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The light axial vector mesons can couple to K�K̄ þ c:c: in an S wave at the tree level. Because of the
near-threshold S-wave interactions, the couplings can be affected by the final state interactions. It is of
peculiar interest that the pion exchange between K�K̄ þ c:c: can go through a triangle diagram which is
within the kinematics of the triangle singularity. This mechanism will introduce energy dependence and a
D-wave amplitude to the vertex couplings. Hence, it should be necessary to investigate the role played by
the K�K̄ þ c:c: threshold in order to have a better understanding of the light axial vector spectrum.
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I. INTRODUCTION

In the constituent quark model, the light axial vector
mesons are categorized as P-wave quark and antiquark
systems with JPC ¼ 1þðþÞ and 1þð−Þ, while the positive and
negative charge conjugate parities indicate the total spins
of the quark and antiquark systems to be either parallel
or antiparallel. Although the light flavor SU(3) nonets for
these two axial vectors have been established in experiment
[1], it seems that our knowledge about these structures is
still far from satisfactory.
In the Particle Data Group (PDG) [1], the assignments

of the nonstrange multiplets are f1ð1285Þ, f1ð1420Þ, and
a1ð1260Þ for the 1þþ sector and h1ð1170Þ, h1ð1415Þ, and
b1ð1235Þ for the 1þ− sector. The strange multiplets can
mix with each other and form K1ð1270Þ and K1ð1400Þ as
their mass eigenstates. Although there have been a lot of
theoretical and experimental studies on these states, there
are still some puzzling issues about their nature and decays.
In particular, the open K�K̄ threshold phenomenon is
relevant. In Ref. [2], a unitary isobar model was constructed
to describe the three-body interaction of the KK̄π system,
where f1ð1420Þ can be described as a KK̄π molecule. In
Ref. [3], the axial vector mesons were studied with SU(3)
chiral Lagrangians for the vector-pseudoscalar meson
scatterings as dynamically generated states. Given the large

S-wave couplings to the K�K̄ þ c:c:, channel pole struc-
tures, which can be identified as the physical states
h1ð1380Þ, f1ð1285Þ, and b1ð1235Þ, were seen in the
scattering amplitudes. In Ref. [4], with a Weinberg-
Tomozawa term for the vector-pseudoscalar scattering,
poles corresponding to f1ð1285Þ, a1ð1260Þ, h1ð1170Þ,
h1ð1415Þ, b1ð1235Þ, and K1ð1270Þ were found on the
second Riemann sheet of scattering amplitudes, which
agreed with Ref. [3] and suggested a molecular nature
of these states. Moreover, the analysis of Ref. [4] showed
that f1ð1420Þ and K1ð1400Þ were unlikely to be accom-
modated by the molecular picture. In several follow-up
studies [5–13], a common result was reached that f1ð1285Þ
was consistent to be a K�K̄ þ c:c: hadronic molecular state
due to its strong S-wave couplings to the K�K̄ þ c:c:
channel. In contrast, f1ð1420Þ cannot be accommodated
by the molecular picture. A new interpretation of f1ð1420Þ
was triggered later by the recognition of contributions from
the triangle singularity (TS) mechanism in the K�K̄ þ c:c:
scatterings into ηππ or KK̄π in the f1 decays.
The TS mechanism is a peculiar threshold phenomenon

which was first identified by Landau [14] in the final state
rescatterings with a t-channel particle exchange to form a
triangle loop. It occurs in such a kinematic region where all
the internal particles of the triangle loop can be simulta-
neously on shell and can result in a characteristic loga-
rithmic singularity for the loop transition amplitude.
Although this phenomenon was predicted a long time
ago, its effect was not observed until quite recently. In
Ref. [15], the TS effects due to the K�K̄ þ c:c: rescattering
by exchanging a kaon were proposed to explain the large
isospin violation in J=ψ → γηð1405=1475Þ → γ þ 3π [16].
In the follow-up extensive studies [17–21], the detailed
analyses including possible mechanisms have provided
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crucial information for understanding the pseudoscalar
states ηð1405=1475Þ. In Ref. [17], it is shown that the
angular distribution of the π recoiling against f0ð980Þ in
J=ψ → γ þ 3π requires the f1ð1420Þ contribution, where
the open S-wave K�K̄ threshold effect via the TS mecha-
nism is important. Besides, the TS mechanism also
provides a natural explanation to the a1ð1420Þ observed
in the f0ð980Þπ final state in π−p scattering [22–25]
observed by the COMPASS Collaboration [26]. Recent
studies of the manifestations of the TS mechanism can be
found in Ref. [22] and recent reviews of Refs. [27,28].
It was proposed by Ref. [9] that f1ð1420Þ should not

be a genuine state, but a kinematic effect of the TS
mechanism in the decay of f1ð1285Þ. It is argued in
Ref. [9] that the TS affects only the f1ð1285Þ →
a0ð980Þπ decay. The K�K̄ þ c:c: decay is the normal
decay of f1ð1285Þ → KK̄π. When the initial energy
increases, the TS due to the f1ð1285Þ will produce a
peak of f1ð1420Þ at 1420 MeV. In the ηππ decay
channel, the line shape of the spectrum based on this
scenario is indeed consistent with the WA102 observation
[29]. However, in the KK̄π channel, the calculation of
Ref. [9] gives a flat and wide enhancement near the mass
of f1ð1420Þ, which is inconsistent with the strongly
enhanced sharp peaks observed in various measurements
[30–33]. This suggests that the TS mechanism due to
f1ð1285Þ decays is not strong enough to account for the
large cross sections for the production of f1ð1420Þ.
In order to disentangle the role played by the TS

mechanism, the production of the light axial vector
partial wave contributions was investigated by Ref. [34]
in J=ψ decay. The TS effect followed by the K�K̄ open
S-wave channel with JPC ¼ 1þ− is studied in Ref. [34],
where the pole contributions are not included. In
Ref. [23], a comprehensive study on light axial vector
mesons is presented by assuming all these axial states are
the genuine quark-model states but affected by the TS.
The couplings between the axial vectors (i.e., 1þþ and
1þ− states) and K�K̄ þ c:c: are assumed to be energy
independent and symmetric under the SU(3) flavor group.
This assumption needs further investigation, since the pion
exchange betweenK� and K̄ can renormalize the axial vector
meson couplings to the K�K̄ þ c:c: channel. Nevertheless,
since the exchanged pion can be on shell, the occurrence of
the TSmay cause highly nontrivial effects. This motivates us
to investigate the axial vectormesoncouplings toK�K̄ þ c:c:
dressed by the TS mechanism, and it should provide further
information for our understanding of the nature of these axial
vector states.
In Sec. II, we will define the axial vector meson

couplings to K�K̄ þ c:c: and provide the formalism of
the transition amplitudes with the triangle loop corrections.
In Sec. III, we will present the numerical results and discuss
the impact of the triangle loop corrections on the vertex
couplings. Conclusions will be made in the last section.

II. AXIAL VECTOR MESON COUPLINGS
TO K�K̄ + c:c:

A. Tree-level couplings

The nonstrange light axial vector mesons f1ð1420Þ and
h1ð1415Þ can couple to K�K̄ in an S wave and then decay
into KK̄π. In this work, we focus on the these two states,
since their masses are within the TS kinematic region. We
mention in advance that the TS corrections to the couplings
between the lower mass states, i.e. f1ð1285Þ, a1ð1260Þ,
h1ð1170Þ, b1ð1235Þ, and K�K̄ are small and can be
neglected. Meanwhile, the a1ð1420Þ can be regarded as
a nonresonance structure caused by the TS.
In Fig. 1, the tree-level processes for A → K�K̄ þ c:c: →

K0K̄0π are illustrated, where A represents the non-
strange axial vector states f1 with JPC ¼ 1þþ or h1 with
JPC ¼ 1þ−, respectively. A bare interaction between A and
K�K̄ þ c:c: respecting the SU(3) flavor symmetry is
introduced in Fig. 1, i.e.,

Lf1VP ¼ gf1VPhfμ1½Vμ; P�i;
Lh1VP ¼ igh1VPhhμ1fVμ; Pgi; ð1Þ

where h…i represents the trace of the matrix inside and V
and P are the vector and pseudoscalar meson fields,
respectively; gf1VP and gh1VP are the corresponding cou-
pling constants. The transition of K� → Kπ is described by

LVPP ¼ igVPPhVμ½∂μP;P�i; ð2Þ

with gVPP ¼ 4.52 calculated by the ϕ → KK̄ or K� → Kπ
decays. The SU(3) multiplets of the vector and pseudo-
scalar mesons are given, respectively, as follows:

Vμ ≡

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− −ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA ð3Þ

and

FIG. 1. (a,b) Tree-level transitions of A → K0K̄0π0, where A ¼
f1 or h1 are implied.
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P≡

0
BBB@

π0ffiffi
2

p þ cos αPηþsin αPη0ffiffi
2

p πþ Kþ

π− − π0ffiffi
2

p þ cos αPηþsin αPη0ffiffi
2

p K0

K− K̄0 − sin αPηþ cos αPη0

1
CCCA; ð4Þ

where the mixing between η and η0 is defined as

�
η

η0

�
¼

�
cos αP − sin αP
sin αP cos αP

��
ηn

ηs

�
; ð5Þ

with ηn ≡ ðuūþ dd̄Þ= ffiffiffi
2

p
and ηs ≡ ss̄, and αP is the mixing angle.

The tree-level amplitudes in Figs. 1(a) and 1(b) can be obtained:

Mtree
1 ¼ gtree1ϵμ

i
�
−gμν þ ðpbþpdÞμðpbþpdÞν

sbd

�
sbd −m2

K� þ imK�ΓK�
iðpb − pdÞν

¼ −
1

sbd −m2
K� þ imK�ΓK�

gtree1ϵμ

��
−1þ sb − sd

sbd

�
pμ
b þ

�
1þ sb − sd

sbd

�
pμ
d

�
; ð6Þ

Mtree
2 ¼ gtree2ϵμ

i
�
−gμν þ ðpaþpdÞμðpaþpdÞν

sad

�
sad −m2

K� þ imK�ΓK�
iðpa − pdÞν

¼ −
1

sad −m2
K� þ imK�ΓK�

gtree2ϵμ

��
−1þ sa − sd

sad

�
pμ
a þ

�
1þ sa − sd

sad

�
pμ
d

�
; ð7Þ

where the momenta of K̄0,K0, and π0 are labeled by pa, pb,
and pd, respectively. The invariant masses squared of the
K0π and K̄0π subsystem are denoted by sad ¼
ðpa þ pdÞ2 ≡ p2

c and sbd ¼ ðpb þ pdÞ2, respectively, and
a constant width for the K� meson is adopted, i.e.,
ΓK� ¼ 50 MeV. The products of coupling constants in
Figs. 1(a) and 1(b) are grouped into gtree1 and gtree2,
respectively. For instance, for the initial state A (A ¼ f1
or h1), we define

gtree1 ≡ i
1ffiffiffi
2

p gAK�0K̄0gVPP; ð8Þ

gtree2 ≡ −i
1ffiffiffi
2

p gAK̄�0K0gVPP: ð9Þ

Note that for the C ¼ þ1 state, e.g., f1ð1420Þ, one has
gtree1 ¼ gtree2, but for the C ¼ −1 state, e.g., h1ð1415Þ, a
sign should be included, i.e., gtree1 ¼ −gtree2. Since the axial
vector states with C ¼ �1 can decay into the same KK̄π
final state, the interference effect can manifest itself at
the intersection of the K� and K̄� resonance bands in the
Dalitz plot.

B. Triangle loop corrections

As mentioned earlier, the S-wave coupling in Eq. (1) is
subject to dressing by the π exchange between the

intermediate K� and K̄ mesons. As shown in Fig. 2, the
triangle diagrams can contribute to the couplings of the
axial vector mesons toK�K̄ þ c:c:. Taking into account that
the transition processes in Fig. 2 satisfy the TS condition, it
is interesting to find out how important the triangle loop
correction is and how it should affect the line shapes in the
invariant mass spectra.
With the interactions given in Eqs. (1) and (2), the

amplitudes in Fig. 2 read

FIG. 2. (a–d) Triangle diagrams of A → K0K̄0π0 through π
exchange.
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Mtri
a ¼ ϵμI

μα
a

ið−gαβ þðpbþpdÞαðpbþpdÞβ
sbd

Þ
sbd −m2

K� þ imK�ΓK�
iðpb−pdÞβga; ð10Þ

Mtri
b ¼ ϵμI

μα
b

ið−gαβ þðpbþpdÞαðpbþpdÞβ
sbd

Þ
sbd −m2

K� þ imK�ΓK�
iðpb−pdÞβgb; ð11Þ

Mtri
c ¼ ϵμI

μα
c

ið−gαβ þðpaþpdÞαðpaþpdÞβ
sad

Þ
sad −m2

K� þ imK�ΓK�
iðpa−pdÞβgc; ð12Þ

Mtri
d ¼ ϵμI

μα
d

ið−gαβ þðpaþpdÞαðpaþpdÞβ
sad

Þ
sad −m2

K� þ imK�ΓK�
iðpa−pdÞβgd; ð13Þ

where the subscripts denote the corresponding processes
in Fig. 2.
In each diagram, the couplings from all vertices are

grouped into ga;b;c;d, i.e.,

ga ¼
1ffiffiffi
2

p gb ¼
i

2
ffiffiffi
2

p gAK̄�0K0g3VPP; ð14Þ

gc ¼
1ffiffiffi
2

p gd ¼ −
i

2
ffiffiffi
2

p gAK�0K̄0g3VPP: ð15Þ

For the initial state with C ¼ þ1, ga ¼ gc, while for
C ¼ −1, ga ¼ −gc. The tensor loop integral is defined by

Iμαc;d ¼
Z

d4q
ð2πÞ4

i3ð−gμν þ qμqν

q2 Þið2pb − qÞνð−iÞðpc þ 2pb − 2qÞαF ðq2Þ
ðq2 −m2

1Þ½ðq − pbÞ2 −m2
2�½ðq − pb − pcÞ2 −m2

3�
¼ −i½Λ0ðs0; sb; sadÞgμα þ Λcbðs0; sb; sadÞpμ

cpα
b þ Λbbðs0; sb; sadÞpμ

bp
α
b� ð16Þ

and

Iμαa;b ¼ Iμαc;djpb→pa;pa→pb

¼ −i½Λ0ðs0; sa; sbdÞgμα þ Λcbðs0; sa; sbdÞðpb þ pdÞμpα
a þ Λbbðs0; sa; sbdÞpμ

apα
a�; ð17Þ

where F ðq2Þ is a monopole form factor to regularize the
divergence of the loop integrals, i.e.,

F ðq2Þ ¼
Y3
i¼1

m2
i − Λ2

i

q2i − Λ2
i
; ð18Þ

with qi the momenta of internal lines as functions of q
and Λi ≡mi þ βΛQCD. In the numerical calculations,
ΛQCD ¼ 250 MeV and β ¼ 2 are adopted.
In Eqs. (16) and (17), the Lorentz scalars Λ0, Λcb, and

Λbb are parametrized out. There are some typical features
of the tensor integral Iμα.

(i) Iμα contracts ϵμ and ϵ�K�α. The g
μα term in Eqs. (16)

and (17) leads to ϵ · ϵ�K� , so that it is a leading-order
correction to the bare tree-level S-wave interaction.
The bare coupling gAK�K̄ will receive a loop correc-
tion from Λ0, which will change both the absolute
value and the phase of gAK�K̄ . The physical S-wave
A → K�K̄ coupling geff becomes

geffAK�0K̄0 ¼ gAK�0K̄0 þ g0aΛ0a þ g0bΛ0b; ð19Þ

geffAK̄�0K0 ¼ gAK̄�0K0 þ g0cΛ0c þ g0dΛ0d; ð20Þ

where the subscripts a, b, c, and d are used to
distinguish the different internal mass configurations
in Fig. 2. The couplings are

g0a ¼
1ffiffiffi
2

p g0b ¼
i
2
gAK̄�0K0g2VPP; ð21Þ

g0c ¼
1ffiffiffi
2

p g0d ¼
i
2
gAK�0K̄0g2VPP: ð22Þ

(ii) The other two terms in Iμα are equivalent to a
D-wave interaction between the axial vector A
and K�K̄ þ c:c: and will give rise to different
distribution in the Dalitz plot of the KK̄π final state.

(iii) The gμα term also receives a D-wave contribution to
the K�K̄ coupling. As a consequence, the gμα term
will interfere with the remaining two terms, even
after the whole phase space integration.

To unambiguously define the S- andD-wave parts of Iμα,
one has to separate out the pure S-wave amplitude in Λ0,
which does not interfere with the remaining terms when the
whole amplitude is squared. This separation is unique. For
Iμαcd, the S- and D-wave parts read, respectively,

IμαS ¼ −i
�
Λ0 −

ffiffiffi
s

p
Ec

1þ 3sad
jp⃗cj2

ðΛbb − ΛcbÞ
�
gμα ð23Þ

and

IμαD ¼−i
ffiffiffi
s

p
Ec

1þ 3sad
jp⃗cj2

ðΛbb −ΛcbÞgμα− iðΛcbp
μ
cpα

bþΛbbp
μ
bp

α
bÞ;

ð24Þ
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where Ec and p⃗c are, respectively, the energy and
3-momentum of K̄� in the rest frame of the initial state.
With Eqs. (23) and (24), we are able to define the pure
S- and D-wave amplitudes MS and MD, similar to
Eqs. (10)–(13). It can be immediately seen from
Eqs. (23) and (24) that the new term proportional to
jp⃗cj2 is suppressed near threshold, which is indeed typical
behavior of a D-wave coupling. This is consistent with the
effects of higher-order chiral kernels studied in Ref. [5].
For the two-bodydecayA → K�K̄, it can beproved that the

functionsIμαS andIμαD donot interfere.For the three-bodydecay
A → K�K̄ þ c:c: → KK̄π, there are contributions from two
intermediate charge-conjugate channels, i.e., K�K̄ and K̄�K.
Foreverysinglechannel, e.g.,K�K̄, the termsof IμαS andIμαD do
not interfereafter thephasespace integrationover the invariant
mass of K̄π. However, the term of IμαS of one channel may
interferewith IμαD of the other channel, even though the phase
space integration is performed.
The full amplitude for A → K�K̄ þ c:c: → K0K̄0π0 reads

Mfull
A→K�K̄þc:c:→K0K̄0π0

¼
X

i¼a;b;c;d

Mtri
i þ

X
i¼1;2

Mtree
i : ð25Þ

III. RESULTS AND DISCUSSION

In this section, we present the numerical results for A →
KK̄π with A ¼ f1ð1420Þ or h1ð1415Þ. We first examine the
TS effects on the coupling constants and then investigate
the TS interfering effects on the line shapes.
Actually, for the pure S-wave tree-level couplings, the

triangle diagrams will result in corrections to the S-wave
coupling constants and introduce a small D-wave contri-
bution to the vertex. The bare S-wave coupling gAK�K̄ will
be shifted to the physical S-wave coupling geffAK�K̄ , and,
because of the loop function, geffAK�K̄ is, in general, a
complex number. For the on-shell K� meson, we evaluate
the relative ratios Re½geffAK�K̄�=gAK�K̄ and Im½geffAK�K̄�=gAK�K̄ ,
for f1ð1420Þ and h1ð1415Þ, and the results are presented in

Fig. 3. It shows that the TS indeed brings non-negligible
corrections to the axial vector couplings to K�K̄ þ c:c:
which are at the order of 5%. It also introduces different
phases to the physical couplings.
The vertex corrections will result in corrections to the

tree-level partial decay width Γ for A → KK̄π, which is
calculated by the tree-level amplitudes [Eqs. (6) and (7)].
We define δΓ≡ Γ0 − Γ, where Γ0 is the corrected partial
width calculated by Eq. (25). Then, the ratio δΓ=Γ will
measure the loop correction effects at the physical mass.
With the regularization parameter β ¼ 2, we obtain

δΓðf1ð1420Þ → K�K̄ → KK̄πÞ
Γðf1ð1420Þ → K�K̄ → KK̄πÞ ¼ 15%; ð26Þ

δΓðh1ð1415Þ → K�K̄ → KK̄πÞ
Γðh1ð1415Þ → K�K̄ → KK̄πÞ ¼ −9.3%: ð27Þ

It should be stressed that the triangle diagrams contain
both S- and D-wave amplitudes, and Γ0 is calculated taking
into account both contributions. The ratios indicate non-
negligible effects arising from the vertex corrections. It
shows that inclusions of the vertex correction and the TS
effects should be necessary in the partial wave analysis
of A → KK̄π.
In Fig. 4, the K̄π spectra of f1ð1420Þ → K�K̄ þ c:c: →

KK̄π and h1ð1415Þ → K�K̄ þ c:c: → KK̄π at their physical
masses are shown in the left and right panel, respectively. The
vertex corrections and triangle loop contributions produce
nontrivial spectra. The tree diagrams turn out to be dominant
where the K̄� peaks can be identified. Apart from the K̄�
peaks in both cases, the lower broad bumps are the kinematic
reflections from theK� → Kπ channel which recoils K̄ at the
K� mass. It shows that the correction to the partial width is at
the order of 10%.
Note that, although we calculate the vertex coupling

corrections to the axial vector meson couplings to
K�K̄ þ c:c:, we actually show the spectra of the three-
body decay channel KK̄π via the intermediate K�K̄ þ c:c:.

FIG. 3. The dressed S-wave coupling Re½geffAðBÞK̄�0K0 �=gAðBÞK̄�0K0 (red solid lines) and Im½geffAðBÞK̄�0K0 �=gAðBÞK̄�0K0 (blue dashed lines) for

f1ð1420Þ → K̄�0K0 (left) and h1ð1415Þ → K̄�0K0 (right).
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This is due to the consideration that the interference of the
TS may cause changes to the K� line shape. In fact, the
dominance of the tree diagrams and the width effects of
the intermediate K� has smoothed the TS structures
produced by the charged and neutral K̄π thresholds in
the invariant mass spectrum of K̄0π0.
We also mention that for the final state of KK̄π other

processes, such as a0π and κK̄ þ c:c:, may contribute in
addition to the intermediate K�K̄ þ c:c: transition. It means
a combined analysis should be necessary in the future with
the available data.
Qualitatively, the correction affects the line shape of the

two-body spectra rather weakly but should not be
neglected. Nevertheless, the vertex corrections will intro-
duce a D-wave amplitude in Iμα. To quantify the contri-
bution from the D-wave part in Iμν, we illustrate the
individual contributions from the pure S-wave (dashed
line) and pure D-wave (dotted lines) parts in Fig. 5. In both
cases for the f1ð1420Þ and h1ð1415Þ decays, the D-wave
amplitude is significantly smaller than the tree-level S-wave
one, which suggests that the loop corrections will not alter
the line shapes of Kπ spectra in Fig. 4. This also means that
the vertex corrections do not cause significant changes to
the line shapes and a leading-order calculation based on the

tree-level S-wave couplings is reasonable in the description
of the Kπ (or K̄π) line shapes from the intermediate K�K̄ þ
c:c: rescatterings [23].
The dominance of the TS mechanism in the vertex

corrections suggests that the main contributions of the
triangle loops should come from the kinematic region
where these internal particles are nearly on shell. It allows
one to make a nonrelativistic expansion to the numerator of
Eq. (16) by the substitution of −gμν þ qμqν

q2 → δμν ¼ −gμνþ
g0μg0ν. In this way, the numerator of the integrand in
Eq. (16) becomes

num → 4pμ
bp

α
b − 4pμ

bq
α − 2qμpα

b þ 2qμqα; ð28Þ

where the only term leading to the three-point scalar loop
integral C0 is from 4pμ

bp
α
b. However, one notices that this

is a D-wave term and proportional to jp⃗cj2. Thus, the
amplitude is actually suppressed in the kinematic region
near threshold. This explains why the TS effects do not
produce significant vertex corrections to the coupling in
both S and D waves. In Fig. 6, the results for the K̄π
invariant mass spectra with the relativistic and nonrelativ-
istic amplitudes of the triangle diagrams are compared.

FIG. 4. The K̄π spectra for f1ð1420Þ → K�K̄ þ c:c: → KK̄π (left) and h1ð1415Þ → K�K̄ þ c:c: → KK̄π (right). The solid, dashed,
and dotted lines represent the total, tree, and triangle (intensified by 50) contributions, respectively.

FIG. 5. The K̄π spectra for f1ð1420Þ → K�K̄ þ c:c: → KK̄π (left) and h1ð1415Þ → K�K̄ þ c:c: → KK̄π (right) from the triangle
loops. The solid lines are full triangle amplitudes. The dashed lines denote the pure S-wave contributions from the loop amplitudes,
while the dotted lines are the pure D-wave contributions multiplied by a factor of 10.
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The difference indicates the effects of the nonrelativistic
expansion. One sees that these two results agree with each
other quite well.
It is interesting to mention that the triangle loops

considered here, namely, K�K̄ðπÞ þ c:c., are relatively
suppressed in comparison with the ones involving
K�K̄ðKÞ þ c:c: such as h1ð1415Þ → ϕπ [23]. For the latter
cases, the TS contributions are relatively enhanced by the
larger phase spaces.

IV. CONCLUSION

We investigate the triangle loop corrections to the axial
vector couplings to K�K̄ þ c:c: where the TS mechanism
can contribute. Because of the triangle loop transitions, the
tree-level S-wave couplings for f1ð1420Þ and h1ð1415Þ to
K�K̄ þ c:c: will be corrected by about 5%, and a D-wave
coupling can arise from the initial S-wave couplings.
Although these corrections are rather small, their interfer-
ences with the tree-level amplitudes can still produce some
effects on the invariant mass spectra in the final states. In
particular, the presence of the TS mechanism within the
near-threshold region will change the energy-dependent
behavior of the initial state. It suggests that a proper
consideration of the vertex corrections as well as the TS
mechanism would be necessary for the study of these axial
vector mesons in the future partial wave analysis, e.g., in
charmonium radiative or hadronic decays at BESIII.
Our analysis is also useful for a better understanding of

the nature of f1ð1420Þ, namely, whether it is a genuine state
or just a TS enhancement produced by the f1ð1285Þ
decays. Our study in Ref. [23] and herein suggests that

the exclusive TS contributions from f1ð1285Þ is insuffi-
cient for describing the f1ð1420Þ peak in the KK̄π channel,
although the line shape is agreeable. The data [30–33]
actually call for a pole contribution around 1.42 GeV. This
indicates that f1ð1285Þ and f1ð1420Þ can still be accom-
modated by the quark model light axial vector nonet.
Meanwhile, the strong K�K̄ final state interactions are
strongly entangled with the quark model states. Further
experimental evidence and theoretical studies are needed to
set up a more consistent picture for the light axial vector
nonet in the future.
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APPENDIX

We provide the detailed expressions for the transition
amplitudes of the triangle loops here. As follows, for
brevity we use sc as an alias for sad. After contraction,
the Lorentz structures of the triangle amplitudes take the
following forms:

Mtri
c;d ¼ −

igc;d
sc −m2

K� þ imK�ΓK�
ϵμ½χaðs0; sa; sb; sc; sabÞpμ

a þ χbðs0; sa; sb; sc; sabÞpμ
b þ χdðs0; sa; sb; sc; sabÞpμ

d�; ðA1Þ

Mtri
a;b ¼ −

iga;b
sbd −m2

K� þ imK�ΓK�
ϵμ½χbðs0; sb; sa; sbd; sabÞpμ

a þ χaðs0; sb; sa; sbd; sabÞpμ
b þ χdðs0; sb; sa; sbd; sabÞpμ

d�: ðA2Þ

FIG. 6. The K̄π spectra for f1ð1420Þ → K�K̄ þ c:c: → KK̄π (left) and h1ð1415Þ → K�K̄ þ c:c: → KK̄π (right) from triangle loops.
The solid and dashed lines are calculation results based on the relativistic and nonrelativistic formalism, respectively.
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The scalar functions χr (r ¼ a, b, d) are linear combinations of fΛ0;Λcb;Λbbg, i.e.,

χaðs0; sa; sb; sc; sabÞ ¼
�
−1þ sa − sd

sc

�
Λ0ðs0; sb; scÞ þ

1

2sc
½s0ðsc þ sa − sdÞ þ sbðsc − sa þ sdÞ

þ scðsa þ sd − sc − 2sabÞ�Λcbðs0; sb; scÞ;

χbðs0; sa; sb; sc; sabÞ ¼
1

2sc
½s0ðsc þ sa − sdÞ þ sbðsc − sa þ sdÞ þ scðsa þ sd − sc − sabÞ�Λbbðs0; sb; scÞ;

χdðs0; sa; sb; sc; sabÞ ¼
�
1þ sa − sd

sc

�
Λ0ðs0; sb; scÞ þ

1

2sc
½s0ðsc þ sa − sdÞ þ sbðsc − sa þ sdÞ

þ scðsa þ sd − sc − sabÞ�Λcbðs0; sb; scÞ: ðA3Þ

It can be immediately verified that (by setting Λbb and Λcb to be zero), when there is only the gμα term in Iμα (or when
otherD-wave terms are negligible), the Lorentz structures of Eqs. (A1) and (A2) will recover the tree-level forms of Eqs. (6)
and (7). In such a case, the triangle amplitude will have only the S-wave contributions and will not change the distribution
pattern of events in the Dalitz plot.
The coefficients Λ0, Λbb, and Λbc are expressed in terms of standard functions of LoopTools, i.e., Ci, Cij, and Cijk.

Their expressions are

Λ0 ¼
i

8π2m2
1

½2sbδC001 þ ðsþ sb − scÞδC002�; ðA4Þ

Λcb ¼
i

8π2m2
1

½2δC002 þ 2sbδC112 þ ðsþ 3sb − scÞδC122 þ ðsþ sb − scÞδC222 þ 2sbδC12 þ ðsþ sb − scÞδC22�; ðA5Þ

Λbb ¼ −
i

4π2
ðC0 þ C1 þ C2Þ þ

i
8π2m2

1

½2δC00 þ 2sbδC11 þ ðsþ 3sb − scÞδC12 þ ðsþ sb − scÞδC22

þ 4δC001 þ 4δC002 þ 2sbδC111 þ ðsþ 5sb − scÞδC112 þ ð2sþ 4sb − 2scÞδC122 þ ðsþ sb − scÞδC222�; ðA6Þ

where the δCij, δCijk are defined by

δCijðijkÞ ¼ CijðijkÞ − CijðijkÞjm1→0: ðA7Þ
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