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We use a version of the instant-form relativistic quantum mechanics of composite systems to obtain the
gravitational form factors of the pion in a common approach to its electroweak and gravitational properties.
In the preceding work [Phys. Rev. D 103, 014029 (2021)], we formulated the mathematical background,
presented the principal scheme of calculation and testified the obtained qualitative results to satisfy the
general constraints given by the principles of the theory of hadron structure. In the present work, we give
the detailed calculation of the gravitational form factors in the large range of momentum transfer, their static
limits, and the slopes at zero value, the mean-square mass and mechanical radii of the pion. Now we take
into account the gravitational structure of the constituent quarks. We show that the results are almost
insensitive to the type of model two-quark wave function in a close analogy to the case of the pion
electromagnetic form factor. We present a correct calculation of the form factor D and corresponding
matrix element of the energy-momentum tensor, going beyond the scope of the modified impulse
approximation. Most of the parameters that we use for the calculation had been fixed even earlier in our
works on the pion electromagnetic form factors. The only free parameter is the D-term of the constituent
quark, which we fix by fitting the result for the slope at zero of the normalized to pionD-term form factorD
of the pion, to a chosen experimental value.
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I. INTRODUCTION

The understanding of the gravitational structure of
hadrons is a fundamental problem of particle physics. To
consider this problem, one needs to involve specific
mathematical objects: the gravitational form factors
(GFFs) of hadrons [and, in general, the energy-momentum
tensor (EMT)]. These functions are the focus of inves-
tigation in numerous recent works (see, e.g., the reviews
[1–5]). The mathematical background of these investiga-
tions was laid in the 1960s [6–8], but became of large use
only during the last decade.
It is the formalism of Ref. [7] that we use in our

investigations. In the preceding work [9], we formulated
the mathematical statements and described the principal

scheme of the method; we testified that the derived
gravitational characteristics of the pion satisfy the con-
straints given by the general principles of the theory of
hadron structure. In the present work, we refine the
approach to give a detailed technique of the calculation,
thus transforming it into a quantitative method. The refine-
ment includes three main points. First, we take into account
the gravitational structure of the constituent quarks.
Second, we analyze different types of the two-quark wave
functions in the pion. Third, we formulate a minimal way to
overstep our modified impulse approximation (MIA) for
correct description of the pion form factor D. Note that the
pion EMT contains two form factors, and the second form
factor A is described well in the frame of MIA.
The majority of papers concerning closely the problem

under consideration were reviewed in [9] and we do not
repeat the review in the present paper. Here we discuss only
some recent results. Although the papers published during
last year are dealing mainly with the proton, they show the
modern trends and perspectives in general. At present, there
is no possibility to obtain directly the data on gravitational
characteristics, including the D-term. The information
about the GFFs is usually extracted from the hard-exclusive
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processes described in terms of unpolarized generalized
parton distribution (GPD) [10,11]. The GPD gives the
information on the space distribution of strong forces that
act on quarks and gluons inside hadrons. In this connection,
in works [12–15] the processes of deeply virtual Compton
scattering (DVCS) on nucleons were investigated. In
Ref. [12], a new technique of artificial neural networks
was used for the reduction of model dependence of the data
handling. The distribution of shear forces inside the proton
was obtained for the first time in [13] and also the proton
form factor D was constructed by fitting of three param-
eters in the multipole-type decomposition. The kinematic
corrections to the cross section, appearing as a consequence
of nonuniqueness of description of the photon in the final
state on the light cone, is discussed in Ref. [14]. It is shown
that these corrections can be significant in the kinematic
regions of future experiments. The experimental study of
DVCS is realized in timelike region for the first time
in [15].
In another set of works (Refs. [16–20]), the gravitational

characteristics of hadrons are extracted from the data on
near-threshold vector mesons photoproduction. In
Ref. [16], the mass radius is calculated not only for the
proton, but for the deuteron, too. The analysis of the
possible sources of difference between charge and mass
radii of the hadrons, systematically obtained in numerous
recent calculations, is given in [19].
The low-energy chiral effective field theory was used in

[21] to calculate the ρ-meson GFFs and in [22] to describe
the mechanical stresses inside the nucleon.
Constituent-quark models are exploited in Refs. [23–25].

In particular, the spin-orbital correlations in a pion
in a quark model on the light cone are studied in [23]
in terms of GPD and of generalized transverse momentum
distributions. In [24], the proton GFFs are derived in a
light-front quark-diquark model. The authors of [25]
study general problems of the interpretation of the
experimental data and theoretical methods of calculation
for nucleon GFFs. The investigation is focused on
space distributions of the energy, shear stresses, momen-
tums, and angular momentums in different frame
systems. The authors use the quark bag model in the
large-Nc limit in various cases—from nonrelativistic to
ultrarelativistic.
As to nonhadronic systems, the form factor D, the

distribution of matter, and internal stresses in the electron
are obtained in [26] in the one-loop approximation of QED.
It seems obvious that, because of extreme weakness of

the gravitational interaction at hadron scale, the informa-
tion on GFFs presently can be extracted from electroweak
processes only. So, a theory that describes electroweak
and gravitational properties simultaneously, based on the
unique foundations, and uses common model parameters,
is welcome. The approach that we present here possesses
these features.

We use a particular variant of the instant-form Dirac [27]
relativistic quantum mechanics (RQM) (see, e.g., [28–31])
extended for composite systems. The approach was suc-
cessfully used to describe the pion electromagnetic form
factor (see, e.g., [32–34]). We have shown [9] that the pion
GFFs can be derived in the same formalism using the same
approximations and the same model parameters, adding
only one new parameter fixed by fitting the slope at zero of
the normalized to pion D-term form factor D of pion.
In the present paper, we take into account the gravi-

tational structure of the constituent quarks and different
forms of the quark-antiquark wave function. It is worth
noting that including the gravitational structure of con-
stituents in our relativistic model means an implicit
accounting for gluons. Their degrees of freedom are
incorporated in the parameters describing constituent
quarks.
Let us emphasize that it was just the account of the

structure of the constituents [32] that made it possible to
predict the behavior of the pion charge form factor at
intermediate and high momentum transfers. We have
shown that, when two model parameters were fixed by
the charge mean-square radius and the lepton decay
constant, then the form factors only weakly depended on
the choice of model interaction of quarks in the pion. The
curves corresponding to different interactions but one and
the same value of quark mass were agglomerated into
narrow groups, or bunches. The chosen group of curves
with the constituent mass M ¼ 0.22 GeV had predicted,
with surprising accuracy, the values of the pion charge form
factor that were measured a decade later in JLab experi-
ments. By the way, this value of the constituent-quark mass
has been admitted and confirmed by other authors (from the
well-known work [35] to a recent result [36]).
Let us list some other advantages of our model with fixed

parameters. The obtained pion charge form factor at high
momentum transfer coincides with the QCD predictions in
the ultraviolet limit, reproducing correctly not only the
functional form of the QCD asymptotics, but also the
numerical coefficient [37–39] (analogous results were
obtained for the kaon [40]). The method allows for an
analytic continuation of the pion electromagnetic form
factor from the spacelike region to the complex plane of
momentum transfer squares and gives an adequate descrip-
tion of the pion form factor in the timelike region [41].
Interesting results of the approach in the case of its
generalization to vector mesons, which required adding
the anomalous magnetic moment of quark, were obtained
for the ρ meson [42,43].
As was mentioned above, we need to overstep the frame

of MIA for calculating correctly the pion form factor D.
Here we present a possible minimal extension based on
the nonrelativistic limit of MIA. In the relativistic series
expansion of the ill-defined terms of the form factor, we
preserve the main contributions only.
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In the present paper, we extend our model with non-
pointlike quarks to obtain the pion GFFs while making an
essential assumption, which looks natural. We suppose
that the functional forms of electroweak and gravitational
form factors of constituent quark are the same. Also,
we suppose that values of the charge and mass radii of
quark and the slope at zero of the normalized form factor
D are all equal. On one hand, this gives an opportunity to
add to the model only one new parameter. On the other
hand, the results of calculation are rather reasonable and
plausible.
We fix the new free parameter, the quarkD-term (instead

of the quark anomalous magnetic moment in the vector
meson case of electroweak processes), by fitting the slope
at zero of the normalized to the pion D-term form factor D
of pion to the value obtained in Ref. [44]. The scheme of
narrow bunches of curves, corresponding to different wave
functions, works in the case of pion GFFs, too. As we show
below, it is possible to choose the quarkD-term as the main
characteristic of the bunch and so derive the value of the
free parameter.
Other model parameters, which describe the mass and

the gravitational structure of the constituent quarks and the
quark interaction in the pion, are directly transported from
our electroweak model. It is important to emphasize that the
interval of the values of the quark D-term obtained by this
fixation gives the value of the slope at zero of the
normalized form factor D of the pion [44] for any quark
interaction (for each of three two-quark wave functions)
without additional variation of the previous values of the
parameters.
This set of parameters—those inherited from the electro-

weak calculation plus the quark D-term—allow us to
describe all other gravitational characteristics of the pion:
the GFFs in a large range of momentum transfers, their
static limits, including the pion D-term, and the mean-
square mass radius. So, the results of calculations of the
present paper can be considered as firm predictions in the
following sense. If a value of, for example, the slope at zero
of the normalized toD-term form factorD of pion extracted
from a future experiment is admitted by the community
of specialists, then other gravitational characteristics can be
predicted following our prescription. The success demon-
strated previously by our method inspires hope on its
validity in describing the pion GFFs that can be obtained in
future experiments.
Let us remind the reader that the first estimations of

the pion GFFs were extracted from the data of the Belle
Collaboration program KEKB [44,45]. Today, the real
perspective of GPD estimation for light mesons, including
the pion, is connected with the future experiments on the
SuperKEKB collider. In general, we look forward for the
experiments at the Electron-Ion Collider [46,47], Chinese
Electron-Ion Collider [48,49], and Large Hadron-Electron
Collider [50].

Moreover, it is possible that our unified approach can
construct another bridge between electroweak and gravi-
tational properties of composite systems, complementary
to GPD.
The rest of the paper is organized as follows. In Sec. II

we present the main basic points of Instant-Form (IF)
Relativistic Quantum Mechanics (RQM) and the equations
for the pion GFFs. Then in Sec. III we describe the
gravitational structure of the constituent quarks and present
the details of calculation. In Sec. IV we give the results of
the calculation of the pion GFFs up to 10 GeV2, their static
limits, and the mean-square mass and mechanical radii. We
briefly discuss the results and conclude in Sec. V.

II. MAIN BASIC POINTS OF IF RQM AND THE
CALCULATION OF THE PION GFFs

Let us recall briefly some important features of the IF
RQM algebraic structure. The basic point is the direct
realization of the Poincaré algebra on the set of dynamical
observables of a composite system (see the reviews
[28–31]). In this context, the fundamental property of
the Poincaré algebra, as compared to the algebra of the
Galilean group, is as follows. The adding of the operator of
constituent interaction to the total energy operator (that is,
to zero component of total momentum) requires the
inclusion of the interaction also in the operators of other
observables to preserve the algebraic structure. Different
forms of relativistic Dirac dynamics correspond to different
ways of realizing the interaction, including which are
characterized by different kinematic subgroups, namely,
subgroups of interaction-independent observables. The
kinematic subgroup in the case of IF RQM contains
rotations and translations of three-dimensional space.
From the point of view of the principles underlying the
RQM theory, it occupies an intermediate position between
local quantum field theory and nonrelativistic quantum
mechanical models. In particular, constituents of the
composite system are assumed to lie on the mass shell,
and the corresponding wave function is defined as the
eigenfunction of the complete set of commuting operators.
In the case of IF RQM, this set is

M̂2
I ðor M̂IÞ; Ĵ2; Ĵ3;

ˆP⃗; ð1Þ

where M̂I is the mass operator for the system with
interaction, Ĵ2 is the operator of the square of the total
angular moment, Ĵ3 is the operator of the projection of the

total angular moment on the z axis, and ˆP⃗ is the operator of
the total momentum.
In the IF RQM operators Ĵ2, Ĵ3, and

ˆP⃗ coincide with
corresponding operators for the composite system without
interaction and only the term M̂2

I ðM̂IÞ is interaction
dependent.
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To solve the eigenfunction problem for the set (1) it is
necessary to choose an appropriate basis in the Hilbert
space of the state of the composite system. In the case of the
system of two constituent quarks, one can use, first, the
basis of individual spins and momenta (see [9] for details),

jp⃗1; m1; p⃗2; m2i ¼ jp⃗1m1i ⊗ jp⃗2m2i; ð2Þ

where p⃗1 and p⃗2 are the 3-momenta of particles, and m1

and m2 are the projections of spins to the z axis.
Second, it is possible to use the basis in which the motion

of the center of mass of two particles is separated,

jP⃗; ffiffiffi
s

p
; J; l; S; mJi; ð3Þ

where Pμ ¼ ðp1 þ p2Þμ, P2
μ ¼ s,

ffiffiffi
s

p
is the invariant mass

of the system of two particles, l is the orbital momentum in
the center-of-mass system, S⃗2 ¼ ðS⃗1 þ S⃗2Þ2 ¼ SðSþ 1Þ; S
is the total spin in c.m., J is the total angular momentum,
and mJ is the projection of the total angular momentum.
The bases (2) and (3) are linked by the Clebsch-Gordan

decomposition of a direct product (2) of two irreducible
representations of the Poincaré group into irreducible
representations (3) [31].
In the basis (3), three out of four operators in the

complete set (1) (except M̂I) are diagonal. So, the two-
quark wave function for the pion in the basis (3) has the
following form:

hP⃗; ffiffiffi
s

p jp⃗πi ¼ NCδðP⃗ − p⃗πÞφðsÞ; ð4Þ

where p⃗π is the pion 3-momentum. Here we do not exploit
the implicit form of the normalization constant NC that can
be found in [9]. The zero values of pion quantum numbers
are omitted in the notation of basis vectors (3).
The wave function of intrinsic motion is the eigenfunc-

tion of the operator M̂2
I ðM̂IÞ and, in the case of two

particles of equal masses, is (see, e.g., [33])

φðsðkÞÞ ¼ ffiffiffi
s4

p
kuðkÞ; s ¼ 4ðk2 þM2Þ;Z

u2ðkÞk2dk ¼ 1; ð5Þ

where uðkÞ is a model quark-antiquark wave function of the
pion and M is the mass of the constituent quarks.
Let us construct now the pion EMT in IF RQM. Using

the general method of the relativistic-invariant parametri-
zation of the matrix elements of the local operators we have
obtained in [9] the following form:

hp⃗πjTðπÞ
μν ð0Þjp⃗π

0i ¼ 1

2
GðπÞ

10 ðtÞK0
μK0

ν þGðπÞ
60 ðtÞ½tgμν−KμKν�;

ð6Þ

whereGðπÞ
10 andGðπÞ

60 are gravitational form factors, gμν is the
metric pseudotensor, and

Kμ ¼ ðpπ − p0
πÞμ; K0

μ ¼ ðpπ þ p0
πÞμ:

We present the decomposition of the lhs of (6) in terms
of the basis (3) as a superposition of the same tensors
as in the rhs of (6), and so obtain (see [9] for details) the
pion gravitational form factors in the following form of
the functionals, given on two-quark wave functions [(4)
and (5)]:

GðπÞ
i0 ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞG̃i0ðs; t; s0Þφðs0Þ;

i ¼ 1; 6; ð7Þ

where G̃i0ðs; t; s0Þ; i ¼ 1; 6 are the Lorentz-invariant regu-
lar distributions.
To calculate the invariant distributions on the rhs of (7),

one can use MIA. Let us discuss this problem in more
detail. Consider the commonly used standard impulse
approximation (IA). In general, the EMT of a composite
system has the following form [9]:

T ¼
X
k

TðkÞ þ
X
k<m

TðkmÞ þ…; ð8Þ

where the first term presents the sum of one-particle EMTs,
the second term presents the sum of two-particle EMTs,
and so on. The first sum describes the scattering of a
projectile by each independent constituent, the second sum
describes the scattering by two constituents simultaneously,
and so on. The standard IA leaves in (8) only the first term,

T ≈
X
k

TðkÞ: ð9Þ

To construct the pion GFFs, we use a modified impulse
approximation that we first formulated earlier (see, e.g.,
Refs. [33,34] and the review [31]). In contrast to the
baseline impulse approximation, MIA is formulated in
terms of the reduced matrix elements, that is, form factors,
and not in terms of the operators themselves. So, in MIA
there appears important objects—the free gravitational
form factors presenting the gravitational characteristics
of systems without interaction.
Consider the system of two free constituent quarks [9].

Note, that in [51] it was shown that the form factorD is zero
in the case of pointlike free fermions. In contrast, our
constituent quarks have all properties of realistic particles
with an internal structure that is described by a set of form
factors including form factor D.
The corresponding relation based on the Clebsch-

Gordan decomposition of the EMT of a system of non-
interacting fermions with total quantum numbers of pion
J ¼ l ¼ S ¼ 0 has the following form [9]:
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hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i

¼
XZ

dp⃗1

2p10

dp⃗2

2p20

dp⃗0
1

2p0
10

dp⃗0
2

2p0
20

hP; ffiffiffi
s

p jp⃗1; m1; p⃗2; m2i

× ½hp⃗1; m1jp⃗0
1; m

0
1ihp2; m2jTðuÞ

μν ð0Þjp0
2; m

0
2i

þ hp⃗2; m2jp⃗0
2; m

0
2ihp1; m1jTðd̄Þ

μν ð0Þjp0
1; m

0
1i�

× hp⃗0
1; m

0
1; p⃗

0
2; m

0
2jP0;

ffiffiffiffi
s0

p
i; ð10Þ

where hP; ffiffiffi
s

p jp⃗1; m1; p⃗2; m2i is the Clebsch-Gordan coef-
ficient, and the sums are over the variables m1; m2; m0

1, and
m0

2. On the lhs, zero discrete quantum numbers in state
vectors are ignored.
Using the general method of parametrization of local-

operator matrix elements [7,9], we write the matrix element
on the lhs as

hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i

¼ 1

2
Gð0Þ

10 ðs; t;s0ÞA0
μA0

ν þGð0Þ
60 ðs;t;s0Þ½tgμν−AμAν�; ð11Þ

where Gð0Þ
i0 ðs; t; s0Þ; i ¼ 1, 6 are free two-particle GFFs,

Aμ ¼ ðP − P0Þμ; A2 ¼ t;

A0
μ ¼

1

ð−tÞ ½ðs − s0 − tÞPμ þ ðs0 − s − tÞP0
μ�:

The method gives for the one-particle matrix elements on
the rhs of (10) the form

hp;mjTðqÞ
μν ð0Þjp0; m0i

¼
X
m00

hmjD1=2
w ðp; p0Þjm00i hm00jð1=2ÞgðqÞ10 ðtÞK0

μK0
ν

þ igðqÞ40 ðtÞ½K0
μRν þ RμK0

ν� þ gðqÞ60 ðtÞ½tgμν − KμKν�jm0i;
ð12Þ

q ¼ u; d̄, Dj
wðp; p0Þ is the transformation operator from

the small group, the matrix of three-dimensional rotation,

and gðu;d̄Þi0 ; i ¼ 1, 4, 6 are the constituent-quark GFFs. Their
links with conventional notations are given later in Sec. III,

Kμ ¼ ðp − p0Þμ; K0
μ ¼ ðpþ p0Þμ;

Rμ ¼ ϵμνλρpνp0λΓρðp0Þ: ð13Þ

Here Γρðp0Þ is a well-known four-vector of spin (see, e.g.,
[7,9,31,34]), and ϵμνλρ is the absolutely antisymmetric
pseudotensor of rank 4, ϵ0123 ¼ −1.
Substituting (11) and (12) into (10), multiplying both

sides by scalars, first by A0
μA0

ν and second by gμν, and
performing the integrations and summations, we obtain the
system of equations for the free two-particle form factors

that enter (11). MIA means replacing the invariant dis-
tributions on the rhs of (7) with free two-particle form
factors from Eqs. (10) and (11). The physical meaning of
MIA is equivalent to that of the universally accepted IA (9)
because the free two-particle form factors are given in terms
of one-particle currents (10) and (12). So, we obtain the
expressions for the pion gravitational form factors in MIA.
For convenience, we present them in a slightly different
form than in [9],

GðπÞ
10 ðtÞ ¼

1

2
½gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ�GðπÞ

110ðtÞ

þ ½gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ�GðπÞ
140ðtÞ; ð14Þ

GðπÞ
60 ðtÞ ¼

1

2
½gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ�GðπÞ

610ðtÞ

þ ½gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ�GðπÞ
640ðtÞ

þ ½gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ�GðπÞ
660ðtÞ: ð15Þ

Here gðqÞi0 ðtÞ; q ¼ u; d̄; i ¼ 1, 4, 6 are the GFFs of the
constituent quarks, also introduced previously in (12).
To calculate the form factors on the rhs of Eqs. (14)

and (15), we use the MIA [9] and write them in terms of the
integrals

GðπÞ
1i0ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞGð0Þ

1i0ðs; t; s0Þφðs0Þ; ð16Þ

GðπÞ
6k0ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞGð0Þ

6k0ðs; t; s0Þφðs0Þ: ð17Þ

Here i¼ 1;4, k ¼ 1; 4; 6, and Gð0Þ
1i0ðs; t; s0Þ and Gð0Þ

6k0ðs; t; s0Þ
are components of the so-called free GFFs that describe
the system of two free particles with total quantum
numbers of pion [9]; φðsÞ is the pion wave function in
the sense of RQM (5), and s0 and s are the invariant masses
of the free two-particle system in the initial and final states,
respectively.
Now we have under integrals in (16) and (17)

(compare [9]),

Gð0Þ
110ðs; t; s0Þ ¼ −

Rðs; t; s0Þð−tÞ
λðs; t; s0Þ ½ð4M2 − tÞλðs; t; s0Þ

þ 3tðsþ s0 − tÞ2� cosðω1 þ ω2Þ; ð18Þ

Gð0Þ
140ðs; t; s0Þ ¼ −3M

Rðs; t; s0Þð−tÞ2
λðs; t; s0Þ

× ξðs; t; s0Þðsþ s0 − tÞ sinðω1 þ ω2Þ; ð19Þ

Gð0Þ
610ðs; t;s0Þ ¼

1

2
Rðs;t;s0Þ ½ðsþ s0− tÞ2

− ð4M2− tÞλðs;t;s0Þ=ð−tÞ�cosðω1þω2Þ;
ð20Þ
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Gð0Þ
640ðs;t;s0Þ

¼−
M
2
Rðs; t;s0Þξðs; t;s0Þðsþ s0− tÞsinðω1þω2Þ; ð21Þ

Gð0Þ
660ðs; t; s0Þ ¼ Rðs; t; s0Þ λðs; t; s0Þ cosðω1 þ ω2Þ; ð22Þ

where

Rðs; t; s0Þ ¼ ðsþ s0 − tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2Þðs0 − 4M2Þ

p ϑðs; t; s0Þ
½λðs; t; s0Þ�3=2 ;

ξðs; t; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðM2λðs; t; s0Þ þ ss0tÞ

q
:

ω1 and ω2 are the Wigner spin-rotation parameters

ω1 ¼ arctan
ξðs; t; s0Þ

M½ð ffiffiffi
s

p þ ffiffiffiffi
s0

p Þ2 − t� þ ffiffiffiffiffiffi
ss0

p ð ffiffiffi
s

p þ ffiffiffiffi
s0

p Þ ;

ω2 ¼ arctan
αðs; s0Þξðs; t; s0Þ

Mðsþ s0 − tÞαðs; s0Þ þ ffiffiffiffiffiffi
ss0

p ð4M2 − tÞ ;

αðs;s0Þ¼2Mþ ffiffiffi
s

p þ ffiffiffiffi
s0

p
, ϑðs; t;s0Þ ¼ θðs0− s1Þ−θðs0− s2Þ,

and θ is the Heaviside function,

s1;2 ¼ 2M2 þ 1

2M2
ð2M2 − tÞðs − 2M2Þ

∓ 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−tÞð4M2 − tÞsðs − 4M2Þ

q
;

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ:

Recall that the form factors Gð0Þ
k0 ðs; t; s0Þ; k ¼ 1, 6

describe gravitational features of a system of two particles
without interaction. Free two-particle form factors are
regular generalized functions (distributions) given by the
corresponding functionals, defined on the space of test
functions depending on the variables (s, s0). The func-
tionals, in turn, are a function of the variable t, a square of
momentum transfer. This variable is to be considered as a
parameter.
In the frames of MIA, the pion GFFs are functionals

(14)–(17), generated by the free two-particle GFFs of (11)
on test functions, which are the products of the two-quark
wave functions [see (14)–(22)]. There is a following
difficulty in calculating the form factor GðπÞ

60 (an analog
of the form factor D) in MIA. Our expressions (20)–(22)
show that Gð0Þ

60 ∼ 1=t when t → 0. A consequence of the

mentioned singularity in Gð0Þ
60 is the singularity in the pion

form factor GðπÞ
60 at t → 0. So, for a correct description of

the pion form factor D we must overflow MIA and add to

the free form factor Gð0Þ
60 ðs; t; s0Þ an invariant term,

Gð0Þ
60 ðs; t; s0Þ → Gð0Þ

60 ðs; t; s0Þ þ GðaÞ
60 ðs; t; s0Þ: ð23Þ

Strictly speaking, the calculation of this additional term
should include the construction of a theory of interaction
of graviton with two or more quarks simultaneously.
However, we avoid this difficult problem, choosing a
simple “minimal” extension, based on the fact that the

nonrelativistic limit of Gð0Þ
60 ðs; t; s0Þ is not singular. It is

important to note that the proximity of relativistic and
nonrelativistic descriptions of GFFs at t → 0 is largely
adopted [3]. In fact, in our minimal variant, the dynamical
part of possible additional contribution, the analog of
meson exchange currents in nuclear physics, remains out
of scope.
The structure of the form factorGð0Þ

60 ðs; t; s0Þ, which is the
analog of form factor D in the case of two free particles, is
defined by the following relation, obtained using (10)–(12):

2tðA0
μA0μÞGð0Þ

60 ðs; t; s0Þ

¼ A

�
1

2
½gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ�½ðK̃0

μK̃0μÞðA0
μA0μÞ

− ðK̃0
μA0μÞ2� cosðω1 þ ω2Þ

þ ½gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ�ðK̃0
μA0μÞðR̃μA0μÞ sinðω1 þ ω2Þ

þ 2½gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ�tðA0
μA0μÞ cosðω1 þ ω2Þ

�
; ð24Þ

where K̃0
μ; R̃μ—four-vectors in (12) appearing after inte-

gration and summation in (10), A ¼ Aðs; t; s0Þ—a multi-
plier defined by normalization of the Clebsch-Gordan
coefficients in (10).
The first two terms on the rhs have purely relativistic

origin and are zero in the nonrelativistic limit; they do not

depend on the quark form factors gðqÞ60 from (12) (an analog
of the quark form factor D) and exactly these terms contain
the singularity. So, to advance in the simplest way, we
require that the additional term in (23) has zero for the
nonrelativistic limit and contributes only to the two first
terms in (24), compensating the singularity. An important
point, in our opinion, is the fact that the mentioned
dangerous terms depend on the vectors of one-particle
parametrization on the rhs of (10) and (12), while the
additional form factor in (23), according to its meaning,
contributes to the rhs of (10), which contains the one-

particle currents. So, it seems natural that GðaÞ
60 ðs; t; s0Þ

deforms the terms with the vectors of parametrization of
one-particle currents (13) and (24).
We define the additional term in (23) to compensate the

main contribution of the relativistic series expansion of
scalar products in the first two terms in (24). So, the
divergent terms become closest to their nonrelativistic limit.
The series expansion is carried out using as parameters the
quantities k=M; k0=M, and

ffiffiffiffiffiffiffiffiffið−tÞp
=M [the variable k is
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defined in (5)]. Thus, we choose for GðaÞ
60 ðs; t; s0Þ the

following relation:

2ð−tÞðA0
μA0μÞGðaÞ

60 ðs; t; s0Þ

¼ A

�
1

2
½gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ�½½ðK̃0

μK̃0μÞðA0
μA0μÞ − ðK̃0

μA0μÞ2�

− ½ðK̃0
μK̃0μÞðA0

μA0μÞ − ðK̃0
μA0μÞ2�lt� cosðω1 þ ω2Þ

þ ½gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ�½ðK̃0
μA0μÞðR̃μA0μÞ

− ½ðK̃0
μA0μÞðR̃μA0μÞ�lt� sinðω1 þ ω2Þ; ð25Þ

where ½…�lt are the main terms of the corresponding
relativistic series.
Because of the relations (23)–(25), only the main terms

of the relativistic expansion remain in diverging terms of
(24) so making them finite. It is seen from Eqs. (23)–(25)
that the chosen scheme for going beyond MIA does not
contain arbitrariness. Taking into account the additional
term contracted with the use of (23)–(25) leads to the
following replacements in Eqs. (20) and (21):

ðK̃0
μK̃0μÞðA0

μA0μÞ − ðK̃0
μA0μÞ2

¼ ð4M2 − tÞλðs; t; s0Þ=ð−tÞ − ðsþ s0 − tÞ2
→ 4M2ð−tÞ; ð26Þ

ðK̃0
μA0μÞðR̃μA0μÞ
¼ −ξðs; t; s0Þðsþ s0 − tÞ → −8M2ξ̃ðs; t; s0Þ ð27Þ

ξ̃ðs;t;s0Þ ¼M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðs0−4M2Þ− s̃1�½s̃2− ðs0−4M2Þ�

q
; ð28Þ

where

s̃1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4M2
p

−
ffiffiffiffiffiffiffiffiffi
ð−tÞ

p �
2
;

s̃2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4M2
p

þ
ffiffiffiffiffiffiffiffiffi
ð−tÞ

p �
2
: ð29Þ

After this procedure is carried out, the purely relativistic
terms of (17) take the form

GðπÞ
6k0ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞGðRÞ

6k0ðs; t; s0Þφðs0Þ;

k ¼ 1; 4: ð30Þ
The new form factors GðRÞ

6k0; k ¼ 1, 4 are obtained using
Eqs. (20), (21), and (26)–(29),

GðRÞ
610ðs; t; s0Þ ¼

1

2
R̃ðs; t; s0Þ 4M2t cosðω1 þ ω2Þ; ð31Þ

GðRÞ
640ðs; t; s0Þ ¼ −

M
2
R̃ðs; t; s0Þ 8M2ξ̃ðs; t; s0Þ sinðω1 þ ω2Þ;

ð32Þ

where ξ̃ðs; t; s0Þ is defined by (28), and the functions
R̃ðs; t; s0Þ and Rðs; t; s0Þ [in (18)–(22)] differ in cutting
function,

ϑðs; t; s0Þ → ϑ̃ðs;Q2; s0Þ ¼ θðs0 − s̃1Þ − θðs0 − s̃2Þ: ð33Þ

So, to summarize, after the described minimal extension
of MIA is carried out, we calculate the pion form factor

GðπÞ
60 using Eqs. (15), (17), (30), and (30)–(32).

III. THE MODEL OF QUARK GRAVITATIONAL
STRUCTURE AND DETAILS OF CALCULATION

In [9] we used the general method of the relativistic-
invariant parametrization of the matrix elements of the local
operators established in Ref. [7] for systems with arbitrary
spin. Although now we consider actually the pion, we
preserve for reasons of convenience the notations of the
preceding paper. The pion GFFs in this parametrization are
connected with the commonly used (see, e.g., [3]) follow-
ing relations:

AðπÞðtÞ ¼ GðπÞ
10 ðtÞ; DðπÞðtÞ ¼ −2GðπÞ

60 ðtÞ; ð34Þ

where t ¼ ðpπ − p0
πÞ2, and p0

π; pπ are the pion 4-momenta

in the initial and the final states, respectively. GðπÞ
10 and GðπÞ

60

are given by Eqs. (14)–(19), (22), (30)–(32).
The quark GFFs in our approach are connected with

GFFs that are commonly used for particles with spin 1=2
(see, e.g., [3]) by the following relations [9]:

gðqÞ10 ðtÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− t=4M2
p

��
1−

t
4M2

	
A
ðqÞ
ðtÞ þ2

t
4M2

JðqÞðtÞ


;

ð35Þ

gðqÞ40 ðtÞ ¼ −
1

M2

JðqÞðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4M2

p ; ð36Þ

gðqÞ60 ðtÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
4M2

r
DðqÞðtÞ: ð37Þ

We assume that the GFFs of u and d̄ quarks are equal:

gðuÞi0 ðtÞ ¼ gðd̄Þi0 ðtÞ, i ¼ 1; 4; 6.
To define the explicit form of the quark GFFs, we recall

our calculation of the electroweak structure of the pion. We
derived the functional form of the electromagnetic form
factor of the quark from the behavior of our charge form
factor of pion at ð−tÞ → ∞ [32], which turned out to
coincide with that of QCD, as mentioned above,

fqðtÞ ¼
1

1þ ln ð1 − hr2qit=6Þ
; ð38Þ
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where hr2qi is a mean-square charge radius of the constitu-
ent quark. The charge form factor of the constituent
coincides with the function (38) and the magnetic form
factor is equal to this function multiplied by the corre-
sponding magnetic moment [32]. Now we admit a similar
definition for the quark GFFs (35)–(37) in terms of (38),

AðqÞðtÞ ¼ fqðtÞ; JðqÞðtÞ ¼ 1

2
fqðtÞ;

DðqÞðtÞ ¼ DqfqðtÞ; ð39Þ

where Dq is the D-term of the constituent quark. These
equations give standard static limits (see, e.g., [3]),

AðqÞð0Þ ¼ 1; JðqÞð0Þ ¼ 1

2
; DðqÞð0Þ ¼ Dq: ð40Þ

We set the parameter hr2qi in (38) to be equal to the mass
mean square radius (MSR) of the quark and to define the
slope of the quark form factorD at zero. The corresponding
actual value is given by the following form [52–55]:

hr2qi ≃
0.3
M2

: ð41Þ

For the calculation of the pion GFFs according to
(14)–(17), (30), and (34) we use in (5) consequently one
of the following model wave functions:

uðkÞ ¼ 2ð1=ð ffiffiffi
π

p
b3ÞÞ1=2 exp ð−k2=ð2b2ÞÞ; ð42Þ

uðkÞ ¼ 16ð2=ð7πb3ÞÞ1=2ð1þ k2=b2Þ−3; ð43Þ

uðkÞ ¼ 4ð2=ðπb3ÞÞ1=2ð1þ k2=b2Þ−2: ð44Þ

We use the parameter b in (42)–(44) fixed previously in the
works [9,32,56] on the electroweak properties of the pion.
The different types of functions correspond to the different
types of confinement. So, in the model (42), quadratic
confinement is carried out; the model (43), as our calcu-
lations of the electroweak properties of a pion in the work
[32] show, gives predictions very close to the model with
linear confinement [57], and finally, the wave function (44)
corresponds to a confinement weaker than a linear one.
We calculate the pion GFFs using the same value of the
constituent-quark mass M ¼ 0.22 GeV, as in our previous
works (see, e.g., [32]).
So, now only one free parameter remains—theD-term of

the constituent quark Dq in the form factor [(39) and (40)].
In Sec. IV we fix this free parameter and present the
gravitational properties of the pion calculated taking into
account the constituent-quark gravitational structure.

IV. THE CALCULATION OF THE PION GFFs
AND THEIR STATIC MOMENTS

To calculate numerically the pion GFFs we need, first of
all, to fix the remaining free parameter Dq which enters the
pion form factor D. Namely, we use the static moments of
DðπÞðtÞ. For the time being, there is no strict experimental
estimation of the value DðπÞð0Þ [3]. However, the first data
for the slope at zero of the normalized to pion D-term form
factor D of pion extracted from the process γ�γ → π0π0

were presented in Ref. [44],

SðπÞD ¼ ð0.82 − 0.88Þ fm: ð45Þ

We use this estimation to fix Dq taking into account the
following definition [3]:

ðSðπÞD Þ2 ¼ 6

DðπÞðtÞ
dDðπÞ

dt

����
t¼0

: ð46Þ

As all but one parameter of the model were fixed previously

in the works on electroweak structure of the pion, then SðπÞD
(46) is a function of the D-term of the constituent quarkDq

only. This function is given in Fig. 1 for three types of
model quark interaction in pion (42)–(44).
The results presented in the figure show that for each of

the model wave functions there is an interval of the values
of Dq which gives the interval (45) of the values of SðπÞD .
Moreover, there exists the interval of the variable Dq, for

which SðπÞD (46) falls in the interval (45) for all the wave
functions (42)–(44), without any additional variation of the
parameters. This interval is

Dq ¼ −ð0.0715 − 0.0709Þ: ð47Þ

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

, f
m

FIG. 1. The slope at zero of the normalized to pion D-term
form factor D of pion as a function of the D-term of the
constituent quark Dq calculated with various model wave
functions (42)–(44). Full line (red), with wave function (42);
dashed line (blue), with (43); short-dashed line (black), with (44).
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Note that this interval is rather narrow (< 0.5%).
The existence of this interval recalls the fact that when
describing the electroweak properties of pion in RQM we
obtained the same values of the physical characteristics of
the constituent quark for all model wave functions [32].
Now we add the quarkD-term to the previous set (the mass,
the charge MSR, and the anomalous magnetic moment).
Now, with (47), all the parameters are fixed and we do

calculate the pion GFFs. Note that the pion form factor A,
[(34) and (14)] does not depend onDq and is determined by
the parameters obtained previously; so, it is predicted. The
standard condition AðπÞð0Þ ¼ 1 is fulfilled automatically for
arbitrary values of parameters, if the quark form factors
satisfy Eq. (40).
The results of calculation of the static gravitational

moments of the pion are presented in Table I. The mass
MSR is defined following the relation [3]

hr2imass ¼ 6
1

AðπÞðtÞ
dAðπÞ

dt

����
t¼0

: ð48Þ

In the last line of the table, we present the results for the
pion mechanical radius using the standard expression

hr2imech ¼ 6
DðπÞð0ÞR

0
−∞ DðπÞðt0Þdt0 : ð49Þ

For the calculation, it is important to have the form factorD
in the large range of momentum transfer including its
asymptotics. This is a complicated problem, which is out of
the scope of this paper. It will be considered elsewhere. A
thorough correct full-fledged approach can be realized in
the spirit Refs. [37–40]. The GFF obtained in the present
paper predictably gives underestimated values of the
mechanical radius as compared with mass and electromag-
netic radii. We believe that the detailed calculation that is in
progress will give the ultimate truth.

Note that the deviations of the values SðπÞD from that
given in Table I when the parameter Dq is changed in the
interval (47) is approximately 0.1%.
Let us make some remarks about our values of the pion

D-term. As is well known, in theories with broken chiral
symmetry (see, e.g., [58,59]) the pionD-term is equal to −1.
However, if the EMT contains only the contribution of
quarks, without taking gluons into account, then its value is
approximately ≃ − 0.75, obtained in Ref. [44] in agreement
with the soft pion theorem D ¼ −1, given that the extracted
value does not include the gluon contribution [3,60].
Our values given in Table I are close to this value.

The same is true about the comparison of our slope at
zero of the pion D-form factor with that of chiral
theory, where −DðπÞ 0ð0Þ ¼ 2.40 GeV−2. The results for
pion GFFs satisfy the well-known relation (see, e.g., [3])
−DðπÞ 0ð0Þ > AðπÞ 0ð0Þ. In addition, our values of AðπÞ 0ð0Þ
are close to the estimations given, for example, in the
same review,

AðπÞ 0ð0Þ ¼ ð1.33 − 2.02Þ GeV−2: ð50Þ

Let us compare the mass and charge MSRs of the pion.
The experimental pion charge MSR is (see, e.g., [44])

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2ich

q
¼ 0.672� 0.008 fm: ð51Þ

The mass MSR was estimated in [44] and the following
interval of the values was obtained:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

q
¼ ð0.32 − 0.39Þ fm: ð52Þ

Our result for the mass radius (see Table I) lays much
closer to the charge radius (51) than (52). Curiously
enough, our difference between the mass and the charge
radii is the same as obtained in the work [18] for the proton
(ΔRcm ¼ 0.1709� 0.0304 fm). We recall that our result
for hr2i1=2mass (48) is a direct consequence of our model of
electroweak properties of the pion without new fittings.
The results of calculation of the pion form factors A and

D at low and intermediate momentum transfers for the
wave functions (42)–(44) and the quark structure (35)–(41)
are presented in Figs. 2 and 3. For comparison, the results
for GFFs as extracted [44] from the experimental data are
given, too. Note that the slope of our curves is close to that
of the experimental one at large Q2. The results for the
lower and higher bounds ofDq from (47) are presented, but
in fact cannot be separated from one another in the figures.
The pion GFFs, shown in Figs. 2 and 3, calculated for the

values of the quark D-term Dq in the interval (47), form a
rather narrow bunch corresponding to the quark mass
M ¼ 0.22 GeV. The curves remain agglomerated in the
bunch up to squares of momentum transfer ∼10 GeV2. The
schema of bunches works anew.

TABLE I. The results of calculating the static gravitational
moments of the pion with different model wave functions
(42)–(44). The mass of constituent quarks is M ¼ 0.22 GeV,
their MSR is given in (41), and the D-term Dq is taken from (47).

The deviation from the given values of SðπÞD when the parameter
Dq is varied in the interval (47) is about 0.1%.

Model (42) (43) (44)

b, GeV 0.3500 0.6131 0.4060

AðπÞ 0ð0Þ, GeV−2 1.074 1.134 1.217

hr2i1=2mass, fm 0.50 0.52 0.53

−DðπÞð0Þ 0.704–0.700 0.653–0.649 0.620–0.617
−DðπÞ 0ð0Þ, GeV−2 2.331–2.327 1.978–1.976 1.773–1.771

SðπÞD , fm 0.88 0.84 0.82

hr2i1=2mech, fm 0.162–0.163 0.153–0.154 0.133–0.134
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As the dependence of the pion GFFs on the choice of
model wave functions (42)–(44) is weak, it seems to us
reasonable to construct an averaged fit for these form
factors. We take the fitting function in the following form,
which is used, for example in [61]:

FðtÞ ¼ Fð0Þ
ð1 − t=aÞn : ð53Þ

Least-squares fitting gives the following values of param-
eters. For the form factor AðπÞ, we obtain Fð0Þ ¼ 1,
a ¼ 0.882 GeV2, and n ¼ 1.007, and for the form factor
DðπÞ, we obtain Fð0Þ ¼ −0.657, a ¼ 0.0949 GeV2, and
n ¼ 0.293. The value of the parameter Fð0Þ for DðπÞ is
equal to the average over models value of the pion D-term
(see Table I) and the slopes of the form factors A and D at
zero—to the corresponding averaged slopes. Obviously,
there is no such correspondence for the pion mechanical
radius [see the remarks above, after (49)]. The results of the
fitting are shown in Figs. 2 and 3.

V. CONCLUSIONS

In this work, we extend our relativistic theory of
composite-particle systems that describe simultaneously
their electroweak and gravitational properties to calculate
the gravitational characteristics of the pion. The approach is
based on a version of the instant-form relativistic quantum
mechanics. In the preceding work [9], we formulated the
mathematical base and described the principal schema of
deriving the gravitational characteristics in the approach. In
the present work, we give a detailed technique of calcu-
lation, thus transforming the approach into a quantitative
method. The extension includes three main points: the
constituent quarks are no longer pointlike, we analyze
different types of the quark interaction in the pion, and we
formulate a minimal way to overstep the frame of our MIA
for correct description of the pion form factor D.
We derive the equations for the pion GFFs, the

mass radius, and the slope at zero of the normalized to

FIG. 2. The pion form factor A calculated for the quark
structure defined by (35)–(41) and different model wave func-
tions (42)–(44) with b given in Table I, M ¼ 0.22 GeV. Full line
(red), with wave function (42); dashed line (blue), with (43);
short-dashed line (black), with (44); dot-dashed line (magenta),
the results for the fitting (53); double-dot-dashed line (green)
presents the result of the extraction of the form factor A given in
Ref. [44].

FIG. 3. The pion form factor D [(34), (15), (17), (30)]
calculated for the quark structure defined by (35)–(41) and
different model wave functions (42)–(44) with b given in Table I,
M ¼ 0.22 GeV. Two bound values of Dq from the interval (47)
were used for the calculation, but the obtained curves are
inseparable. Full line (red), with wave function (42); dashed line
(blue), with (43); short-dashed line (black), with (44); dot-dashed
line (magenta), the results for the fitting (53); double-dot-dashed
line (green) presents the result of the extraction of the form factor
D given in Ref. [44].
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pion D-term form factor D of pion in terms of parameters
describing the quark structure. Most of the parameters have
been fixed even earlier in our works on the pion electro-
magnetic form factors. The only free parameter is the
D-term of the constituent quark, which we fix by fitting the
result for the slope at zero of the normalized to pionD-term
form factor D of pion to a chosen experimental value [44].
The results for the form factor A and for the mass MSR of
the pion do not depend on this new parameter and so are
direct predictions of our approach. As a whole, the obtained
results for the gravitational characteristics of the pion can
be considered as firm predictions if calculated with a new
future value of the mentioned slope.
Using these parameters, we calculate the pion GFFs,

their derivatives, and static moments. We present the pion
GFFs in the range of low and intermediate momentum
transfers up to ∼10 GeV2. At large Q2 the slope of
our curves is close to that of [44]. The curves for
different model quark-antiquark wave functions are
agglomerated to form bunches corresponding to the quark
mass M ¼ 0.22 GeV, as it is in the electroweak case.
The fits of the calculated pion GFFs, averaged over and

obtained with three different model wave functions, are
constructed. The values of the static moments, mass MSR,
and the D-term of the pion are consistent with the values
given in the literature.
It seems obvious that, because of extreme weakness of

the gravitational interaction at hadron scale, the information
on GFFs presently can be extracted from electroweak
processes only. So, we believe that our theory, which
describes electroweak and gravitational properties simulta-
neously, based on the unique foundations and which
exploits common model parameters, will be useful.
Moreover, it is possible that our unified approach can
construct another bridge between electroweak and gravi-
tational properties of composite systems, complementary
to GPD.
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