼ c27 þ 1

3
c28;

15 β21 ¼ c29, β22 ¼ 1
6
c29 þ c30;

16 β23 ¼ c31.
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hB̄uμihBuμi ¼ hB̄uμBuμi þ hB̄Buμuμi þ hB̄uμuμBi −
1

2
hB̄Bihuμuμi; ð31Þ

we get the correspondences

at Oðp2Þ, where m is the baryon mass in the chiral quark limit. One sees that the relations 2α1 ¼ d1 þ 2d4, α2 ¼ d5,
2α3 ¼ d8 þ 2d11, 2α7 ¼ d14 þ 2d16, and d14 ¼ −d15 are roughly satisfied.
In Ref. [77], the authors also studied the pion-nucleon scatterings up to the third chiral order. The numerical values with

our notations are d1 þ 2d4 ¼ −7.63ð6Þ GeV−1, 1
2
d5 ¼ 1.34ð1Þ GeV−1, −mð1

2
d8 þ d11Þ ¼ 1.42ð2Þ GeV−2, and

1
2
d14 þ d16 − 1

3
ðd14 þ d15Þ ¼ −1.36ð6Þ GeV−1. The signs are all consistent but the numerical deviations for the relations

α2 ¼ d5 and 2α7 ¼ d14 þ 2d16 are slightly larger. The relativistic correction probably has larger effects on d5
and 1

2
d14 þ d16.

In the same paper, the kaon-nucleon scatterings are also explored. Since theOðp3Þ LECs are not included, we just take a
look at the relations to the second order. From the LEC combinations and the numerical values, one gets

TABLE VII. LEC relations between SUð2ÞχPT and SUð3ÞχPT . nc means that there is no constraint from the LECs in SUð2ÞχPT .
Group With χQM Without χQM

Oðp1Þ 1 D ¼ 3
5
gA, F ¼ 2

5
gA. Dþ F ¼ gA.

Oðp2Þ 1 α1 ¼ 1
2
d1 þ d4 ¼ − 1

2
d3 þ d4, d2 ¼ 0; α1 ¼ 1

2
d1 þ d4;

2 α2 ¼ d5 ¼ 5d6, d7 ¼ 0; α2 ¼ d5;
3 α3 ¼ 1

2
d8 þ d11 ¼ − 1

2
d10 þ d11, d9 ¼ 0; α3 ¼ 1

2
d8 þ d11;

4 α4 ¼ d12 ¼ 5d13; α4 ¼ d12;

5 α6 ¼ d14 ¼ −d15, α7 ¼ 1
2
d14 þ d16 ¼ − 1

2
d15 þ d16.

α6 ¼ d14,
α7 ¼ 1

2
d14 þ d16 − 1

3
ðd14 þ d15Þ.

Oðp3Þ 1 α1 þ 1
2
α2 ¼ d1 ¼ 5d8 − 4d3, d3 ¼ d5 ¼ − 5

4
d9 ¼ −d11,

α2 ¼ d2 ¼ 5d7, d4 ¼ d6 ¼ 0, d10 (nc);
α1 ¼ d1 − 1

2
d2, α2 ¼ d2;

2 α3 ¼ 1
2
d12 þ d16 ¼ − 1

2
d15 þ d16, d13 ¼ d14 ¼ 0; α3 ¼ 1

2
d12 − d16;

3
α4 ¼ d18 ¼ 5d24, α5 þ 1

2
α4 ¼ d17 ¼ 5d23 − 4d19, d19 ¼ d22 ¼ − 5

4
d26 ¼ −d27,

d20 ¼ d21 ¼ 0, d25 (nc);
α4 ¼ d18, α5 ¼ d17 − 1

2
d18;

4 α6 ¼ d28 ¼ −d29, d30 ¼ 0; α6 ¼ d28;
5 α7 ¼ d31 ¼ −d32, d33 ¼ 0; α7 ¼ d31;
6 α8 ¼ d34 þ d37 ¼ 5d36 þ d37, d35 ¼ 0; α8 ¼ d34 þ d37;
7 α9 ¼ d38 ¼ 5d39, d40 ¼ 0; α9 ¼ d38;
8 α11 ¼ d41 þ d45 ¼ −d44 þ d45, d42 ¼ d43 ¼ 0; α11 ¼ d41 þ d45;
9 α12 ¼ d46 ¼ −d47; α12 ¼ d46;
10 α14 ¼ d48 ¼ 5d49, d50 ¼ 0; α14 ¼ d48;
11 α15 ¼ d51 ¼ −d52, d53 ¼ 0; α15 ¼ d51;

12
α16 ¼ d54 þ d62 ¼ 5d60 þ d62, α17 ¼ d55 þ d63 ¼ 5d61 þ d63,

d56 ¼ d57 ¼ d58 ¼ d59 ¼ 0;
α16 ¼ d54 þ d62, α17 ¼ d55 þ d63;

13 α18 ¼ d64 ¼ 5d65; α18 ¼ d64;

14
α19 ¼ d66 þ d70 ¼ 5d69 þ d70, d67 ¼ d68 ¼ 0,
α20 ¼ 1

3
d66 þ d71 ¼ 5

3
d69 þ d71 ¼ 1

3
d66 þ 5d72;

α19 ¼ d66 þ d70,
α20 ¼ 1

3
d66 − 1

3
d68 þ d71;

15 α21 ¼ d73 ¼ 5d74, α22 ¼ 1
10
d73 þ d75 ¼ 1

2
d74 þ d75;

α21 ¼ d73,
α22 ¼ 1

6
d73 − 1

3
d74 þ d75;

16 α23 ¼ d76 ¼ −d77, d78 ¼ 0. α23 ¼ d76.
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Obviously, only d5 ¼ 5d6 and the signs for the relations d1 þ 2d4 ¼ −d3 þ 2d4, d8 þ 2d11 ¼ −d10 þ d11, and d14 ¼ −d15
are confirmed. However, it does not mean that the LEC relations we obtain are incorrect since the values of Oðp2Þ LECs
may be changed after the Oðp3Þ LECs are determined with enough experimental data.

C. Oðp3Þ LECs
At this order, the comparison between the LECs in Refs. [72,75] and ours gives

With these numbers, one finds that the relations α6 ¼ d28,
α7 ¼ d31, α8 ¼ d34 þ d37, and α6 þ α23 ¼ d28 þ d76 are
roughly satisfied, but the relation α23 ¼ d76 cannot be
confirmed. Note that the loop corrections from kaon and eta
have been included in the study of pion-nucleon scattering
in Ref. [75]. Such corrections probably affect largely on the
value of d76.
From Ref. [72], one gets −md28 ¼ 3.25ð5Þ GeV−2,

−3
2
md31¼0.61ð2ÞGeV−2, 1

2
ðd34þd37Þ¼1.45ð3ÞGeV−2,

−md76¼−0.32ð13ÞGeV−2, and −mðd28þd76Þ¼
2.93ð14ÞGeV−2. Of the relations α6 ¼ d28, α7 ¼ d31,
α8 ¼ d34 þ d37, and α6 þ α23 ¼ d28 þ d76, the signs are
all consistent and α6 þ α23 ¼ d28 þ d76 is roughly satis-
fied. Again, the relation α23 ¼ d76 is not confirmed.
Compared to the heavy baryon formalism [75], it seems
that the relativistic correction has larger effects on the
relations.

VIII. DISCUSSIONS

At the quark level, there are no structures similar to the
Oðp3Þc3 and c9 terms in the SUð2ÞχQM. The coupling
constants c3 and c9 do not get constraints from SUð2ÞχQM,
but it does not mean c3 ¼ c9 ¼ 0. These two terms involve
s-quark contributions. A direct consequence is that the
extraction ofOðp3Þd10 and d25 must rely on s-quark related
processes. In our approximation (Fig. 1), some LECs in
SUð3ÞχPT are found to be zero. This means that such terms
are negligible in some calculations when the available
experimental data are not enough to determine all the LECs.

The obtained relations are just approximately correct.
They are affected by flavor symmetry breaking and chiral
corrections. We have assumed that the coupling of the pion
fields with a baryon is described by the coupling of the
pions with only one quark inside the baryon. If the
couplings with different quarks are considered as shown
in Fig. 2, the obtained LEC relations should also be
improved. We leave the discussions in a future work. In
the adopted chiral Lagrangians, the external sources vμ and
aμ are traceless. If terms with hvμi ≠ 0; haμi ≠ 0 are
constructed, one can find more relations and some relations
would be revised accordingly.
The present study involves at most Oðp3Þ chiral

Lagrangians. At higher orders, the LEC relations between
χPT and χQM are not difficult to get according to Eqs. (19)
and (22), once the required χQM Lagrangians are con-
structed. The LEC relations between SUð2ÞχPT and
SUð3ÞχPT can also be obtained. In those cases, because
the number of terms is increased, more SUð3Þ LECs cannot
be constrained by the SUð2Þ LECs. The uncertainties in
numerical results should be larger and the consideration of
corrections to the relations would be more essential.

FIG. 2. Possible corrections to a baryon-baryon-meson cou-
pling at the quark level.
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To summarize, we obtain some LEC relations (Table VII)
between SUð2ÞχPT and SUð3ÞχPT at the orders Oðp1Þ,
Oðp2Þ, andOðp3Þ by employing the quarkmodel symmetry
in the approximation illustrated in Fig. 1. The LEC relations
between different SUð3ÞχPT terms at the same order are also
found concurrently. The study in this work gives some
vanishing LECs. The numerical analysis confirms our results
to someextent.With such relations, thenumber ofLECs to be
determined from the experimental data can be reduced.
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