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We consider a BRST-invariant generalization of the “massive background Landau gauge,” resembling
the original Curci-Ferrari model that saw a revived interest due to its phenomenological success in
modeling infrared Yang-Mills dynamics, including that of the phase transition. Unlike the Curci-Ferrari
model, however, the mass parameter is no longer a phenomenological input, but it enters as a result of
dimensional transmutation via a BRST-invariant dimension-2 gluon condensate. The associated renorm-
alization constant is dealt with using Zimmermann’s reduction of constants program, which fixes the value
of the mass parameter to values close to those obtained within the Curci-Ferrari approach. Using a self-
consistent background field, we can include the Polyakov loop and probe the deconfinement transition,
including its interplay with the condensate and its electric–magnetic asymmetry. We report a continuous
phase transition at Tc ≈ 0.230 GeV in the SU(2) case and a first-order one at Tc ≈ 0.164 GeV in the SU(3)
case, values which are again rather close to those obtained within the Curci-Ferrari model at one-loop order.
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I. INTRODUCTION

It is well accepted from nonperturbative Monte Carlo
lattice simulations that SUðNÞ Yang-Mills gauge theories in
the absence of fundamental matter fields undergo a decon-
fining phase transition at a certain critical temperature [1,2].
This transition corresponds to the breaking of a global ZN
center symmetry when the Euclidean temporal direction is
compactified on a circle, with circumference proportional to
the inverse temperature; see e.g., Refs. [3,4]. The vacuum
expectation value of the Polyakov loop [5] serves as an
order parameter for this symmetry and has as such inspired
an ongoing research activity into its dynamics; see, e.g.,
Refs. [6–9]. Even in the presence of dynamical quark
degrees of freedom, in which case the center symmetry
is broken explicitly, the Polyakov loop remains the best
observable to capture the crossover transition; see
Refs. [10,11] for ruling lattice QCD estimates. Since the

transition temperature is of the order of the scale at which
the considered gauge theories, including QCD, become
strongly coupled, it is a highly challenging endeavor to get
reliable estimates for the Polyakov loop correlators, includ-
ing its vacuum expectation value, analytically. This is
further complicated by the nonlocal nature of the loop.
These features highlight the sheer importance of lattice
gauge theories to allow for a fully nonperturbative computa-
tional framework. Nonetheless, analytical takes are still
desirable to offer a complementary view at the same
physics, in particular as lattice simulations do also face
difficulties when the physically relevant small quark mass
limit must be taken, next to the issue of potentially
catastrophic sign oscillations at finite density [12,13].
Over the last two decades, tremendous effort has been put

into the development and application of functional methods
to QCD, including the respective hierarchies of Dyson-
Schwinger equations (DSE) and the functional renormaliza-
tion group (FRG) equations [14–32] as well a variational
approaches based on the Hamiltonian formulation or on N-
particle-irreducible effective actions [33–39]. These methods
are quite successful in describing vacuum properties of the
theory as well as finite temperature/density aspects. They all
rely, in one way or another, on the decoupling behavior of
gluons in the Landau gauge, as dictated by results from
lattice simulations [40–47]. More recently, a more phenom-
enological approach has been put forward based on the use

*david.dudal@kuleuven.be
†duifje.van-egmond@polytechnique.edu
‡urko.reinosa@polytechnique.edu
§vercauterendavid@duytan.edu.vn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 054007 (2022)

2470-0010=2022=106(5)=054007(27) 054007-1 Published by the American Physical Society

https://orcid.org/0000-0002-4640-2385
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.054007&domain=pdf&date_stamp=2022-09-09
https://doi.org/10.1103/PhysRevD.106.054007
https://doi.org/10.1103/PhysRevD.106.054007
https://doi.org/10.1103/PhysRevD.106.054007
https://doi.org/10.1103/PhysRevD.106.054007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


of the Curci-Ferrari (CF) model [48–50]. The rationale
behind the latter is that the standard Faddeev-Popov Landau
gauge action, although well grounded in the ultraviolet, is
incomplete in the infrared due to the presence of Gribov
copies and therefore, needs to be extended. The hypothesis
put forward in Ref. [48] and put on more rigorous footing in
Ref. [51] (see also Ref. [52] and references therein) is that a
dominant contribution to this (to date unknown) gauge-fixed
action is provided by a gluon mass term, which relates to the
decoupling behavior of the Landau gauge gluon propagator
on the lattice. One of the attractive features of the Curci-
Ferrari model is that it is perturbative in nature, at least in its
applications to pure Yang-Mills (YM) theories. In fact, with
just one additional parameter to adjust, it has allowed one to
retrieve many of the Euclidean properties of these theories in
the vacuum and at finite temperature [50]. In its applications
to QCD, the perturbative nature of the pure glue sector
allows one, in combination with an expansion in the inverse
number of colors, to devise a systematic expansion scheme
controlled by two small parameters and whose first orders
are computionally tractable [53,54].
The surprising ability of the Curci-Ferrari model in

reproducing well-known properties of pure YM theories
has lead to the question of whether it could be derived (in its
present form or with some amendments) from a proper
account of the Gribov copies [55–57]. Here, we would like
to investigate another possibility following the work of
Ref. [58] and based on the dynamical generation of
dimension-2 gluon condensates within the strict Faddeev-
Popov setup. The idea here is that, upon generation of a
dynamical gluon mass, the Gribov copies will be accounted
for, at least partially. So, more than a consequence of taking
into account the Gribov copies, the gluon mass will appear
here as a self-generated cure for the Gribov problem within
the Faddeev-Popov framework. In what follows, we would
like to investigate these ideas, in particular how they allow
one to describe salient features of YM theory such as the
deconfinement transition. Since the Curci-Ferrari model has
taught us that, once a mass is generated, certain features
become accessible to perturbation theory, we shall consider
a simple one-loop calculation as a start.
Because the decoupling behavior as observed on the

lattice extends beyond the Landau gauge to linear covariant
gauges [59,60], it will be important to make sure that the
dynamical mass generation mechanism applies independ-
ently of the gauge-fixing parameter. Moreover, for the
dynamically generated mass to carry a physical signifi-
cance, it should be associated to a BRST-invariant gluon
condensate. A central notion to achieve this is that of a
BRST-invariant gluon field [61,62], which we discuss in
Sec. II, together with its extension in the presence of a
background gauge field, required for the study of the
Polyakov loop. We also show that the BRST-invariant
gluon field can be replaced by the original gluon field in
the limit of a vanishing gauge-fixing parameter, which will

later facilitate the computations. In Sec. III, we introduce the
BRST-invariant dimension-2 gluon condensate, together
with its BRST-invariant asymmetry at finite temperature.
This asymmetry was proposed in past Landau gauge-fixed
lattice QCD work [63] to constitute yet another probe
of the deconfinement transition. More generally, we expect
an interesting interplay between the condensate, and thus
the mass, and the Polyakov loop at finite temperature. In
Sec. IV, we evaluate the effective potential for the back-
ground field (related to the Polyakov loop), the BRST-
invariant condensate (related to the mass), and the
asymmetry in this BRST-invariant condensate. Our results
for the three observables across the deconfinement tran-
sition are gathered in Sec. V together with a discussion
relating to the Curci-Ferrari model.

II. BRST-INVARIANT GLUON FIELD Ah

To set the stage, we will first briefly introduce our
construction at zero temperature and without background
gauge fields, summarizing a larger paper in preparation
[64] based on earlier work [58], before extending it in the
presence of the Polyakov loop via the background field
method.

A. Case of linear covariant gauges

We start from the Yang-Mills action in a linear covariant
(LC) gauge and in d Euclidean space dimensions,

SLC¼
Z

ddx

�
1

4
Fa
μνFa

μνþ
α

2
babaþ iba∂μAa

μþ c̄a∂μDab
μ cb

�
;

ð1Þ
where c and c̄ are the ghost and antighost fields, b is the
Nakanishi-Lautrup field enforcing the gauge condition, and
α is the gauge parameter. As we are eventually interested in
the dimension-2 gluon condensate hA2

μi while preserving
BRST invariance, we need a BRST-invariant version of the
Aa
μ field. To construct this, we insert into the corresponding

path integral the unity [64,65]

1 ¼ N
Z

½DξDτDη̄Dη�e−Sh ; ð2aÞ

Sh ¼
Z

ddxðiτa∂μðAhÞaμ þ η̄a∂μðDhÞabμ ηbÞ; ð2bÞ

where N is a normalization and ðDhÞabμ is the covariant
derivative containing only the composite field ðAhÞaμ. This
local but nonpolynomial composite field object is defined as

ðAhÞμ ¼ h†Aμhþ i
g
h†∂μh; ð2cÞ

h ¼ eigξ ¼ eigξ
aTa

; ð2dÞ
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where the Ta are the generators of the gauge group SUðNÞ.
The ξa are similar to Stueckelberg fields, while ηa and η̄a are
additional (Grassmanian) ghost and antighost fields. They
serve to account for the Jacobian arising from the functional
integration over τa to give a Dirac delta functional of the
type δð∂μðAhÞaμÞ. That Jacobian is similar to the one of the
Faddeev-Popov operator and is supposed to be positive,
which amounts to removing a large class of infinitesimal
Gribov copies; see Ref. [66]. Here, positivity can be
checked a posteriori by means of the ghost propagator,
the (expectation value of the) inverse Faddeev-Popov
operator. Notice that in mere perturbation theory, this is
not the case, but the dynamical mass to be discussed will be
large enough to ensure it dynamically, leading to a kind of
“self-cured” Gribov ambiguity. This is a different approach
than the Gribov-Zwanziger one, in which case positivity is
imposed a priori [67,68], albeit with similar end result. In
fact, this strategy of having a positive ghost propagator is
also the one employed in, e.g., the functional Dyson-
Schwinger approach [23].1

Expanding (2c), one finds an infinite series of local
terms:

ðAhÞaμ ¼ Aa
μ − ∂μξ

a − gfabcAb
μξ

c −
g
2
fabcξb∂μξc þ � � � : ð3Þ

The unity (2a) can be used to stay within a local setup for
an on-shell nonlocal quantity ðAhÞaμ that can be added to
the action. Notice that the multiplier τa implements
∂μðAhÞaμ ¼ 0, which, when solved iteratively for ξa,

ξ� ¼
1

∂
2
∂μAμ þ ig

1

∂
2

�
∂μAμ;

1

∂
2
∂νAν

�
þ � � � ; ð4aÞ

gives the (transversal) on-shell expression

ðAhÞμ ¼
�
δμν−

∂μ∂ν

∂
2

��
Aνþ ig

�
Aν;

1

∂
2
∂λAλ

�
þ� � �

�
; ð4bÞ

clearly showing the nonlocalities in terms of the inverse
Laplacian. One can see that Ah → A when Aa

μ is
in the Landau gauge ∂μAa

μ ¼ 0. We refer to, e.g.,
Refs. [64–66,69,70] for more details. It can be shown
that Ah is gauge invariant order per order, which is
sufficient to establish BRST invariance. We will have
nothing to say about large gauge transformations.
Mark that ðAhÞaμ is formally the value of Aa

μ that
(absolutely) minimizes the functional

Z
ddxAa

μAa
μ ð5Þ

under (infinitesimal) gauge transformations δAa
μ ¼ Dab

μ ωb;
see, e.g., Refs. [66,69,70]. As such,Z

ddxðAhÞaμðAhÞaμ ¼ min
gauge orbit

Z
ddxAa

μAa
μ: ð6Þ

In practice, we are only (locally) minimizing the functional
via a power series expansion (3) coming from infinitesimal
gauge variations around the original gauge field Aa

μ,
whereas the extremum being a minimum is accounted
for if the Faddeev-Popov operator (second-order variation,
that is) is positive. This is related to the Gribov copy
problem and will be ignored here in the definition of our
ðAhÞaμ or the unity. We will come back to why this is
a posteriori allowed.
We will later on generalize this construction in the

presence of a background gauge field, including the proof
that, for expectation values of gauge-invariant operators,
the nonlocal Ah

μ can be replaced by the local Aμ when using
the Landau gauge, corresponding to the α → 0 case of the
linear covariant gauges. The positivity of the Faddeev-
Popov operator will also play a role here. But summarizing,
at the level of expectation values of gauge-invariant
operators, the original action (1) and the one given by

SLC þ Sh ¼
Z

ddx

�
1

4
F2
μν þ

α

2
b2 þ iba∂μAa

μ þ c̄a∂μDab
μ cb

þ iτa∂μðAhÞaμ þ η̄a∂μðDhÞabμ ηa
�

ð7Þ

are perturbatively fully equivalent. The renormalizability
analysis for generic α can be found in, e.g., Ref. [61]. For
completeness, the BRST invariance is generated by the
operator s defined as

sAa
μ ¼−Dab

μ cb; sca ¼ 1

2
gfabccbcc; sc̄a ¼−iba; ð8Þ

and all other transformations are zero.

B. Including the Polyakov loop

Our aim is to investigate the confinement/deconfinement
phase transition of Yang-Mills theory. The standard way to
achieve this goal is by probing the Polyakov loop order
parameter,

P ¼ 1

N
trhPeig

R
β

0
dtA0ðt;xÞi; ð9Þ

with P denoting path ordering, needed in the non-Abelian
case to ensure the gauge invariance of P. In analytical
studies of the phase transition involving the Polyakov loop,

1Related to this discussion, we note that (2a) is a priori an
approximation since it ignores the Gribov copies. In the presence
of a dynamically generated mass, the contribution of some of
these copies is suppressed, in particular those outside the Gribov
region, in a fashion similar (but not equivalent) to the Gribov-
Zwanziger approach.
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one usually imposes the so-called Polyakov gauge on the
gauge field, in which case the time component A0 becomes
diagonal and independent of (imaginary) time: hAμðxÞi ¼
hA0iδμ0, with hA0i belonging to the Cartan subalgebra of the
gauge group. In the SU(2) case, for instance, the Cartan
subalgebra is one dimensional and can be chosen to be
generated by t3 ≡ σ3=2 so that hAa

0i ¼ δa3hA3
0i≡ δa3hA0i.

More details on Polyakov gauge can be found in
Refs. [6,71,72]. Besides the trivial simplification of the
Polyakov loop, when imposing the Polyakov gauge, it turns
out that the quantity hA0i becomes a good alternative choice
for the order parameter instead of P; see Ref. [71] for an
argument using Jensen’s inequality for convex functions,
and see also Refs. [73–75]. For other arguments based on
the use of Weyl chambers and within other gauges (see
below), see Refs. [76–78].
As explained in Refs. [71,73,79], in the SU(2) case at

leading order, we then simply find, using the properties of
the Pauli matrices,

P ¼ cos
r
2
; ð10Þ

where we defined

r ¼ gβhA0i; ð11Þ

with β the inverse temperature. This way, r ¼ π corre-
sponds to the “unbroken symmetry phase” (confined or
disordered phase), equivalent to hPi ¼ 0, while 0 < r < π
corresponds to the “broken symmetry phase” (deconfined
or ordered phase), equivalent to hPi ≠ 0. Since P ∝ e−F=T

with T the temperature and F the free energy of a heavy
quark, it becomes clear that in the unbroken phase (because
it is in the unbroken phase where the center symmetry is
manifest: hPi ¼ 0) an infinite amount of energy would be
required to actually get a free quark. The broken/restored
symmetry referred to is the ZN center symmetry of a pure
gauge theory (no dynamical matter in the fundamental
representation). With a slight abuse of language, we will
refer to the quantity r as the Polyakov loop hereafter.
It is however, a highly nontrivial job to actually

compute r. An interesting way around was worked out
in Refs. [71,73,79], in which it was shown that similar
considerations apply within Landau-DeWitt gauges, a
generalization of the Landau gauge in the presence of a
background (see the next section for more details). The
background needs to be seen as a field of gauge-fixing
parameters and, as such, can be chosen at will a priori.
However, specific choices turn out to be computationally
more tractable while allowing one to unveil more easily the
center-symmetry breaking mechanism. In particular, for
the particular choice of self-consistent backgrounds which
are designed to coincide with the thermal gluon average at
each temperature, it could be shown that the background

becomes an order parameter for center symmetry as it
derives from a center-symmetric background effective
potential (see below).
Moreover, nonperturbative physics was parametrized by

a phenomenological mass parameter, akin to using a Curci-
Ferrari version of the background Landau gauge [79,80].
This was based on earlier successful attempts to model
T ¼ 0 Yang-Mills propagators and vertices; see Refs.
[48,49] for the initial works and Ref. [50] for a recent
overview. The Curci-Ferrari mass was fixed from a dedi-
cated fit to zero-temperature lattice gluon and ghost
propagator data in absence of a background (see, e.g.,
Ref. [81]), but despite its nice consequences and quite good
results compared to other nonperturbative approaches, it
remains a bit uncomfortable that one needs to introduce a
mass scale by hand. If we could recover a dynamical gluon
mass from a first principles setup, this would reduce the
dependence on external parameters or input. Of course, this
does not necessarily entail we will end up with the exact
Curci-Ferrari model or the background version of Ref. [79],
but this is evidently of no concern, since the Curci-Ferrari
was always supposed to be an effective way of modeling
gauge fixing beyond standard perturbation theory.
That a proper mass scale can emerge from the Yang-Mills

dynamics can already be appreciated from earlier works like
Ref. [58], based on the introduction of the nonlocal but
gauge-invariant gluon condensate hA2imin, which reduces to
hA2i in the Landau gauge in Refs. [82–85]. In fact,
hA2imin ¼ hAhAhi; see the discussion below (5).
Other approaches in which (dynamical) gluon mass scales

played a role are, for example, Refs. [19,23,30,64,86–96].

C. BRST-invariant gluon field in presence
of a background

We are thus ultimately interested in investigating the
spontaneous generation of a gluon mass. In the presence of
a background and in the Landau-DeWitt gauge, renorm-
alization (see Appendix A) imposes that this mass (and an
asymmetry in this mass, for which see Sec. III B) should
couple only to the quantum fields, i.e., the full field minus
the background value. This is because quantum fields and
background renormalize differently.
To implement this, the formalism of Sec. II A needs to be

slightly adapted. Assume a background Āa
μ such that the full

gluon field aaμ can be written as

aaμ ¼ Āa
μ þ Aa

μ; ð12Þ

where Aa
μ now denotes the quantum part only. As there is a

background, it is convenient to use the Landau-DeWitt
(LDW) gauge-fixing condition or Landau background
gauge

D̄ab
μ ðabμ − Āb

μÞ ¼ 0; ð13Þ
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where D̄ab
μ ¼ δab∂μ − gfabcĀc

μ is the background covariant
derivative. The Landau-DeWitt gauge can be defined as
corresponding to the (local) minima of the functional

Z
ddxðaaμ − Āa

μÞ2 ¼
Z

ddxAa
μAa

μ ð14Þ

under infinitesimal gauge transformations δaaμ ¼ δAa
μ ¼

Dab
μ ωb. We refer to Refs. [97,98] for more details. Also

here, the extremum will be a minimum upon having a
positive Faddeev-Popov operator D̄ab

μ Dbc
μ .

Mark that the background does not transform here; the
entire gauge transformation is associated to the quantum
part. In principle, the gauge transformation can be distrib-
uted over the quantum and classical part, but the choice we
make is the most natural one and relates best to the BRST
operator to be introduced later [see (20) and Appendix A],
at vanishing external sources. The BRSToperator then also
leaves the background field untouched.
Mark further that invariance under gauge transforma-

tions of the background (under which the quantum part
transforms as a matter field) is a separate issue and is not a
problem in our case (unlike in Ref. [99], for example); see
Sec. III D and Appendix A.
Finally, we note that, similarly to the case in the absence

of background, we can extend the Landau-DeWitt gauge
into to a linear covariant version of it, which we refer to as
linear background covariant gauge,

SbLC ¼
Z

d4x

�
1

4
ðFa

μνÞ2 þ
α

2
baba þ ibaD̄μðaaμ − Āa

μÞ

þ c̄aD̄μDμca
�
: ð15Þ

We now need to construct the field ðaaμÞh obeying the
Landau-DeWitt gauge

D̄ab
μ ððabμÞh − Āb

μÞ ¼ 0: ð16Þ

To do this, we will perform an expansion in the quantum
fields.2 In this paper, we only aim to do one-loop compu-
tations, such that first order in the quantum fields will
suffice.
We write the necessary gauge transform as 1þ h1 þ � � �,

where h1 ¼ igξa1t
a is assumed first order in the quantum

fields and the dots contain higher-order terms. Up to first
order, we have

ahμ ¼ Āμ þ Aμ þ
i
g
D̄μh1 þ � � � ; ð17Þ

where we used that h†1 ¼ −h1 (which is a consequence of
the unitarity of 1þ h1 þ � � � at first order). Imposing the
gauge condition (16) yields

D̄μAμþ
i
g
D̄2h1þ��� ¼ 0 ⇒

i
g
h1¼−

1

D̄2
D̄μAμ: ð18Þ

As such, we get

ahμ − Āμ ¼
�
δμν − D̄μ

1

D̄2
D̄ν

�
Aν þ � � � : ð19Þ

At first order in the quantum fields, ðaaμÞh is indeed
invariant under δAa

μ ¼ Dab
μ ωb ¼ D̄ab

μ ωb þ � � �. After gauge
fixing with the Faddeev-Popov procedure, this will trans-
late into invariance under.

saaμ ¼ −Dab
μ cb; sca ¼ 1

2
gfabccbcc;

sc̄a ¼ −iba; sðrestÞ ¼ 0; ð20Þ

which is actually the very same BRST operator as defined
in (8), as aμ is now the complete field.
Lastly, the steps leading to (7) are now easily general-

ized. We can introduce a rather complicated unity,

1 ¼ N
Z

½DξDτDη̄Dη�e−Sh ; ð21aÞ

Sh ¼
Z

ddxðiτaD̄ab
μ ðah;bμ − Āb

μÞþ η̄aD̄ab
μ Dbc

μ ½ah�ηcÞ; ð21bÞ

and replace action (15) with

S≡ SbLC þ Sh ¼
Z

ddx

�
1

4
ðFa

μνÞ2 þ
α

2
baba

þ ibaD̄μðaaμ − Āa
μÞ þ c̄aD̄μDμca þ iτaD̄ab

μ ðah;bμ − Āb
μÞ

þ η̄aD̄ab
μ Dbc

μ ½ah�ηc
�
: ð22Þ

For the record, we refrain here from a full-blown all-order
algebraic analysis of the renormalizability of the theory
defined by (22) and of the background mass operator (see
the next subsection); this could be done by combining the
technology of Appendix A, Refs. [100,92], even for a more
general class of background gauge fixings as in Ref. [101].

D. ahμ → aμ in the path integral
in the Landau-DeWitt gauge

Analogously to the Ā ¼ 0 case, averages computed with
either the action (22) or the original Yang-Mills one will not
change anything at the level of physical observables,

2In this paper, we will always remain in the perturbative
formalism.
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defined via the BRST cohomology at zero ghost charge,3 as
one is free to choose any gauge to work with in practice,
and employing the Landau-DeWitt gauge, we may effec-
tively replace ahμ with aμ. A formal way to show that this
substitution is valid for expectation values of gauge-
invariant operators OiðxiÞ goes as follows. Consider then
the action S as given in (22), with α → 0, that is
S ¼ SLDW þ Sh. As before, we will use Aμ ≔ aμ − Āμ to
denote the quantum fluctuation, that is, the field integrated
over. To avoid clutter in the notation, we will strip all fields
of indices and introduce the shorthand D̄Dh ≔ D̄ab

μ Dbc
μ ½ah�.

Φ collects all quantum fields,

hO1ðx1Þ…OnðxnÞiS ¼
R ½DΦ�O1ðx1Þ…OnðxnÞe−SR ½DΦ�e−S : ð23Þ

Mark that the gauge invariance of Oi means that
Oi½a� ¼ Oi½ah�. Integration over b; τ; η̄; η leads to

δðD̄AÞδðD̄ðah − ĀÞÞ detð−D̄DhÞ: ð24Þ

Using the perturbative solution ξ� of the constraint
D̄ðah − ĀÞ ¼ 0 (see Sec. II C for the explicit solution at
leading order), we may rewrite the second Dirac delta as

δðD̄ðah − ĀÞÞ ¼ δðξ − ξ�Þ
1

j det δξð−D̄DhÞjξ¼ξ�

ð25Þ

to facilitate the ξ integration.
We also note that

δξ detð−D̄DhÞjξ¼ξ�
¼ detð−D̄DþOðD̄AÞÞ; ð26Þ

where OðD̄AÞ is a formal power series in D̄A, starting at
order D̄A. We already used here that ξ� itself is also such
power series. The other Dirac delta constraint then leads to
a factor

detð−D̄DÞ
j detð−D̄DÞj ¼ 1; ð27Þ

so the integration over τ; η; η̄ effectively constitutes a unity
and effectively replaces ah with a, at least if the last step
is valid. This is the case if the Faddeev-Popov operator is
positive, which is equivalent to stating that the second
derivative of the functional (14) is positive, i.e., that we
end up in a (local) minimum. This positivity requirement is
equivalent to removing infinitesimal Gribov gauge copies in
the Landau-DeWitt gauge, which as we already discussed
for the Ā ¼ 0 case can be a posteriori checked by means of

the ghost propagator and its positivity. As before, this is
not the case when using perturbation theory around the
perturbative vacuum, but it is the case when a sufficiently
large dynamical mass is generated; see Ref. [102] for an
explicit one-loop verification. For other work on Gribov
copies in presence of a background; see, for instance, Refs.
[97,99,103–107].
Returning to the discussion below (6), the a posteriori

generation of a sufficiently large dynamical mass thus
(partially) tames the Gribov problem, 4 and the a priori
assumption of ignoring the Gribov problem in defining the
(unique) perturbative series solution in the minimization of
(14) makes sense, and this with or without background field
Ā. This also makes (25) valid, as otherwise we would need
to include all possible solutions here.
Needless to say, the quantum effective potential of a

BRST-invariant operator is an example where the substi-
tution ahμ → aμ applies. Notice that in combination with the
results of Appendix A this also implies that the effective
action for BRST-invariant operators derived from the action
(22) will enjoy the background gauge invariance, as follows
from the Ward identity (A25). This gives an exact argu-
ment, complementing the one already provided below (43).

III. BRST-INVARIANT MASS AND ASYMMETRY

This section presents a short review of the local composite
operator (LCO) formalism as proposed in Ref. [58]
modified in the presence of a background field. The case
without background is a special case hereof and will be
discussed in greater detail in Ref. [64].

A. d = 2 gluon condensate

As we want to work with a background field, it is more
appropriate to use the Landau background gauge [108]
D̄ab

μ ðAb
μÞh ¼ 0 instead of the usual Landau gauge prescrip-

tion. For other works in the Landau background gauge, see,
for example, Refs. [109–112].
A BRST analysis (for BRST in the background gauge,

see, for example, Refs. [100,101]5) shows that, for the LCO
formalism to stay renormalizable, the dimension-2 operator
to be used is

ðahμ − ĀμÞ2: ð28Þ

First, the source terms

3Which are the classically gauge-invariant operators built from
the gauge field, up to irrelevant BRST exact terms and terms with
equation-of-motion contributions.

4We have nothing to say about “large” gauge copies.
5In [100], the BRST transform of the background is nonzero:

sĀa
μ ¼ Ωa

μ, where Ωa
μ is a ghost source. This source greatly

simplifies the proof of renormalizability. The physical case,
however, is recovered when Ωa

μ → 0, with BRST variation
(20), under which ðahÞaμ is invariant.
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Z
ddx

�
1

2
Jðahμ − ĀμÞ2 −

1

2
ζJ2

�
ð29Þ

are added to the action with J the source used to couple the
operator to the theory. The term in J2 is necessary here for
renormalizability of the connected-diagram-generating
functional WðJÞ and, subsequently, of the associated
one-particle irreducible (1PI) diagram generating func-
tional Γ, also known as the effective action. Here, ζ is a
new coupling constant whose determination wewill discuss
later. In the physical vacuum, corresponding to J → 0, it
should decouple again, at least if we were to do the
computations exactly. At (any) finite order, ζ will be
explicitly present, even in physical observables, making
it necessary to choose it as wisely as possible. Notice that ζ
is not a gauge parameter as it, in fact, couples to the BRST-
invariant quantity J2. Indeed, in a BRST-invariant theory,
we expect the gauge parameter to explicitly cancel order
per order from physical observables, a fact guaranteed by,
e.g., the Nielsen identities [113], which are in themselves a
consequence of BRST invariance [114].
Thanks to ζ, the Lagrangian remains now multiplica-

tively renormalizable (see Appendix A).
To actually compute the effective potential, it is compu-

tationally simplest to rely on Jackiw’s background field
method [115]. Before integrating over any fluctuating
quantum fields, a Legendre transform is performed, so
that formally σ ¼ 1

2
ðahμ − ĀμÞ2 − ζJ. Plugging this into the

Legendre transformation between Γ andW, we find that we
could just as well have started from the action (22) with the
following unity inserted into the path integral,6

1 ¼ N
Z

½Dσ� exp− 1

2ζ

Z
ddx

�
σ þ 1

2
ðahμ − ĀμÞ2

�
2

; ð30Þ

with N an irrelevant constant. Of course, if we could
integrate the path integral exactly, this unity would not
change a thing. The situation only gets interesting if the
perturbative dynamics of the theory would prefer to assign
a nonvanishing vacuum expectation value to σ. As such,
this σ field allows one to include potential nonperturbative
information through its vacuum expectation value. In the
case without a background, σ does indeed condense, and a
vacuum with hσi ≠ 0 is preferred.
For the record, BRST invariance is ensured if we assign

sσ ¼ −sð1
2
ðahμ − ĀμÞ2Þ, which implies off shell that sσ ¼ 0

thanks to the BRST invariance of ahμ − Āμ.

For completeness, let us write down the full gauge-fixed
action here (we consider the α → 0 limit right away, that is,
the Landau-deWitt gauge):

Sfull ¼ SLDW þ Sh −
1

2ζ

�
σ þ 1

2
ðahμ − ĀμÞ2

�
2

¼
Z

d4x

�
1

4
ðFa

μνÞ2 þ ibaD̄μðaaμ − Āa
μÞ þ c̄aD̄μDμca

þ iτaD̄ab
μ ðah;bμ − Āb

μÞ þ η̄aD̄ab
μ Dbc

μ ½ah�ηc

−
1

2ζ

�
σ þ 1

2
ðahμ − ĀμÞ2

�
2
�
: ð31Þ

The outcome of Sec. II. D can be immediately general-
ized, leading to

hO1ðx1Þ…OnðxnÞiSfull ¼ hO1ðx1Þ…OnðxnÞiSmLDW
ð32Þ

for gauge-invariant operators OiðxiÞ, where

SmLDW ≡ SLDW −
1

2ζ

Z
ddx

�
σ þ 1

2
A2
μ

�
2

: ð33Þ

Notice that on shell, or to be more precise when the
τ and b equations of motion are used, we have
sσ ¼ −sð1

2
ðahμ − ĀμÞ2Þ → −sð1

2
ðaμ − ĀμÞ2Þ ¼ −Aa

μsAa
μ ≠ 0,

ensuring that (33) is still BRST invariant.
We still need to discuss the new coupling ζ. First note

that, given the BRST invariance of the action, we can work
in a preferred gauge, that is, the Landau-DeWitt gauge; see
Sec. II D, the conclusions whereof are not effected by the
inclusion of the BRST-invariant unity (21a).
It is evident that ζ can be interpreted as a genuine new

coupling constant. Therefore, we now have two coupling
constants, g2 and ζ, with g2 running as usual, that is,
independently of ζ. This makes our situation suitable for
the Zimmermann reduction of couplings program [116];
see also Ref. [117] for a recent overview. In this program,
one coupling (ζ in our case) is reexpressed as a series in the
other (here g2) so that the running of ζ controlled by ζðg2Þ
is then automatically satisfied; see also Ref. [64]. More
specifically, ζðg2Þ is determined such that the generating
functional of connected Green’s functions, WðJÞ, obeys a
standard, linear renormalization group equation [58].
This selects one consistent coupling ζðg2Þ from a whole

space of allowed couplings, and it is also the unique choice
compatible with multiplicative renormalizability [58].
Given that we already pointed out that ζ should, in
principle, not affect physics, we can safely rely here on
this special choice, already made earlier in, e.g., Ref. [58].
This choice seems also to be a natural one from the point of

6This is equivalent to a Hubbard-Stratonovich transformation;
see, for instance, Refs. [58,64]. This also evades the interpreta-
tional issues for the energy when higher-than-linear terms in the
sources are present.
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view of the loop expansion of the background potential to
be used below.7 In the MS scheme, one finds [58,118]

ζ ¼ N2 − 1

g2N

�
9

13
þ g2N
16π2

161

52
þOðg4Þ

�
; ð34aÞ

Zζ ¼ 1 −
g2N
16π2

13

3ϵ
þOðg2Þ; ð34bÞ

ZJ ¼ 1 −
Ng2

16π2
35

6ϵ
þOðg2Þ; ð34cÞ

where Zζ and ZJ are the renormalization factors of ζJ2 and
J, respectively.

B. Introduction of asymmetry in the d = 2
gluon condensate

When temperature is switched on, it is natural to consider
the timelike and spacelike components of the AhAh con-
densate separately, or equivalently to introduce the BRST-
invariant electric-magnetic asymmetry [63],

ΔA2 ¼ hg2Ah
0A

h
0i −

1

3
hg2Ah

i A
h
i i; ð35Þ

where the Latin index denotes the space components and
Ah
μ is a shorthand for ahμ − Āμ. This asymmetry can be

included in exactly the same way as the ðahμ − ĀμÞ2
condensate; namely, we addZ

ddx
�
1

2
Kμν

�
ðahμ − ĀμÞðahν − ĀνÞ −

δμν
d

ðahμ − ĀμÞ2
�

−
1

2
ωKμνKμν þ

ω

2d
K2

μμ

�
; ð36Þ

where the dimension-2 symmetric sourceKμν couples to the

traceless operator ððahμ − ĀμÞðahν − ĀνÞ − δμν
d ðahμ − ĀμÞ2Þ

(see also Ref. [119]).
The same goal can be reached by directly adding an extra

part to the action,

1

2ω

Z
ddx

�
φμν þ

1

2
ðahμ − ĀμÞðahν − ĀνÞ

�
2

; ð37Þ

with φμν an auxiliary field analogous to σ but which we will
take to be a traceless matrix and which will thus couple to
the asymmetric part of the condensate. The parameter ω is
the analog of ζ. As we are interested in the asymmetry, we
parametrize the mass matrix as

φμν ¼ ωA

0
BBBBB@

1

− 1
d−1

. .
.

− 1
d−1

1
CCCCCA; ð38Þ

i.e., we preserve rotational invariance in the spatial part.
Determining ω in the same way, we found ζ gives [119]

ω ¼ N2 − 1

g2N

�
1

4
þ 73

1044

g2N
16π2

þOðg4Þ
�
; ð39aÞ

Zω ¼ 1þ g2N
24π2

11

ϵ
þOðg2Þ; ð39bÞ

ZK ¼ 1 −
g2N
16π2

29

6ϵ
þOðg2Þ ð39cÞ

to one-loop order. Here, Zω and ZK are the renormalization
factors of KμνKμν − 1

2d K
2
μμ and Kμν, respectively.

C. Background field independence
of physical observables

Using the standard Landau-DeWitt gauge condition, it
can be nicely shown using the (extended) Slavnov-Taylor
identity that physical observables do not depend on the
choice of the background ĀðxÞ, which is of course
expected, given that choosing ĀðxÞ corresponds to choos-
ing a specific gauge. For a formal proof, see Ref. [101].
The crux of the matter is to extend the BRST operator s to
also act on the background field via sĀ ¼ Ω, sΩ ¼ 0 (see
also Appendix A, based on Ref. [100]), withΩ an auxiliary
Grassmann background field that is to be sent to zero again
eventually. This is actually an extension of the BRST
method to formally prove gauge parameter independence
of observables in linear gauges (see Refs. [114,120]), in
which case the gauge parameter α is also made part of a
BRST doublet.
We will not exactly follow this procedure here; see also

the comment below (22). Indeed, we would also need to
properly extend the BRST operator to auxiliary fields to
maintain a full extended BRST invariance of the action. But
we can follow a slightly different route to make our point,
again benefitting from the “reduction” ah → a in the
Landau-DeWitt gauge.
Let us first consider observables that are not directly

depending on a, such as the partition function, free energy,
and related quantities. One finds, only writing the integra-
tion over the gluon degrees of freedom for simplicity,

7The ζ independence of expectation values not involving the σ
field relies, however, on taking into account the unity in an exact
fashion; see Ref. [64]. Clarifying how approximations break this
ζ independence and how increasing the truncation order reduces
this dependence remains an interesting question.
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δ

δĀðxÞ
Z

½Da�e−SLDW− 1
2ζ

R
ddxðσþ1

2
ða−ĀÞ2Þ2

¼ δ

δĀðxÞ
Z

½DA�e−SLDW− 1
2ζ

R
ddxðσþ1

2
A2Þ2

¼
Z

½DA�s
�

δ

δĀðxÞ
�Z

ddzc̄ D̄ A

��

× e−SLDW− 1
2ζ

R
ddxðσþ1

2
A2Þ2 ¼ 0 ð40Þ

using the BRST symmetry of the vacuum/action, including
of the last term of the action (the unity) [see the comments
below (33)], and the fact that the gauge-fixing part ofSLDW is
BRST exact. We also changed integration variable a → A.
Using a slightly different argumentation, we can extend

the argument to correlation functions of (renormalizable)
gauge-invariant operators OiðxiÞ. We assume xi ≠ xj for
i ≠ j so that the aforementioned operators are considered
at separate space-time points. If this were not the case, we
would have to face the renormalization of further gauge
invariant operators, e.g. OðxÞ ¼ O1ðx1ÞO2ðx2Þ if x1 ¼
x2 ¼ x. We get from (41)

δ

δĀðxÞ hO1…OniSfull

¼ δ

δĀðxÞ
Z

½DaDσ�O1…One
−SLDW− 1

2ζ

R
ddxðσþ1

2
ða−ĀÞ2Þ2

¼
�
O1…On

δ

δĀðxÞ
�
s
Z

ddzc̄ D̄ A

��
SmLDW

þ
Z

½DaDσ�O1…On
1

2ζ
ða − ĀÞ

�
σ þ 1

2
ða − ĀÞ2

�
e−SLDW− 1

2ζ

R
ddxðσþ1

2
ða−ĀÞ2Þ2

¼
�
s

�
O1…On

δ

δĀðxÞ
�Z

ddzc̄ D̄ A

���
SmLDW

−
Z

½DaDσ�O1…Onða − ĀÞ δ

δσ
e−SLDW− 1

2ζ

R
ddxðσþ1

2
ða−ĀÞ2Þ2

¼
Z

½DaDσ� δ
δσ

ðO1…OnÞða − ĀÞe−SLDW− 1
2ζ

R
ddxðσþ1

2
ða−ĀÞ2Þ2 ¼ 0; ð41Þ

where the second-to-last step is again based on BRST
invariance (first term) and the functional version of
the trivial identity ðxþ yÞe−ðxþyÞ2=2 ¼ −de−ðxþyÞ2=2=dx
(second term). In the last step, one recognizes the (func-
tional) integral of a (functional) total derivative, which
vanishes in the absence of boundary terms. We mention
that the present argumentation does not require using the
unity (30) and therefore shows that the background-
independence property should be relatively robust to
practical expansions of (30) as used below.

D. Background gauge invariance

Besides BRST invariance, another important symmetry
when working with a gluonic background field is back-
ground gauge invariance,

δĀa
μ ¼ D̄ab

μ βb; δφa ¼ −fabcβbφc; ð42Þ
where φa stands for all the quantum fields. The ordinary
Yang-Mills action with the Faddeev-Popov ghost part is
invariant under this symmetry. To see the invariance of the
extra part (29), consider the expansion (19). The back-
ground on the left-hand side of that expression only appears
in covariant derivatives, such that the entire expression
transforms as a matter field,

δððahÞaμ − Āa
μÞ ¼ −fabcβbððahÞcμ − Āc

μÞ; ð43Þ

meaning the mass term (29) is invariant.

To use the background field formalism, we can now
follow the arguments of Ref. [79]. Consider the quantum
effective action of the gluon field computed in the presence
of a background Āa

μ: ΓĀ½a�. The physical vacuum is found
by minimizing with respect to aaμ,

ΓĀ½aclĀ � ≤ ΓĀ½a� ∀ aaμ; ð44Þ

where ðaclĀÞaμ ¼ haaμiĀ is the value of aaμ in this minimum.
Now, thanks to BRST invariance, the background is in
essence a gauge parameter, such that physical quantities
may not depend on it, and we can freely choose it.8 Thence,
choosing a self-consistent background Ās defined by the
condition Ās ¼ aclĀs

, we find

8This property is fragile to the use of approximations or
modeling (as those considered within nonperturbative approaches
or the Curci-Ferrari model) leading to potential spurious effects in
the results obtained using the background effective action.
Recently, an alternative approach has been put forward that
relies, instead, on using the standard effective action ΓĀc

½A� in a
particular gauge, as defined by the choice of a center-symmetric
background Āc. The rationale for using this approach does not
rely on the background independence of the free energy and is
thus more robust to violations of the latter. In the present BRST-
invariant loop expanded approach, we expect these violations to
be minimal and the two approaches to be essentially equivalent.
This will be investigated elsewhere.
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ΓĀs
½Ās� ¼ ΓĀs

½aclĀs
� ¼ ΓĀ½aclĀ � ≤ ΓĀ½Ā�; ð45Þ

where the first equality follows from the self-consistency
condition, the second one is BRST invariance, and the third
one is the minimization condition (44) for the specific value
aaμ ¼ Āa

μ. In conclusion, the minimum of the quantum
effective action can be found by minimizing ΓĀ½Ā� with
respect to Āa

μ. Thanks to the remaining background gauge
invariance, we also know that ΓĀ½Ā� will be a (background)
gauge-invariant functional of Ā. In the presence of the
condensate and the asymmetry, the background effective
action is also a function of the condensate and the asymmetry,
variables with respect to which it also needs to be minimized.
It is important to note that ΓĀ½Ā� does not need to be Ā

independent, and its explicit computation in the next
section will make this dependence quite explicitly clear.9

This is not at odds with the previous subsection. On the
contrary, it is even to be expected, as ΓĀ½Ā� does not obey a
Slavnov-Taylor identity to begin with. Indeed, to avoid
misconceptions, we stress here that the functional ΓĀ½Ā� is
not the standard quantum effective action generating 1PI
graphs, which is ΓĀ½Ā�. It is, however, still a useful
functional that also appears in the so-called “background
equivalence theorem” for which we refer to, e.g., Ref. [101]
for more details and references. Here, we appreciate its
usefulness to select self-consistent backgrounds from its
minimization, leading to estimates of the ground-state free
energy, based on (45).

IV. COMPUTATION OF THE BACKGROUND
EFFECTIVE POTENTIAL

In what follows, we evaluate the background field
effective potential whose minima give access to the self-
consistent background and thus to order parameters for the
confinement/deconfinement transition. We work in the
Landau-DeWitt gauge, which means that we send α to 0.
As we have explained, we can then consider replacing ah

by a, which considerably simplifies the calculations.

A. Warming up in the absence of asymmetry

For the sake of simplicity, let us assume first that there is
no asymmetry. This approximation will turn out to be
justified as the asymmetry we will find below is tiny. To
evaluate the background effective potential at one-loop
order, we need the terms in the action that are at most
quadratic in the fields,Z

ddx

�
ζ

2
m4

�
1 −

δζ

ζ

�
þ 1

2
Aa
μ

�
−δμνD̄2

ab

þ
�
1 −

1

α

�
D̄ac

ν D̄cb
μ þ δabδμνm2

�
Ab
ν þ c̄aD̄2

abc
b

�
; ð46Þ

where the limit α → 0 is assumed and where we used the
notation Zζ ¼ 1 − δζ=ζ. Renormalization factors in the part
quadratic in the quantum fields are ignored, as they will not
be necessary at one-loop order. We also wrote σ ¼ ζm2.
Integrating out the fields yields traces of logarithms of

the operators multiplying their quadratic parts. To deal with
them, we work in a space where the covariant derivative is
diagonal. Let us see how this works in the SU(2) case
before generalizing to SUðNÞ. We first go over to a basis in
color space where ϵab3 is diagonal,

ϵab3ebκ ¼ iκeaκ ; ð47Þ
with κ ∈ f−1; 0;þ1g. If we write Aa

μ ¼ Aκ
μeκa, then we

immediately find that D̄0Aκ
μ ¼ ∂0Aκ

μ − irκTAκ
μ (no sum

over κ). In Fourier space, we can therefore write

D̄μAκ
ν ¼ iPκ

μAκ
ν ðPκ

0 ¼ p0 − rκT; Pκ
i ¼ piÞ: ð48Þ

As such, the one-loop effective potential is

Vðr;m2Þ ¼ ζ

2
m4

�
1 −

δζ

ζ

�

þ 1

2
tr ln

�
δμνP2

κ −
�
1 −

1

α

�
Pκ
μPκ

ν þ δμνm2

�
− tr lnP2

κ ; ð49Þ

where the trace refers to space-time indices as well as color
charges and momenta. An operator of the type

Xδμν þ Y
Pκ
μPκ

ν

P2
κ

ð50Þ

has one eigenvector parallel to Pκ
μ with eigenvalue X þ Y

and d − 1 eigenvectors perpendicular to Pκ
μ with eigenvalue

X. This means that

tr ln

�
Xδμν þ Y

Pκ
μPκ

ν

P2
κ

�
¼ ðd − 1Þ lnX þ lnðX þ YÞ: ð51Þ

Using this, we arrive at

Vðr;m2Þ ¼ ζ

2
m4

�
1 −

δζ

ζ

�
þ d − 1

2
tr lnðP2

κ þm2Þ

þ 1

2
tr ln

�
P2
κ

α
þm2

�
− tr lnP2

κ ; ð52Þ

where the trace now refers to the color charges and the
momenta. In the limit α → 0 neglecting a trivial term, this
gives

Vðr;m2Þ ¼ ζ

2
m4

�
1 −

δζ

ζ

�
þ d − 1

2
tr lnðP2

κ þm2Þ

−
1

2
tr lnP2

κ ; ð53Þ9It can be shown, however, to be constant on constant back-
grounds, at zero temperature [76,78].
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where the last term comes from a partial cancellation
between the ghost contribution and the massless longi-
tudinal gluon mode. The analysis of the SU(2) potential can
be restricted to the interval r ∈ ½0; 2π� and even ½0; π�, the
center-symmetric point corresponding to r ¼ π.
The formula for the background potential in the SUðNÞ

case is formally the same as (53). The only change is that the
N2 − 1 labels κ become vectors of RN−1 whose components
are denoted κj, with j referring to the diagonal directions
of the algebra [3 and 8 in the SU(3) case for instance].
Correspondingly, the variable r also becomes a vector of
RN−1 of components rj, and we have now Pκ

0 ¼ p0 − rjκjT.
Out of the N2 − 1 labels κ, N − 1 are equal to 0, and the rest
are the roots characterizing the associated Lie algebra. In the
case of SU(3), for instance, there are two zeros and six roots
�ð1; 0Þ, �ð1=2; ffiffiffi

3
p

=2Þ, and �ð1=2;− ffiffiffi
3

p
=2Þ. The analysis

of the SU(3) potential can be restricted to r3 ∈ ½0; 2π�, while
charge conjugation invariance (in pure YM) imposes r8 ¼ 0

(in this range of values for r3). The center-symmetric point
corresponds in this case to r3 ¼ 4π=3. More on this can be
found in, e.g., Ref. [78]. We shall later exploit these remarks
to infer the expression for the SU(3) potential from that of
the SU(2) potential.

B. Including the asymmetry

In the presence of the asymmetry, the quadratic part of
the action reads

Z
ddx

�
ζ

2
m4

�
1 −

δζ

ζ

�
þ ω

2
A2

d
d − 1

�
1 −

δω

ω

�

þ 1

2
Aa
μ

�
−δμνD̄2

ab þ
�
1 −

1

α

�
D̄ac

ν D̄cb
μ

þ δabδμνm2 þ δabMμν

�
Ab
ν þ c̄aD̄2

abc
b

�
; ð54Þ

where, again, the limit α → 0 is assumed and where we
used the notation Zω analogous to Zζ ¼ 1 − δζ

ζ . We also
wrote φμν ¼ ωMμν.
Integrating out the fields, we arrive now at the SU(N)

one-loop effective potential

Vðr;m2; AÞ ¼ ζ

2
m4

�
1 −

δζ

ζ

�
þ ω

2
A2

d
d − 1

�
1 −

δω

ω

�

þ 1

2
tr ln

�
δμνP2

κ −
�
1 −

1

α

�
Pκ
μPκ

ν

þ δμνm2 þMμν

�
− tr lnP2

κ ; ð55Þ

where, as before, a summation over κ is implied. To more
easily handle the d × d matrix coming from the gluon
fields, let us, following Ref. [119], separate out the part
without the mass matrix Mμν:

tr ln

�
δμνP2

κ −
�
1−

1

α

�
Pκ
μPκ

νþ δμνm2þMμν

�

¼ tr ln
�
δμνP2

κ −
�
1−

1

α

�
Pκ
μPκ

νþ δμνm2

�

þ tr ln

�
δμνþ

1

P2
κ þm2

�
δμλ − ð1− αÞ Pκ

μPκ
λ

P2
κ þ αm2

�
Mλν

�
:

ð56Þ

In the limit α → 0, this gives

ðd − 1Þtr lnðP2
κ þm2Þ þ tr lnP2

κ

þ tr ln

�
δμν þ

1

P2
κ þm2

�
δμλ −

Pκ
μPκ

λ

P2
κ

�
Mλν

�
ð57Þ

plus an irrelevant constant term.
If we now consider the operator in the last term, we

can write it in an orthonormal basis consisting of the
vectors:

(i) the unit vector pointing in the direction of Pκ
μ,

(ii) the vector obtained by replacing the timelike com-
ponent of Pκ

μ by −p2
i =P

κ
0 (so as to make a vector

perpendicular to Pκ
μ) followed by norming this

vector,
(iii) an orthonormal basis of spacelikevectors perpendicular

to pi.
In this basis, the operator under consideration is lower
triangular, such that its determinant is the product of its
diagonal elements. These diagonal elements are found
to be:

(i) 1,
(ii) 1þ A

P2
κþm2 ð1 − d

d−1
ðPκ

0
Þ2

P2
κ
Þ,

(iii) 1 − A
P2
κþm2

1
d−1 (with multiplicity d − 2).

Gathering all these results, we find that the effective
potential at one loop is equal to

Vðr;m2; AÞ ¼ ζ

2
m4

�
1 −

δζ

ζ

�
þ ω

2
A2

d
d − 1

�
1 −

δω

ω

�

− tr lnP2
κ þ

1

2
tr ln

�
P2
κðP2

κ þm2Þ

þA

�
P2
κ −

d
d − 1

ðPκ
0Þ2

��

þ d − 2

2
tr ln

�
P2
κ þm2 −

A
d − 1

�
: ð58Þ

As a cross-check of this formula, in Appendix B, we
provide an alternative derivation within the Nakanishi-
Lautrup formalism. We also notice that, upon taking the
limit A → 0, one retrieves Eq. (53).
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C. Evaluation of the (sum) integrals

The formula (53) and its generalization (58) involve
various (sum integrals), which we now evaluate. We
consider first the SU(2) case for simplicity and then use
it to infer the corresponding SU(3) formulas.
The expression in the last logarithm of (58) expands as

ðp0 − rκTÞ2 þ p⃗2 þm2 − A
d−1, and we can immediately

apply formula (C8) from Appendix C to find that

d − 2

2
tr ln

�
P2
κ þm2 −

A
d − 1

�

¼ 3
d − 2

2
trT¼0 ln

�
p2 þm2 −

A
d − 1

�

þ 2T
Z

d3p
ð2πÞ3 lnð1 − 2e−

ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T cos r

þ e−2
ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T Þ þ T

Z
d3p
ð2πÞ3 lnð1 − e−

ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T Þ2: ð59Þ

Here, we put d ¼ 4 in the (finite) zero-temperature cor-
rection part, and we summed over κ. In the limitA → 0, this
formula can be adapted to obtain the integral needed in

(53). Moreover, when both A ¼ 0 and m ¼ 0, it can be
adapted to obtain

−tr lnP2
κ ¼ −3trT¼0 lnp2 − 2T

×
Z

d3p
ð2πÞ3 lnð1 − 2e−

ffiffiffi
p⃗2

p
T cos rþ e−2

ffiffiffi
p⃗2

p
T Þ

− T
Z

d3p
ð2πÞ3 lnð1 − e−

ffiffiffi
p⃗2

p
T Þ2; ð60Þ

which also appears in (58). Finally, when it comes to the
expression in the second-to-last logarithm of (58), it is
written ðp0 − rκTÞ4 þ ðp0 − rκTÞ2ð2⃗p2 þ m2 − A

d−1Þþ
⃗p2ð⃗p2 þ m2 þ AÞ. With the definitions

α¼ 2p⃗2 þm2 −
A

d− 1
; β ¼ p⃗2ðp⃗2 þm2 þAÞ; ð61aÞ

z� ¼ α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 4β

p
2

; ð61bÞ

this becomes ððp0 − rκTÞ2 þ zþÞððp0 − rκTÞ2 þ z−Þ. As
such, we find

1

2
tr ln

�
P2
κ þm2 þ A

�
1 −

d
d − 1

ðPκ
0Þ2
P2
κ

��
þ 1

2
tr lnP2

κ

¼ 3

2
trT¼0 ln

�
p2 þm2 þA

�
1 −

d
d − 1

p2
0

p2

��
þ 3

2
trT¼0 lnp2

þ T
Z

d3p
ð2πÞ3 ln

	
1 − 2e−

ffiffiffiffi
zþp
T cos rþ e−2

ffiffiffiffi
zþp
T



þ T

2

Z
d3p
ð2πÞ3 ln

	
1 − e−

ffiffiffiffi
zþp
T



2

þ T
Z

d3p
ð2πÞ3 ln

	
1 − 2e−

ffiffiffi
z−

p
T cos rþ e−2

ffiffiffi
z−

p
T



þ T

2

Z
d3p
ð2πÞ3 ln

	
1 − e−

ffiffiffi
z−

p
T



2
: ð62Þ

Putting all of this together, we find that the one-loop effective potential at finite temperature is

Vðr;m2;AÞ ¼ VT¼0 þ T
Z

d3p
ð2πÞ3 ln

	
1 − 2e−

ffiffiffiffi
zþp
T cos rþ e−2

ffiffiffiffi
zþp
T



þ T

2

Z
d3p
ð2πÞ3 ln

	
1 − e−

ffiffiffiffi
zþp
T



2

þ T
Z

d3p
ð2πÞ3 ln

	
1 − 2e−

ffiffiffi
z−

p
T cos rþ e−2

ffiffiffi
z−

p
T



þ T

2

Z
d3p
ð2πÞ3 ln

	
1 − e−

ffiffiffi
z−

p
T



2

þ 2T
Z

d3p
ð2πÞ3 ln

�
1 − 2e−

ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T cos rþ e−2

ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T

�
þ T

Z
d3p
ð2πÞ3 ln

�
1 − e−

ffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2−A

3

p
T

�2

− 2T
Z

d3p
ð2πÞ3 ln

	
1 − 2e−

ffiffiffi
p⃗2

p
T cos rþ e−2

ffiffiffi
p⃗2

p
T



− T

Z
d3p
ð2πÞ3 ln

	
1 − e−

ffiffiffi
p⃗2

p
T


2

: ð63Þ

The zero-temperature contribution does not depend on r and is therefore the same as what was found in Ref. [119], namely,
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VT¼0 ¼
N2 − 1

2ð4πÞ2
�
1

18
ln

�
m2 − A=3

μ̄2

�
½7A2 þ 27m4� þ

�
−
155

522
A2 þ 11

12
Am2 −

87

26
m4 þ 1

4

m6

A

�

þ 1

18
½5A2 þ 12Am2 þ 9m4�

�
ln

�
A

A − 3m2

�
þ ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þA
m2 − A

3

s �
− ln

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ A
m2 − A

3

s ��

−
ðm2 − A

3
Þ

12A
ð6A2 þ 11Am2 þ 3m4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þA
m2 − A

3

s
þ 9

13

ð4πÞ2
g2N

m4 þ 1

3

ð4πÞ2
g2N

A2

�
; ð64Þ

with N ¼ 2.
The extension to SU(3) is straightforward. Given that we

can restrict to r8 ¼ 0 and that the label κ spans two zeros
rather than one, together with the SU(3) roots given above,
with respective projections along the direction 3 being �1
and twice �1=2, the SU(3) formula for the potential as a
function of r≡ r3 can be obtained from (63) by (1) using
VT¼0 with N ¼ 3; (2) duplicating the integrals that do not
depend on r, (3) keeping the integrals that depend on r, and
(4) adding twice these integrals with r → r=2.

V. NUMERICAL RESULTS AND DISCUSSION

A. Zero-temperature limit and parameter setting

Using Eq. (64), it can be checked that one has A ¼ 0 at
T ¼ 0; see Ref. [119]. Then, solving ∂VT¼0=∂m2

jm2¼m2
min;T¼0

¼ 0 with the renormalization group optimized

choice μ̄ ¼ mmin;T¼0, one finds

g2ðm2
min;T¼0ÞN
16π2

¼ 36

187
: ð65Þ

Using the one-loop β function and ΛMS ≈ 0.752
ffiffiffi
σ

p
for

N ¼ 2 [121], that is, ΛN¼2

MS
≈ 0.331 GeV using

ffiffiffi
σ

p ¼
0.44 GeV for the scale setting, one finds the solution

m2
min;T¼0 ¼ e17=12ΛN¼2

MS
≈ 0.451 GeV2: ð66Þ

In the SU(3) case, one finds instead

m2
min;T¼0 ¼ e17=12ΛN¼3

MS
≈ 0.207 GeV2 ð67Þ

based on ΛN¼3
M̄S

≈ 0.224 GeV [122].
Interestingly enough, these correspond to values of the

mass parameter equal to 672 and 455 MeV, respectively,
pretty close to those obtained when fitting Landau gauge
propagators using the Curci-Ferrari model; Ref. [79] used
710 and 510 MeV, respectively. We will see below that the
similarities with the CF model do not end here.
With the parameters fixed at T ¼ 0, we can now study

finite temperature effects and their impact on both the
Polyakov loop and the asymmetry.

B. Without asymmetry

Following the structure of the previous section, let us
first assume that there is no asymmetry.
For each temperature, we find the values rminðTÞ and

m2
minðTÞ of r and m2 that minimize the potential Vðr;m2Þ.

We notice that the minimization might be tricky since the
potential is defined only over the semiaxis m2 ≥ 0. In
particular, the absolute minimum of the potential could be
located at m2 ¼ 0 without corresponding to a stationary
point. Of course, we should follow the deepest stationary
minimum as this corresponds to the limit of zero sources.
The results of following this minimum are shown in Fig. 1.
As explained earlier, the fact that rmin is moving away from
its center-symmetric value, r ¼ π in the SU(2) case and
r ¼ 4π=3 in the SU(3) case, indicates deconfinement. The
transition is continuous in the SU(2) case and first order in
the SU(3) case as expected. This is further illustrated in
Fig. 2, in which we show the potential as a function of r for
temperatures just below Tc, at Tc, and just above Tc. More
precisely, what is shown in this figure is the potential
Vðr;m2

minÞ, where m2 has been adjusted to m2
min at each

temperature. Although convenient in the SU(2) case, this
is not the most efficient way to illustrate the transition in
the SU(3) case because m2

min has a jump at Tc, which
complicates the interpretation. This is illustrated in the
right plot of Fig. 2 and the corresponding caption. A more
convenient quantity in this case is the reduced potential
VðrÞ≡ Vðr;m2ðrÞÞ, where m2ðrÞ is obtained by minimiz-
ing with respect to m2 at fixed r (by this, we mean again
locating the deepest stationary minimum). The reduced
potential is also shown in Fig. 2. We see that we recover the
usual interpretation of the transition in the SU(3) case. As
for the SU(2) case, the interpretation is essentially the same
whether we use Vðr;m2

minÞ or Vðr;m2ðrÞÞ.
Using the zero-temperature parameters given above, the

transition temperatures are found to be Tc ¼ 0.230 GeV
in the SU(2) case and Tc ¼ 0.1635 GeV in the SU(3) case.
Surprisingly, these values are quite close to those reported
in Ref. [79] within the one-loop CF model. This can be
understood in a simple way as follows. First, we already
noticed above that the values for m2

min at T ¼ 0 are rather
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close to those of the CF mass parameter, both in the SU(2)
case and in the SU(3) case. Moreover, we note from Fig. 1
that, below Tc, m2

min changes marginally and thus remains
close to its value at T ¼ 0. We have thus found that, at
least at the present level of approximation, the dynami-
cally generated condensate basically reproduces (from a
BRST-invariant setup) the one-loop CF model in the low-
temperature phase (which usually features a constant
mass). It is then not a surprise that the obtained transition
temperatures are close to those in the CF model.
The marginal variation of m2

min with T in the low-
temperature phase can be further understood as follows.
The gap equation that determines m2

min is

0¼ ∂V
∂m2


m2

min

¼ ζm2
min

�
1−

δζ

ζ

�
þd− 1

2
tr

1

P2
κ þm2

min

; ð68Þ

where we note that only massive integrals contribute. In
the low-temperature phase, r should be taken equal to π

[we consider the SU(2) case first for simplicity but the
result generalizes to SUðNÞ]. In the presence of this
confining background, the tadpole integrals corresponding
to κ ¼ �1 become fermionic tadpole integrals. We can then
separate the T ¼ 0 part from the thermal part and write

0 ¼ ∂VT¼0

∂m2


m2

min

þ 3

4π2

Z
∞

0

dq
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
min

p
×
�

1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

min

p
=T − 1

−
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

min

p
=T þ 1

�
: ð69Þ

To study the behavior of m2
min as T → 0, we write m2

min ¼
m2

min;T¼0 þ δm2
min with δm2

min small and expand the pre-
vious formula to first nontrivial order. Because

0 ¼ ∂VT¼0

∂m2


m2

min;T¼0

; ð70Þ

this first nontrivial order yields

FIG. 1. The condensatem2
min (left) and background rmin (right) at the minimum of the potential for the SU(2) (top) and SU(3) (bottom)

theories, under the assumption that A ¼ 0. The dashed lines in the right plots show the region below which the absolute minimum of the
potential is no longer a stationary point, although there is still a local stationary minimum. The dotted lines show the region below which
the stationary minimum is lost. The inset zooms in on the region above the transition where the solution is lost; see the text below for
more details. Units in GeV.
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δm2
min ∼

3

4π2

R∞
0 dq q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þm2
min;T¼0

p
�

2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

min;T¼0

p
=Tþ1

− 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

min;T¼0

p
=T
−1

�
∂
2VT¼0=∂ðm2Þ2jm2

min;T¼0

: ð71Þ

The numerator can be approximated using low-temperature
expansions for the tadpole integrals, whereas the denom-
inator can be computed explicitly. We arrive at

δm2
min

m2
min;T¼0

∼
1

3π

�
mmin;T¼0

2πT

�
1=2

e−mmin;T¼0=T; ð72Þ

so that m2
min approaches its T ¼ 0 value exponentially. In

fact, since mmin;T¼0 ≃ 3Tc, the exponential factor remains
tiny over the whole confined phase, which, in turn,
explains why the mass changes marginally in this phase.
Above the transition, the background r departs from π and
becomes a function of T that introduces a new source of T
dependence in the right-hand side of Eq. (69). This
explains why m2

min can have a stronger variation in the
deconfined phase; see Fig. 1.
So far, we have been concerned with the physical

solution of the gap equation as given by the minimum

of Vðr;m2Þ and which corresponds to a nonzero m2
min at

T ¼ 0. At T ¼ 0, there is another solution, m2 ¼ 0,
corresponding to a maximum of VT¼0. Its fate when T >
0 is important for it controls what happens with the physical
solution for T > Tc as we now argue. First, let us have a
look at the m2 derivative of Vðrmin; m2Þ at m2 ¼ 0. This
derivative reads

∂V
∂m2


m2¼0

¼ 3

2
tr

1

P2
κ
¼ 3T2

4

�
B2ð0Þ þ 2B2

�
rmin

2π

��
; ð73Þ

where we have used that, in the presence of a background,
the massless tadpole integral can be written in terms of the
Bernouilli polynomial B2ðxÞ ¼ x2 − xþ 1=6. Now, as long
as T < Tc, we have rmin ¼ π [again, we consider the SU(2)
case, but the proof generalizes to SUðNÞ], and the term
between brackets writes

FIG. 2. Top: the potential Vðr; m2
minÞ for different temperatures, in the SU(2) case (left) and in the SU(3) case (right). In this latter case,

because m2
min jumps at the transition, Vðr; m2

minÞ does not provide the usual picture of a transition with degenerate minima. What
happens is that just below Tc the minimum is located at 4π=3, corresponding to a certain value ofm2

minðT < TcÞ. Similarly, above Tc, the
minimum is located away from 4π=3, corresponding to a certain value of m2

minðT > TcÞ, and one has m2
minðT−

c Þ ≠ m2
minðTþ

c Þ. When
approaching Tc from below, Vðr; m2

minðT < TcÞÞ never develops a broken symmetry form, and similarly when approaching Tc from
above, Vðr; m2

minðT > TcÞÞ always keeps its broken form. What happens at T ¼ Tc is that the symmetric form of Vðr; m2
minðT < TcÞÞ is

replaced by the broken form of Vðr; m2
minðT > TcÞÞ. Bottom: the reduced potential VðrÞ ¼ Vðr; m2ðrÞÞ for different temperatures, in the

SU(2) case (left) and in the SU(3) case (right). Units in GeV.
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B2ð0Þ þ 2B2

�
1

2

�
¼ 1

6
þ 2

�
1

4
−
1

2
þ 1

6

�

¼ 1

6
þ 2

�
−

1

12

�
¼ 0; ð74Þ

which is nothing but the well-known cancellation
between the bosonic and fermionic tadpole integrals
appearing in (69) in the massless case. This means that,
as long as T < Tc, in addition to the physical minimum at
m2

min, the potential Vðrmin; m2Þ has a maximum at
m2 ¼ 0. In contrast, whenever T > Tc, r ¼ π þ 2πx, and
we find

B2ð0Þ þ 2B2

�
1

2
þ x

�

¼ 1

6
þ 2

�
1

4
þ xþ x2 −

1

2
− xþ 1

6

�
¼ 2x2 > 0: ð75Þ

This means that, for T > Tc, the maximum of Vðrmin; m2Þ
is pushed towardm2 > 0 values. As we continue increasing
the temperature further, we find that this maximum
eventually merges with the physical minimum, thus
causing the loss of both extrema above some temperature.
To clarify this feature further, we observe that, above

some temperature (T > T1 > Tc) and below a certain
background (r < r1ðTÞ), the function Vðr;m2Þ has no
extrema with respect to m2. The value r1ðTÞ corresponds
to the appearance of a spinodal located at m2

1ðTÞ at which
the minimum and the maximum in m2 merge. The
functions r1ðTÞ and m2

1ðTÞ can be obtained by solving
the coupled equations ∂V=∂m2 ¼ 0 and ∂

2V=∂ðm2Þ2 ¼ 0
for each temperature above T1. The function r1ðTÞ is
represented by a dotted curve in the right plots of
Fig. 1. The inset in the plot shows that the curve rminðTÞ
eventually meets the curve r1ðTÞ at a certain temperature
T loss > T1 beyond which the solution is lost. We
find T loss ≃ 0.2504 GeV in the SU(2) case and
T loss ≃ 0.1715 GeV in the SU(3) case. In conclusion, the
deconfined phase can only be explored within a tiny range
of temperatures above Tc. Let us also mention that the
existence of r1ðTÞ implies that, for T > T1, the reduced
potential introduced above is defined only for r ∈
½r1ðTÞ; 2π − r1ðTÞ� [we consider the SU(2) case for
illustration].
Finally, for completeness, we mention that there is

another function r2ðTÞ worth mentioning for T > T2 (with
T2 < T1). For r < r2ðTÞ, the absolute minimum of
Vðm2; rÞ in the direction of m2 is not a stationary point
anymore (in the sense of a vanishing derivative). Rather, it
is located atm2 ¼ 0 where it has a nonvanishing derivative.
This means that when rminðTÞ goes below that line

(represented by a dashed curve in the right plots of
Fig. 1) we are not following the absolute minimum of
the potential anymore but rather the deepest stationary
minimum. This should be fine, however, since this
is the point that should correspond to the limit of zero
sources.

C. With asymmetry

When we allow for the asymmetry, we have to minimize
the potential with respect to three parameters: r,m2, and A.
Let us consider, for simplicity, the SU(2) case. Up to
T ¼ 0.234 GeV, we find minima at rmin ¼ π, indicating
that we are in the confined phase. The minimizing values
forA andm2 for T < 0.234 GeV are given in Fig. 3. Above
T ¼ 0.234 GeV, the numerics become less trustworthy. It
should be mentioned here that the minimization is com-
plicated by the fact that the arguments of the potential obey
certain constraints. For instance, for a given m2, A is
bounded from above by 3m2.
What is certain is that, above Tc, r ¼ π is no longer a

minimum. However, the values for the minimizing para-
meters that we find numerically at T > Tc, taking, for
example, T ¼ 0.235 GeV, do not give the exact minimum
of V. To cure this, we can, in principle, perform some fine-
tuning in the following way: we take the values of r and A
that we found and plug them into the potential, and we
minimize the potential for m2 and find a new value of m2.
We then do the same but keepingm2 andA constant at their
last-found values to find a new r which minimizes the
potential. Finally we do the same by keeping r and m2

constant and minimizing for A. We then go back to the
first step, and we go on until we have found a stable
minimum. As it turns out, however, successively minimiz-
ing in this way leads to a loss of the stationary minimum of
Vðm2Þ, as one can see in Fig. 4, in which we have plotted
Vðm2Þ for several iterations of the fine-tuning procedure. It
thus appears that the minimum we found for temperatures
in the confining phase simply disappears above the tran-
sition. Also, the absolute minimum will now lie at
m2 ¼ 0, where the effective potential becomes complex.
Something similar was also observed in Ref. [123]; see also
Ref. [124].
The previous difficulties can be illustrated further as

follows. One checks that, for any given r (or at least in the
vicinity of r ¼ π), the potential admits a minimum in the
plane ðm2;AÞ. This allows one to define m2ðrÞ and AðrÞ
and then the reduced potential VðrÞ≡ Vðr;m2ðrÞ;AðrÞÞ,
similarly to what we did in the previous section. The
reduced potential is shown in Fig. 4 for various temper-
atures. We see that at some temperature below Tc the
maximum at r ¼ 0 (or r ¼ 2π) starts moving into the
interval �0; 2π½. Eventually, it fuses with the minimum at
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r ¼ π. At this spinodal, the curvature is 0, which serves as
an identification of Tc.

10 At the same time, however,
the minimum disappears, and one cannot follow it into
the deconfined phase. Our conclusion is then that, in the
presence of asymmetry, we have no access to the deconfined
phase, at least not within our current level of treatment.
It is commonly known that at high(er) temperatures

resummations are in order to save the perturbative expan-
sion; see, e.g., Refs. [125,126] or the reviews [127,128]. We
will not attempt this here, as our main focus was on
determining the deconfinement transition and its interplay
with the dimension-2 condensates. Our findings are, how-
ever, clear: the critical deconfinement estimate, Tc ≈ 0.231
GeV, is very close to the one-loop estimate reported in
Ref. [79] using the T ¼ 0 Curci-Ferrari mass fit parameter,
namely, Tc ≈ 0.238 GeV.We repeat here we did not use any
external (lattice) input, except for the estimate of ΛMS of

course. A posteriori, this is not such a surprise; the used
value for the (temperature independent) gluon mass in
Ref. [79] was mðTÞ ≈ 0.710 GeV, while here we find
that the dynamical mðTÞ indeed varies only little from its
mðT ¼ 0Þ ≈ 0.670 GeV value [cf. Eq. (66)], next to a
pretty small asymmetry. For the record, functional
approaches as in Ref. [39] arrived at Tc ¼ 0.230�
0.023 GeV, i.e., all values in the same ballpark. This extends
to the variational estimate of Ref. [129], Tc ≈ 0.239 GeV
or the Coulomb gauge variational estimate Tc ≈ 0.275–
0.290 GeV [130]. For comparison, lattice estimates for
the SU(2) transition temperate are Tc ≈ 0.295 GeV [2] or
Tc ≈ 0.312 GeV [1,129].
We find similar difficulties for the SU(3) case.
Let us spend a few more words on the asymmetry A.

Next to the pioneering Landau gauge lattice study of
Ref. [63] and later efforts as in Refs. [131,132], the only
analytical investigation of it so far is Ref. [123] by one of
us; see also Ref. [119]. As the Polyakov loop was not part
of that approach, nothing could be said about the sensitivity
of the asymmetry to the phase transition. Now, we do have
such evidence by working in the Landau-DeWitt gauge,
albeit the findings are not exactly numerically comparable,
not only because we do not have results in the deconfined

FIG. 4. Left: Vðm2Þ where r and A are constants found by minimizing the potential in the fine-tuning process as described in the text,
given for different numbers of iterative fine-tuning n. Right: the reduced potential VðrÞ ¼ Vðr;m2ðrÞ;AðrÞÞ and the loss of solution
at Tc. All values are in GeV.

FIG. 3. The parameters m2
min (top) and Amin (bottom) for the SU(2) theory, shown for temperatures where rmin ¼ π. Units in GeV.

10It could seem from Fig. 4 that, after the maximum at r ¼ 0
enters the r > 0 region, there is a stationary minimum at r ¼ 0
that can become the absolute one before the destabilization of the
one at r ¼ π; this would then lead to a first-order transition. We
have checked that, before this happens, the reduced potential in
the vicinity of r ¼ 0 is, however, no longer well-defined because
of the inability to find a stationary ðmðrÞ;AðrÞÞ.
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phase, but also the magnitude of the asymmetry is con-
siderably smaller than that reported on the lattice.

VI. CONCLUSIONS

Let us end by pointing out a few possible routes toward a
further development of the framework proposed here. It has
been conjectured that the electric and magnetic Landau
gauge propagators at zero momentum, corresponding to the
respective screening masses, are sensitive to the phase
transition (and even its order) in Ref. [8].11 This scenario
is, however, far from clear in the Landau gauge [133–135].
In fact, it has been argued in Refs. [136,137] that there is no
actual reason for the Landau gauge propagators to be
sensitive to the transition because the average gluon field
is not an order parameter in this case. Still, in
Refs. [136,137], a particular background Landau gauge
(referred to as center symmetric) has been put forward in
which the background takes a center-invariant configuration
in any phase. In this gauge, the average gluon field becomes
an order parameter, and, correspondingly, the electric
propagator shows distinctive features at the transition
[137]. It would be interesting to revisit the present consid-
erations in this particular gauge. Evidently, one expects the
asymmetric gluon condensate to influence exactly the
aforementioned quantities.
The center-symmetric Landau gauge is closely related to

the formalism used in the present work and based on the
background effective potential. However, if the former relies
on the use of a standard Legendre transform, the justification
of the latter (and the equivalence with the former) relies on
the background independence of the free energy [78]. This
property is not necessarily met identically within an approxi-
mated setting or in the presence of modeling.12 For instance,
in the case of the Curci-Ferrari model, the use of the center-
symmetric Legendre transform leads to improved predic-
tions as compared to those obtained using the background
effective potential. In the present, BRST-based approach, the
background independence of the observables, and in par-
ticular of the free energy, is protected by the combined use of
the BRST symmetry of the action, the BRSTexactness of the
Faddeev-Popov action, and the fact that the background
dependence in the σ sector cancels identically upon exact
integration of σ. So, even though, as we have seen, the
dynamical condensate mimics the Curci-Ferrari model in
the low-temperature phase, we expect a better account of the
background independence of the observables and therefore a
better agreement between the present approach and that

based on the center-symmetric Landau gauge. Results in this
direction will be reported elsewhere.
Overall, the results presented are eventually rather similar

to the ones of the phenomenological massive Curci-Ferrari-
Landau-DeWitt model [50,79,80], the big step forward being
that the (crucial) nonperturbative mass scales now have a
dynamical origin and that BRST is maintained. A posteriori,
our setup grants credit to the aforementioned model, even at
the quantitative level as we have discussed. At least at one-
loop order, we do not expect much will change for what
concerns the other thermodynamical observables such as
pressure, entropy, trace anomaly, etc. when compared to
Ref. [80], but a more thorough discussion of this is relegated
to future work. Furthermore, although our results are non-
perturbative in nature, they do arise from an effective
potential computed in a loop expansion. It remains to be
investigated how stable the results are against adding the two-
loop corrections, which should still be analytically tractable
since the most complicated pieces have already been com-
puted [80]. Notice that from two loops onward, more changes
might occur relative to the Curci-Ferrari-Landau-DeWitt
model, as the other vertices containing the σ and φ fields
[arising from expanding the action of the unity (21) around
the would-be condensates] will enter the game.

ACKNOWLEDGMENTS

D. D. acknowledges financial support from Ecole
Polytechnique (Institut Polytechnique de Paris) and
CNRS, next to the warm hospitality at CPHT, where parts
of this work were prepared. D. M. van Egmond was partly
financed by KU Leuven with a visiting researcher fellow-
ship. D. Vercauteren is grateful for the hospitality at KU
Leuven, made possible through the Senior Fellowship SF/
19/008. We thank A. D. Pereira and G. Comitini for
interesting discussions.

APPENDIX A: RENORMALIZABILITY
OF DIMENSION-2 LOCAL COMPOSITE

OPERATORS IN THE BACKGROUND GAUGE

In this Appendix, we show the renormalizability to all
orders in an algebraic setting of the LCO formalism in the
presence of a classical gauge background field Āa

μ,

aaμ ¼ Aa
μ þ Āa

μ; ðA1Þ

where Aa
μ represents the quantum part of the gauge field.

The Landau gauge condition ∂μAa
μ ¼ 0 is now replaced by13

11Relatedly, the integrated difference between electric and mag-
netic propagator in relation to the transition was studied recently in
Ref. [132].

12By modeling, we refer to possible Ansätze for the vertex
functions in DSE/FRG approaches, the phenomenological addi-
tion of operators beyond the incomplete Faddeev-Popov action
(as is done for instance within the Curci-Ferrari model), etc.

13Mark that, if Āa
μ is chosen to satisfy the Landau gauge, many

of the expressions in this section will simplify considerably.
Nevertheless, even if one plans to choose the Landau gauge for
the quantum fluctuations, it is for now more opportune to leave
Āa
μ more general, as it will allow us to take functional derivatives

with respect to Āa
μ and Ωa

μ more freely.
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D̄μAa
μ ¼ D̄μðaaμ − Āa

μÞ ¼ 0; ðA2Þ

where D̄μ is the covariant derivative containing only the
background field Āa

μ. In this gauge, the ghost action is
changed accordingly to

Lgh ¼
Z

d4xc̄aD̄μDμca: ðA3Þ

The condensate hA2
μi we want to compute the vacuum

expectation value of will, of course, also need to be
modified. It turns out that, if we demand renormalizability
of the action, the operator A2

μ ¼ ðaaμ − Āa
μÞ2 is to be

considered. Let us now prove that this is indeed the only
possible choice. For this, we use the algebraic renormaliza-
tion formalism, and the computations outlined below are
parallel to those done by one of us and coworkers in the
linear covariant gauges [138]. The algebraic analysis of the
background gauge has already been explored in Ref. [100],
and their approach is used in the following.

1. Classical action

We start from the action of pure Yang-Mills theory in the
Landau background gauge:

SYMþgf¼
Z

d4x

�
1

4
ðFa

μνÞ2þibaD̄μðaaμ−Āa
μÞþc̄aD̄μDμca

�
:

ðA4Þ

Here, we introduced the Nakanishi-Lautrup field ba, which
is a Lagrange multiplier for the gauge fixing condition. A
second part of the action consists of the source field J
coupled to the operator we are considering, which we leave
more general for now,

SJ ¼
Z

d4x

�
1

2
Jða2μ þ αaaμĀa

μ þ βĀ2
μÞ þ

ζ

2
J2
�
; ðA5Þ

where the term in J2 has been added to absorb the quadratic
divergences in the source field. The numbers α and β will
be determined by demanding renormalizability. The param-
eter ζ has to be introduced here, and just as in the case
without a background field, it will have to be determined
using other considerations; cf. the main body of this paper.
Finally, we introduce classical source fields Δ�, A�a

μ, and
c�a coupling to the nonlinear BRST variations of the fields
and operators under consideration,

Sext ¼
Z

d4x

�
Δ�

��
aaμ þ

α

2
Āa
μ

�
Dμca

−
�
α

2
aaμ þ βĀa

μ

�
Ωa

μ

�
− A�a

μðDμca þ Ωa
μÞ

þ 1

2
gfabcc�acbcc

�
; ðA6Þ

where we have introduced the ghost field Ωa
μ, which is the

BRST transformation of Āa
μ. The term in A�a

μΩa
μ has been

added in order to allow to absorb the counterterms later on.
If we add one final term

Z
d4xc̄aDμΩa

μ ðA7Þ

necessary to cancel some spurious terms coming from the
BRST variation of Āa

μ, the total action is invariant under the
nilpotent BRST transformation s defined by

saaμ ¼ −Dμca; sca ¼ 1

2
gfabccbcc;

sc̄a ¼ iba; sĀa
μ ¼ Ωa

μ; sΔ� ¼ J;

sba ¼ sJ ¼ sΩa
μ ¼ sA�a

μ ¼ sc�a ¼ 0: ðA8Þ

Notice that the possibility of introducing the background
field Āμ as part of a BRST doublet is almost immediately
leading to the independence on Āμ of observables, defined
as elements of the BRST cohomology with zero ghost
charge [101,120]. Indeed, doublets are trivial elements of
the cohomology [120].
The full action can be rewritten in the form

S ¼ 1

4

Z
d4xðFa

μνÞ2 þ s
Z

d4x

�
c̄aD̄μðaaμ − Āa

μÞ

þ 1

2
Δ�ða2μ þ αaaμĀa

μ þ βĀ2
μÞ − A�a

μðaaμ − Āa
μÞ

þ c�aca þ ζ

2
Δ�J

�
: ðA9Þ

From this form, the BRST invariance is easy to see:
working with s on the first term will give a mere gauge
transformation with ca as the gauge function, and working
on the second part will give zero, as s is nilpotent by
definition.
At the classical level, the theory is characterized by some

powerful identities. We have the Slavnov-Taylor identity

SðSÞ ¼
Z

d4x

�
δS
δaaμ

δS
δA�a

μ
þ δS
δca

δS
δc�a

þ iba
δS
δc̄a

þΩa
μ
δS
δĀa

μ
þ J

δS
δΔ�

�
¼ 0; ðA10aÞ
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which is nothing but a reexpression of the BRST invariance
of the action. Then we have the equation for the Nakanishi-
Lautrup field:

δS
δba

¼ iD̄μðaaμ − Āa
μÞ: ðA10bÞ

Next we have the antighost equation:

δS
δc̄a

þ D̄μ
δS
δA�a

μ
¼ DμΩa

μ; ðA10cÞ

which can be straightforwardly found by taking the
derivative with respect to the antighost field c̄a and
rewriting the composite operator Dμca as a derivative with
respect to A�a

μ. And finally we have the ghost Ward identity:

δS
δca

þ D̄μ
δS
δΩa

μ
− igfabcc̄b

δS
δbc

¼
�
1þ α

2

�
∂μðΔ�aaμÞ þ

�
α

2
þ β

�
∂μðΔ�Āa

μÞ

−DμA�a
μ þ gfabccbc�c: ðA10dÞ

This last identity can be found by first taking the derivative
of the action with respect to the ghost field ca:

δS
δca

¼ −DμD̄μc̄a þ ∂μðΔ�aaμÞ þ
α

2
DμðΔ�Āa

μÞ
−DμA�a

μ þ gfabccbc�c: ðA11Þ

Then, we note that

½D̄μ; Dμ�ab ¼ −gfabcD̄μðacμ − Āc
μÞ ¼ igfabc

δS
δbc

; ðA12Þ

which gives

δS
δca

− igfabcc̄b
δS
δbc

¼−D̄μDμc̄aþ∂μðΔ�aaμÞ

þα

2
DμðΔ�Āa

μÞ−DμA�a
μþgfabccbc�c:

ðA13Þ
To get rid of the composite operator term with Dμc̄a, we
consider

δS
δΩa

μ
¼ α

2
Δ�aaμ þ βΔ�Āa

μ þDμc̄a: ðA14Þ

Using this, we immediately find (A10d).

2. Most general counterterm

When doing perturbation theory, counterterms have to be
added to the classical theory. If we write this as Sþ ϵSct,
where ϵ is the perturbation parameter, then we can demand

the full action to obey the same set of identities (A10) up to
leading order in ϵ. For the counterterm, this translates to the
conditions

BSSct ¼ 0; ðA15aÞ

δSct

δba
¼ 0; ðA15bÞ

δSct

δc̄a
þ D̄μ

δSct

δA�a
μ
¼ 0; ðA15cÞ

δSct

δca
þ D̄μ

δSct

δΩa
μ
¼ 0; ðA15dÞ

where BS is the linearized operator

BS ¼
Z

d4x

�
δS
δaaμ

δ

δA�a
μ
þ δS
δA�a

μ

δ

δaaμ
þ δS
δca

δ

δc�a
þ δS
δc�a

δ

δca

þ iba
δ

δc̄a
þ Ωa

μ
δ

δĀa
μ
þ J

δ

δΔ�

�
; ðA15eÞ

which is again nilpotent. Now, it follows from the general
theory concerning algebraic renormalization that the most
general invariant local counterterm can be parametrized as

Sct ¼ p1

4

Z
d4xðFa

μνÞ2 þ BS

Z
d4xΞ; ðA16Þ

where Ξ is the most general local polynomial with
dimension 4 and ghost number −1. To write this down,
we need the dimensions and ghost numbers of the fields
and sources:

aaμ Āa
μ ca c̄a ba J Ωa

μ A�a
μ c�a Δ�

Dimension 1 1 0 2 2 2 1 3 4 2
Ghost number 0 0 1 −1 0 0 1 −1 −2 −1

With this, we can write down the most general form for Ξ:

Ξ ¼ p2aaμA�a
μ þ p3Āa

μA�a
μ þ p4cac�a þ p5aaμ∂μc̄a

þ p6Āa
μ∂μc̄a þ p7gfabcĀa

μabμc̄c þ p8gfabcc̄ac̄bcc

þ p9bac̄a þ p10Δ�a2μ þ p11Δ�Āa
μaaμ þ p12Δ�Ā2

μ

þ p13Δ�c̄aca þ p14Δ�J: ðA17Þ

The pi, i ¼ 1;…; 14, are arbitrary parameters. With this
form, the constraint (A15a) is automatically fulfilled.
Equation (A15b) gives

iD̄μðp2aaμ þ p3Āa
μÞ − ip5∂μaaμ − ip6∂μĀa

μ þ ip7gfabcĀb
μacμ

þ 2ip8gfabcc̄bcc þ 2ip9ba − ip13Δ�ca ¼ 0; ðA18Þ
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from which we find

p2 ¼p5 ¼−p7; p3¼p6; p8 ¼p9¼p13¼ 0: ðA19Þ

The constraint (A15c) is now already satisfied. The ghost
Ward identity (A15d) gives

ðp2 þ p3Þ∂μD̄μc̄a þ p4DμD̄μc̄a − p4gfabccbc�c

þ ðp2 þ p3 þ p4Þ∂μA�a
μ þ p4DμA�a

μ

þ
�
p2

�
1þ α

2

�
− p4 þ 2p10 þ p11

�
∂μðΔ�aaμÞ

þ
�
p3

�
1þ α

2

�
− p4

α

2
þ p11 þ 2p12

�
∂μðΔ�Āa

μÞ

þ p4

α

2
gfabcΔ�Āb

μacμ ¼ 0; ðA20Þ

which yields

p2 ¼ −p3; p11 ¼ −p2

�
1þ α

2

�
− 2p10;

p12 ¼ p2

�
1þ α

2

�
þ p10; p4 ¼ 0: ðA21Þ

Finally, we find for Ξ

Ξ ¼ p2ðaaμ − Āa
μÞ
�
A�a

μ þ D̄μc̄a −
�
1þ α

2

�
Δ�Āa

μ

�
þ p10Δ�ðaaμ − Āa

μÞ2 þ p14Δ�J: ðA22Þ

3. Absorbing the counterterm

From Eq. (A22), we can write down the most general
counterterm consistent with the symmetries of the theory:

Sct ¼
Z

d4x

��
p1

4
− p2

�
ðFa

μνÞ2 þ p2ð∂μaaνÞFa
μν þ p2ðDμĀa

νÞFa
μν − p2c̄aD̄2ca þ ðp2 þ p10ÞJðaaμ − Āa

μÞ2 þ p14J2

þ Δ�ðaaμ − Āa
μÞ
�
ðp2 þ 2p10Þ∂μca þ

�
p2

α

2
− 2p10

�
gfabccbĀc

μ þ
�
−p2

α

2
þ 2p10

�
Ωa

μ

�

− p2

�
1þ α

2

�
Δ�ðĀa

μDμca −Ωa
μðaaμ − 2Āa

μÞÞ þ p2A�a
μðD̄μca þ Ωa

μÞ − p2Ωa
μD̄μc̄a

�
: ðA23Þ

Now, it is clear that, in order to reabsorb this counterterm
into the classical action, we need to have α ¼ −2 and
β ¼ 1. Then, we can absorb the counterterm with multi-
plicative renormalization. If we write the bare fields as
Φ0 ¼ Z1=2

Φ Φ for the fields Aa
μ ¼ aaμ − Āa

μ, ca, c̄a, and ba,
then we find

Z1=2
A ¼ Z−1=2

b ¼ 1þ ϵ

�
p1

2
− p2

�
;

Z1=2
c ¼ Z1=2

c̄ ¼ 1 − ϵ
p2

2
: ðA24aÞ

For the parameters, we write g0 ¼ Zgg and ζ0 ¼ Zζζ, and
we find

Zg¼1−ϵ
p1

2
; Zζ¼1þϵ

�
2p1−4p10þ

2

ζ
p14

�
: ðA24bÞ

For the sources J, Δ�, A�a
μ, and c�a, we write Φ0 ¼ ZΦΦ:

ZJ¼1þϵð−p1þ2p10Þ; ZΔ� ¼1þϵ

�
−
p1

2
þp2

2
þ2p10

�
;

ZA� ¼Z1=2
c ; Zc� ¼Z1=2

A : ðA24cÞ

For the classical fields Āa
μ and Ωa

μ, we write the bare fields

as Φ0 ¼ Z1=2
Φ Φ, and we find

Z1=2
Ā

¼ Z−1
g ; ZΩ ¼ Z−1=2

c : ðA24dÞ

We mark that Aa
μ and Āa

μ renormalize separately. For this
reason, one must consider the local composite operator
A2
μ ≔ ðaμ − ĀμÞ2 instead of a2μ, which would not be multi-

plicatively renormalizable.
As we are working in a different gauge, one could expect

the ζ parameter to be modified. However, this will not be
the case for dimensional reasons. In the limit Āa

μ → 0, the
Landau background gauge reduces to the ordinary Landau
gauge, and so the value for ζ should be equal to the
backgroundless value in that limit. Introducing a back-
ground field cannot modify it, as there are no other
dimensionful quantities present to make a dimensionless
function.14 This argument also carries through for the
renormalization group parameters. We can conclude that
the values in Eq. (34) are valid in the Landau background
gauge as well.

14We work in mass-independent renormalization schemes.
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A final interesting few words can be said about the
special values α ¼ −2, β ¼ 1. These are also the unique
values for which the action enjoys an extra Ward identity,
namely,�
−Dab

μ
δ

δabμ
− D̄ab

μ
δ

δĀb
μ
−
X
Φ
gfabcΦb δ

δΦc

�
S ¼ 0; ðA25Þ

where Φ runs over all other fields/sources with an adjoint
color index. This identity encodes nothing but the back-
ground gauge invariance. The quantum stability of the
specific dimension-2 operator A2

μ can thus also be appreciated
from background gauge invariance. For the record, as noted
in Ref. [100], the identity (A25) follows from the anticom-
mutator of the ghost Eq. (A10d) and the Slavnov-Taylor
identity (A10), at least for the identified values of α, β.

4. Inclusion of the asymmetry

We are skipping details here, as the discussion is very
similar to the one of Ref. [119]. In a nutshell, once the
renormalizability of the theory with coupling to it of
ðaμ − ĀμÞ2 is handled, the introduction of another BRST
doublet of sources, sημν ¼ Kμν, sKμν ¼ 0, allows us to
couple (the traceless part of) ðaμ − ĀμÞðaν − ĀνÞ to the
theory in a BRST-invariant fashion without hampering
the other identities, leading yet again to the quantum
stability upon inclusion of a pure vacuum term quadratic

in the new source Kμν. Just as in Ref. [119], there will be
no mixing between the two sources J and Kμν. Intuitively,
renormalizability is expected, as at T ¼ 0 one does not
expect a nonvanishing asymmetry, while no new UV
divergences should emerge at T > 0.

APPENDIX B: EVALUATION OF THE
POTENTIAL FROM THE NAKANISHI-LAUTRUP

FRAMEWORK

In the Nakanishi-Lautrup framework, one implements
the α → 0 limit explicitly at the level of the action. The
quadratic part readsZ

ddx
1

2
ðAa

μð−δμνD̄2
ab þ D̄ac

ν D̄cb
μ þ δabδμνm2

þ δabMμνÞAb
ν þ c̄aD̄2

abc
b þ ibaD̄ab

μ Ab
μÞ; ðB1Þ

where ha is the Nakanishi-Lautrup field. In Fourier space,
and in the color diagonal basis, in the A, h sector, this
corresponds to the matrix

� ðP2
κ þm2Þδμν þMμν − Pκ

μPκ
ν Pκ

μ

−Pκ
ν 0

�
: ðB2Þ

To evaluate the determinant, we can always choose a frame
where Pκ

1 ¼ jp⃗j and Pκ
μ>1 ¼ 0. We find

det

0
BBBBBBBBBBB@

p2 þm2 þA −Pκ
0p 0 0 Pκ

0

−Pκ
0p ðPκ

0Þ2 þm2 − A
d−1 0 0 p

0 0 P2
κ þm2 − A

d−1 0 0

. .
.

0 0 0 P2
κ þm2 − A

d−1 0

−Pκ
0 −p 0 0 0

1
CCCCCCCCCCCA
: ðB3Þ

Upon exchanging the third and last lines and the third and last columns, this becomes

det

0
BBBBBBBBBBB@

p2 þm2 þA −Pκ
0p Pκ

0 0 0

−Pκ
0p ðPκ

0Þ2 þm2 − A
d−1 p 0 0

−Pκ
0 −p 0 0 0

0 0 0 P2
κ þm2 − A

d−1 0

. .
.

0 0 0 0 P2
κ þm2 − A

d−1

1
CCCCCCCCCCCA
; ðB4Þ

which is then easily computed to be

DUDAL, VAN EGMOND, REINOSA, and VERCAUTEREN PHYS. REV. D 106, 054007 (2022)

054007-22



�
P2
κ þm2 −

A
d − 1

�
d−2

�
ðPκ

0Þ2
�
P2
κ þm2 −

A
d − 1

�
þ p2ðP2

κ þm2 þAÞ
�

¼
�
P2
κ þm2 −

A
d − 1

�
d−2

�
P2
κðP2

κ þm2Þ þ A

�
P2
κ −

d
d − 1

ðPκ
0Þ2

��
; ðB5Þ

which leads to Eq. (58) upon inclusion of the ghost
contribution.

APPENDIX C: SUMS AT FINITE TEMPERATURE

At finite temperature, the imaginary time dimension is
compactified with a circumference of 1=T. This results in a
discretization of the spectrum. To compute traces, the
following replacement has to be made for bosons [includ-
ing the (anti)ghosts]

Z
dk0
2π

fðk0Þ → T
Xþ∞

n¼−∞
fð2πnTÞ: ðC1Þ

To do computations, we will also need to compute sums of
particle propagators. An example from which we can derive
the formulas necessary in the main text is

Xþ∞

n¼−∞

1

4π2T2n2 þ 4απTnþ β
: ðC2Þ

We can rewrite this sum as a contour integral,

1

2πi

I
π cot πz

4π2T2z2 þ 4απTzþ β
dz; ðC3Þ

where the contour contains all the poles of the cotangent.
The residue theorem ensures that the integral will evaluate
to the sum (C2). Now, we can deform the contour and turn
it inside out, which will result in it containing all poles
except for the ones of the cotangent:

−
X
z0

Res
z¼z0

π cot πz
4π2T2z2 þ 4απTzþ β

: ðC4Þ

The sum is now over the zeros of the polynomial in the
denominator. Evaluating the residues leads to

−
cot αþi

ffiffiffiffiffiffiffiffi
β−α2

p
2T − cot α−i

ffiffiffiffiffiffiffiffi
β−α2

p
2T

4iT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − α2

p
¼ sinh

ffiffiffiffiffiffiffiffi
β−α2

p
T

4T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − α2

p
ðsin2 α

2T þ sinh2
ffiffiffiffiffiffiffiffi
β−α2

p
2T Þ

: ðC5Þ

It can easily be verified that this has the correct zero-
temperature limit. In exactly the same fashion, one also
finds that

Xþ∞

n¼−∞

4πTn
4π2T2n2 þ 4απTnþ β

¼ −α sinh
ffiffiffiffiffiffiffiffiffi
β2−α2

p
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − α2

p
sin α

T

2T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − α2

p
ðsin2 α

2T þ sinh2
ffiffiffiffiffiffiffiffi
β−α2

p
2T Þ

: ðC6Þ

From these equations, one can furthermore deduce that

Xþ∞

n¼−∞
lnð4π2T2n2 þ 4απTnþ βÞ

¼ ln 4

�
sin2

α

2T
þ sinh2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − α2

p
2T

�
; ðC7Þ

as this is the only expression having correct α and β deriva-
tives in addition to having the right zero-temperature
limit.
The most useful formula is found by separating out the

zero-temperature limit, which yields

T
Xþ∞

n¼−∞
lnð4π2T2n2 þ 4απTnþ βÞ

¼
Z

dk0
2π

lnðk20 þ 2αk0 þ βÞ

þ T ln

�
1 − 2e−

ffiffiffiffiffiffi
β−α2

p
T cos

α

T
þ e−2

ffiffiffiffiffiffi
β−α2

p
T

�
: ðC8Þ
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