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We provide a detailed reconsideration of the theoretical basis for the treatment of Coulomb-nuclear
interference (CNI) and a corresponding thorough analysis of the procedure of extraction of the basic
parameters ρpp; σpptot , and Bpp from the TOTEM data at

ffiffiffi
s

p ¼ 13 TeV. A more substantiated account of
CNI, as well as an in-depth statistical analysis of the TOTEM data at low transferred momenta, gives results
that differ from those published by the TOTEM collaboration.
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I. INTRODUCTION

Measurements by the LHC TOTEM Collaboration at
13 TeV [1] caused a number of papers with vivid dis-
cussions, often with opposite conclusions. The TOTEM
Collaboration gives two values1 of the parameter

ρ ¼ ReTNðs; 0Þ
ImTNðs; 0Þ

¼ 0.09 ÷ 0.10

with a strikingly small error,2 less than 10%, although the
very data show large systematic errors. An unexpectedly
low value of ρ given by the TOTEM prompted some
authors to consider these results as a proof of the existence
of the so-called “maximal Odderon” (in particular those of
Ref. [2], in which ρ was estimated as very close to 0.1).
Such an interpretation was adopted in [1] (with some
reservation, though) as a first experimental observation of a
“3-gluon compound state.”
It was also claimed in [1] that such a low value of ρ along

with the mentioned narrow error corridor supposedly “has

implied the exclusion of all the models classified and
published by” the COMPETE Group [3].
Concerning the credibility of the statement about the

Odderon observation we refer the reader to Refs. [4,5]
where a detailed discussion of this problem is given.
In the present work we concentrate on two important

issues of the parameter retrieval from the data.
(i) First of all, this is a way of taking into account CNI

effects in the full scattering amplitude. Beyond a
simplistic adding the Coulomb 1-photon exchange
to the nuclear amplitude (which is obviously theo-
retically untenable) we find in the literature two
ways of accounting for CNI.

The first one goes back to the pioneering work of
H. Bethe and was significantly improved by D. R.
Yennie and G. B. West [6]. The idea is that the
inclusion of Coulomb exchanges leads to the appear-
ance of an additional phase in the strong interaction
scattering amplitude. Within a couple of decades this
method served a convenient phenomenological tool
for the descriptionof thedifferential cross sectionwith
account for CNI and extracting the parameters men-
tioned above (see, e.g., [7]).

Nonetheless, afterwards itwas criticized byR.Cahn
(and a dozen years later in a more detailed way by
V. Kundrát and M. Lokajíček) [8]. It was noted that
the Bethe-Yennie-West method requires the phase of
the nuclear scattering amplitude TN to be independent
of the momentum transferred which is a rather
restrictive condition. Moreover, as was proved re-
cently [9], such an independence, even in an arbitrary
narrow interval, leads to identical vanishing of this
amplitude. In addition, it is noted in [10] that the form
of the Coulomb phase proposed by Yennie and West
contradicts the general properties of analyticity in the
t-channel.

*Vladimir.Petrov@ihep.ru
†Nikolai.Tkachenko@ihep.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1As said in [1] “depending on different physics assumptions
and mathematical modeling.”We comment on the latter reason in
Sec. IV and Conclusions.

2Here TNðs; tÞ stands for the pp (“nuclear”) scattering
amplitude in absence of electromagnetism. As usual, s stands
for the c.m.s. energy squared, white t is the invariant momentum
transfer squared.
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As a replacement for the Bethe-Yennie-West
method, a different method was proposed in [8] for
taking into account the CNI effects, which does not
impose unnecessary restrictions on the phase of the
nuclear scattering amplitude. Exactly thismethodwas
adopted in [1] for retrieving the ρ-parameter etcwhich
attracted a close attention.
However, this last method, which we will call CKL

(for Cahn-Kundrát-Lokajíček), although it has been
qualified in [1] as “the most general interference
formula,” also turned out to be flawed. The problem
was, in particular, in an oversimplifiedway of the form
factor account.
A formula devoid of this shortcoming was derived

in Refs. [11,12].
Inwhat followsweuse an expressionbased on these

latter papers for a correct account for CNI effects. We
believe it is suitable for general use.

(ii) The aforementioned low value of ρ was obtained in
[1] on the basis of an analysis of the differential
cross section at low values of the transferred
momenta. To this end two arrays of the data were
chosen. Specifically, the sets with jtj ≤ 0.15 GeV2

and with jtj ≤ 0.07 GeV2, though no reason why
namely these values of cutoff were taken was given.
Following the method of Ref. [1], we also use,

when processing the data, a cutoff in jtj but find that
together with an upper cutoff one has to impose a
lower cutoff as well, and in Sec. IV we motivate our
choice for both. The values of parameters (ρ, total
cross section σtot and the forward slope B of dσ=dt),
retrieved with help of such a procedure, turn out to
be different from those announced in [1]. The early
arguments that the ρ-value can differ from that
claimed by the TOTEM Collaboration can be found
in [13]. As regards the accuracy of the ρ parameter,
we find that the statistically justified retrieval leads
inevitably to a significant widening of the error
corridor what is of fundamental importance.

(iii) The last item we would like to draw the attention to
is the question: to which extent the smearing of the
proton electric charge over its volume (embodied by
the form factor F ) makes the parameters ρ etc
different from the idealized case of the pointlike
charge (F ¼ 1)? The answer turned out to be quite
surprising and quite helpful for estimate of accuracy
of the cross section description in the realistic case.

II. EXACT FORMULA

If we assume, as it is generally done, that the elastic
S-matrix SCþNðbÞ in impact parameter space factorizes in
strong and Coulombic interactions3

SCþNðbÞ ¼ SCðbÞSNðbÞ

then we can obtain without much difficulty the following
formula for the modulus of the full scattering amplitude
TCþN (for the sake of brevity we will mostly omit the
explicit indication of the “passive” parameter s as an
argument)

jTCþN j2q≠0 ¼ 4s2SCðq; qÞ þ
Z

d2q0

ð2πÞ2
d2q00

ð2πÞ2
× SCðq0; q00ÞTNðq − q0ÞT�

Nðq − q00Þ

þ 4s
Z

d2q0

ð2πÞ2 Im½SCðq; q0ÞT�
Nðq − q0Þ� ð1Þ

where

SCðq0; q00Þ ¼
Z

d2b0d2b00eiq0b0−iq00b00e2iαΔCðb0;b00Þ

and

ΔCðb0; b00Þ ¼
1

2π

Z
d2k

F 2ðk2Þ
k2

ðe−ib00k − e−ib
0kÞ

¼
Z

∞

0

dk
k
F 2ðk2Þ½J0ðb00kÞ − J0ðb0kÞ�:

The fact that we are dealing directly with the square of the
amplitude modulus, and not with the amplitude itself,
allows us to avoid the well-known IR divergence that
resides in the phase ArgTCþN , and, along with this,
dangerous manipulations with expressions that diverge
when removing the IR regularization. Equation (1) and
the expression for ΔCðb0; b00Þ contain only convergent
integrals both in IR and in UV. In this paper we mostly
use, instead of t, a more convenient variable

q2 ≡ q2 ≡ q2⊥ ¼ ut=4p2 ¼ p2sin2θ; s ¼ 4p2 þ 4m2;

which reflects the t − u symmetry of the pp scattering. At
θ → 0 q2 ≈ −t while at θ → π q2 ≈ −u. We will use the
same notation q both for 2-dimensional vectors q and their
modules jqj. In the latter case, the limits of integration are
indicated explicitly.
In Eq. (1) we impose the condition q ≠ 0 which

corresponds to real experimental conditions (the scattered
proton cannot be detected arbitrarily close to the beam
axis). The “forward” observables are understood as a result
of extrapolation t → 0:

ρ ¼ lim
t→0

ReTNðs; tÞ
ImTNðs; tÞ

; σtot · ðℏcÞ−2 ¼ lim
t→0

ImTNðs; tÞ
2p

ffiffiffi
s

p ;

B ¼ lim
t→0

d½lnðdσN=dtÞ�
dt

ðs; tÞ; ð2Þ
3Actually this property cannot be exact and rather holds at

large impact parameters, relevant to the subject of the present
discussion.
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where

dσN
dt

�
mb

GeV2

�
¼ ðℏcÞ2

16πs2
jTN j2;

ðℏcÞ2 ¼ 0.389379…½mb · GeV2�:

However, this does not concern expressions appearing as
integrands when they may very well contain terms like δðqÞ
with a support of measure zero.
As we deal with high energies and have in the integrands

fast decreasing nuclear amplitudes TNðk2Þ and form factors
F ðk2Þ we can (modulo vanishingly small corrections)
extend the integration in jkj (kinematically limited byffiffiffi
s

p
=2) over the whole 2D transverse momentum space. The

benefit is a convenient opportunity to freely use direct and
reversed 2D Fourier transforms.
Note that the “Coulomb kernel” SCðq0; q00Þ has simple

boundary properties

SCðq0; q00Þjα¼0 ¼ ð2πÞ2δðq0Þð2πÞ2δðq00Þ

while
Z

SCðq0; q00Þd2q0d2q00=ð2πÞ4 ¼ 1; ∀ α:

In principle, when applying to the data analysis, one could
deal directly with Eq. (1) which is an all-order (in α) exact
expression free of singularities.
However, in general, it is hardly possible to obtain an

explicit and “user friendly” analytic expressions with
arbitrary TN and F which would allow their convenient
practical use.
So, in practice we have to deal rather with expansions

in the fine structure constant α. As α2 ≈ 5.3 × 10−5 and

α3 ≈ 3.9 × 10−7 it seems that we can fairly limit our
considerations with terms up to α2 inclusively with possible
uncertainty not exceeding 1 percent in the worst case.4

III. DIFFERENTIAL CROSS SECTION
IN Oðα2Þ APPROXIMATION

As was said above,5 with a nontrivial form factor the all-
order expression for the Coulomb kernel SCðq0; q00Þ is very
complicated and practically useless.6 Nonetheless, pertur-
bative expansion in α, if to retain at least terms up to α2

inclusively, gives a very precise estimate of SCðq0; q00Þ and
hence of the differential cross section.
Thus we will use the following expansion

SCðq0; q00Þ ¼ ð2πÞ2δðq0Þð2πÞ2δðq00Þ

þ 2iαð2πÞ3
�
F 2ðq00Þ
q002

δðq0Þ − F 2ðq0Þ
q02

δðq00Þ
�

− 2α2ð2πÞ2
Z

d2k
k2

F 2ðkÞ d
2p
p2

F 2ðpÞ

× ½δðq0Þδðq00 − p − kÞ − δðq0 − kÞδðq00 − pÞ
− δðq0 − pÞδðq00 − kÞ þ δðq00Þδðq0 − p − kÞ�
þ � � � ð3Þ

Expansion (3) allows us to obtain the following expres-
sion for the differential cross section

ðℏcÞ−2 dσCþN

dt
¼ 1

16πs2
jTCþN j2 ¼ J0 þ αJ1 þ α2J2 ð4Þ

J0 ¼
jTN j2
16πs2

; J1 ¼ −
F 2ðqÞ
q2

ReTNðqÞ
s

−
1

8π2s2

Z
dk2

F 2ðkÞ
k2

dp2ð−λðq2; k2; p2ÞÞ−1=2þ ImðTNðq2ÞT�
Nðp2ÞÞ

J2 ¼ 4π
F 4ðq2Þ
q4

þ 1

2πsq2

Z
dk2

k2
dp2

p2
ð−λðq2; k2; p2ÞÞ−1=2þ

· ½q2ImTNðq2ÞF 2ðk2ÞF 2ðp2Þ − k2ImTNðk2ÞF 2ðp2ÞF 2ðq2Þ − p2ImTNðp2ÞF 2ðk2ÞF 2ðq2Þ�

þ 1

16s2π3
Re

�Z
dk2F 2ðk2Þdp2F 2ðp2Þdk02dp02

k2p2
fð−λðq2; p2; p02ÞÞ−1=2þ

· ½ð−λðq2; k2; k02ÞÞ−1=2þ TNðk02ÞT�
Nðp02Þ − ð−λðk2; k02; p02ÞÞ−1=2þ TNðq2ÞT�

Nðk02Þ�g
�
: ð5Þ

The function ð−λðx; y; zÞÞ−1=2þ with λðx; y; zÞ ¼ x2 þ
y2 þ z2 − 2xy − 2xz − 2yz is symmetric an all variables
and has the properties

lim
x¼0

ð−λðx; y; zÞÞ−1=2þ ¼ πδðy − zÞ

and
Z

dxð−λðx; y; zÞÞ−1=2þ ¼ π

4See Appendix C for more details.
5In this paper we use the symbol OðαnÞ to designate (probably

with a variance from the standard mathematical use) the sum of
the first n terms of the Maclaurent expansion in α.

6This is not the case for the idealized electrically pointlike
protons with F ¼ 1, see Appendix B.
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which evidently hold cyclically with respect to x, y, z.
Let us also remind the reader of the definition of the

generalized function ð−λðx; y; zÞÞ−1=2þ [14]:

ð−λÞ−1=2þ ¼
�
0 for λ ≥ 0

jλj−1=2 otherwise

The properties of ð−λÞ−1=2þ help to check the IR conver-
gence of the integrals in the above formulas.
In what follows we use a phenomenological and often

utilized parametrization of the strong interaction amplitude7

TNðs; q2Þ ¼ sσtotðsÞ½iþ ρðsÞ�e−BðsÞq2=2: ð6Þ

In terms of this parametrization [which was also essentially
used by the TOTEM Collaboration in [1] for the retrieval of
the forward parameters (2)] the differential cross section (4)
acquires the form8

dσCþN

dt
¼ σ2totð1þ ρ2Þ

16πðℏcÞ2 e−BðsÞq2 − α
ρσtot
q2

F 2ðq2Þe−BðsÞq2=2

þ α2
�
4πðℏcÞ2

q4
F 4ðq2Þ

−
σtot
q2

F 2ðq2Þe−BðsÞq2=2Hðq2Þ
�

ð7Þ

Here

Hðq2Þ ¼ ln

�
Λ2

q2
þ 1

�
−
X3
k¼1

1

kð1þ q2

Λ2Þk

−
Z

∞

0

ð1 − e−
BðsÞΛ2

2
xI0ðBðsÞqΛ

ffiffiffi
x

p Þ
ð1þ xÞ4 dx ð8Þ

In what follows we use the dipole parametrization of the
form factor F 2ðq2Þ¼ð1þq2=Λ2Þ−4 with Λ2 ¼ 0.71 GeV2.
I0ðzÞ is the modified Bessel function of the first kind of
zero order.
In the absence of an exact expression for dσCþN=dt it is

difficult to judge the accuracy of the approximation as
given by Eq. (7).
Nonetheless, there is some means for such an evaluation.

The matter is that in the idealized case of “electrically
pointlike” protons, i.e., if F ¼ 1, we can obtain (see
Appendix B) an exact expression for dσCþN=dt which

allows us to compare the exact and approximate (up to α2

terms inclusively) expressions. This allows us to judge
how large the approximation error is, at least in the
idealized case. Surprisingly, it appears that the cross
section with a realistic form factor is extremely close to
that in a pointlike case at low values of jtj we consider.
So it is enough to use the estimation of the accuracy of
the second-order approximation in the pointlike case as
done in Appendix B. The deviation from the Oðα2Þ -
approximation due to terms ∼α3 does not exceed a
fraction of a percent (see Appendix C).
In the next section Eqs. (7)–(8) will be used for

retrieving the parameters ρ; σtot; B from the TOTEM data
at

ffiffiffi
s

p ¼ 13 TeV.

IV. ON SOME PROBLEMS OF THE DATA
PROCESSING. RETRIEVAL OF THE

PARAMETERS ρpp;σpptot AND bpp FROM THE
TOTEM MEASUREMENT OF dσpp=dt

Before the treatment of the data on the basis of
Eqs. (7), (8) we find it appropriate and helpful to highlight
and discuss some important features of the fitting
procedures.

A. The χ 2-criterion with use of the weight matrix

When dealing with the data [1] we compile the weight
matrix in the usual way, as the authors of the TOTEM
experiment did. Function χ2 was compiled not for all
points. Points with jtj> t0 > 0 were discarded, so that the
value of parameters ρ; σtot; B obtained from the fitting
would better correspond to their definition as “forward
observables”.
The results are presented in Fig. 1.
We have analyzed only the fits with p-values >0.9 (high

level of confidence). One can see in Fig. 1 that the points in
the left part of it are unwanted because of their large relative
errors. It is seen that in the interval jtj> 0.01 GeV2 a
stabilization of the parameter values occurs and the
corresponding values have practically the same and the
smallest errors. This is why we dealt with t0 ≅ 0.015 GeV2

which corresponds to the procedure used in our paper [15].
Results of such fitting with corresponding parameters are
presented in Fig. 2.
The parameters so retrieved are as follows

ρ ¼ 0.10� 0.01;

σtot ¼ 110.3� 1.8 ½mb�;
B ¼ 20.87� 0.35 ½GeV−2�:

However, as is well seen in Fig. 2, the fitting curve for
the differential cross section passes systematically below
the average values of experimental points which witnesses

7Such an amplitude has the phase independent on the trans-
ferred momentum q. As was proved in Ref. [9], if such a property
would exact even in an arbitrary small but fixed interval of q2 it
would make the amplitude TNðq2Þ identical zero. We suppose
that Eq. (6) holds only approximately at very high energies.

8Below, in front of the first term of Eq. (7), we omit the factor
1þOðα2Þ ¼ 1.00004 assuming it to be just 1.
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that there is an over(under)estimation of the systematic
errors.9

B. The χ 2-criterion with use of the “method of the
shifting experimental data” (variant 1)

Usually, in the absence of correlations, χ2 is compiled by
the formula:

χ2 ¼
XN
i¼1

"
Y thðxiÞ − YexpðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔY2
statðxiÞ þ ΔY2

systðxiÞ
q

#
2

In the case of correlation this method is not suitable and the
function χ2 is compiled using the weight matrix. At the
same time, in our case, the experimental data have
systematic errors10 which significantly exceed the statistical
error. In this variant, the case is often realized when the
value χ2=NoF turns out to be close to zero, which is
statistically unreliable.
If the experimental data allow us to build a weight

matrix, then results are often obtained with the final curve
systematically passing below or above the experimental
points, which is realized in our case considered above.
There is another way to process experimental data when

the use of systematic errors allows a shift of the central
values of experimental points. There can be many ways to
shift the experimental data. Let us consider one of them.
We shift the central values by an amount proportional to

the systematic errors and the proportionality coefficient is
assumed to be the same and equal to λ for all points. χ2

should be written now as:

χ2 ¼
X∞
i¼1

�
Y thðxiÞ − ½YexpðxiÞ þ λΔYsystðxiÞ�

ΔYstatðxiÞ
�
2

þ λ2;

and the parameter λ is the same for all points of the
experimental data array. In this particular case, λ2 is a
penalty function for χ2 arising in statistics as a consequence
of a shift in the experimental data on systematic errors. That
is, we shift the experimental values up or down by the
amount of their systematic errors with a certain factor
jλj ≤ 1, the same for all experimental points. In this case we
leave in the denominator of the expression for χ2 only the
statistical error of the measured value. The factor λ itself is a
fitting parameter.

FIG. 2. Results of the fit of the data [1] at
ffiffiffi
s

p ¼ 13 TeV at
jtj ≤ t0 ≅ 0.015 GeV2. Theoretical curve passes systematically
below the experimental values (“PPP effect”). Full errors were
obtained using the covariance matrix.

FIG. 1. The values of parameters as functions of the upper
cutoff t0. Points with p-values >0.9 (high level of confidence) are
marked by crosses.

9Such a systematic shift was called “Peele’s pertinent puzzle”
(PPP)(see the paper [16]). So one should take the above values of
parameters as evaluative, not as conclusive ones.

10In this case, the systematic error of all experimental data is
very close to 0.055 of the measured value.
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Fitting in this case should not differ significantly
from fitting when used the weight matrix for χ2 and its
results [according to Eqs. (7) and (8)] are presented
in Fig. 3.
Here we have (see Fig. 3) five points with a very high

level of confidence and the more a point lies to the left, the

more it satisfies the definition of our basic parameters as
given by Eqs. (2).
As above we use only those fits which have p-values

≥0.9. The exact values of the parameters with a high level
of confidence, taking into account their errors do not allow
to give preference to their values for different values of t0.
Of course, lower values of t0 are more preferable, but they
have a large error.11 For large t0 the errors are small,
but taking them into account reduces compliance with
the definitions of the parameters in question as given in
Eqs. (2).
Thus, the values of the parameters, taking into account

errors, do not contradict their same values for small and
large cutoff values. In the interval 0.01 < t0 < 0.05, we
observe the stability of the parameters extracted from the
fitting, and for this reason we use the same method for
choosing a particular fit as in the previous case, i.e., we take
a fit at t0 ≅ 0.015 GeV2. The results of this fit are shown
in Fig. 4.
Extracted parameters are as follows:

ρ ¼ 0.10� 0.01;

σtot ¼ 109.5� 1.6 ½mb�;
B ¼ 21.02� 0.26 ½GeV−2�:

We observe a good course of the curve along the exper-
imental points, but already shifted, each by λ ¼ −0.64106
from its systematic error (downward shift).

C. The χ 2-criterion with use of the “method of the
shifting experimental data” (variant 2)

Let us consider one more way of shifting the exper-
imental data. We will shift the central values by a value
proportional to the (measured) value itself, and the pro-
portionality coefficient λ is assumed to be the same for all
points. In this case χ2 has in the form

FIG. 3. Parameter values for different cutoff values of exper-
imental data t0. Points with p-value ≥0.9 are marked with
crosses.

FIG. 4. Results of fitting the experimental data at
ffiffiffi
s

p ¼ 13 TeV
with jtj < t0 ≅ 0.015 GeV2. Only statistical errors are indicated.

11At very low t0 the behavior of all parameters as functions of
t0 becomes very unstable.
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χ2 ¼
XN
i¼1

�
Y thðxiÞ − λYexpðxiÞ

ΔYstatðxiÞ
�
2

þ
�
λ − 1

0.055

�
2

;

and λ is the same for all points of the array of experimental
data. The second term on the right is a penalty function for
χ2, which arises in statistics as a result of an experimental

data shift in systematic errors. This form is due to the
shifting method and the fact that all systematic errors are
equal to 0.055 of the differential cross section. That is, we
shift the experimental values up or down by an amount
proportional to the measured value itself. It is clear that in
this case λ should be positive and close to unity. We assume
this factor to be the same for all experimental points. At the
same time, in the expression for χ2, we use only the
statistical error of the measured value. The multiplier λ
itself is a fitting parameter.
Fitting in this case should not differ significantly from

fitting when using the weight matrix for χ2 and its results are
shown in Fig. 5 [according to the formulas in Eq. (7)–(8)].
Here we have only three points with p-value>0.9. So we

have no choice but to choose a fit corresponding to the right
extreme point with a cross. As before, we observe in the
interval 0.01 GeV2 < t0 < 0.05 GeV2, the stability of the
parameters extracted from the fits, and for this reason we
use the same method of choosing a specific fit (although in
this case we actually have no choice). The results are shown
in Fig. 6. The extracted parameters from this fit are as
follows:

ρ ¼ 0.11� 0.01;

σtot ¼ 107.6� 1.7 ½mb�;
B ¼ 21.15� 0.55 ½GeV−2�:

One can see a good course of the curve along the
experimental points, but already occupying a new central
value equal to the coefficient λ ¼ 0.920005 times its old
value (central values, as in the previous case, are still
moving down).
Thus, we have extracted the values of the parameters in

three ways, and all these three sets do not contradict each
other (taking into account errors).
However, the values of the ρ-parameter do not allow

making an unambiguous statement that it is less than 0.1 as
in Ref. [1] at t0 ¼ 0.07 GeV2.

FIG. 5. Parameter values for different cutoff values t0. Points
with p-value >0.9 are marked with crosses.

FIG. 6. Results of the fit of the experimental data at
ffiffiffi
s

p ¼
13 TeV and jtj ≲ t0 ¼ 0.015 GeV2. Only statistical errors are
indicated.
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D. The last step: Cutoff of the experimental data
with a small value of jtj

In all the above cases of fitting by the method of cutting
off points with a high value of jtj, there is a space where
the extracted parameters practically do not change. This
happens in the interval 0.01 ≤ jtj ≤ 0.05 GeV2. However,
at t0 < 0.01 GeV2 the values of the extracted parameters
experience sharp irregular changes. This is what motivates
us to discard the region jtj < 0.01 GeV2. Of course, the
data at jtj> 0.05 GeV2 should also be discarded, since
above this limit the extracted parameters begin to experi-
ence noticeable changes and the confidence level becomes
unacceptably low.
Thus, we use only experimental data for which the

stability of the extracted parameters was observed above,
i.e., the interval

0.01 GeV2 ≲ jtj ≲ 0.05 GeV2:

The results of the fit of these data using the weight matrix
are shown in Fig. 7.
In Fig. 8 it can be seen that the theoretical curve and the

experimental data are in perfect agreement. Apparently, this
result is the most reliable on the TOTEM experimental data
array at

ffiffiffi
s

p ¼ 13 TeV.
For completeness, we present in Fig. 9 the behavior of

the descriptive curve on the entire array of experimental
data.12

The above fittings in two different ways with a shift in
experimental data give excellent statistical results and both
indicate the possible fact of overestimated central values of
the experimental data of differential cross sections. This is
consistent with the first fitting result we cited above,
where the theoretical curve systematically passes below
the central values.
Such a picture is nothing but a manifestation of the

properties of the weight matrix given by the TOTEM group.

It is possible to get rid of this contradictory picture of the need
to correct the experimental data (which, in our opinion, is an
unacceptable operation) only by limiting the TOTEMexperi-
mental data sample to the segment 0.01≲ jtj≲ 0.05 GeV2.
This leads to a new, different from the TOTEM, value of the
ρ-parameter and, most importantly, to its larger error
(≈40%), which makes the results obtained in this way quite
compatible with the results of the COMPETE collaboration.
Thus, we carried out three types of processing of

experimental TOTEM data, described above by the method
of a step-by-step exclusion of experimental data with high
values of q2. In all these methods, approximately the same
parameter values were obtained (see above), roughly near
the values of the TOTEM group. A common property of
these three methods is the fact that they exhibit a high
degree of parameter stabilization when using experimental
data for which q2 ≤ 0.05 GeV2, and with a high degree of

FIG. 7. The summary of parameters. The number of decimal
places to retain in parameter values is given according to the
arguments in [17]. FIG. 8. Results of experimental data fitting on the interval

0.01 ≤ jtj ≤ 0.05 GeV2 with use of the weight matrix. The scale
along the vertical axis is logarithmic. The total errors extracted
from the weight matrix are indicated. It can be seen that in this
case there is no regular shift of the theoretical curve relative to the
central experimental points, in contrast to the fitting on the full
array (with a weight matrix).

FIG. 9. Theoretical description of the full TOTEM data on
ðdσ=dtÞpp at

ffiffiffi
s

p ¼ 13 TeV. The fit was carried out on the
interval 0.01≲ jtj ≲ 0.05 GeV2.

12The reliability of the cross section description using the
truncated series in αwhen lowering jtj is discussed in Appendix C.

VLADIMIR A. PETROV and NIKOLAI P. TKACHENKO PHYS. REV. D 106, 054003 (2022)

054003-8



confidence—more than 85%. However, all three of these
methods have significant drawbacks. In the first method,
the theoretical curve systematically passes below the
experimental values, while in the second and third methods,
it is generally necessary to shift the experimental values,
and these methods, although they perfectly describe the
shifted experimental values, do not use the correlation
(weight) matrix given by the experimenters.
The most significant drawback of these three methods is

the fact that when discarding experimental points with a
high q2 -value (q2 ≳ 0.05 GeV2), there is, in the area of
q2 ≲ 0.01 GeV2, a significant decrease in the confidence
level of the obtained parameter values and their significant
change in [central] values (especially the parameter ρ) with
a simultaneous sharp increase retrieved parameter errors.
This prompted us, when processing the experimental

values, to discard not only the experimental data for which
q2 ≤ 0.05 GeV2, but also those for which q2 ≤ 0.01 GeV2.
Of course, we used the correlation matrix (weight matrix)
in this case. In this case, the results are obtained with a high
level of confidence and without the shortcomings that we
mentioned above. They are shown in Fig. 9.
However, the price of getting rid of all the shortcomings

of extracting experimental data was a high error for the
value of the ρ -parameter, which reaches about 40%.
However, the theoretical curve does not systematically
pass above or below the experimental points (see cross
sections 8 and 9), and the confidence level turns out to be
even higher than 50%.
For this reason, we consider these parameter values to be

the most consistent with the experimental measurements of
the TOTEM group.
Separately, we investigated the influence of the dipole

form factor, which we used everywhere above, on the results
obtained. To do this,we carried out similar calculations using
the exact formulas for the unit form factor (“electrically
pointlike protons”). The results turned out to be practically
indistinguishable from the above values of the parameters for
the dipole form factor. From this we conclude that the use of
the Oðα2Þ-approximation for the description of the differ-
ential cross section is quite sufficient at the range of the
transferred momenta considered.

V. CONCLUSIONS AND OUTLOOK

In the present paper, a comprehensive discussion of
various methods for extracting the ρ parameter from the
experimental results of the TOTEM collaboration at

ffiffiffi
s

p ¼
13 TeV has been carried out.
Theoretically substantiated formulas, Eqs. (4)–(5) and,

for a certain general form for TN (Eq. (6), Eqs. (7)–(8), are
derived which allow us to describe the data for small values
of q2 (jtj).
It is shown that in order to extract the ρ parameter from

the experimental data [1] in a statistically sound manner,
one can account only for points that satisfy the condition
0.01≲ jtj≲ 0.05 GeV2. Consequently, although the value

of ρ remains to be close to 0.1, its root-mean-square error
increases, in contrast with the TOTEM result (10%), to
almost 40%.
For this reason, we consider it premature to conclude, as

the authors of many papers did, that the value of the ρ
parameter was determined by the TOTEM collaboration atffiffiffi
s

p ¼ 13 TeV very accurately, with ρ ¼ 0.09� 0.01 (from
the array with jtj ≤ 0.07 GeV2).
It is also premature to draw far-reaching physical

conclusions based on these measurements, such as the
existence of an Odderon or, at least, its significant con-
tribution to the forward observables.
The aforesaid gives us also a reason to consider the

conclusion about the failure of the COMPETE predictions
[3] announced in [1] to be unfounded.
Below we give the summary of the concrete numerical

values of the basic parameters obtained in this paper.

A. Final results from the correct CNI account and with
a lower cutoff in t

With use of the IR regular expression (7)–(8) for the
differential cross section dσppCþN=dt which accounts in a
correct way (in the Oðα2Þ approximation) for the
Coulombic contribution we have retrieved from the
TOTEM data [1] the following values of three important
parameters at

ffiffiffi
s

p ¼ 13 TeV:

σpptot ¼ 111.8� 2.2 mb;

Bpp ¼ 20.86� 0.09 GeV−2;

ρ ¼ 0.10� 0.04;

0.01≲ jtj≲ 0.05 GeV2: ð9Þ

B. The influence of the proton form factor

In order to check the influence of the smearing of the
electric charge over the proton volume we have considered
the idealized case of “electrically pointlike protons”
(F ¼ 1)and have retrieved the following result:

σpptot ¼ 111.8� 2.2 mb;

Bpp ¼ 20.86� 0.09 GeV−2;

ρ ¼ 0.10� 0.04;

0.01≲ jtj≲ 0.05 GeV2: ð10Þ
It practically coincides with Eq. (9).13 What could mean a
coincidence of two sets (9) and (10)?
The spread of the electric charge inside the proton is

limited by the physical size of the proton (of its valence
core responsible for the form factor at small t) which
amounts to (in the transverse projection) about 0.6 fm [18].

13Eqs. (9) and (10) actually differ in higher decimals but this,
certainly, does not matter much.

COULOMB-NUCLEAR INTERFERENCE: THEORY AND PRACTICE … PHYS. REV. D 106, 054003 (2022)

054003-9



The transverse interaction region is ð2BÞ1=2. At
ffiffiffi
s

p ¼
13 TeV the average size of the interaction region is about
1.3 fm. According to such a reasoning the proper size of the
proton can be hardly neglected in comparison with the
average interaction radius. So the mentioned coincidence
seems a little puzzle. Although one could argue that the
form factors are essentially close to 1 at considered t.
However, the form factors enter also the integrals in Eq. (5).

C. Comparison with the TOTEM results

Nowwe are to compare our results (9) with the published
values [1] retrieved on the basis of a different theoretical
requisite [8]14 to treat CNI15:

σpptot ¼ 110.5� 2.4 mb;

Bpp ¼ 21.78� 0.06 GeV−2;

ρ ¼ 0.09� 0.01;

jtj ≤ 0.07 GeV2: ð11Þ
Note that the parameters σpptot and bpp of both sets differ
little (≤1%) both in central values and in errors. However,
the values of ρpp differ quite a lot. The difference is 10% for
the central value and 30% for the error band.
At first sight, our result Eq. (9) looks quite ordinarily

being, in terms of ρ, close to the TOTEM result Eq. (11)
(although such a difference may have a significant physical
reason). However, a conceptually important point is that
such a widening of the error corridor in Eq. (9) in compare
with Eq. (11) “returns to the agenda” a number of models
(giving 0.12 ≤ ρ ≤ 0.14, see e.g., [19])which are to be
rejected according to [1].
Let us remind that in this paper we used in capacity of

the nuclear amplitude TN the option (6) which, though
widely used in literature (including the TOTEM publication
[1]), is, strictly speaking, not fully satisfactory16 because of
t -independence of its phase.17

We have also to notice that the values of ρ retrieved with
help of different models of TN are inevitably different. Such
a semitheoretical character of the ρ-parameter was realized
for a long time but never studied systematically.

We hope to further investigate these important issues in
forthcoming studies.
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APPENDIX A: ON THE DIFFERENCE BETWEEN
THE α-EXPANSIONS OF THE EXACT

EXPRESSION FOR dσC+N=dt
AND THE CKL APPROXIMATION

As was already mentioned above, the CKL scheme
shows two flaws.
To begin with, the account of the form factor in the

formula for the full amplitude TCþN was assumed in a
simplified way, different from the exact account. Moreover,
when using the expansion in α CKL [8] retain in the TCþN
only the first order term. Since this approximation is then
used in jTCþN j2 ∼ dσCþN=dt one must either use only the
OðαÞ-approximation also in dσCþN=dt (which would
eventually lead to an absurd situation) or, to be mathemati-
cally correct, keep theOðα2Þ-term already in the amplitude.
Otherwise, there is a missing Oðα2Þ—term in dσCþN=dt.
It is not difficult to retain the Oðα2Þ—term in the α -

expansion of TCKL
CþN (ignoring the aforesaid blunder with

account of the form factor)and this is what we have done in
order to make the comparison between the two schemes
better reflecting the essence of the matter. Thus modified
CKL cross section (i.e., corrected with retaining of the α2

term in the full amplitude) differs from the α -expansion of
the exact expression (4), (5) by a decrement

δ

�
dσCþN

dt

�
≡ dσCþN

dt
−
dσCKLCþN

dt

which takes place in the second order in α only and reads as
follows

δ

�
dσCþN

dt

�
¼ ðℏcÞ2 α2

2πsq2

Z
dk2

k2
dp2

p2
ð−λðq2; k2; p2ÞÞ−1=2þ · fq2ImTNðq2Þ½F 2ðk2ÞF 2ðp2Þ − F 2ðq2Þ�

− k2ImTNðk2Þ½F 2ðp2ÞF 2ðq2Þ − F 2ðk2Þ� − p2ImTNðp2Þ½F 2ðq2ÞF 2ðk2Þ − F 2ðp2Þ�g

þ α2

4πðℏcÞ2s2ð2πÞ2
Z

d2k
k2

d2p
p2

½F 2ððkþ pÞ2Þ − F 2ðk2ÞF 2ðp2Þ� · Re½TNðq2ÞT�
Nððq − k − pÞ2Þ�

14How this approximation differs from the exact approach is shown in Appendix A.
15From the two sets of parameters given in [1] we keep only the one that corresponds to the upper cutoff t0 ¼ 0.07 GeV2 because

stabilization discussed in Sec. III takes place for t0 < 0.1 GeV2.
16This does not concern Eqs. (4)–(5) which are of a general character.
17The importance of the t-dependence of the phase of the strong interaction amplitude was addressed in Refs. [9,20].
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In the pointlike limit F → 1, the above integrals turn out
to be equal to zero and the CKL approximation (adjusted
for the α2-term retention in the amplitude) is equivalent to
our formulas.
The decrement would also be equal to zero if the

amplitude in TCKL
CþN differed from TCþN only by a phase

factor.18 In this case, the amplitudes would be physically
equivalent. However, as we see, this is not the case.
In general case the decrement behaves at small q2 as

δ

�
dσCþN

dt

�
≈ −

α2

16π

��
ln

�
Λ2

q2

�
−
11

6
− A

�
BΛ2

2

��
2 σ2tot
ðℏcÞ2

þ 64πF 2ðq2Þ σtot
Λ2

�

where

AðzÞ ¼
Z

∞

0

ð1 − e−zxÞ
xð1þ xÞ4 dx

¼ C þ z2 − 4zþ Eið−zÞezðz3 − 3z2 þ 6z − 6Þ
6

þ ln z:

In his talk at the Low-x 2021 Workshop at Elba [21] K.
Österberg had presented the comparison of our approach
(as explained most recently in [12]) with the CKL approxi-
mate scheme [8] (adopted in [1]) with a severe sentence
(basing on the paper [22]):

“the new CNI Formula from Petrov… fails”.

Actually the comparisonwasmade not in terms of the ratio
dσCþN=dσCKLCþN but, instead, of the ratio dσ1CþN=dσ

CKL
CþN

where dσ1CþN=dt is the cross section with only the first-
order contribution in α in the full amplitude and which was
called the “new CNI formula from Petrov” in spite of that we
specially emphasized the role of the second order in [12].
The ratio dσ1CþN=dσ

CKL
CþN showed a (4%) deviation from

unity (in the region of low t) which was misunderstandingly
qualified as a failure of our approach [11,12].
To clear things up let us, in our turn, estimate the

comparative quality of the quantity dσ1CþN=dt and the
TOTEM working tool, the CKL expression dσCKLCþN=dt
[1,8]. At Fig. 10 we show (similar to what was done in
[22]) the ratios ðdσ=dt − refÞ=ref where we assume as a
reference value, ref, our expression in Eq. (7) while for
dσ=dt we take dσCKLCþN=dt and dσ1CþN=dt.

19:

Ratio1¼dσCKLCþN=dσCþN−1

¼α2
�
σ2tote−Bq

2 ½AðBλ2=2Þ− lnðΛ2=q2Þþ11=6�2
16πðℏcÞ2

þ4F 2ðq2Þσtot lnð1þq2=Λ2Þe−Bq2=2
q2

�	�
dσCþN

dt

�

Ratio 2 ¼ dσ1CþN=dσCþN − 1

¼ α2
�
σ2totð1þ ρ2Þe−Bq2 ½AðBΛ2=2Þ −D�2

16πðℏcÞ2

þ F 2ðq2Þσtote−Bq2=2Lðq2Þ
q2

�	�
dσCþN

dt

�

The deviation from the reference values as seen at Fig. 10
demonstrates that the account for the Oðα2Þ terms in the
amplitude gets more and more essential with decreasing jtj.
Hereof their influence on the forward observables, first of
all the ρ-parameter.
How to explain an evident imparity of the two ratios in

Fig. 10 with respect to account for the α2 terms? If two
amplitudes differ in their phases only they may differ
significantly in the form of the amplitude. Nonetheless,
they give the same result for the cross section, both in all-
order or when retaining a few terms in α. However, if we
deal with physically nonequivalent amplitudes, the results
may differ significantly. In particular, nonequivalent ampli-
tudes differently react to the inclusion of higher orders in α.
What we deal with in our case is an evident physical
nonequivalence of the two amplitude moduli in question.

APPENDIX B: POINTLIKE ELECTRIC
CHARGES

We believe it is instructive to consider the idealized case
of “electrically pointlike” protons with F ¼ 1. In this case
one can obtain explicit all-order expressions.

FIG. 10. The comparative quality of the expressions dσ1CþN=dt
and dσCKL

CþN=dt (which retain only the first order terms in α in the
amplitude TCþN) with respect to the reference cross section
dσCþN=dt [Eq. (7)] with a full account for α2 terms.

18Under the full amplitudes TCþN we mean here the ampli-
tudes after factoring out the IR divergent part of the phase of the
regularized amplitude with a fictitious “photon mass.”

19With dσCþN=dt from Eq. (7) and

Lðq2Þ ¼ ln

�
Λ2

q2
þ 1

�
−
X3
k¼1

k−1
�
1þ q2

Λ2

�−k
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In case of electrically pointlike protons, i.e., ifF ¼ 1, we
would have a compact explicit expression for the Coulomb
kernel SCðq0; q00Þ expressed in terms of the well known
generalized functions described, e.g., in [14]:

SCðq0; q00Þ ¼ ð4παÞ2 ðq
002=q02Þiα
q02q002

:

Physically the use of such an approximation would be
justified if the average impact parameter between the
colliding protons were much larger than the “charge radius”
of the proton. If (with some reservation) we take as the
average transverse distance between the centres of colliding
protons the value

ffiffiffiffiffiffiffiffiffiffiffiffi
2BðsÞp

≈ hb2i1=2, where BðsÞ is the
forward slope, then it exceeds (at

ffiffiffi
s

p ¼ 13 TeV) the size of
the “valence core” (≈0.63 fm) [18] only two times.
Nonetheless, we will analyze, in the end of this section,

such an option vs the TOTEM data in order that afterwards,
when using a realistic form factor (F ≠ 1), to see better the
influence of smearing of the electric charge of the proton.
Equations (2) and (3) allow to transform Eq. (1) into an

all-order (in α) expression

dσCþN

dt
¼ ð1þ ρ2Þσ2tot expð−Bq2Þ

16πðℏcÞ2 · jΓð1þ iαÞ 1F1ðiα;1;zÞj2

−α
σtot
q2

exp

�
−Bq2

2

�
· Re

�
ðρ− iÞ

· exp

�
−iα ln

�
Bq2

2

��
·Γð1þ iαÞ 1F1ðiα;1;zÞ

�

þα2
4πðℏcÞ2

q4
ðB1Þ

Here 1F1ðiα; 1; zÞ is one of the confluent hyper geomet-
ric functions20 (see Chapter 9.21 in [23]): At energies up
to 13 TeV and q2 ¼ −t≲ 0.05 GeV2 the values of z ¼
BðsÞq2=2 if of order 0.5 or less. At such z the function
Γð1þ iαÞ1F1ðiα; 1; zÞ is extremely close to 1 and is
exhaustively approximated by the following expression

Γð1þ iαÞ1F1ðiα; 1; zÞ ¼ 1þ iαfðzÞ − α2gðzÞ
where

fðzÞ ¼
X∞
n¼1

zn

nn!
− C

and

gðzÞ ¼
X∞
n¼1

znψðnÞ
nn!

þ C2

2
þ π2

12
; C ¼ 0.5772…

With account of Eqs. (4) and (5) we get the following
expression for the differential cross section

dσCþN

dt
½mb=GeV2� ¼ ð1þ ρ2Þσ2tot

16πðℏcÞ2 eBt − α
ρ · σtot
jtj eBt=2

þ α2
�
4πðℏcÞ2

t2
−
σtot
jtj e

Bt=2½fðzÞ− ln z�

þ ð1þ ρ2Þσ2tot
16πðℏcÞ2 eBt½f2ðzÞ− 2gðzÞ�

�
:

ðB2Þ
We remind that z¼BðsÞq2=2≡Bq2=2≡−Bt=2≡Bjtj=2.
Let us use Eq. (B1) for description of the TOTEM data in

the Coulomb-nuclear interference region. We omit repeat-
ing of several steps similar to those explained in the case of
realistic form factors and show the final result. We also do
not include the plots which are practically identical to those
with the dipole form factor.
So, the values of the three standard parameters resulting

from the description of the data under the assumption of
“electrically pointlike protons” (F ¼ 1) are as follows:

σpptot ¼ 111.8� 2.2 mb;

Bpp ¼ 20.85� 0.09 GeV−2;

ρ ¼ 0.10� 0.04;

0.01≲ jtj≲ 0.05 GeV2:

We have to emphasize that the use of the Oðα2Þ
approximation appears practically equal to the use of the
exact expression (11) [in more detail see Eq. (C1)].
When looking at the values of parameters ρ; σtot; B one

should pay attention that in spite of our ignoring the form
factor effects the results almost coincide with those
obtained with full account of the form factor.
In Appendix A we remarked that the CKL scheme (if

corrected with inclusion of the second order term in the
amplitude) in the pointlike limit (at F ¼ 1) is identical to
the ours, i.e., the correct one. Here, however, we take for
comparison the original expression for the amplitude in the
pointlike case [8].
The 1st order CKL amplitude for a pointlike electric

charge is of the form (we use a special designation T̂CKL
CþN for

an identical remake of the corresponding expressions for
the full amplitude in the original versions [8], viz Eq. (C1)
in the first reference in [8] and Eq. (24) in the second one:

T̂CKL
CþN jF¼1 ¼ TNðq2Þ −

8παs
q2

þ iα
Z

p2

0

dk2

k2
½TNðq2Þ − T̄Nðk2; q2Þ�:

So, for TN as in Eq. (6) we have explicitly

20

1F1ðiα; 1; zÞ ¼
1

ΓðiαÞΓð1 − iαÞ
Z

1

0

dxezxxiα−1ð1 − xÞ−iα:
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T̂CKL
CþN ¼ TNðq2Þ −

8παs
q2

þ iαTNðq2Þ
�
ln

�
Bp2

2

�

þ C −
X∞
n¼1

�
Bq2

2

�
n

=n!n

�
: ðB3Þ

As we can see, the limit s → ∞ in the upper integration
limit is no longer possible and we get

dσ̂CKLCþN

dt






F¼1

¼ σ2tote−Bq
2

16πðℏcÞ2 − α
ρðsÞσtot

q2
eBq

2=2 þ α2
�
4πðℏcÞ2

q4

þ lnðBp2

2
Þ þ C −

P∞
n¼1 ðBq

2

2
Þn=n!n

q2
σtote−Bq

2=2

þ ½lnðBp2

2
Þ −P∞

n¼1 ðBq
2

2
Þn=n!n�2

16πðℏcÞ2 σ2tote−Bq
2

�
;

where C ¼ 0.5772….
If we take equation for dσ̂CKLCþN=dt for fitting the data we

get the following result for our basic parameters

σpptot ¼ 111.81� 1.75 mb;

Bpp ¼ 20.76� 0.30 GeV−2;

ρ ¼ 0.2740� 0.0098;

jtj≲ 0.015 GeV2: ðB4Þ
In this case, the curve systematically passes below the
central values of the experimental points (the PPP effect,
see [16]), which, as before, indicates that the systematic
errors are overdetermined. However, the value of the
ρ-parameter turns out to be unexpectedly high. This
probably indicates an incomplete account for terms of
the second order in α. Nonetheless, the values of σtot and B
turn out to be quite consistent (within the error) with the
previously obtained values.
Thus, we see that the pointlike limit according to [8]

leads to the values of the basic parameters Eq. (B4)
different from those in the case of the dipole form factor,
cf with Eq. (11). However, this mainly concerns the ρ
parameter while the other two seem to be little sensitive to
the change in the form factor account.
As above, we also have made a fit over the most

confidential interval of experimental data values, i.e., at
0.01 ≤ jtj ≤ 0.05 GeV2. In this case, the curve passes
ideally relative to the experimental points, the parameters
σtot and B, as elsewhere above, show enviable stability,
while the ρ-parameter undergoes a significant change
remaining, however, unusually high.

σpptot ¼ 112.36� 2.18 mb;

Bpp ¼ 20.54� 0.06 GeV−2;

ρ ¼ 0.2356� 0.0332;

0.01≲ jtj≲ 0.05 GeV2: ðB5Þ

Howbeit, we would like to point out again that the formula
Eq. (B3) is the result of an incorrect manipulation with
divergent integrals and therefore contains UV logarithms,
which are unnatural for problems related to diffraction and
Coulomb-nuclear interference, as already indicated earlier
in [11].

APPENDIX C: EXPANSION IN α:
WHERE TO STOP?

Here we give some comments on the use of perturbative
expansion in the fine structure constant α in the narrow
sense, i.e., as applied to the concrete problem considered in
the text.
As to the general opinion about QED as a perturbation

theory, there is a conviction that the series in α does not
converge and should be considered as an asymptotic one
due to notorious nonanalyticity in coupling constant at
the origin. This does not preclude to some parts of the
amplitudes to have convergent expansion in α while
nonanalytic terms are of a minor significance (like, say,
expð−c=αÞ; c > 0). This is exactly what we have in Eq. (1)
where the expansion in α has an infinite convergence radius
and we tacitly assumed the absence of nonanalytic terms.
However, in practice, when one deals with a truncated

series in α one has to estimate the error of the series
truncation used, i.e., to estimate the value of discarded
terms. It may well happen that for some values of the
additional parameters (in our case s and t) the approxima-
tion is justified, while for others it cannot be considered as
an “approximation” at all. In the latter case one, generally,
has to account for more terms in the expansion parameter.
As a simple example let us consider an oversimplified

account of the pointlike Coulomb interaction when the full
scattering amplitude is given as follows

TCþNðs; tÞ ¼ TNðs; tÞ þ α · 8πs=t:

If (just for illustration) we take the parameters from the
Conclusion and neglect the ρ value we obtain that the
second “correction” term at the “critical value” jtj ¼ 6.4 ×
10−4 GeV2 becomes equal to the “main” and then, at
lower jtj surpasses it. Let us note that the lowest jtj reached
by the TOTEM Collaboration (at

ffiffiffi
s

p ¼ 13 TeV) is jtj ¼
8.79 × 10−4 GeV2. This is already a signal that it is
necessary to take into account at least the second order
in α. At the same time, at jtj ¼ 10−2 GeV2 the use of the
first order Coulomb term is fairly justified and constitutes
near 6% of the main term TN .
Sure, in more realistic cases the critical values of jtj may

be different but the conclusion is the same: the weight of
terms in the α -expansion is “running” with jtj.
Figure 11 shows that for jtj> 0.003 GeV2, we get the

“natural” order (we designate the nth order as hni), i.e.,
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h0i> h1i> h2i:
At 6 × 10−4 GeV2 < jtj < 3 × 10−3 GeV2 the order breaks
down:

h0i> h2i> h1i

and, finally, at jtj < 1.3 × 10−4 GeV2 the natural order is
broken even more, actually is reversed:

h2i> h1i> h0i:

This circumstance prompts us to check the error determined
by the remainder term of the expansion in a series in α
which, in this case, is the expression

δ3
dσCþN

dt
¼ −α3

ρσtote−Bq
2=2

q2

�
3

2
ln2

�
2

Bq2

�

− ln

�
2

Bq2

��
C þ 1

2
− Bq2

�
−
π2

12

�
: ðC1Þ

Using parameters from Eq. (9) we are convinced that the
error does not exceed a fraction of a percent of the full
expression in the entire range of experimentally available
values of t.
Thus for 10−4 GeV2 ≤ jtj ≤ 5 × 10−2 GeV2 higher

orders in α are quite harmless and the use of Eq. (7) is
fairly justified.
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