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In this work we have explored the imaginary part of the heavy quark potential and subsequently the
dissociation of heavy quarkonia at finite temperature and in a magnetic field. With respect to earlier
investigations on this topic, the present work contains three new ingredients. The first one is considering
all Landau level summations, for which the present work can be applicable in the entire magnetic field
domain—from weak to strong. The second one is the general structure of the gauge boson propagator in a
hot magnetized medium, which is used here in the heavy quark potential problem for the first time. The
third one is a rich anisotropic structure of the complex heavy quark potential, which explicitly depends on
the longitudinal and transverse distance. By comparing with earlier references, we have attempted to
display our new contributions by plotting heavy quark potential tomography and dissociation probability at
finite temperature and in a magnetic field.
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I. INTRODUCTION

A lot of information is continuously being provided
by relativistic heavy-ion collisions (HIC) in the context
of a deconfined state of quark matter. Currently, ongoing
experimental programs have the aim to study the properties
of quark matter at high temperatures, where it behaves as a
weakly interacting gas of quarks and gluons. Recent surges
for the new and exciting aspects of the quantum chromo-
dynamics (QCD) phase diagram has led to the idea of
having a magnetized medium. It has been realized that the
noncentral HIC produce a strong magnetic field [1,2] in
the direction perpendicular to the reaction plane. At the
RHIC and LHC energies, the strength of this magnetic field
is estimated to be B ¼ m2

π ¼ 1018 Gauss and B ¼ 15m2
π ¼

1.5 × 1019 Gauss [1,2], respectively, where mπ is the pion
mass. Recent studies have also shown that such an
extensive magnetic field might have existed in the early
stages of the Universe [3,4].
Several theoretical efforts [5,6] have been made to study

the modification of the strongly interacting matter in the
presence of an external magnetic field. These studies
include direct numerical investigations using lattice
QCD [7–9] and effective theoretical investigations using
different methods including, e.g., anti-de Sitter/conformal
field theory correspondence studies [10], perturbative
studies [11–19], and effective QCD model studies [20–39].
Subsequently, those studies have anticipated many fasci-
nating novel features of the magnetized medium. Although,
to what extent those features will be detected in the HIC
experiments, is still not certain.
In the present work we have focused on one important

signature of quark matter and its behavior in the presence of
an arbitrary external magnetic field, i.e. heavy quarkonia.
Because of their large mass and resistant behavior towards
a thermal medium, heavy quarkonia is considered as one of
the most dynamic probes to study the characteristics of the
quark matter. There are mainly two lines of theoretical
approaches to determine quarkonium spectral functions,
viz. the potential models [40–45] and the lattice QCD
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studies [46,47]. In the lattice QCD simulation approach,
one studies the spectral functions derived from Euclidean
meson correlation [48]. Because of the decreasing temporal
range at large temperature, construction of spectral func-
tions is problematic, and hence, the results suffer from
discretization effects and statistical errors and thus are still
inconclusive. This is why potential models have been used
widely to study the heavy quarkonia at finite temperatures.
Pioneering studies to explore the heavy quarkonia and its
dissociation in a finite temperature using potential models
has been done by Satz et al. [40,41]. In Ref. [40], they
predicted a suppression of the bound state of cc̄ pair, which
is being caused by the shortening of the screening length
for color interactions in the quark matter.
A very short lifetime (∼few fm=c) of the quark matter in

HIC experiments further emphasizes the need to explore
the effects of a magnetic field on the properties of heavy
quarkonia. There are also several studies in the literature
which have explored the effect of a magnetic field on the
evaluation of quarkonia [49–52]. Modification of the heavy
quark potential is one of the most important aspects of the
theoretical upgradation required to study the properties of
heavy quarkonia in amagnetizedmedium,whichwas studied
recently by Refs. [53,54]. The effect of a constant uniform
magnetic field on the static quarkonium potential at zero and
finite temperature, and on the screening masses, have been
studied in Refs. [55,56]. For heavy quark diffusion phenom-
enology in a finite magnetic field, see Refs. [57,58].
In this paper we will investigate the properties of heavy

quarkonia in a finite magnetic field using the most general
structure of the gluon propagator in a hot magnetized
medium. Several recent studies have presented various
general structures of the fermion and gauge boson self-
energies vis-à-vis propagators at finite temperature and in
the presence of an external magnetic field [59–68] using
different independent tensor structures. For the present
work we have chosen the effective gluon propagator in a
hot and magnetized medium from Ref. [66]. The medium
modified heavy quark potential is the sum of both
Coulombic and string terms [69], and it is directly
dependent on the temporal component of the gluon
propagator through the inverse of dielectric permittivity.
For obtaining the imaginary parts of medium modified
heavy quark potential we will extract the imaginary part
of the resummed gluon propagator, in terms of real and
imaginary parts of gluon self-energy form factors.
Moreover, the form factors can be divided into fermionic
and gluonic contributions, and the magnetic field depen-
dent contribution arises only from the fermionic contribu-
tion. Subsequently, this will give the imaginary part of the
dielectric permittivity, which in turn will give the imaginary
parts of the in-medium heavy quark potential [47,70–73].
When we notice recent Refs. [53,54] for the research

topic on heavy quark potential at finite temperature and
magnetic field, then we can find the limitation of their

application zone of the magnetic field. Reference [54] can
be applicable in the strong field limit, where the lowest
Landau level (LLL) approximation takes the dominant
contribution, whereas Ref. [74] is done in the weak field
limit. In this regards, the present work can be applicable to
the entire magnetic field domain from weak to strong as we
are considering all Landau level summations. Unlike
Refs. [54,74], where they had neglected the Debye mass
(mD) independent terms in the calculation of the form
factors, those terms will be automatically incorporated in
our calculation. This contribution has been taken care of by
using the general structure of the gluon propagator at finite
temperature and in a magnetic field. Apart from these two
ingredients—(1) considering all Landau level summation
and (2) considering the general structure of the gluon
propagator at finite temperature and in a magnetic field,
we also have shown the anisotropic structure of heavy
quark potential, which can be naturally expected in a finite
magnetic field but ignored in earlier Refs. [54,74].
The paper is organized as follows. In Sec. II we

will discuss the formalism used to execute this work. In
Sec. II Awe discuss the formalism of heavy quark potential
in the presence of an external magnetic field. Sections II B
and II C deal with the formalism of the imaginary part of
the potential and evaluation of the real and imaginary parts
of form factor bðPÞ, respectively. Moreover, in Sec. II D,
we will discuss the final anisotropic expression of the
potential and decay width expression. Section III refers to
the results and discussions after which we conclude in
Sec. IV. Some enlarged calculations are provided in the
Appendixes.

II. FORMALISM

A. Heavy quark potential in the presence
of an external magnetic field

To understand the melting of the quarkonia near cross-
over temperature, one needs to incorporate the nonpertur-
bative effect in the heavy quark potential. The Cornell
potential consisting of the Coulomb and stringlike parts can
describe the vacuum behavior of quarkonium bound state
very well. In-medium behavior of the potential is not well
known in literature. There are several proposals to para-
metrize the real and imaginary parts of the potential, and
we would use one of them, by the virtue of which we can
write down the in-medium heavy quark potential in real
space as [75,76]

VðrÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVCornellðpÞ

ϵðpÞ ; ð1Þ

where ϵðpÞ is the dielectric permittivity which contains the
medium information, and VCornell is the Cornell potential in
momentum space, which is given by
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VCornellðpÞ ¼ −
ffiffiffiffiffiffiffiffi
2=π

p α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

; ð2Þ

with α ¼ CFαs, CF ¼ ðN2
c − 1Þ=2Nc, and σ is the string

tension.
The inverse of dielectric permittivity ϵðpÞ is related with

the temporal component of the effective gluon propagator
Dμν by the definition [54]

ϵ−1ðpÞ ¼ lim
p0→0

p2D00ðPÞ: ð3Þ

In the presence of an external magnetic field one needs to
consider appropriate modifications in the gluon propagator.
The general structure of a gauge boson propagator in a hot
magnetized medium is given in Appendix A, and from
Eq. (A10) one can easily extract the temporal component as

D00ðPÞ ¼ P2 − d
ðP2 − bÞðP2 − dÞ − a2

B00ðPÞ; ð4Þ

where aðPÞ, bðPÞ, and dðPÞ are the corresponding form
factors whose explicit expressions are given in
Appendix A. Now in the vanishing limit of p0, form factor
aðPÞ also vanishes [11]. So we are not considering the form
factor aðPÞ in our case. Hence, in our case, the temporal
component of the effective propagator can be further
simplified as

D00ðPÞ ¼ 1

ðP2 − bÞB
00ðPÞ: ð5Þ

B. Imaginary part of the potential

Instead of going to the real part of the potential, we will
focus directly on its imaginary part as it will be connected
with heavy quark dissociation probability, which is our
matter of interest. From Eq. (1), one can straightaway
extract the imaginary part of the in-medium heavy quark
potential as

ImVðrÞ

¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVCornellðpÞImϵ−1;

¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVCornellðpÞp2ð lim

p0→0
ImD00ðPÞÞ:

ð6Þ
In the spectral function representation one can evaluate the
imaginary part of the effective gauge boson propagator
(Dμν ¼ CiP

μν
i , where Ci are the form factors, and Pμν

i are
the projection operators) as [77]

ImDμνðP≡ fp0;pgÞ ¼ −πð1þ e−p0=TÞρμνðp0;pÞ; ð7Þ
where ρμν is the spectral function, represented as

ρμνðp0;pÞ ¼
1

π

ep0=T

ep0=T − 1
ρiP

μν
i ; ð8Þ

with ρi being the imaginary parts of the respective form
factors, i.e., ρi ¼ ImCi. Using this approach, from Eq. (5)
the imaginary part of the temporal component of the gluon
propagator can be written in terms of the self-energy form
factor bðPÞ as

ImD00ðp0;pÞ ¼ −πð1þ e−p0=TÞ 1
π

ep0=T

ep0=T − 1

×
Im b

ðP2 − Re bÞ2 þ ðIm bÞ2
1

ū2
; ð9Þ

where we have used B00ðPÞ ¼ 1
ū2, with ū ¼ − p2

p2
0
−p2. In the

next subsection we will evaluate the real and imaginary
parts of the form factor bðPÞ.

C. Evaluation of the real and imaginary parts of bðPÞ
The form factor bðPÞ can be divided into quark and

gluonic contributions as

bðPÞ ¼ bqðPÞ þ bgðPÞ ¼ −
p2
0 − p2

p2
½Π00

q ðPÞ þ Π00
g ðPÞ�;

ð10Þ
where Π00

q=g are quark/gluonic parts of the temporal com-
ponent of the one loop gluon self-energy in a hot mag-
netized medium.

1. Gluonic contribution

Since gluons are not affected by a magnetic field, the
gluonic contribution of the one loop self-energy is similar
to the B ¼ 0 case [54], i.e.,

Π00
g ¼m2

Dg

�
1−

p0

2p
ln

����p0þp
p0−p

����þ iπ
p0

2p
Θðp2−p2

0Þ
�
; ð11Þ

where m2
Dg ¼ g2T2Nc

3
, and Θ is the step function. This

implies in the p0 → 0 limit we can write down the real
and imaginary parts of the form factor bgðPÞ as

lim
p0→0

Re bgðPÞ ¼ m2
Dg; ð12Þ

lim
p0→0

Im bgðPÞ ¼ lim
p0→0

m2
Dg

πp0

2p
Θðp2Þ: ð13Þ

2. Fermionic contribution

To evaluate the fermionic contribution we are going to
review the one loop gluon self-energy calculation from a
quark-antiquark loop in the presence of an arbitrary
magnetic field. Quark-antiquarks are affected by a mag-
netic field, so the propagator should be modified in the
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presence of the magnetic field. The translation invariant
part of the fermion propagator Gðt; rÞ can be written in
mixed coordinate-momentum space as [6,78]

Gðt; rÞ ¼
Z

dωdkz
ð2πÞ2 eikzz−iωtGðω; kz; r⊥Þ; ð14Þ

where

Gðω;kz;r⊥Þ¼ i
e−r

2⊥=ð4d2fÞ

2πd2f

X∞
l¼0

Dlðω;kz;r⊥Þ
ω2−k2z−m2

f−2ljeBj: ð15Þ

In this case, the magnetic field B is in the z direction, and
the vector potential is given by Landau gauge, i.e.,
A≡ ð−By; 0; 0Þ. The numerator of Eq. (15) is given by

Dlðω; kz; r⊥Þ

¼ ðωγ0 − kzγ3 þmÞ
�
PþLl

�
r⊥
2d2f

�
þ P−Ll−1

�
r⊥
2d2f

��

−
i
d2f

ðr⊥ · γ⊥ÞL1
l−1

�
r⊥
2d2f

�
; ð16Þ

where P� ¼ 1
2
½1� i signðqfBÞγ1γ2� are spin projectors,

and df ¼ 1ffiffiffiffiffiffiffiffi
jqfBj

p . Lα
nðxÞ are the generalized Laguerre poly-

nomials, and Lα
−1ðxÞ ¼ 0 by definition. From Fig. 1, the

gauge-boson self-energy can be written as

Πμν
q ðiωm;pÞ ¼ g2T

1

2

X∞
n¼−∞

Z
dkz
2π

d2r⊥e−ir⊥·p⊥Tr½γμGðiωn; kz; r⊥ÞγνGðiωn − iωm; kz − pz;−r⊥Þ�: ð17Þ

Here fermionic and bosonic Matsubara frequencies are ωn ¼ ð2nþ 1ÞπT and ωm ¼ 2mπT, respectively. Equation (17) can
be further simplified as

Πμν
q ðiωm;pÞ ¼ −g2T

1

2

X∞
n¼−∞

Z
dkz
2π

d2r⊥e−ir⊥·p⊥ e
−r2⊥=ð2c2fÞ

ð2πd2fÞ2
X∞
l¼0

X∞
l0¼0

1

k20 − El;kz

1

q20 − El0;qz
Sμν; ð18Þ

where the fermionic energies are defined as El;kz;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ k2z þ 2ljqfBj
q

. Here we define Sμν as the trace

Sμν ¼ Tr½γμDlðiωn; kz; r⊥ÞγνD0
lðiωn − iωm; kz; r⊥Þ�: ð19Þ

Since we are only interested to find the temporal component of the one loop self-energy, we can straightaway put μ ¼ ν ¼ 0
to get

Π00
q ðiωm;pÞ¼−g2T

1

2

X∞
n¼−∞

Z
dkz
2π

d2r⊥e−ir⊥·p⊥ e
−r2⊥=ð2d2fÞ

ð2πd2fÞ2
X∞
l¼0

X∞
l0¼0

1

k20−El;kz

1

q20−El0;qz

×

�
2ðLlLl0 þLl−1Ll0−1Þðk0q0þk3q3þm2

fÞþ
4r2⊥
d4f

L1
l−1L

1
l0−1

	

¼−g2T
1

2

X∞
n¼−∞

Z
dkz
2π

X∞
l¼0

X∞
l0¼0

1

k20−El;kz

1

q20−El0;qz

1

4π2d4f

×f4πd2fðXl;l0 þXl−1;l0−1Þðk0q0þk3q3þm2
fÞþ8πX1

l−1;l0−1g

¼−
g2

4π2
1

2

X
f¼u;d

1

d4f

Z
dkz
2π

X∞
l;l0¼0

X
s1;s2¼�1

nFðEl;kz;fÞ−nFðs1El0;qz;fÞ
4s1El;kz;fEl0;qz;f

1

is2ωmþEl;kz;f−s1El0;qz;f
ðI1;fþI2;fÞ; ð20Þ

where the functions I1;f and I2;f are defined as

FIG. 1. One loop gluon self-energy.
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I1;f ¼ 4πd2fðs1Ekz;lEqz;l
0 þ kzqz þm2

fÞ½Xl;l0 þ Xl−1;l0−1�;
I2;f ¼ 8πX1

l−1;l0−1: ð21Þ

The associated function Xm;n and X1
m;n are defined in Appendix C. Finally, we can write down the real part of the temporal

component of the self-energy in the limit of p0 → 0 as

Π00
q ðp0;pÞjp0→0 ¼ −

g2

8π2
X
f¼u;d

1

d4f

Z
dkz
2π

X∞
l;l0¼0

X
s1;s2¼�1

�
nFðEl;kz;fÞ − nFðs1El0;qz;fÞ

4s1El;kz;fEl0;qz;f

I1;f þ I2;f
El;kz;f − s1El0;qz;f

�����
p0→0

: ð22Þ

Now to find out the imaginary part of the self-energy, we need to perform analytic continuation to the real value of gluon
energy. By replacing iωm → p0 þ iϵ, the imaginary part of the temporal component of the gluon self-energy is given by

ImΠ00
q ðp0;pÞ ¼

g2

4π

1

2

X
f¼u;d

1

d4f

Z
dkz
2π

X
l;l0¼0

X
s1;s2¼�1

nFðEl;kz;fÞ − nFðs1El0;qz;fÞ
4s1s2El;kz;fEl0;qz;f

δðs2p0 þ El;kz;f − s1El0;qz;fÞðI1;f þ I2;fÞ: ð23Þ

In the limit of our interest, i.e., p0 → 0, only two delta functions will contribute, i.e., for s2 ¼ �1 when s1 ¼ 1. We can
write the above equation as

ImΠ00
q ðp0;pÞjp0→0 ¼

1

2

g2

4π

X
f¼u;d

1

d4f

Z
dkz
2π

X
l;l0¼0

X
s2¼�1

1

4s2El;kz;fEl0;qz;f

∂nFðEkÞ
∂Ek

s2p0δðEl;kz;f − El0;qz;fÞðI1;f þ I2;fÞ

¼ 1

2

2g2

4π
p0

X
f¼u;d

1

d4f

Z
dkz
2π

X
l;l0¼0

I1;f þ I2;f
4El;kz;fEl0;qz;f

∂nFðEkÞ
∂Ek

δðEl;kz;f − El0;qz;fÞ: ð24Þ

Now we use the following property of the Dirac delta
function,

δðfðxÞÞ ¼
X
n

δðx − xnÞ
j ∂fðxÞ

∂x jx¼xn

; ð25Þ

with xn as the zeros of the function fðxÞ, to obtain the
solutions for kz as

kz0 ¼
2ðl0 − lÞjqfBj þ p2

z

2pz
: ð26Þ

Using the value of kz0, subsequently, we obtain the explicit
expressions of fermionic energies as

Ekz;ljkz¼kz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2ljqfBj þ
�
p2
z þ 2ðl0 − lÞjqfBj

2pz

�
2

s
;

ð27Þ

Eqz;l
0 jkz¼kz0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2l0jqfBj þ
�
p2
z − 2ðl0 − lÞjqfBj

2pz

�
2

s
:

ð28Þ

Hence, finally we can write

ImΠ00
q ðp0;pÞjp0→0 ¼ −β

2g2

4π

1

2
p0

X
f¼u;d

1

d4f

1

2π

X
l;l0¼0

I1;f þ I2;f
4pzEl;kz;f

nFðEkÞð1 − nFðEkÞÞ
����
kz¼kz0

: ð29Þ

So, the real and imaginary parts of the form factor bq in the limit of p0 → 0 are, respectively, given in Eqs. (22) and (29).

D. Final expression of the imaginary part of the potential and decay width

Using Eqs. (12), (13), (22), and (29) in Eq. (9) within the limit p0 → 0, we find

ImD00ðpÞ ¼ −2
1

ðp2 þ Re bðp0 ¼ 0;pÞÞ2
�
πTm2

Dg

2p
−
g2

4π

X
f¼u;d

1

d4f

1

2π

X
l;l0¼0

I1;f þ I2;f
4pzEl;kz;f

nFðEkÞð1 − nFðEkÞÞ
����
kz¼kz0

�
; ð30Þ
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where

Re bðp0 ¼ 0;pÞ ¼ Re bqðp0 ¼ 0;pÞ þ Re bgðp0 ¼ 0;pÞ;
¼ ReΠ00

q ðp0 ¼ 0;pÞ þm2
Dg: ð31Þ

As the expression for ImD00 is an explicit function of pz and p⊥, we need to accordingly break up the phase space due to
anisotropy of the external magnetic field along the “z” direction. By doing that, Eq. (6) will be transformed into

ImVðr⊥; zÞ ¼ −
Z

p⊥dp⊥dpzdϕp

ð2πÞ3=2 ðeip⊥ðx cosϕpþy sinϕpÞþizpz − 1Þ
� ffiffiffiffiffiffiffiffi

2=π
p α

p2
þ 4σffiffiffiffiffiffi

2π
p

p4

�
p2ImD00ðpz; p⊥Þ;

¼ −
Z

p⊥dp⊥
ð2πÞ3=2

Z
∞

0

dpz4πðJ0ðp⊥r⊥Þ cos zpz − 1Þ
� ffiffiffiffiffiffiffiffi

2=π
p α

p2
þ 4σffiffiffiffiffiffi

2π
p

p4

�
p2ImD00ðpz; p⊥Þ: ð32Þ

Equation (32) is our final expression for the imaginary part of the heavy quark potential.

We will now use the imaginary part of the potential to
calculate decay width (Γ). So using the first-order time-
independent perturbation theory, decay width(Γ) can be
estimated from the given equation [54,71]

ΓðT; BÞ ¼ −
Z

d3rjΨðrÞj2ImVðr̂;T; BÞ: ð33Þ

Here ψðrÞ is the Coulombic wave function for the ground
state and is given by

ψðrÞ ¼ 1ffiffiffiffiffiffiffiffi
πa30

q e−r=a0 ; ð34Þ

where a0 ¼ 2=ðmQαÞ. Substituting the imaginary part of
the equation given in (32) into (33), we estimate the decay
width for the given temperature and magnetic field.
We would discuss the decay width of two quarkonia,
J=ψ (the ground state of charmonium, cc̄) and ϒ (botto-
monium, bb̄) in the next section.

III. RESULTS

In this section we will discuss our results about the
imaginary part of the heavy quark (HQ) potential and the
decay rate. For our present study we have chosen Nc ¼ 3,
Nf ¼ 2 and the strong running coupling constant g as

g2ðTÞ ¼ 24π2

ð11Nc − 2NfÞ lnð2πTΛ
MS
Þ ; ð35Þ

with ΛMS ¼ 0.176 GeV [79]. We also want to mention
here, that there are recent studies which explore the
thermomagnetic behavior of the strong coupling g [80–83],
which will be interesting to incorporate in future works. We
have taken the value of string tension as σ ¼ 0.174 GeV2

[84]. Considering the anisotropy encountered in our

studies, throughout the results section we will discuss
two cases, i.e., with varying z for a fixed r⊥ and vice versa.
As mentioned in the Introduction, recently several

studies have explored the heavy quark potential in a
magnetized medium restricting themselves to limiting cases
involving strong or weak magnetic field approximations. In
this context, present work can be applicable in the entire
domain of the magnetic field from weak to strong as we are
considering all Landau level summation. Therefore, we
have started our numerical presentation from Fig. 2, where
we have compared our result with two such recent results,
the strong field or the LLL approximated result from Singh
et al. [54] and the weak field or perturbatively expanded
result from Hasan et al. [74]. Since our present calculation
has captured the anisotropic outcomes of the magnetic
field, so they potentially become functions of r⊥ and z, but
earlier Refs. [54,74] provide isotropic potential in terms of
r only. Hence, the comparison will not be very straight
forward. In the left panel, we have compared our aniso-
tropic results for r⊥ ¼ 0 and for z ¼ 0 with the LLL
approximated results from Ref. [54], which shows a
noticeable difference between them. One of the sources
of this difference is that our results carry all Landau level
summations but Ref. [54] is a LLL approximation. To find
other sources of difference, we have generated our LLL
approximated results, which also differs from that of
Ref. [54]. Origin of this difference between the two LLL
approximated results can be traced back to the structure of
the coefficient function b where we have made no approx-
imations unlike Ref. [54], where they have neglected the
Debye mass (mD) independent terms. Also anisotropic and
isotropic structures are another level of differences. A
similar difference can again be observed in the right panel
of Fig. 2, where we have compared our general results for
both r⊥ ¼ 0 and z ¼ 0 with that of a weakly approximated
one from Ref [74]. Hence, the left and right panels of Fig. 2
indicate that our results in weak and strong fields, both
limits, can not merge with earlier estimations [54,74]
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because of the general structure of the magnetized gluon
propagator and anisotropic structure of the potential,
considered in the present work.
To further emphasize the deficiency of the LLL approxi-

mation, in Fig. 3 we have plotted the variation of the
imaginary part of the HQ potential with the distance for
various increasing values of the Landau levels and com-
pared them with respect to the LLL approximated result.
Again, we have shown two different cases in two panels of

Fig. 3, the left panel showing r⊥ ¼ 0 case and the right
panel showing z ¼ 0 case. For both the cases one can
identify that the LLL approximated result is hugely
overestimating the values for the imaginary part of the
HQ potential, whereas with increasing values of the
number of Landau levels n, the gap with the full result
is getting diminished. We have considered n ¼ 50 as full
results since we notice that the values are not changing
beyond n ¼ 10.
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FIG. 3. Variation of ImV with distance, i.e., with z for vanishing r⊥ (left panel) and with r⊥ for vanishing z (right panel), is shown
considering the different number of Landau levels, where we show the difference between the LLL approximated result and the
full result.
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FIG. 2. Variation of ImV with distance. We have shown two plots comparing with two recent results from Ref. [54] (left panel) and
Ref. [74] (right panel), which requires certain fixed values of magnetic field (eB) and temperature (T), as depicted in the plot. We have
considered both the cases, i.e., with vanishing r⊥ and with vanishing z.
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In Fig. 4, we have again compared our general result with
the Debye mass approximated results, but this time for
arbitrary values of external fields. As our observable, again
we have chosen the imaginary part of the HQ potential. In
Appendix D, we have given the expression for the Debye
mass approximated imaginary part of the HQ potential,
which is isotropic in nature (i.e., no explicit dependence
on r⊥ and z), unlike our most general result. So, in Fig. 4,
we have shown this Debye mass approximated isotropic
curve (solid curve) with our anisotropic curves (dashed and
dotted curves). The anisotropic curves are plotted from our
main result, i.e., Eq. (32) using Eq. (30). Among the two
curves, the dashed curve shows the variation with z for
vanishing r⊥, whereas the dotted curve shows the variation
with r⊥ for vanishing z. On the other hand, the solid curve
is drawn using Eq. (D1), where one can see that the
magnetic field effect is coming solely through the Debye
mass, subsequently providing incomplete information. In
this scenario, we are getting the isotropic space dependency
of the potential. One can observe from Fig. 4 that the
difference between the full result and the Debye mass
approximated result increases significantly with increasing
distance, thereby emphasizing the importance of consid-
ering the anisotropic nature of the full HQ potential in the
presence of arbitrary values of external magnetic fields. So,
from Figs. 2 to 4, we are devoted to show our ingredient
details in the heavy quark potential at finite T, B with
respect to earlier calculations [54,74]. Next, we will enlarge
more the anisotropic tomography of this heavy quark
potential due to the magnetic field, which is probably
the first time it has been addressed in the literature.

Figure 5 has explored the anisotropic nature of the heavy
quark potential in the presence of the external magnetic
field, applied along the z direction. In the upper panel of
Fig. 5 we have shown the variation of the imaginary part
of the HQ potential, with respect to the longitudinal
distance z, for two different fixed values of the transverse
distance r⊥ ¼ 0 (upper left panel) and r⊥ ¼ 0.5 fm (upper
right panel). For both the plots we have fixed the external
magnetic field to eB ¼ 15m2

π and shown the variation for
two different values of the temperature, i.e., T ¼ 0.2 and
T ¼ 0.4 GeV. For the plot with r⊥ ¼ 0, at lower values
of z, both the curves start from vanishing ImV, as expected.
Also for both the plots one can notice that with higher
values of temperature, the magnitude of ImV also becomes
higher. The curves show a gradually decreasing behavior of
the imaginary part of the HQ potential with increasing
distance, as was also evident from Figs. 2 and 3. The lower
panel of Fig. 5 shows similar behaviors, where we have
fixed z to two different values of z ¼ 0 (lower left panel)
and z ¼ 0.5 fm (lower right panel) and varied ImV with
respect to r⊥.
In Fig. 6 we have shown the overall spatial dependence

of the imaginary part of the HQ potential in the form of a
contour plot, where we have varied both z and r⊥ within the
range of 0 to 1 fm. For this plot, we have fixed the values
of the temperature and the magnetic field as 0.2 GeV
and 15 m2

π , respectively. The equal potential (imaginary)
regions are represented by different curves, and the
corresponding values for the imaginary parts of the HQ
potential are depicted on top of each curve. The reader
should notice that equipotential curves are elliptic in nature
instead of circular. The finite magnetic field makes this
transformation from circle to ellipse, meaning isotropic to
anisotropic transformation. So this anisotropic tomography
of heavy quark potential may be used as a signature of the
magnetic field produced in heavy ion collision. Though this
task is very nontrivial, we will try to search the possibility
by presenting our results in a different angle. The contour
plot (Fig. 6) will be modified with temperature and
magnetic field, which is explored in next paragraph.
In Fig. 7, we have presented the variation of the

imaginary part of the HQ potential with respect to the
temperature for two different values of the external mag-
netic field, i.e., eB ¼ 10m2

π and eB ¼ 20m2
π . We have

considered the case of vanishing transverse distance in the
left panel with a fixed value of z ¼ 0.5 fm. It can be
observed that for vanishing temperatures, curves for differ-
ent magnetic fields merge into giving a vanishing ImV as
in-medium dissociation phenomena of quarkonia can not
be expected in a vacuum or T ¼ 0. When the temperature
starts to increase gradually, at first the curve for the higher
magnetic field gives higher values for the imaginary part of
the HQ potential. However, after a certain temperature, we
observe a crossing between the curves. This feature can be
understood in the following way: In the low temperature
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FIG. 4. Variation of ImV with distance comparing between full
and Debye mass approximated expressions. The variation is
shown with z for vanishing r⊥ (dashed curve), with r⊥ for
vanishing z (dotted curve), and with isotropic r using Debye mass
approximated expression (solid curve).
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region, the magnetic field is the most dominating scale. As
the temperature starts to increase, a competition between
the magnetic field and the temperature takes place. The
nature of the curves get inverted with the enhancement of
the temperature, as the temperature scale becomes more
dominant for eB ¼ 10m2

π, compare to eB ¼ 20m2
π. Similar

behaviors have also been observed in the right panel where
we have vanishing z and a fixed r⊥ ¼ 0.5 fm. So, accord-
ing to Fig. 7, dissociation probability is enhanced and
suppressed by the magnetic field in the low and high
temperatures, respectively. If we concentrate within T¼
0.1–0.4GeV, eB¼10−20m2

π as covering the domain of ex-
panding quark-gluon plasma and the heavy quark dissoci-
ation temperature range broadly as Td¼0.15–0.35GeV,

then along the z axis, dissociation probability can be
enhanced due to the magnetic field, while the opposite
impact of the magnetic field can occur along r⊥ axis. This
comment is based on the left and right panels of Fig. 7,
which are plotted at r⊥ ¼ 0, z ¼ 0.5 fm and r⊥ ¼ 0.5 fm,
z ¼ 0, respectively. However, for exact knowledge of
enhancing and suppressing dissociation domain, one
should notice the variation of all four parameters—r⊥, z,
T, and eB.
From the earlier discussion, we can see a rich anisotropic

tomography of heavy quark dissociation by varying r⊥, z, T,
and eB, but when we go towards experimental quantity—
heavy quark dissociation probability—this anisotropic
tomography will be integrated, and we will get only
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FIG. 5. Variation of ImV with z for two different fixed values of r⊥–r⊥ ¼ 0 (upper left panel) and r⊥ ¼ 0.5 fm (upper right panel) and
with r⊥ for two different fixed values of z–z ¼ 0 (lower left panel) and z ¼ 0.5 fm (lower right panel). For each of the plots we have
chosen two different values of temperature and a fixed value of the external magnetic field.
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temperature and magnetic field dependent dissociation,
which carry the anisotropic information through its inte-
grated values, which will be different from corresponding
integrated values isotropic potential. Using Eq. (33), these
integrated values of heavy quark dissociation are obtained.
In Figs. 8 and 9, we have studied the variation of the decay
width with respect to the external magnetic field and
temperature, respectively. In the calculation we take the
bottomonium and charmonium masses as mb ¼ 4.66 GeV

and mc ¼ 1.275 GeV, respectively [54,85]. For each of the
cases, we have shown two plots, for charm (left panel) and
bottom (right panel) quarks. In Fig. 8 we have fixed the
temperature at T ¼ 180 MeV, and in Fig. 9 we have fixed
the magnetic field at eB ¼ 10m2

π . In each of the plots we
have compared our full result (dashed lines) with the LLL
approximated result (dotted lines) and the Debye mass
approximated result without structure (solid lines). One
can notice from Fig. 8 that the LLL approximation again
overestimates the magnitude of the decay width. In com-
parison with the Debye mass approximated result, our full
result of the decay width shows a different T and eB profile
for both charm and bottom quarks. An increasing behavior
with increasing temperature can also be found in Fig. 9. As
the bottomonium states are smaller in size with larger masses
than the charmonium states, the thermal width for ϒ is
considerably smaller than the J=Ψ.
At the end, we want to emphasize once again that with

respect to earlier estimations [54,74] of heavy quark
dissociation in the presence of a finite magnetic field,
present results find a new dimension, i.e., a new profile
in temperature and magnetic field axes and, more
intriguingly, a rather complex anisotropic tomography
in heavy quark dissociation. Former modification is
found for adopting the general structure of a gluon
propagator in a finite magnetic field in a heavy quark
potential framework, which is done here for the first time.
On the other hand, the latter modification—anisotropic
tomography of heavy quark dissociation—can always be
expected in a finite magnetic field, if one carefully
considers parallel and perpendicular momentum compo-
nents during Fourier’s transformation. Since earlier
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FIG. 6. Contour plot of ImV showing the equal potential
regions for different values of r⊥ and z.
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FIG. 7. Variation of ImV with temperature shown for two different cases, i.e., for vanishing r⊥ (left panel) and for vanishing z (right
panel). For each of the plots, we have chosen two different values of the external magnetic field, which shows some interesting
crossovers.
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Refs. [54,74] have not included this consideration,
anisotropy structure is missing in their calculations. In
this context, our present work is the first time of pointing
out this anisotropic structure in heavy quark potential,
which might build an anisotropic dissociation. In the near
future, our plan is to connect this anisotropic aspect of the
heavy quark potential (due to the magnetic field) with the
phenomenology of quarkonia suppression, which might
unfold as a signature for the strong magnetic field.

IV. CONCLUSIONS

In the present theoretical study, we have evaluated the
imaginary part of the heavy quark complex potential
formalism at finite temperature and magnetic field, whose
preliminary steps are standard and as follows. The imagi-
nary part of heavy quark-antiquark potential in terms of
coordinate space, temperature, and magnetic field can be
estimated by taking Fourier’s transform of momentum
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FIG. 8. Variation of the decay width Γ with respect to the external magnetic field for a fixed temperature shown for the case of the
charm quark (left panel) and bottom quark (right panel). Curves shown for the case of the LLL approximated result, mD approximated
result, and full result.
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FIG. 9. Variation of the decay width Γ with respect to the temperature for a fixed external magnetic field shown for the case of charm
quark (left panel) and bottom quark (right panel). Curves shown for the case of the LLL approximated result, mD approximated result,
and full result.
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dependent potential, divided by permittivity of the medium,
which carry temperature and magnetic field. This permit-
tivity can be calculated from the temporal component of
the effective gluon propagator at finite temperature and
magnetic field.
Now, in the present work we have adopted the general

structure of the gluon propagator at finite temperature and
magnetic field, which was not considered in earlier works.
So a new ingredient of temperature and magnetic field
dependent profile in calculations is found. Our adopted
generalized gluon propagator consisted of four linearly
independent tensors. So there are four form factors which
can be calculated from the gluon self-energy. In our case,
we have only needed one form factor explicitly for the sake
of our calculation. This is evaluated from the one loop
gluon self-energy where the quark loop is affected by the
magnetic field. So the modified quark propagator in the
presence of the magnetic field is considered. We have
obtained the results for the general magnetic field by
summing all Landau level contributions. Comparing our
results with the existing works, done with lowest Landau
level approximation in the strong field limit, as well as
weak field approximation, one can consider our work as the
more general in nature. Our results are applicable for the
entire range from weak to strong magnetic fields. This is
because we are considering all Landau level summation
and the most general structure of gluon propagators, which
are taking care of corresponding full quantum mechanical
and quantum field theoretical effects, respectively.
Apart from these new ingredients—all Landau level

summation and general structure of the propagator—the
present work has adopted another novel and interesting
fact, the anisotropic form of heavy quark potential in the
presence of the magnetic field, which were ignored in
earlier works because of some approximations like ignor-
ing the Debye mass independent terms. We have graphi-
cally presented the detailed anisotropic tomography of
the imaginary part of the potential, which modifies with
temperature and magnetic field. This is one of the main
findings of our present study, which to the best of our
knowledge, has not been discussed before in the literature
for heavy quark potential.
The imaginary part of heavy quark potential basically

provides us with its dissociation probability. After doing
the coordinate space integration by folding with probability
density, based on the simple wave function due to
Coulomb-type potential, we have obtained the temperature
and magnetic field dependent dissociation probability or
thermal width of quarkonium states—J=Ψ andϒ. Here, we
have again found the modified temperature and magnetic
field profile, due to considering the summation over all
possible Landau levels and the general structure of the
gluon propagator in a finite magnetic field with respect to
earlier references. We believe that the anisotropic aspect of
heavy quark potential, due to the magnetic field, might

build an interesting quarkonia phenomenology, which is
planned for our next work. Further studies on the angular
dependence/ellipticity (e.g., for the case of photon emis-
sion, see [78]) of the dissociation probability is also needed
to disentangle the anisotropy, due to the external magnetic
field with the geometrical effects coming from the shape of
the plasma produced in noncentral HIC.
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APPENDIX A: GLUON EFFECTIVE
PROPAGATOR IN THE PRESENCE

OF A MAGNETIC FIELD

In the presence of a thermal medium, the Lorentz (boost)
invariance is broken, whereas the presence of a magnetic
field breaks the rotational symmetry of the system. Heat
bath velocity uμ ¼ ð1; 0; 0; 0Þ is introduced in the presence
of a thermal medium. We consider the magnetic field along
z direction, i.e., nμ ¼ ð0; 0; 0; 1Þ. We define n̄μ ¼ Aμνnμ.
Now gluon self-energy in the presence of a thermomagnetic
medium can be written as

Πμν ¼ bBμν þ cRμν þ dQμν þ aNμν; ðA1Þ
where the basis tensors are given as [66]

Bμν ¼ ūμūν

ū2
; ðA2Þ

Qμν ¼ n̄μn̄ν

n̄2
; ðA3Þ

Nμν ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ;

Rμν ¼ Vμν − Bμν −Qμν: ðA4Þ
Note that b, c, d, and a are the corresponding form factors.
The vacuum projection tensor is

Vμν ¼ gμν −
PμPν

P2
: ðA5Þ
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Note that ūμ is defined by projecting the vacuum projection tensor upon uμ, i.e., ūμ ¼ Vμνuν, and n̄μ is defined as
n̄μ ¼ Aμνnν. The form factors can be calculated using the following relations:

b ¼ bg þ bq ¼ −
p2
0 − p2

p2
½Πg

00ðPÞ þ Πq
00ðPÞ�; ðA6Þ

c¼cgþcq¼Rμν½Πg
μνðPÞþΠq

μνðPÞ�

¼ðΠgÞμμðPÞþðΠqÞμμðPÞþ
1

p2⊥
½ðp2

0−p2⊥ÞfΠg
00ðPÞþΠq

00ðPÞgp2fΠg
33ðPÞþΠq

33ðPÞg−2p0p3fΠg
03ðPÞþΠq

03ðPÞg�; ðA7Þ

d ¼ dg þ dq ¼ Qμν½Πg
μνðPÞ þ Πq

μνðPÞ�

¼ −
p2

p2⊥

�
fΠg

33ðPÞ þ Πq
33ðPÞg −

2p0p3

p2
fΠg

03ðPÞ þ Πq
03ðPÞg þ

p2
0p

2
3

p4
fΠg

00ðPÞ þ Πq
00ðPÞg

�
; ðA8Þ

a ¼ ag þ aq ¼
1

2
Nμν½Πg

μν þ Πq
μν�

¼ 1

2
ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
�
−2

ū · n
ū2

fΠg
00 þ Πq

00g þ 2fΠg
03 þ Πq

03g
�
; ðA9Þ

where Πg
μν and Πq

μν are the self-energy contributions from the gluon loop, ghost loop, and from the quark loop, respectively.
The form factors would be calculated from the one loop gluon self-energy diagram.
The general structure of the gluon effective propagator using Eq. (A1) is given as [66]

Dμν ¼ ξPμPν

P4
þ P2 − d
ðP2 − bÞðP2 − dÞ − a2

Bμν þ 1

P2 − c
Rμν þ P2 − d

ðP2 − bÞðP2 − bÞ − a2
Qμν þ a

ðP2 − bÞðP2 − dÞ − a2
Nμν:

ðA10Þ

APPENDIX B: FREQUENCY SUM

We write the fermionic Matsubara sums. Here ωn ¼
ð2nþ 1ÞπT and ωm ¼ 2mπT are the fermionic and bosonic
Matsubara frequencies, respectively,

T
X∞
n¼−∞

1

½ðiωnÞ2 − E2
k�½ðiωn − iωmÞ2 − E2

q�

¼
X

s1;s2¼�1

1

4s1EkEq

nFðEkÞ − nFðs1EqÞ
is2ωm þ Ek − s1Eq

; ðB1Þ

and

T
X∞
n¼−∞

iωnðiωn − iωmÞ
½ðiωnÞ2 − E2

k�½ðiωn − iωmÞ2 − E2
q�

¼
X

s1;s2¼�1

1

4

nFðEkÞ − nFðs1EqÞ
is2ωm þ Ek − s1Eq

: ðB2Þ

The Fermi-Dirac distribution function is given
as nFðEÞ ¼ 1

expðE=TÞþ1
.

APPENDIX C: DEFINITION OF FUNCTIONS Xm;n AND X1
m;n

Xm;n ¼
m!

n!
e−p

2⊥d2f=2
�
p2⊥d2f
2

�
n−m

�
Ln−m
m

�
p2⊥d2f
2

��
2

; for n ≥ m ðC1Þ

¼ n!
m!

e−p
2⊥d2f=2

�
p2⊥d2f
2

�
m−n

�
Lm−n
n

�
p2⊥d2f
2

��
2

; for n < m: ðC2Þ
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X1
m;n ¼ 2

ðmþ 1Þ!
n!

e−p
2⊥d2f=2

�
p2⊥d2f
2

�
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2

�
; for n ≥ m ðC3Þ

¼ 2
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�
p2⊥d2f
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�
m−n

Lm−n
n

�
p2⊥d2f
2

�
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nþ1

�
p2⊥d2f
2

�
; for n < m: ðC4Þ

APPENDIX D: DEBYE MASS
APPROXIMATED ImV

In this case, one usually does not consider the general
structure of the gluon propagator in the presence of
temperature and an external magnetic field and, instead,
incorporates the effect of the magnetic field solely through
the modification in the Debye mass. Hence the imaginary
part of the potential in this case can be written as [71,76]

ImVðrÞ ¼ −αTϕ2ðmDrÞ −
σT
m2

D
χðmDrÞ; ðD1Þ

wheremD is the Debye screening mass. In order to calculate
the Debye screening mass we have taken the static limit of
the temporal component of the gluon self-energy, i.e.,m2

D ¼
Π00ðω → 0;p ¼ 0Þ, where Π00ðPÞ ¼ Π00

g ðPÞ þ Π00
q ðPÞ.

The first term in Eq. (D1) comes from the Coulombic
contribution, whereas the second term is related to the string
part of the Cornell potential.
The functions ϕ2ðxÞ and χðxÞ are defined as

ϕ2ðxÞ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þ2
�
1 −

sinðzxÞ
zx

�
; ðD2Þ

χðxÞ ¼ 2

Z
∞

0

dz
1

zðz2 þ 1Þ2
�
1 −

sinðzxÞ
zx

�
: ðD3Þ

Both the functions ϕ2ðxÞ and χðxÞ are monotonically
increasing functions with ϕ2ð0Þ ¼ 0 and χð0Þ ¼ 1. At
large x, χðxÞ is logarithmically divergent, whereas
ϕ2ð∞Þ ¼ 1.
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