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Nonextensive statistics has attracted attention as a description of particle spectra in nuclear collisions at
QCD energies. First, we construct the equation of state by incorporating Tsallis statistics based on the
hadron resonance gas and parton gas models. Thermodynamic conditions are found to impose constraints
on the q-parameter of Tsallis distribution. Next, we apply the equation of state to the relativistic
hydrodynamic modeling of nuclear collisions. The Cooper-Frye prescription is consistently modified.
Numerical demonstrations indicate that the model may describe charged particle spectra at Large Hadron
Collider in the transverse momentum range up to 6–8 GeV. Elliptic flow, on the other hand, suggests a
narrower range of applicability.
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I. INTRODUCTION

The quark-gluon plasma (QGP) [1–4] created in nuclear
collisions at the BNL Relativistic Heavy Ion Collider
(RHIC) and CERN Large Hadron Collider (LHC) exhibits
nearly-perfect fluidity [5,6]. The observed hadronic spectra
and flow harmonics [7,8] at low momenta exhibit a clear
response to the local pressure gradient unique to the
hydrodynamic picture. This discovery has led to a vast
number of studies aiming to understand the macroscopic
evolution of the system in the hybrid modeling based on
relativistic hydrodynamics and to elucidate the microscopic
properties of QCD, including the equation of state and the
transport coefficients.
Hydrodynamization of the QCD matter was originally

deduced as an empirical fact through comparisons of
experimental data and theoretical simulations. Although
no complete theoretical description has yet been available
on how fluidity develops in less than 10−23 seconds, several
promising models have been proposed in recent years.
Notable examples include the approaches based on gauge-
string correspondence [9] and kinetic theory [10], which
suggest hydrodynamization before thermalization. The
typical validity range of the transverse momentum for
the hydrodynamic description of hadronic spectra is around
2–3 GeV. A conventional interpretation of the particle

spectra at higher momenta is provided by the perturbative
QCD approach.
It has been pointed out that the nonextensive statistics, or

Tsallis statistics [11,12], can explain the high pT power-law
tail in pþ p collisions [13–26]. The spectra in heavy-ion
collisions are also considered to be described by the
approach, though the presence of collective dynamics
can become a nontrivial issue. Tsallis entropy has been
proposed as an extension of standard thermodynamic
entropy and developed into a consistent theoretical frame-
work. The deviation from standard thermodynamics is
characterized by the deviation of the parameter q from
unity. There have been a large number of studies to apply
the nonextensive statistics to various physical phenomena
[27], including relativistic nuclear collisions [28–84].
The mechanism behind the emergence of nonextensive

statistics is a topic of debate. In the case of nuclear
collisions, soft and hard sectors would not be clearly
separated [34,85,86] and thus the partonic and hadronic
phase space distributions might contain strongly interacting
yet nonthermal mid-high pT component which might be
associated with minijets. The nonextensivity in a QCD
system can also be understood in the thermofractal
approach [87]. The nonthermal system can be hydrody-
namic, which would be consistent with the concept of
hydrodynamization before thermalization. On the other
hand, most analyses simply employ a Tsallis distribution or
Tsallis-extended blast wave model to fit particle spectra,
which could affect the accuracy in the case of heavy-ion*akihiko.monnai@oit.ac.jp
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collisions where collective dynamics plays an essential
role. In light of the situation, it would be important to
develop a hydrodynamic model based on nonextensive
statistics [29,82] for the quantitative argument of whether it
can be justified or not as a description of relativistic heavy-
ion collisions.
In this study, we develop a Tsallis-based hydrodynamic

model by taking into account the q-corrections to the
equation of state [29,62,88–90] using the hadron resonance
gas [91] and parton gas models. Introduction of additional
parameters to the hadron resonance model has been done
in the case of magnetic field [92] and vorticity [93,94].
The Cooper-Frye prescription [95] is extended to ensure
successful energy-momentum conservation in the particli-
zation process. We see that thermodynamic conditions for
the equation of state may limit to the parameter range
of Tsallis statistics. Numerical simulations of a (2þ 1)-
dimensional Tsallis-extended hydrodynamic model are
then performed to analyze heavy-ion collisions. Charged
particle spectra and elliptic flow v2 are estimated in a setup
similar to the situations of Pbþ Pb collisions at LHC for
demonstration.
In Sec. II, we construct a QCD equation of state extended

with Tsallis statistics. In Sec. III, it is embedded in the
relativistic hydrodynamic model by modifying the freeze-
out procedure. The model is used for the numerical
estimation of particle spectra and elliptic flow in PbþPb
collisions at different centralities. Section IV is devoted to
discussion and conclusions. The natural units c ¼ ℏ ¼
kB ¼ 1 and the mostly-minus Minkowski metric gμν ¼
diagðþ;−;−;−Þ are used in this study.

II. EQUATION OF STATE

We construct a nonextensive version of the QCD
equation of state. The relativistic kinetic theory extended
with the Tsallis distribution [11,12] is considered for
estimating the individual equations of state in the hadronic
and QGP phases.

A. The model

The macroscopic variables of the system that obey
Tsallis statistics read in relativistic kinetic theory

P ¼ 1

3

X

i

Z
gid3p
ð2πÞ3

p2

Ei
fqi ; ð1Þ

ε ¼
X

i

Z
gid3p
ð2πÞ3 Eif

q
i ; ð2Þ

s ¼ −
X

i

Z
gid3p
ð2πÞ3Ei

½fqi logq fi

� ð1 ∓ fiÞq logqð1 ∓ fiÞ�; ð3Þ

for the pressure, energy density, and entropy density in the
limit of vanishing chemical potentials, respectively. The
upper and lower signs are for fermions and bosons.
TheTsallis distribution inclassical statistics is expressedas

fclassicalðE; T; qÞ ¼ expqð−E=TÞ: ð4Þ
The q-exponential and q-logarithm are defined as

expqðxÞ ¼ ½1þ ð1 − qÞx� 1
1−q; ð5Þ

logqðxÞ ¼
x1−q − 1

1 − q
: ð6Þ

i is the index for the particle species and gi is the degeneracy.
q is the parameter that characterizes the Tsallis statistics.
The Boltzmann distribution can be recovered in the limit of
q ¼ 1. See also Appendix A for the analytical expression
of the small-(q − 1) expansion. Quantum statistics is often
introduced by substituting the regular exponential with the
q-exponential, but this must be done with caution because
expqð−E=TÞ ≠ 1=expqðE=TÞ. Here we take

fðE; T; qÞ ¼ expqð−E=TÞ
1� expqð−E=TÞ

; ð7Þ

to allow for the convergence to the classical limit at higher
temperatures and for the consistencywith the results from the
method of Lagrange multipliers. We use the quantum Tsallis
distribution in the rest of the discussion.
It is straightforward to construct the equation of state in

the hadronic phase by modifying the hadron resonance gas
model, which is known to provide a reasonable description
of the QCD equation of state in the thermal limit q → 1. We
consider the case where the deviation ðq − 1Þ is not large.
It should be noted that the effect of interactions, which is
encoded in resonances, does not suffer from double-
counting because Tsallis statistics has its own equilibrium
(q-equilibrium) and is not necessarily be a deformation
from thermal statistics caused by interactions. The formu-
lation of such theory from the grand canonical partition
function can be found, for instance, in Refs. [96,97].
On the other hand, the effects of nonextensive statistics is

less trivial in the QGP phase. In this study, we employ the
parton gas model to embed the q-dependence in the QGP
equation of state.
The two equations of state are matched around the

crossover temperature using the following procedure:

PðTÞ ¼ PhadðTÞ; ð8Þ
for T ≤ Tf and

PðTÞ ¼ PhadðTfÞ þ ½PQGPðTÞ − PhadðTfÞ� ð9Þ

×f1 − exp½−cðT − TfÞ�g; ð10Þ
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for T > Tf where c is chosen so that

∂P
∂T

ðTfÞ ¼
∂Phad

∂T
ðTfÞ; ð11Þ

to allow smooth and continuous matching at the connection
point defined with the kinetic freeze-out temperature Tf. It
is noteworthy that instead of the conventional method
where one utilizes a hyperbolic tangent function [98,99],
we consider an exponential damping to the parton gas
results at higher temperatures because (i) energy-
momentum conservation must hold at freeze-out, (ii) the
hadron resonance gas model may provide more reliable
results than the parton gas model, and (iii) the difference
between the hadronic and partonic equations of state is
large for a nonzero (q − 1). The Cooper-Frye prescription
of the kinetic freeze-out [95] is based on relativistic kinetic
theory and thus it provides the lowest temperature where
the conversion to the hadronic picture should occur. We
keep the notation Tf for the connection temperature in the
rest of the discussion.

B. Numerical results

We consider u, d, and s quarks as components in the QGP
phase and the hadronic resonances ofu,d, and s components
with the masses below 2 GeV from the Particle Data Group
list [100] in the hadronic phase for our numerical simulation.
The parameter range of q ¼ 1, 1.01, 1.04, and 1.07 is
considered for three kinetic freeze-out temperatures
Tf ¼ 120, 140, and 160 MeV. For each equation of state,
the hadron resonance gas result is confirmed to be preserved
up to Tf.
The dimensionless pressures P=T4 as a function of

temperature are plotted in Fig. 1. The pressure is sensitive
to the deviation of q from unity and becomes large both in
the hadronic and QGP phases as q increases. This can be
interpreted as the effect of a larger population in large
momentum regions in the Tsallis distribution for q > 1.
The hadronic pressure is found to increase faster than the
QGP pressure, implying that a large qmay be disfavored by
the thermodynamic conditions ∂P=∂T > 0 and ∂e=∂T > 0
around the crossover region, though the exact constraints
depend on the connection procedure. It also suggests that
q and Tf are not free parameters for the fitting of a
nonextensive statistical model to experimental data. Our
numerical simulations suggest that the maximum value is
around q ∼ 1.07 for Tf around 140 MeV. It should be noted
that the state variables do not always converge for an
arbitrary q, imposing another constraint on the variable (see
Appendix B for details).
The ratio of the hadronic partial pressure of each

component to the total pressure Phadron=P is shown in
Fig. 2. The thermal result (q ¼ 1) shows that the pion
contribution is dominant at lower temperatures but is about
64.4% at T ¼ 120 MeV, 48.6% at T ¼ 140 MeV, and

34.8% at T ¼ 160 MeV. On the other hand, the Tsallis
result at q ¼ 1.07 shows that heavier hadronic resonances
have larger contributions, possibly because the effect of
the Tsallis contribution masks the effect of mass difference.
As a result, the relative contribution of pions is about 18.1%
at T ¼ 120 MeV, 11.5% at T ¼ 140 MeV and 7.8% at
T ¼ 160 MeV.
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FIG. 1. P=T4 at q ¼ 1 (solid line), q ¼ 1.01 (dashed line), 1.04
(dash-dotted line), and 1.07 (dotted line) with (a) Tf ¼ 120,
(b) 140, and (c) 160 MeV.
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III. APPLICATION TO RELATIVISTIC
NUCLEAR COLLISIONS

We develop a relativistic hydrodynamic model built
consistently on the nonextensive statistics by taking into
account the modifications in the equation of state and the
freeze-out procedure [95]. Then, we demonstrate the effect
of Tsallis statistics on the observables of relativistic nuclear
collisions using numerical simulations.

A. Equations of motion

The hydrodynamic equations of motion are given by con-
servation laws and constitutive relations. In the vanishing
density limit, the energy-momentum conservation ∂μTμν¼0
needs to be considered. The energy momentum-tensor with
Tsallis statistics is expressed in the kinetic theory as

Tμν ¼
X

i

Z
gid3p
ð2πÞ3Ei

pμpνfqi ; ð12Þ

where one can see from Eqs. (1) and (2) that the standard
tensor decomposition with the flow uμ

Tμν ¼ ðεþ PÞuμuν − Pgμν; ð13Þ

yields the state quantities in inviscid q-equilibrium. The
extension of the formalism to dissipative systems could
involve nontriviality in the q-dependence of the constitutive
relations as well as in the transport coefficients and will be
discussed elsewhere.

B. Kinetic freeze-out

The hadron number current with Tsallis statistics in
kinetic theory

Nμ
i ¼

Z
gid3p
ð2πÞ3Ei

pμfqi ; ð14Þ

leads to the q-extended version of the Cooper-Frye
formula [95],

E
dNi

d3p
¼ gi

ð2πÞ3
Z

Σ
fqi p

μdσμ; ð15Þ

where Σ is the freeze-out hypersurface and dσμ is the
hypersurface element. The criterion for the particlization
can be set using the freeze-out temperature Tf. It should be
noted that the equation of state in the hydrodynamic
evolution should match that of the hadron gas at freeze-
out for successful energy-momentum conservation, which
is satisfied by the extended Cooper-Frye prescription when
the Tsallis equation of state is used.

C. Numerical results

We consider Pbþ Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV for
the situations of LHC in our demonstration. A (2þ 1)-
dimensional hydrodynamic model [101] is used for numeri-
cal simulations.
The initial conditions are provided by the Monte-Carlo

Glauber model [102]. There are several known variations in
the modeling such as the two-component model [103] and
the quark participant model [104] for the description of
particle multiplicities. Hydrodynamic initial conditions
have further diversity because secondary interactions
modify particle distributions [105]. Here, we consider the
participants, which are related with soft components, as the
sources. The energy density is deposited as a Gaussian
source with the width of σ ¼ 0.4 fm at the point of each
participant. The inelastic cross section of pp collisions is
σinpp ¼ 65 mb. They are integrated for respective centrality
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FIG. 2. Ratios of the hadronic partial pressure of pions, kaons, all other mesons, nucleons, and all other baryons (from top to bottom in
the legend) to the total pressure for (left) the thermal case q ¼ 1 and (right) a Tsallis case q ¼ 1.07 in the hadron resonance gas equation
of state.
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bins before hydrodynamic simulations to obtain smooth
initial conditions for simplicity in the demonstration. The
normalization is determined by the data of dNch=dη at most
central events in the corresponding experiments [106]. The
hydrodynamization time is set as 0.4 fm=c. Shear and bulk
viscosity are turned off to elucidate the pure effect of
nonextensive statistics. Its relation to the viscous corrections
will be discussed inAppendixA. Resonance decay is treated
according to Ref. [107].
The charged particle spectra of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV
Pbþ Pb with q ¼ 1 and q ¼ 1.07 for the centrality classes
of 0–5% and 20–30% are shown in Fig. 3. The exper-
imental data from the ALICE Collaboration are plotted for
comparison [106]. The kinetic freeze-out temperature is set
as Tf ¼ 140 MeV. The values of q and Tf used in the
simulations are determined by the scan of parameters in
the range of 1 ≤ q ≤ 1.1 and 0.12 ≤ Tf ≤ 0.16 GeV. The
traditional thermal results (q ¼ 1) agree with the exper-
imental data up to 2–3 GeV while the Tsallis results
(q ¼ 1.07) exhibit improved agreements up to 6–8 GeV
in both cases in the current simulation.

The typical lifetime of the fireball is found to be shorter
for a larger q because the initial temperature would be
smaller for a given energy density. This emphasizes the
importance of developing a Tsallis-modified equation of
state for a consistent framework of the nonextensive
relativistic hydrodynamic model.
We also confirm that keeping the q parameter consistent

between the equation of state and the kinetic freeze-out is
important. If the standard Cooper-Frye formula at q ¼ 1 is
employed for the hydrodynamic simulation with the
q ¼ 1.07 equation of state, the energy-momentum con-
servation is violated and the total entropy is lost, leading to
reduction in particle production. Likewise, if the modified
Cooper-Frye formula at q ¼ 1.07 is used for the hydro-
dynamic simulation with the thermal equation of state, the
total entropy is artificially added to the system and the
particle spectra is enhanced.
Next, we calculate the differential elliptic flow v2 of

charged particles as the normalized second harmonics of
the particle spectra with respect to the event plane. The
results for the 20%–30% central Pbþ Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV are shown in Fig. 4. It can be observed
that the elliptic flow is suppressed when q increases. This
underdevelopment of momentum anisotropy is caused by
the modified distribution at freeze-out, which effectively
works as negative bulk viscosity (see Appendix A), and the
lower initial temperature for a given energy density, which
leads to a shorter lifetime of the fireball.
Because the quantity is known to be sensitive to viscosity

and event-by-event fluctuations, the experimental data from
ALICE Collaboration [108] are not shown for quantitative
comparison but as a guide. Still, one would observe a
general trend that the introduction of the Tsallis distribution
reduces v2, which might extend the applicability range of
the hydrodynamic model from pT < 2 GeV to a slightly
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FIG. 3. pT spectra of charge particles with q ¼ 1 and 1.07 for
(top) 0–5% and (bottom) 20–30% central Pbþ Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV compared with the ALICE data [106].
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wider range of pT < 4 GeV. This was also observed
in Ref. [82]. On the other hand, the structure above
pT > 4 GeV might not be well reproduced, posing a
challenge for the nonextensive interpretation. Possible
caveats in the current analyses besides the lack of viscosity
and event-by-event analyses are the fine-tuning of the
freeze-out temperature and initial conditions which, might
lead to a different value of q.

IV. DISCUSSION AND CONCLUSIONS

We have constructed the QCD equation of state based on
Tsallis statistics using the hadron resonance gas and parton
gas models. The factor q, which characterizes the Tsallis
distribution, tends to suppress the mass effect when ðq − 1Þ
increases. The pressure thus increases faster with q in the
hadronic phase than in the QGP phase, imposing a
constraint on the maximum value of q when the state
variable is monotonic as a function of temperature. Several
different connecting temperatures have been investigated
for the matching of the hadronic and QGP Tsallis equations
of state because the equation of state should be described
by the hadronic one at the kinetic freeze-out temperature for
successful energy-momentum conservation.
We have next embedded the obtained nonextensive

equations of state in an inviscid relativistic hydrodynamic
model. The Cooper-Frye prescription has been modified to
make it compatible with Tsallis statistics. Numerical
simulations show that a long tail structure is developed
in pT spectra of charged particles for q > 1. Compared with
the standard hydrodynamic case of q ¼ 1, the experimental
data are reproduced in a wider pT range up to 6–8 GeV in
the Tsallis hydrodynamic case at Tf ¼ 140 MeV with
q ¼ 1.07 in our demonstrative calculations for Pbþ Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV.
The differential elliptic flow of charged particles has

been found to be reduced in the Tsallis hydrodynamic
simulation. It should be mentioned that naïve quantitative
comparison to the data cannot be made because the quantity
is sensitive to the viscous corrections and event-by-event
fluctuations. Qualitatively, on the other hand, one would
observe that the extension of the applicable range of the
hydrodynamic model in transverse momentum is not as
large as that indicated by the particle spectra. Because the
system would be strongly-coupled in a hydrodynamic
description, extensive or nonextensive, sharp decrease in
v2ðpTÞ may not be reproduced without the help of off-
equilibrium corrections [109,110].
It has been suggested that the typical value of q extracted

from the experimental data is around 1.1 (see, for instance,
Refs. [47,73]). Our results are roughly consistent but
slightly smaller compared with previous results possibly
because of the full inclusion of collective dynamics. Also, a
large q is not favored by the thermodynamic constraint on
the equation of state.

Further future prospects include analyses of the interplay
of nonextensive statistics, fluctuations and viscosity for
more quantitative arguments. It would be interesting to
investigate elliptic flow v2 and higher-order harmonics to
see whether the Tsallis scenario is consistent with the
experimental data in such analyses. A hybrid model of the
perturbative QCD and Tsallis hydrodynamic description at
high pT may be necessary to elucidate the ratio of soft and
hard components in the quark matter. Also, it would be
essential to explicate the microscopic details of nonexten-
sive statistics in the quark and hadronic matter produced in
relativistic nuclear collisions.

The series of nonextensive equations of state used in the
study will be made publicly available [111].
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APPENDIX A: SMALL-(q− 1) EXPANSION

The Tsallis distribution is expanded around the Fermi-
Dirac or Bose-Einstein distribution as follows:

f ¼ f0 þ f0ð1 ∓ f0Þ
E2

2T2
ðq − 1Þ þOðq − 1Þ2; ðA1Þ

where

f0 ¼
1

expðE=TÞ � 1
; ðA2Þ

up to the linear order in q − 1 in the local rest frame. The
upper and lower signs correspond to fermions and bosons,
respectively. It should be noted that the linear order
approximation is valid when E=T is not too large. The
convergence of the series at higher orders will be discussed
elsewhere.
It is noteworthy that the expression is similar to the bulk

viscous correction to the phase-space distribution in the
quadratic ansatz [112]:

f ¼ f0 þ f0ð1 ∓ f0Þ
p2

5T2

Π
eþ P

þOðΠÞ2: ðA3Þ

Π is generally negative in an expanding system and
therefore has an opposite effect on the particle spectra
than the q > 1 Tsallis statistics. Note that a full bulk
viscous phase-space distribution that satisfies the Landau
matching conditions is a topic of debate and may have
slightly more complex expressions [113–115].
Another difference between the expansion in (q − 1) and

that in dissipative quantities such as Π or πμν is that the
latter has a more strict constraint that the correction should
not be larger than the equilibrium pressure.
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APPENDIX B: CONVERGENCE OF
THERMODYNAMIC VARIABLES

The thermodynamic variables are not guaranteed to
converge for an arbitrary value of q in the nonextensive
statistics [58]. We describe the issue in a relativistic system
of massless particles in the Boltzmann limit.
One may define the moments in kinetic theory as

Imn ¼
1

ð2nþ 1Þ!!
X

i

Z
gid3p
ð2πÞ3Ei

p2nEm−2n
i fqi ; ðB1Þ

for m > 2n. The energy density and pressure are then
expressed as ε ¼ I20 and P ¼ I21. The integral can be
carried out analytically as

Imn ¼ g
ðmþ 1Þ!
ð2nþ 1Þ!!

Tmþ2

2π2
×

Γ½ 1
q−1 −m − 1�

ðq − 1Þmþ1Γ½ 1
q−1�

¼ g
ðmþ 1Þ!
ð2nþ 1Þ!!

Tmþ2

2π2
Ymþ1

k¼1

1

1 − kðq − 1Þ : ðB2Þ

Here g ¼ P
i gi is defined, which is justified in the massless

Boltzmann limit because the only difference between
particles is the degeneracy. The expression converges to
the thermal result

Imn ¼ g
ðmþ 1Þ!
ð2nþ 1Þ!!

Tmþ2

2π2
; ðB3Þ

in the limit of q ¼ 1.
The moment (B2) has poles at q ¼ ðkþ 1Þ=k where

k ¼ 1; 2;…; mþ 1. It diverges at q ¼ ðmþ 2Þ=ðmþ 1Þ
when q increases from unity. Thus the energy density or
pressure diverges at q ¼ 4=3 and the particle number
density, expressed as n ¼ I10 in a single-component sys-
tem, at q ¼ 3=2 [58]. The derivation of dissipative hydro-
dynamic equations can involve higher order moments up to
the sixth order [115], possibly imposing a tighter constraint
on the value of q (q ¼ 8=7 ∼ 1.14 when m ¼ 6). The
results reinforce the point that one should not treat q as a
free parameter when applying the nonextensive statistics to
relativistic nuclear collisions.

APPENDIX C: COLLISION ENERGY
DEPENDENCE

We explore the collision energy dependence of the
Tsallis hydrodynamic description by considering heavy-ion

collisions at RHIC. We consider 0%–5% and 20%–30%
centrality events of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au collisions.
The initial time is again set to 0.4 fm=c and the freeze-out
temperature to 140 MeV. The inelastic cross section of pp
collisions is set to σinpp ¼ 42 mb.
The results of the numerical simulations for the charged

particle spectra at q ¼ 1 and q ¼ 1.07 are shown in Fig. 5.
The experimental data from the STAR Collaboration
are plotted for comparison [116]. The results based on
Tsallis statistics again have agreement with the corre-
sponding experimental data in a wider momentum region
up to 6–8 GeV compared with that on standard thermo-
dynamics, which works up to 2–3 GeV. This implies that
the value of q might not be much affected by the collision
energy.
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FIG. 5. pT spectra of charged particles with q ¼ 1 and 1.07 for
(top) 0–5% and (bottom) 20–30% central Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV compared with STAR data [116].

QCD EQUATION OF STATE WITH TSALLIS STATISTICS FOR … PHYS. REV. D 106, 054004 (2022)

054004-7



[1] J. Letessier and J. Rafelski, Hadrons and Quark—Gluon
Plasma (Cambridge University Press, Cambridge, England,
2002), Vol. 18.

[2] J. Kapusta, B. Muller, and J. Rafelski, Quark-Gluon
Plasma: Theoretical Foundations (Elsevier, New York,
2003).

[3] K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon Plasma:
From Big Bang to Little Bang (Cambridge University
Press, Cambridge, England, 2005), Vol. 23.

[4] Quark-Gluon Plasma 5, edited by X.-N. Wang (World
Scientific, New Jersey, 2016).

[5] P. F. Kolb, P. Huovinen, U.W. Heinz, and H. Heiselberg,
Phys. Lett. B 500, 232 (2001).

[6] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106,
042301 (2011).

[7] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58,
1671 (1998).

[8] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[9] M. P. Heller, R. A. Janik, and P. Witaszczyk, Phys. Rev.

Lett. 108, 201602 (2012).
[10] A. Kurkela and Y. Zhu, Phys. Rev. Lett. 115, 182301

(2015).
[11] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[12] C. Tsallis, Braz. J. Phys. 29, 1 (1999).
[13] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 75,

064901 (2007).
[14] Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, and

Z. Xu, Phys. Rev. C 79, 051901 (2009).
[15] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 83,

052004 (2011).
[16] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 83,

064903 (2011).
[17] K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B

693, 53 (2010).
[18] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 712,

309 (2012).
[19] B. B. Abelev et al. (ALICE Collaboration), Eur. Phys. J. C

74, 3108 (2014).
[20] J. Adam et al. (ALICE Collaboration), Nat. Phys. 13, 535

(2017).
[21] G. Aad et al. (ATLAS Collaboration), New J. Phys. 13,

053033 (2011).
[22] V. Khachatryan et al. (CMS Collaboration), Phys. Rev.

Lett. 105, 022002 (2010).
[23] V. Khachatryan et al. (CMS Collaboration), J. High Energy

Phys. 05 (2011) 064.
[24] S. Chatrchyan et al. (CMS Collaboration), J. High Energy

Phys. 08 (2011) 086.
[25] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B

714, 136 (2012).
[26] S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C

72, 2164 (2012).
[27] http://tsallis.cat.cbpf.br/biblio.htm.
[28] G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770

(2000).
[29] T. Osada and G. Wilk, Phys. Rev. C 77, 044903 (2008); 78,

069903(E) (2008).
[30] G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 40, 299

(2009).
[31] G. Wilk and Z. Wlodarczyk, J. Phys. G 38, 065101 (2011).

[32] G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 48, 161
(2012).

[33] C.-Y. Wong and G. Wilk, Acta Phys. Pol. B 43, 2047
(2012).

[34] C.-Y. Wong and G. Wilk, Phys. Rev. D 87, 114007 (2013).
[35] G. Wilk and Z. Wlodarczyk, Phys. Lett. B 727, 163 (2013).
[36] L. J. L. Cirto, C. Tsallis, C.-Y. Wong, and G. Wilk, arXiv:

1409.3278.
[37] C.-Y. Wong, G. Wilk, L. J. L. Cirto, and C. Tsallis, Phys.

Rev. D 91, 114027 (2015).
[38] G. Wilk and Z. Wlodarczyk, Int. J. Mod. Phys. A 33,

1830008 (2018).
[39] T. S. Biro and B. Muller, Phys. Lett. B 578, 78 (2004).
[40] T. S. Biro, G. Gyorgyi, A. Jakovac, and G. Purcsel, arXiv:

hep-ph/0409157.
[41] T. S. Biro, G. Purcsel, and K. Urmossy, Eur. Phys. J. A 40,

325 (2009).
[42] K. Urmossy and T. S. Biro, Phys. Lett. B 689, 14 (2010).
[43] K. Urmossy, G. G. Barnaföldi, and T. S. Biró, Phys. Lett. B

718, 125 (2012).
[44] T. S. Biró, G. G. Barnaföldi, and P. Van, Eur. Phys. J. A 49,

110 (2013).
[45] K. Urmossy, T. S. Biró, G. G. Barnaföldi, and Z. Xu,

arXiv:1405.3963.
[46] G. Bíró, G. G. Barnaföldi, T. S. Biró, K. Ürmössy, and

A. Takács, Entropy 19, 88 (2017).
[47] G. Bíró, G. G. Barnaföldi, and T. S. Biró, J. Phys. G 47,

105002 (2020).
[48] T. Kodama, J. Phys. G 31, S1051 (2005).
[49] J. Cleymans, G. Hamar, P. Levai, and S. Wheaton, J. Phys.

G 36, 064018 (2009).
[50] J. Cleymans and D. Worku, J. Phys. G 39, 025006 (2012).
[51] J. Cleymans and D. Worku, Eur. Phys. J. A 48, 160 (2012).
[52] M. D. Azmi and J. Cleymans, J. Phys. G 41, 065001

(2014).
[53] M. D. Azmi and J. Cleymans, Eur. Phys. J. C 75, 430

(2015).
[54] L. Marques, J. Cleymans, and A. Deppman, Phys. Rev. D

91, 054025 (2015).
[55] T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, and

R. Sahoo, Eur. Phys. J. A 52, 30 (2016).
[56] S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo,

and J. Cleymans, Eur. Phys. J. A 52, 289 (2016).
[57] A. Khuntia, S. Tripathy, R. Sahoo, and J. Cleymans, Eur.

Phys. J. A 53, 103 (2017).
[58] T. Bhattacharyya, J. Cleymans, and S. Mogliacci, Phys.

Rev. D 94, 094026 (2016).
[59] T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci,

and M.W. Paradza, J. Phys. G 45, 055001 (2018).
[60] M. D. Azmi, T. Bhattacharyya, J. Cleymans, and

M. Paradza, J. Phys. G 47, 045001 (2020).
[61] L. Marques, E. Andrade-II, and A. Deppman, Phys. Rev. D

87, 114022 (2013).
[62] W.M. Alberico and A. Lavagno, Eur. Phys. J. A 40, 313

(2009).
[63] M. Shao, L. Yi, Z. Tang, H. Chen, C. Li, and Z. Xu,

J. Phys. G 37, 085104 (2010).
[64] D. D. Chinellato, J. Takahashi, and I. Bediaga, J. Phys. G

37, 094042 (2010).
[65] T. Wibig, J. Phys. G 37, 115009 (2010).

K. KYAN and A. MONNAI PHYS. REV. D 106, 054004 (2022)

054004-8

https://doi.org/10.1016/S0370-2693(01)00079-X
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevC.58.1671
https://doi.org/10.1103/PhysRevC.58.1671
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1007/BF01016429
https://doi.org/10.1590/S0103-97331999000100002
https://doi.org/10.1103/PhysRevC.75.064901
https://doi.org/10.1103/PhysRevC.75.064901
https://doi.org/10.1103/PhysRevC.79.051901
https://doi.org/10.1103/PhysRevD.83.052004
https://doi.org/10.1103/PhysRevD.83.052004
https://doi.org/10.1103/PhysRevC.83.064903
https://doi.org/10.1103/PhysRevC.83.064903
https://doi.org/10.1016/j.physletb.2010.08.026
https://doi.org/10.1016/j.physletb.2010.08.026
https://doi.org/10.1016/j.physletb.2012.05.011
https://doi.org/10.1016/j.physletb.2012.05.011
https://doi.org/10.1140/epjc/s10052-014-3108-8
https://doi.org/10.1140/epjc/s10052-014-3108-8
https://doi.org/10.1038/nphys4111
https://doi.org/10.1038/nphys4111
https://doi.org/10.1088/1367-2630/13/5/053033
https://doi.org/10.1088/1367-2630/13/5/053033
https://doi.org/10.1103/PhysRevLett.105.022002
https://doi.org/10.1103/PhysRevLett.105.022002
https://doi.org/10.1007/JHEP05(2011)064
https://doi.org/10.1007/JHEP05(2011)064
https://doi.org/10.1007/JHEP08(2011)086
https://doi.org/10.1007/JHEP08(2011)086
https://doi.org/10.1016/j.physletb.2012.05.063
https://doi.org/10.1016/j.physletb.2012.05.063
https://doi.org/10.1140/epjc/s10052-012-2164-1
https://doi.org/10.1140/epjc/s10052-012-2164-1
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
https://doi.org/10.1103/PhysRevLett.84.2770
https://doi.org/10.1103/PhysRevLett.84.2770
https://doi.org/10.1103/PhysRevC.77.044903
https://doi.org/10.1103/PhysRevC.78.069903
https://doi.org/10.1103/PhysRevC.78.069903
https://doi.org/10.1140/epja/i2009-10803-9
https://doi.org/10.1140/epja/i2009-10803-9
https://doi.org/10.1088/0954-3899/38/6/065101
https://doi.org/10.1140/epja/i2012-12161-y
https://doi.org/10.1140/epja/i2012-12161-y
https://doi.org/10.5506/APhysPolB.43.2047
https://doi.org/10.5506/APhysPolB.43.2047
https://doi.org/10.1103/PhysRevD.87.114007
https://doi.org/10.1016/j.physletb.2013.10.007
https://arXiv.org/abs/1409.3278
https://arXiv.org/abs/1409.3278
https://doi.org/10.1103/PhysRevD.91.114027
https://doi.org/10.1103/PhysRevD.91.114027
https://doi.org/10.1142/S0217751X18300089
https://doi.org/10.1142/S0217751X18300089
https://doi.org/10.1016/j.physletb.2003.10.052
https://arXiv.org/abs/hep-ph/0409157
https://arXiv.org/abs/hep-ph/0409157
https://doi.org/10.1140/epja/i2009-10806-6
https://doi.org/10.1140/epja/i2009-10806-6
https://doi.org/10.1016/j.physletb.2010.04.037
https://doi.org/10.1016/j.physletb.2012.10.025
https://doi.org/10.1016/j.physletb.2012.10.025
https://doi.org/10.1140/epja/i2013-13110-0
https://doi.org/10.1140/epja/i2013-13110-0
https://arXiv.org/abs/1405.3963
https://doi.org/10.3390/e19030088
https://doi.org/10.1088/1361-6471/ab8dcb
https://doi.org/10.1088/1361-6471/ab8dcb
https://doi.org/10.1088/0954-3899/31/6/056
https://doi.org/10.1088/0954-3899/36/6/064018
https://doi.org/10.1088/0954-3899/36/6/064018
https://doi.org/10.1088/0954-3899/39/2/025006
https://doi.org/10.1140/epja/i2012-12160-0
https://doi.org/10.1088/0954-3899/41/6/065001
https://doi.org/10.1088/0954-3899/41/6/065001
https://doi.org/10.1140/epjc/s10052-015-3629-9
https://doi.org/10.1140/epjc/s10052-015-3629-9
https://doi.org/10.1103/PhysRevD.91.054025
https://doi.org/10.1103/PhysRevD.91.054025
https://doi.org/10.1140/epja/i2016-16030-5
https://doi.org/10.1140/epja/i2016-16289-4
https://doi.org/10.1140/epja/i2017-12291-8
https://doi.org/10.1140/epja/i2017-12291-8
https://doi.org/10.1103/PhysRevD.94.094026
https://doi.org/10.1103/PhysRevD.94.094026
https://doi.org/10.1088/1361-6471/aaaea0
https://doi.org/10.1088/1361-6471/ab6c33
https://doi.org/10.1103/PhysRevD.87.114022
https://doi.org/10.1103/PhysRevD.87.114022
https://doi.org/10.1140/epja/i2009-10809-3
https://doi.org/10.1140/epja/i2009-10809-3
https://doi.org/10.1088/0954-3899/37/8/085104
https://doi.org/10.1088/0954-3899/37/9/094042
https://doi.org/10.1088/0954-3899/37/9/094042
https://doi.org/10.1088/0954-3899/37/11/115009


[66] D. K. Mishra, P. Garg, P. K. Netrakanti, and A. K.
Mohanty, J. Phys. G 42, 105105 (2015).

[67] K. Jiang, Y. Zhu, W. Liu, H. Chen, C. Li, L. Ruan, Z. Tang,
Z. Xu, and Z. Xu, Phys. Rev. C 91, 024910 (2015).

[68] P. K. Khandai, P. Sett, P. Shukla, and V. Singh, Int. J. Mod.
Phys. A 28, 1350066 (2013).

[69] B.-C. Li, Y.-Z. Wang, F.-H. Liu, X.-J. Wen, and Y.-E.
Dong, Phys. Rev. D 89, 054014 (2014).

[70] B. De, Eur. Phys. J. A 50, 70 (2014).
[71] L. McLerran and B. Schenke, Nucl. Phys. A946, 158

(2016).
[72] S. De, S. De, and S. Chattopadhyay, Phys. Rev. C 94,

054901 (2016).
[73] H. Zheng and L. Zhu, Adv. High Energy Phys. 2015,

180491 (2015).
[74] D. Thakur, S. Tripathy, P. Garg, R. Sahoo, and J.

Cleymans, Adv. High Energy Phys. 2016, 4149352
(2016).

[75] H.-R. Wei, F.-H. Liu, and R. A. Lacey, Eur. Phys. J. A 52,
102 (2016).

[76] L.-N. Gao, F.-H. Liu, and R. A. Lacey, Eur. Phys. J. A 52,
137 (2016).

[77] H.-L. Lao, F.-H. Liu, and R. A. Lacey, Eur. Phys. J. A 53,
44 (2017); 53, 143(E) (2017).

[78] A. S. Parvan, Eur. Phys. J. A 53, 53 (2017).
[79] D. Thakur, S. Jakhar, P. Garg, and R. Sahoo, Phys. Rev. C

95, 044903 (2017).
[80] S. Grigoryan, Phys. Rev. D 95, 056021 (2017).
[81] Y. Gao, H. Zheng, L. L. Zhu, and A. Bonasera, Eur. Phys.

J. A 53, 197 (2017).
[82] A. Takacs and D. Molnar, arXiv:1906.12311.
[83] M. Alqahtani, N. Demir, and M. Strickland, arXiv:

2203.14968.
[84] M. Ahmadvand, arXiv:2204.09916.
[85] J. Adams et al. (STAR Collaboration), Phys. Rev. D 74,

032006 (2006).
[86] T. A. Trainor, Phys. Rev. C 78, 064908 (2008).
[87] A. Deppman, Phys. Rev. D 93, 054001 (2016).
[88] D. P. Menezes, A. Deppman, E. Megías, and L. B. Castro,

Eur. Phys. J. A 51, 155 (2015).
[89] E. Andrade, A. Deppman, E. Megias, D. P. Menezes, and

T. Nunes da Silva, Phys. Rev. D 101, 054022 (2020).
[90] A. Deppman, J. Phys. G 41, 055108 (2014).

[91] R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. 187,
345 (1969).

[92] G. Endrödi, J. High Energy Phys. 04 (2013) 023.
[93] Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B

816, 136184 (2021).
[94] H. Taya et al. (ExHIC-P Collaboration), Phys. Rev. C 102,

021901 (2020).
[95] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
[96] A. Deppman, Physica (Amsterdam) 391A, 6380 (2012).
[97] E. Megías, D. P. Menezes, and A. Deppman, Physica

(Amsterdam) 421A, 15 (2015).
[98] A. Monnai, B. Schenke, and C. Shen, Phys. Rev. C 100,

024907 (2019).
[99] A. Monnai, B. Schenke, and C. Shen, Int. J. Mod. Phys. A

36, 2130007 (2021).
[100] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[101] A. Monnai, Phys. Rev. C 90, 021901 (2014).
[102] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,

Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
[103] D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001).
[104] S. Eremin and S. Voloshin, Phys. Rev. C 67, 064905

(2003).
[105] P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola, and

K. Tuominen, Nucl. Phys. A696, 197 (2001).
[106] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 720,

52 (2013).
[107] J. Sollfrank, P. Koch, and U.W. Heinz, Phys. Lett. B 252,

256 (1990).
[108] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719,

18 (2013).
[109] D. Teaney, Phys. Rev. C 68, 034913 (2003).
[110] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,

172301 (2007).
[111] https://sites.google.com/site/akihikomonnai/downloads.
[112] K. Dusling and D. Teaney, Phys. Rev. C 77, 034905

(2008).
[113] A. Monnai and T. Hirano, Phys. Rev. C 80, 054906 (2009).
[114] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, Phys.

Rev. C 80, 064901 (2009).
[115] A. Monnai and T. Hirano, Nucl. Phys. A847, 283 (2010).
[116] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91,

172302 (2003).

QCD EQUATION OF STATE WITH TSALLIS STATISTICS FOR … PHYS. REV. D 106, 054004 (2022)

054004-9

https://doi.org/10.1088/0954-3899/42/10/105105
https://doi.org/10.1103/PhysRevC.91.024910
https://doi.org/10.1142/S0217751X13500668
https://doi.org/10.1142/S0217751X13500668
https://doi.org/10.1103/PhysRevD.89.054014
https://doi.org/10.1140/epja/i2014-14070-5
https://doi.org/10.1016/j.nuclphysa.2015.11.008
https://doi.org/10.1016/j.nuclphysa.2015.11.008
https://doi.org/10.1103/PhysRevC.94.054901
https://doi.org/10.1103/PhysRevC.94.054901
https://doi.org/10.1155/2015/180491
https://doi.org/10.1155/2015/180491
https://doi.org/10.1155/2016/4149352
https://doi.org/10.1155/2016/4149352
https://doi.org/10.1140/epja/i2016-16102-6
https://doi.org/10.1140/epja/i2016-16102-6
https://doi.org/10.1140/epja/i2016-16137-7
https://doi.org/10.1140/epja/i2016-16137-7
https://doi.org/10.1140/epja/i2017-12238-1
https://doi.org/10.1140/epja/i2017-12238-1
https://doi.org/10.1140/epja/i2017-12333-3
https://doi.org/10.1140/epja/i2017-12242-5
https://doi.org/10.1103/PhysRevC.95.044903
https://doi.org/10.1103/PhysRevC.95.044903
https://doi.org/10.1103/PhysRevD.95.056021
https://doi.org/10.1140/epja/i2017-12397-y
https://doi.org/10.1140/epja/i2017-12397-y
https://arXiv.org/abs/1906.12311
https://arXiv.org/abs/2203.14968
https://arXiv.org/abs/2203.14968
https://arXiv.org/abs/2204.09916
https://doi.org/10.1103/PhysRevD.74.032006
https://doi.org/10.1103/PhysRevD.74.032006
https://doi.org/10.1103/PhysRevC.78.064908
https://doi.org/10.1103/PhysRevD.93.054001
https://doi.org/10.1140/epja/i2015-15155-3
https://doi.org/10.1103/PhysRevD.101.054022
https://doi.org/10.1088/0954-3899/41/5/055108
https://doi.org/10.1103/PhysRev.187.345
https://doi.org/10.1103/PhysRev.187.345
https://doi.org/10.1007/JHEP04(2013)023
https://doi.org/10.1016/j.physletb.2021.136184
https://doi.org/10.1016/j.physletb.2021.136184
https://doi.org/10.1103/PhysRevC.102.021901
https://doi.org/10.1103/PhysRevC.102.021901
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1016/j.physa.2012.07.071
https://doi.org/10.1016/j.physa.2014.11.005
https://doi.org/10.1016/j.physa.2014.11.005
https://doi.org/10.1103/PhysRevC.100.024907
https://doi.org/10.1103/PhysRevC.100.024907
https://doi.org/10.1142/S0217751X21300076
https://doi.org/10.1142/S0217751X21300076
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevC.90.021901
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1016/S0370-2693(01)00457-9
https://doi.org/10.1103/PhysRevC.67.064905
https://doi.org/10.1103/PhysRevC.67.064905
https://doi.org/10.1016/S0375-9474(01)01114-9
https://doi.org/10.1016/j.physletb.2013.01.051
https://doi.org/10.1016/j.physletb.2013.01.051
https://doi.org/10.1016/0370-2693(90)90870-C
https://doi.org/10.1016/0370-2693(90)90870-C
https://doi.org/10.1016/j.physletb.2012.12.066
https://doi.org/10.1016/j.physletb.2012.12.066
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://sites.google.com/site/akihikomonnai/downloads
https://sites.google.com/site/akihikomonnai/downloads
https://sites.google.com/site/akihikomonnai/downloads
https://doi.org/10.1103/PhysRevC.77.034905
https://doi.org/10.1103/PhysRevC.77.034905
https://doi.org/10.1103/PhysRevC.80.054906
https://doi.org/10.1103/PhysRevC.80.064901
https://doi.org/10.1103/PhysRevC.80.064901
https://doi.org/10.1016/j.nuclphysa.2010.08.002
https://doi.org/10.1103/PhysRevLett.91.172302
https://doi.org/10.1103/PhysRevLett.91.172302

