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The pion scalar, vector, and tensor form factors are calculated within a symmetry-preserving contact
interaction model (CI) of quantum chromodynamics (QCD), encompassed within a Dyson-Schwinger and
Bethe-Salpeter equations approach. In addition to the traditional rainbow-ladder truncation, a modified
interaction kernel for the Bethe-Salpeter equation is adopted. The implemented kernel preserves the vector
and axial-vector Ward-Takahashi identities, while also providing additional freedom. Consequently, new
tensor structures are generated in the corresponding interaction vertices, shifting the location of the mass
poles appearing in the quark-photon and quark tensor vertex and yielding a notorious improvement in the
final results. Despite the simplicity of the CI, the computed form factors and radii are compatible with
recent lattice QCD simulations.

DOI: 10.1103/PhysRevD.106.054016

I. INTRODUCTION

Quantum chromodynamics (QCD) is regarded as the
underlying theory that describes the strong interactions in
the Standard Model. This quantum field theory is full of
complexities that arise due to its non-Abelian nature,
producing very peculiar features in the characterizing
running coupling [1], thereby limiting the usage of pertur-
bation theory to certain kinematic regimes [2,3]. Giving
this notorious shortcoming, to address several hadron
properties and low-energy phenomena, such as confine-
ment and emergent hadronic mass (EHM) [4,5], non-
perturbative frameworks turn out to be necessary. For
the past few decades, the Dyson-Schwinger equations
formalism has proven to be a powerful tool to deal with
QCD in the continuum [6,7], paving a traceable connection
between the structural properties of hadrons and the
fundamental degrees of freedom of QCD, quarks and
gluons. Being both a QCD boundstate and a (pseudo)
Nambu-Goldstone boson (NGb), the pion takes center
stage in our understanding of the strong interactions,
specially concerning the nonpertubative phenomena in
QCD and EHM [8,9]. Herein, the pion structure is inves-
tigated via the computation of form factors (FFs). The pion

vector form factor, namely, the electromagnetic form factor
(eFF), describes the coupling of a photon to the pion. It is
then directly accessible from experiments [10–21] and
investigated through multiple approaches, such as lattice
QCD simulations [22–26], Continuum Schwinger Methods
(CSM) [27–33] and many other phenomenological
approaches [34–41]. Conversely, the pion scalar and tensor
form factors, which are not directly accessible as such from
experiments, have not received sufficient attention.
Notwithstanding, these two form factors still deserve
scrutiny. For instance, the scalar form factor (sFF) can
be connected with the ππ scattering processes, of extreme
relevance in nuclear physics, and can be used to analyze the
potentially existing scalar mesons [42]; on the other hand,
the calculation of the tensor form factor (tFF) is comple-
mentary to explorations concerning gravitational FFs
[43,44], and could shed some light in our understanding
of the interaction of the pion with higher-spin probes, as it
might happen in beyond Standard Model theories. For
comprehensive reviews on the pion scalar and tensor FFs,
see Refs. [45–52].
In the present work, we calculate the pion scalar, vector

and tensor FFs within the DSE approach. Based upon the
traditional rainbow-ladder (RL) truncation in QCD [53,54],
a modified rainbow-ladder (MRL) truncation is adopted.
As detailed in Ref. [55], both truncations preserve the
vector and axial-vector Ward-Green-Takahashi identities
(WGTIs), ensuring charge conservation and NGb nature of
the pion, while also introducing timelike mass poles in the
relevant interaction vertices (e.g., a vector meson pole in the
quark-photon vertex). The additional structures present in
the MRL truncation generate a quark anomalous magnetic
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moment (AMM) term, whose impact could be noticeable in
mesonandbaryonFFs [56,57]. Theappearanceof this term is
then desirable and understood as follows: the anomalous
chromomagnetic moment for dressed light-quarks, gener-
ated nonperturbatively, commensurates (albeit with opposite
sign) with its electromagnetic analogue [58,59]. For illus-
trative purposes, the calculations presented herein are
restricted to the symmetry-preserving contact interaction
(CI) model introduced in [60,61]. We contrast the results
produced in the RL and MRL truncations, observing that,
despite the simplicity of the CI, those produced in the MRL
case are quite compatible with recent lattice QCD simula-
tions [45].
The manuscript is organized as follows: Section II intro-

duces the CI within the MRL truncation. Section III focuses
on the structure and calculation of the relevant interaction
vertices: quark-scalar, vector and tensor vertices. Section IV
presents the definition and derivation of the pion scalar,
vector and tensor FFs. A summary is the presented in Sec. V.

II. CONTACT INTERACTION MODEL

Let us now describe the CI model applied to the MRL
truncation from Ref. [55] (CI-MRL), which extends the RL
case [60] (CI-RL). The DSE for the f-flavored quark
propagator, often dubbed as gap equation, reads in the CI
model [60]:

S−1f ðpÞ ¼ ½iγ · pþmf� þ
4

3m2
G

Z
q
γμSfðqÞγμ; ð1Þ

where mf is the Lagrangian current quark mass and mG ¼
0.127 GeV is an infrared mass scale, the symbol

R
q ≔R

d4q=ð2πÞ4 denotes a four dimensional Euclidean integral.
Note that Eq. (1) possesses a quadratic divergence, such
that the integral must be regularized in a Poincaré covariant
manner. This implies, first, that a general solution implies a
quark propagator written as

S−1f ðpÞ ¼ iγ · pþMf; ð2Þ

where Mf is a momentum independent mass function. The
gap equation thus becomes

Mf ¼ mf þ
Mf

3π2m2
G

Z
∞

0

ds
s

sþM2
f

: ð3Þ

Using proper time regularization, the integral above is
recast as:

1

sþM2
f

¼
Z

∞

0

dτe−τðsþM2
fÞ →

Z
τ2ir

τ2uv

dτe−τðsþM2
fÞ; ð4Þ

where τuv and τir are infrared and ultraviolet
regulators, respectively. A nonzero value of τir ≔ 1=Λir ¼
1=0.24 GeV−1 ensures the absence of quark production

thresholds, thereby being compatible with confinement. On
the other hand, since the contact interaction does not define
a renormalizable theory, τuv ≔ 1=Λuv ¼ 1=0.905 GeV−1

cannot be removed and instead plays a dynamical role,
setting the scale of all dimensioned quantities. With the
regularization prescription we have introduced, the quark
mass function is obtained from:

Mf ¼ mf þ
Mf

3π2m2
G
CiuðM2

fÞ; ð5Þ

where CiuðzÞ=z ¼ Γð−1; zτ2uvÞ − Γð−1; zτ2irÞ, with Γða; zÞ
the incomplete Gamma function.
The corresponding meson Bethe-Salpeter equation

(BSE) reads:

ΓHðPÞ ¼ −
4

3m2
G

Z
q
½γμχHðPÞγμ − ξΓ̃jχHðPÞΓ̃j�; ð6Þ

where χHðPÞ ¼ SfðqÞΓHðPÞSh̄ðq − PÞ, with ΓHðPÞ being
the Bethe-Salpeter amplitude (BSA); H labels the type of
meson (encoding Lorentz indices, if any), and P represents
the meson total momentum, such that P2 ¼ −m2

H (mH is
the meson mass). Note that, setting ξ ¼ 0 in Eq. (6), one
recovers the CI-RL case. In this way, we will refer as
nonladder structures to those that are accompanied by ξ,
and those are: Γ̃n ¼ fI; γ5; iffiffi

6
p σμνg.

Despite the simplicity of CI, significant features of QCD
such as confinement and DCSB are preserved within this
framework. Furthermore, the CI is proven to be a reliable
tool to the meson and baryon spectra, as well as the electro-
weak elastic and transition FFs [55–57,60–69]. From this
point on, we will focus on the properties of the pion. The
isospin symmetric limit mu ¼ md would be considered,
therefore flavor indices shall be omitted for simplicity. The
nature of the CI model entails the pion BSA only depends
on the total momentum P, such that, a general for of the
pion BSA reads

ΓπðPÞ ¼ γ5

�
i EπðPÞ þ

γ · P
M

FπðPÞ
�
: ð7Þ

As explained in Ref. [55], the contributions proportional to
ξ in Eq. (6) (dubbed NL terms) can be recast under Fierz
transformation as 1

3
σαβtrD½σαβχHðPÞ�, making apparent that

the NL pieces do not contribute in the pseudoscalar and
axial-vector channels. Consequently, in the case of the
pion, the solutions to the Eq. (6) will be the same in both the
CI-RL and CI-MRL cases. However, scalar and vector
channels are affected by the NL terms; this would naturally
impact the corresponding interaction vertices, as discussed
below. In fact, a first effect is observed in the structure
acquired by the BSA of the ρ meson [55] which, in the
CI-MRL case reads
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Γρ
μðPÞ ¼ γTμ ðPÞEρðPÞ þ

1

M
σμνPνFρðPÞ; ð8Þ

while in the CI-RL truncation one finds FρðPÞ ¼ 0, so it
would be completely defined by the structure

γTμ ðPÞ ¼ γμ −
γ · P
P2

Pμ: ð9Þ

With theseobservations inmind,we fix themodel parameters
as follows: those already appearing in the CI-RL are fixed in
order to reproduce the pion mass and decay constant; on the
other hand, the strength of the NL pieces, ξ, will be set to
reproduce the mass of the ρ meson. Model inputs, meson
masses and other static properties are collected in Table I.
In the next section, we discuss about the structure interaction
vertices within this approach: quark-scalar (QS), quark-
vector (QV) and quark-tensor (QT) vertices.

III. QUARK SCALAR, PHOTON
AND TENSOR VERTICES

In principle, a fully covariant description of the inter-
action vertices (herein QS, QP and QT vertices) might
require the latter to be characterized by several tensor
structures (e.g., Refs. [33,70–72]). In the CI, the seemingly
overwhelming task of sensibly determining each set of
structures greatly simplifies due to the momentum inde-
pendent nature of the model; i.e., the dressing functions
accompanying the different tensor structures do not depend
on the relative momentum and, therefore, many tensor
structures are cancelled by the requirement that its corre-
sponding dressing function be zero. In this way, the QS,
QP, and QT vertices can be represented as follows:

ΓSðQÞ ¼ fSðQ2ÞI;

ΓV
μ ðQÞ ¼ fV1ðQ2ÞγLμ þ fV2ðQ2ÞγTμ þ fV3ðQ2Þ σμνQν

M
;

ΓT
μνðQÞ ¼ fT1ðQ2Þσμν þ fT2ðQ2Þ i

M
ðQσμν − σμνQÞ

þ fT3ðQ2Þ i2

M2
QσμνQ: ð10Þ

where γTμ ¼ γμ−
QQμ

Q2 , γLμ ¼ γμ− γTμ ; Γ#ðQÞ¼ fΓSðQÞ;
ΓV
μ ðQÞ;ΓT

μνðQÞg denotes the fully dressed QS, QP, and
QT vertices, respectively. The vertices satisfy an inhomo-
geneous BSE, namely:

Γ#ðQÞ ¼ γ# −
4

3m2
G

Z
q
γαSðqÞΓ#ðQÞSðq −QÞγα

þ 4ξ

3m2
G

Z
q
Γ̃nSðqÞΓ#ðQÞSðq −QÞΓ̃n: ð11Þ

where the inhomogeneous term γ# ¼ fI; γμ; σμνg clearly
depends on the vertex we are describing. To solve this
equation, one inserts Eq. (10) into Eq. (11), projects out the
different elements on the basis and takes the corresponding
Dirac and color traces. This procedure yields a collection
of coupled integral equations for the dressing functions
ffSðQ2Þ; fViðQ2Þ; fTiðQ2Þg, whose solutions are plotted
through Figs. (1–3). Some details concerning the QT vertex
and the subsequent evaluation of the tFF are found in the
Appendix (the steps therein detailed are quite general and
can be applied to the rest of the cases).
In solving Eq. (11) for the quark-scalar vertex, one

realizes that the profile acquired by fSðQ2Þ turns out to be
harder than expected and thus inadequate for a proper
description of the sFF. The reason lies within the simple
tensor structure acquired by the scalar vertex in the CI
framework [a simple identity matrix, Eq. (10)], which
prevails in both CI-RL and CI-MRL cases. Thus, when
calculating the pion scalar form factor, we use the following
monopole Ansatz instead:

f̄SðQ2Þ ¼ 1

1þQ2=m2
σ
; ð12Þ

where mσ ¼ 0.815 GeV is the scalar meson mass com-
puted in the CI-MRL scheme, and which also appears as a
timelike mass pole in the actual solution of fSðQ2Þ.
Figure 1 shows the comparison between the computed

TABLE I. The model inputs: mG ¼ 0.127 GeV,
τuv ¼ 1=0.905 GeV−1, τir ¼ 1=0.24 GeV−1, and ξ ¼ 0.6. The
produced masses and pion properties are listed below. The
superscript c denotes the BSAs have been canonically normalized
[60]. Mass units in GeV.

M mπ fπ mσ ma1 mρ Ec
π Fc

π

m ¼ 0.007 0.405 0.139 0.103 0.815 1.131 0.771 3.90 0.575

fS(Q2) f S (Q 2)

– 0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

1
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4

Q2[GeV2]

Q
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-
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ve

rt
ex

FIG. 1. Quark-scalar vertex dressing function. The solid line is
obtained by solving the quark-scalar vertex BSE, Eq. (11), while
the dashed line corresponds to the monopole Ansatz from
Eq. (12). The vertical line in the timelike region indicates the
position of the scalar mass pole, i.e., Q2 ¼ −m2

σ .
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QS dressing function fSðQ2Þ and the monopole Ansatz,
f̄SðQ2Þ, from Eq. (12).
The obtained dressing functions of the quark-photon

vertex are depicted in Fig. 2. With or without NL pieces
appearing in the corresponding Bethe-Salpeter kernel, a
trivial solution is found for the longitudinal piece of the
vertex, i.e., fV1ðQ2Þ ¼ 1. Appearing in both truncations,
fV2ðQ2Þ features a vector meson pole at Q2 ¼ −m2

ρ, where
the ρ meson mass acquires its physical value
(mρ ¼ 0.771 GeV) in the CI-MRL truncation, as opposed
to the CI-RL case in which an inflated mass is obtained
instead (mρ ¼ 0.929 GeV in Ref. [62] and mρ ¼
0.953 GeV with our preferred value of mG). In addition,
it is seen that fV2ðQ2 → ∞Þ → 1, a condition that ensures
that the tree level vertex, γμ, is faithfully recovered in the
large Q2 limit. The third dressing function, fV3ðQ2Þ,
characterizes the Q2 evolution of the AMM term which,
being nonzero only in the CI-MRL case,1 as a consequence
of the richer structure of the Bethe-Salpeter kernel,
Eq. (11).
Similarly, for the QT vertex, the CI-MRL truncation also

produces 3 independent structures, Eq. (10). The corre-
sponding dressing functions are depicted in Fig. 3. Notably,
all of them have a pole at Q2 ¼ −m2

T , where mT can be
regarded as the mass of some intermediate tensor reso-
nance; within our framework, it happens to coincide with
mρ. The existence of the NL term in the Bethe-Salpeter
kernel decreases the value mT so that, as in the QP vertex,

the position of the pole move closer to Q2 ¼ 0. This means
a greater influence of the mass pole in the low Q2 domain
of FFs, which translates into larger charge radii and a softer
behavior in the vicinity of Q2 ¼ 0. Taking ξ ¼ 0, i.e., the
CI-RL case, the quark-tensor vertex dramatically simpli-
fies. There is no longer a pole in the dressing functions
fT1;T3 and, in fact, those acquire trivial profiles: fT1 ¼ 1

and fT3 ¼ 0.

IV. PION SCALAR, VECTOR,
AND TENSOR FORM FACTORS

With the quark propagators, pion Bethe-Salpeter ampli-
tude and corresponding interaction vertices at hand, we are
now in position to compute the scalar, vector and tensor FFs
in the impulse approximation (IA) [32]:

T#ðK;QÞFπ
#ðQ2Þ ¼ 2trCD

Z
q
fiΓπð−pfÞSðqþ pfÞ

×iΓ#ðQÞSðqþ piÞiΓπðpiÞSðqÞg; ð13Þ

where trCD indicates trace over color and Dirac indices. The
label # refers to scalar, vector and tensor cases such that,
naturally, Γ# are the interaction vertices from Eq. (10),
while F# correspond to the FFs dressing the matrix
elements T#ðK;QÞ:

TSðK;QÞ ¼ iI; ð14Þ

TV
μ ðK;QÞ ¼ 2Kμ; ð15Þ

TT
μνðK;QÞ ¼ −

KμQν − KνQμ

mπ
: ð16Þ

fV1 (Q2) fV2(Q 2) fV3(Q2)
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FIG. 2. Quark-photon vertex dressing functions. The blue,
orange and green line stands for three dressing functions of
the quark-photon vertex defined in Eq. (10). Solid lines corre-
sponds to the CI-MRL case while the dashed lines are obtained in
the CI-RL truncation. For each case, the vertical lines in the
timelike region denote the indicate of the mass pole of the
dressing function fV2ðQ2Þ, i.e., Q2 ¼ −m2

ρ.

fT1(Q 2) fT2(Q2) fT3(Q2)

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5
– 1.0
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FIG. 3. Quark-tensor vertex dressing functions. The blue,
orange and green line stands for three dressing functions of
the quark-tensor vertex defined in Eq. (10). Solid lines corre-
sponds to the CI-MRL calculations while the dashed lines are
those performed in the CI-RL truncation. For each case, the
vertical lines in the timelike region denote the indicate of the mass
pole Q2 ¼ −m2

T .

1In some occasions, the AMM term is added by hand in CI-RL
related calculations [56,57], adopting a particular the form for
fV3ðQ2Þ.

WANG, XING, KANG, RAYA, and CHANG PHYS. REV. D 106, 054016 (2022)

054016-4



The kinematics is defined as follows: Q ¼ pf − pi is the
momentum of the incoming gauge boson and pi;f ¼ K ∓
Q
2
are the incoming and outgoing pion momentum, respec-

tively; on-shell conditions entail p2
i;f ¼ −m2

π , such that K ·

Q ¼ 0 and K2 ¼ −m2
π − Q2

4
. The key steps in calculation

are presented in the Appendix. The computed form factors
are displayed in Figs. 4–6.
Our final result for the pion sFF agrees fairly well with

that from the lattice calculation in Ref. [45]. A crucial piece
for such outcome is the monopole Ansatz for the quark-
scalar dressing function, f̄SðQ2Þ, given in Eq. (12). If one
were to take fSðQ2Þ instead, the actual solution of the
corresponding BSE, the very simple structure of ΓS
permitted by the CI model would produce a notoriously
harder sFF. This of course could be anticipated from Fig. 1,

highlighting the need of as artificial improvement of the
quark-scalar vertex within the CI framework.
The vector form factor, namely the electromagnetic form

factor, is depicted in Fig. 5. Compared to the CI-RL result,
the one obtained from the CI-MRL truncation is suppressed
and much closer to the lattice QCD result. The suppressing
effect comes, mainly, from the AMM term in the quark-
photon vertex, but also due to the smaller computed value
of mρ, which moves the vector meson pole closer to the
spacelike axis and, consequently, produces a larger charge
radius. As the momentum transfer increases, the flaws of
the CI are exposed and the difference between the CI
calculations and lattice QCD becomes larger. In general,
one would expect harder form factors to be produced by the
CI interaction model [56,57], since the nature of the CI
implies constant mass functions and BSAs, which in turn
lead to much simpler interaction vertices. In particular for
the pion, it is well known that a symmetry-preserving
treatment of the CI incorporates a pseudovector component
in the pion BSA, Eq. (7), which eventually produces a pion
eFF [61] with an asymptotic behavior in marked contra-
diction with the prescriptions of perturbative QCD [2]; a
similar outcome occurs for the pion to two-photon tran-
sition form factors [60]. Leaving the hardness issues aside,
it is still notorious that, unlike the CI-RL case, our CI-MRL
approach produces a vector FF compatible with that
obtained from lattice QCD in a low Q2 region.
In the case of the tFF, the triangle diagram from Eq. (13)

is, in principle, insufficient to satisfy the WGTI; namely,
charge conservation is not ensured by means of having
QμT

μν
T ðK;QÞ ≠ 0. This requires the IA to be completed

with other diagrams which turn out to be proportional to
gμν; for self-consistency, ΓT

μν in Eq. (10) would also require
such completion, ensuring the quark-tensor vertex satisfies
a WGTI of its own [73]. Notwithstanding, as discussed in
the Appendix, the tFF is decoupled from its matrix element

lattice

CI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q2[GeV2]

F
S
( Q

2
)

FIG. 4. Pion scalar form factor Fπ
SðQ2Þ. The solid line is our

computed CI-MRL result, using the vertex dressing from
Eq. (12). The band corresponds to the lattice QCD calculation
from Ref. [45].

lattice

CI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Q2[GeV2]

F
V

(Q
2
)

FIG. 5. Pion vector form factor Fπ
VðQ2Þ. The solid line

corresponds to our result using the CI-MRL truncation, while
the dotted line is the analogous for the CI-RL case. The band
corresponds to the lattice QCD calculation from Ref. [45].

lattice

CI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

Q2[GeV2]

F
T

(Q
2
)

FIG. 6. Pion tensor form factor Fπ
TðQ2Þ. The solid line

corresponds to our result using the CI-MRL truncation, while
the dotted line is the analogous for the CI-RL case. The band
corresponds to the lattice QCD calculation from Ref. [45].
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after contracting with KμQν; therefore, due to the on-shell
condition K ·Q ¼ 0, any contribution coming from gμν
vanishes. This makes the present approach sufficient for a
consistent description of the tFF. Our results in this case are
presented in Figs. 6 and 7. The former depicts our final
outcomes in the CI-RL and CI-MRL truncations, as
compared with those from Ref. [45]; the latter dissects
the individual contributions of the QT vertex pieces to the
tFF. Focusing on Fig. 6, it is clear that the CI-MRL
calculation improves that obtained within CI-RL, produc-
ing a tFF in keen agreement with the lattice result over a
rather generous domain of Q2. Again, there an increasing
discrepancy between the CI predictions and lattice simu-
lation is expected as Q2 becomes larger. To further
scrutinize on the impacts of the NL term on the computed
tFF, we separate the contributions of each piece of the
quark-tensor vertex in Eq. (10) to the tFF,

Fπ
TðQ2Þ ¼ Fπ

T1ðQ2Þ þ Fπ
T2ðQ2Þ þ Fπ

T3ðQ2Þ: ð17Þ

The individual contributions are depicted in Fig. 7.
Capitalizing on Fπ

T1;T2ðQ2Þ, it is clear that the difference
between the CI-RL and CI-MRL results is essentially due
to the Q2 ¼ −m2

T pole. For Fπ
T2ðQ2Þ, the poles are shifted

according to the computed value ofmT , while for Fπ
T1ðQ2Þ,

the mass pole is completely removed in the CI-RL case. As
discussed in Sec. III, the presence of the NL term implies a
decreasing in the value of mT , letting the pole position
move closer to Q2 ¼ 0 and, consequently, the form
factors Fπ

T1;T2ðQ2Þ exhibit a steeper falloff in the low Q2

spacelike domain. Regarding Fπ
T3ðQ2Þ, the third structure

characterizing the quark-tensor vertex, i2

M2 QσμνQ ∼Q2,
only survives if the NL term appears the corresponding
Bethe-Salpeter kernel. Furthermore, the projection operator
that decouples the tFF from its matrix element produces a

vanishing Fπ
T3ðQ2Þ atQ2 ¼ 0. Conversely, asQ2 increases,

the CI-MRL obtained form factor Fπ
TðQ2Þ is suppressed

mainly because of the negative contribution given by
Fπ
T3ðQ2Þ. The destructive interference of FT1;T2ðQ2Þ with

FT3ðQ2Þ then produces softer behavior at large Q2.
For a final comparison, we compute the corresponding

charge radii, defined as

hr2i# ¼ −
6

F#ð0Þ
∂F#ðQ2Þ
∂Q2

����
Q2¼0

; ð18Þ

and producing the CI-MRL inferred values of:

rπS
2 ¼ ð0.434 fmÞ2;

rπV
2 ¼ ð0.558 fmÞ2;

rπT
2 ¼ ð0.583 fmÞ2: ð19Þ

A first thing to notice is the pattern rS < rV ≲ rT , which is
indeed is the same followed by the inverse of the masses,
i.e., 1=mσ < 1=mρ ¼ 1=mT . The comparison between the
CI-MRL and lattice results are shown in Fig. 8. Since the
CI-MRL exhibits comparable values and slopes of the vector
and tensor form factors at Q2 ¼ 0, the charge radii are in
agreement with lattice QCD simulations. In comparisonwith
traditional CI calculations (for instance, Ref. [62]), the value
rπV ¼ 0.558 fm lies closer to the experimental one [74],
rexpV ¼ 0.659ð4Þ fm, and to that from the analysis ofRef [75],
rspmV ¼ 0.640ð7Þ fm. This outcome is a consequence of
the richer structure of the quark-photon vertex: roughly,
the contribution from thefV2 dressing (the one containing the
vector meson pole) enhances by 50% that coming from γμ
alone, while fV3, the AMM piece, further enhances such
value by 25%. A similar reasoning could be applied to rπT as
well, where the σμν term alone (in the QT vertex) produces a

FT1(Q2) FT2(Q2) FT3(Q2)

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20
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FIG. 7. The ingredients of the form factor from the three
structures of the quark-tensor vertex. The solid line is computed
using CI-MRL and the dashed line is computed with CI-RL.
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FIG. 8. Scalar, vector and tensor charge radii, as defined in
Eq. (18). The orange points corresponds to values obtained within
the CI-MRL scheme, while the blue data points are those from
lattice QCD [45].
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charge radius about 25% smaller than the one reported
in Eq. (19).

V. SUMMARY

In this article, the pion scalar, vector and tensor FFs, as
well as the corresponding charge radii, are investigated
within a contact interaction model of QCD. Following a
previous study in the vector meson sector [55], the Bethe-
Salpeter kernel describing the scalar, vector and tensor
channels, is complemented with new structures in addition
to those coming from the rainbow-ladder truncation alone.
Despite this, and just as the CI-RL does, the CI-MRL
truncation is consistent with the vector and axial-vector
WGTIs. In implementing this truncation, the structure of
the quark-vector (quark-photon) and quark-tensor vertices
is enriched, with respect to its CI-RL counterpart, and we
have seen that this leads to a positive impact on the FFs
under study. Comparing the produced FFs with those
obtained from recent lattice QCD [45], we can conclude
the following:
Even though the momentum independent nature of the

CI model produces, typically, harder form factors, the CI-
MRL truncation brings some improvements in the Q2

dependence of such. When computed under the CI-MRL
scheme, the scalar, vector and tensor form factors display a
better compatibility with the lattice results at spacelike
momenta; much better than in the CI-RL case. This is a
consequence of the profile that the interaction vertices
acquire under this truncation. For instance, the quark-vector
(quark-photon) vertex contains an AMM term in addition to
the transverse piece containing the vector meson pole.
On the other hand, the QT vertex exhibits a nontrivial

profile in the three dressing functions characterizing it; two
of them feature a mass pole in the timelike axis, which
produces both a larger charge radius and a better behavior
at small Q2; a third one, fT3, which is nonzero only in the
CI-MRL case, modulates the behavior at large Q2 in such a
way that one obtains a softer tFF, in better agreement with
the lattice QCD result. This would imply that for the tFF,
the CI-MRL leads to improvements at both small and large

Q2. For the scalar case, however, the QS vertex dressing
function one obtains from its Bethe-Salpeter equation is not
sufficiently damped. This would produce a sFF way too
hard, making it necessary to introduce a sensible Ansatz for
the vertex dressing function, in order to get a proper
description. This crucial drawback is well understood from
the very simple structure that the quark-scalar vertex
acquires in the CI model, which prevails in both CI-RL
and CI-MRL truncations. If computed within the CI-MRL
model, all charge radii computed herein are plainly com-
patible with those from lattice QCD. Contrary to the CI-RL
case, the mass of the vector meson can be placed at its
physical value, so that the pole impacts the small Q2 region
to a greater extent and, thus enlarging the values of the
charge radii. The AMM term appearing in the quark-photon
vertex, also plays a positive role in getting a much sensible
value for the radii.
Therefore, all virtues of the computed FFs and corre-

sponding charge radii are attributed to the extended
structure of the symmetry-preserving CI-MRL truncation,
which is also known to significantly improve the descrip-
tion of the static properties and electromagnetic FFs of the ρ
meson [55]. Further extensions concerning the axial-vector
meson are currently being investigated.
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APPENDIX: QUARK-TENSOR VERTEX AND
TENSOR FORM FACTOR

This appendix shows some key steps in the calculation of
the dressed quark-tensor vertex and corresponding pion
tensor form factor. The steps described herein are quite
general and applicable for the rest of the cases.
Let us start from the dressed quark-tensor vertex, which

satisfies the following inhomogeneous BSE:

ΓT
μνðQÞ ¼ σμν −

4

3m2
G

Z
q
γαSðqÞΓT

μνðQÞSðq −QÞγα þ
4ξ

3m2
G

Z
q
Γ̃nSðqÞΓT

μνðQÞSðq −QÞΓ̃n ðA1Þ

where Γ̃n ¼ fI; γ5; iffiffi
6

p σμνg, and

ΓT
μνðQÞ ¼ fT1ðQ2Þσμν þ fT2ðQ2Þ i

M
ðQσμν − σμνQÞ þ fT3ðQ2Þ i2

M2
QσμνQ: ðA2Þ

Using the above equation, the main idea is to conveniently recast Eq. (A1) as follows:
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0
B@

fT1ðQ2Þ
fT2ðQ2Þ
fT3ðQ2Þ

1
CA ¼

0
B@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CA
0
B@

fT1ðQ2Þ
fT2ðQ2Þ
fT3ðQ2Þ

1
CAþ

0
B@

1

0

0

1
CA ðA3Þ

Because the three basis elements of ΓT
μνðQÞ are Dirac-trace orthogonal, we can easily calculate the matrix entries ai;j. In fact,

it is sufficient to multiply Eq. (A1) by each element from the basis in Eq. (A2). For instance, one has:

a22 ¼ trCD

�
Qσμν − σμνQ

72m2
GQ

2

�Z
q
γαSðqÞðQσμν − σμνQÞSðq −QÞγα −

Z
q
ξΓ̃nSðqÞðQσμν − σμνQÞSðq −QÞΓ̃n

��

¼ 4

3m2
G

Z
1

0

dα
Z
q

q2 − 2αð1 − αÞQ2 þ 2M2

ðq2 þ αð1 − αÞQ2 þM2Þ2 ; ðA4Þ

where the second line has been obtained after a combination of Feynman parametrization and changes of variables. Then,
one can choose whether to use the axial-vector WGTI [60], in order to get rid of the integral involving a q2 in the numerator.
As a matter of fact, it is not necessary for the 4-momentum integrals concerning the quark-scalar vertex, but it is quite
convenient in the vector and tensor cases. In particular, still for a22, one gets:

a22 ¼ −Q2ĨðQ2Þ; ðA5Þ

where the following definitions have been employed:

ĨðQ2Þ ¼ 1

3π2m2
G

Z
1

0

αð1 − αÞC̄iu1 ðωðα; Q2ÞÞdα; ðA6Þ

C̄iu1 ðωÞ ¼ −
d
dω

CiuðωÞ; ðA7Þ

ωðα; Q2Þ ¼ αð1 − αÞQ2 þM2: ðA8Þ

Proceeding analogously with the rest of the coefficients aij, one obtains the following expressions for the quark-tensor
vertex dressing functions:

fT1ðQ2Þ ¼ −3ðξM2Q2IðQ2Þ2 − 4ξM2Q2IðQ2ÞĨðQ2Þ − 4ξM2IðQ2Þ þ 6Q2IðQ2Þ þ 6Þ
2ð2ξM2IðQ2Þ þ 2ξQ2ĨðQ2Þ − 3Þ½ð1þQ2ĨðQ2ÞÞð−2ξM2IðQ2Þ þ 2ξQ2ĨðQ2Þ þ 3Þ þ ξM2Q2IðQ2Þ2� ;

fT2ðQ2Þ ¼ −3M2IðQ2Þ
4½ð1þQ2ĨðQ2ÞÞð−2ξM2IðQ2Þ þ 2ξQ2ĨðQ2Þ þ 3Þ þ ξM2Q2IðQ2Þ2� ;

fT3ðQ2Þ ¼ 3ξM2ðM2IðQ2Þ2 þ 4Q2ĨðQ2Þ2 þ 4ĨðQ2ÞÞ
2ð2ξM2IðQ2Þ þ 2ξQ2ĨðQ2Þ − 3Þ½ð1þQ2ĨðQ2ÞÞð−2ξM2IðQ2Þ þ 2ξQ2ĨðQ2Þ þ 3Þ þ ξM2Q2IðQ2Þ2� ; ðA9Þ

where

IðQ2Þ ¼ 1

3π2m2
G

Z
1

0

C̄iu1 ðωðα; Q2ÞÞdα: ðA10Þ

To get the tFF from its matrix element, we now multiply both left- and right-hand sides of Eq. (13) by KμQν, such that

−
K2Q2

mπ
Fπ
VðQ2Þ ¼ 2trCD

Z
q

�
iΓπð−pfÞSðqþ pfÞi

�
fT1ðQ2ÞiKQþ fT2ðQ2Þ 2Q

2K
M

þ fT3ðQ2Þ iQ
2KQ
M2

�

× Sðqþ piÞiΓπðpiÞSðqÞ
�

ðA11Þ
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Given the structure of the pion BSA, Eq. (7), the tensor form factor can be split in three parts: one proportional to ðEc
πÞ2, an

analogous for ðFc
πÞ2, and a third one containing the crossed term Ec

πFc
π . In this case, the one with ðFc

πÞ2 can be evaluated
directly, while the other two requires some algebraic manipulations to ensure the axial WGTI and translational invariance in
the CI [60]. For instance, the following expression accompanies the ðEc

πÞ2 term:

8Ncmπ

Mðm2
π þQ2=4Þ

Z
q

ðm2
π þQ2=4ÞðM2fT1ðQ2Þ − 4ðq2 þM2ÞfT2ðQ2Þ þQ2fT3ðQ2ÞÞ þ 8ðK · qÞðq2 þM2 −m2

πÞfT2ðQ2Þ
ððqþ K þQ=2Þ2 þM2Þððqþ K −Q=2Þ2 þM2Þðq2 þM2Þ

¼ 8Ncmπ

Mðm2
π þQ2=4Þ

Z
q

�
−4ðm2

π þQ2=4 − 2ðK · qÞÞfT2ðQ2Þ
ððqþ K þQ=2Þ2 þM2Þððqþ K −Q=2Þ2 þM2Þ

þ ðm2
π þQ2=4ÞðM2fT1ðQ2Þ þQ2fT3ðQ2ÞÞ − 8ðK · qÞm2

πfT2ðQ2Þ
ððqþ K þQ=2Þ2 þM2Þððqþ K −Q=2Þ2 þM2Þðq2 þM2Þ

�
ðA12Þ

As with the QT vertex, from a combination of Feynman parametrization and changes of variables, it is possible to evaluate
each addend separately. For the crossed term of Ec

πFc
π , we follow a similar approach. Finally, one arrives at:

Fπ
TðQ2Þ ¼ Ncmπ

2π2M3

�
Ec
π½M2Fc

πfT1ðQ2Þ þ 2M2ð2Fc
π − Ec

πÞfT2ðQ2Þ þQ2fT3ðQ2Þ�
Z

1

0

dαC̄iu1 ðωðα; Q2ÞÞ

− 2Fc
π

Z
1

0

du1

Z
1−u1

0

du2½M2ðEc
π þ Fc

πÞfT1ðQ2Þ þ ðð3u1 þ 3u2 − 2Þm2
π þ ðu1 þ u2ÞQ2ÞFc

πfT2ðQ2Þ

þQ2ðEc
π þ Fc

πÞfT3ðQ2Þ�C̄iu1 ðω0ðu1; u2; Q2ÞÞ

þ 2

Z
1

0

du1

Z
1−u1

0

du2½ðM2Ec2
π þ ð2M2 þ ðu1 þ u2Þm2

πÞFc2
π

þ ð−3M2 þ ð3u21 þ 2u1ð3u2 − 1Þ þ u2ð3u2 − 2ÞÞm2
π þ 3u1u2Q2ÞEc

πFc
πÞðM2fT1ðQ2Þ þQ2fT3ðQ2ÞÞ

þ ð−2ðu1 þ u2Þm2
πM2Ec2

π þ 2M2ð2m2
π − ðu1 þ u2ÞQ2ÞEc

πFc
π

þ ðu1u2ðu1 þ u2ÞQ4 þ ðu1 þ u2 − 1Þðu1 þ u2Þ2m4
π þ ð5u1 þ 5u2 − 6Þm2

πM2 þ 3ðu1 þ u2ÞQ2M2

þ ð−u31 þ u21ð6u2 þ 1Þ þ 2u1u2ð3u2 − 2Þ − u22ðu2 − 1ÞÞm2
πQ2ÞFc2

π ÞfT2ðQ2Þ�C̄iu2 ðω0ðu1; u2; Q2ÞÞ
�

ðA13Þ

where

C̄iu2 ðωÞ ¼
1

2

d2

dw2
CiuðωÞ ðA14Þ

ω0ðu1; u2; Q2Þ ¼ M2 þm2
πðu1 þ u2Þðu1 þ u2 − 1Þ þ u1u2Q2 ðA15Þ
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