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We discuss a novel approach to estimate the partition function in effective model frameworks when the
effective potentials have multiple extrema, so that ascertaining a mean field becomes difficult. Using this
approach we present a consistent model to study the thermodynamic properties of gluon quasiparticles as a
function of temperature, both in the color confined and the color deconfined phases.
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I. INTRODUCTION

In the strong coupling regime the thermal physics of
strongly interacting matter is best described by quantum
chromodynamics (QCD) on space-time lattices [1–11].
Deconfinement of quarks and gluons and the chiral
symmetry restoration at crossover temperatures Tc ∼
150 MeV is now well documented [12–14]. The deconfine-
ment transition in a pure glue system is however found to be
of first-order at temperatures Td ∼ 270 MeV [15–19]. The
thermal average of the Polyakov loop in the fundamental
representation L̂F gives the static quark free energy and is
considered as the order parameter [16,17]. Polyakov loop
in the deconfined phase also breaks spontaneously the
symmetry of the gluon action under Z(3) twists on the
gluon fields at the temporal boundary. Similarly, the
Polyakov loop in the adjoint representation L̂A is related
to the free energy of a static adjoint color source [20–23].
But it is always invariant under the Z(3) twists of the gluon
fields at the physical boundary.

Significant efforts have been put in for building effective
models for a spontaneous Z(3) symmetry breaking, with L̂F

as order parameter, using Landau type of polynomial
potentials [24–29]. Further models have been built [30–
37] by introducing effective L̂F fields in lieu of background
temporal gluon fields in the chiral models like Nambu-Jona-
Lasinio (NJL) model [38–43] or chiral sigma models [44–
48]. These Polyakov loop enhanced chiral models give
simple but insightful description of thermodynamics of
strong interactions [49–69,69–82]. In these models the
gluon pressure is obtained from the polynomial thermody-
namic potential in Tr L̂F. But a more natural alternative
seems to be in terms of gluon quasiparticles [83–87],
including modifications due to the background L̂A [88–
91]. Here L̂A is expected to induce statistical confinement of
gluons in a similar way as L̂F does for quarks in the
Polyakov enhanced chiral models. But unfortunately the
modified statistics result in a negative gluonic pressure
below Td. Various authors have argued for additional terms
to preserve overall positivity. But the quasiparticle pressure
itself still remains negative. This lacunae may have slowed
down further progress in this direction.
Here we argue that the issue lies with the method of

obtaining the statistics. Usually the saddle point approxi-
mation is employed to obtain the mean value of the
Polyakov loop, which is then put back to obtain the
thermodynamic potential. We propose a new prescription
for obtaining the thermal averages and thermodynamic
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observables that can solve the issue and reliably predict
various observables both below and above Td.

II. FORMALISM

A. Standard approach

The Polyakov loop in the effective models is written in
terms of the background temporal gluon field A0, in the
color diagonal form as

L̂F ∼ exp½iðA3
0T

3 þA8
0T

8Þ=T�: ð1Þ
Here T3 and T8 are the diagonal generators of SU(3).
Accordingly, in terms of the class parameters θ1 and θ2 we
have

L̂F ¼ diagðeiθ1 ; eiθ2 ; e−iðθ1þθ2ÞÞ: ð2Þ
The normalized character and its complex conjugate are
then given as

Φ ¼ 1

3
Tr L̂F; Φ̄ ¼ 1

3
Tr L̂†

F: ð3Þ
In general for SUðNcÞ the group invariant Haar measure

dμ may be expressed in terms of the distribution of
eigenvalues asZ

dμ ¼ 1

Nc!

�YNc

i¼1

Z
2π

0

dθi
2π

�
δ

�X
i

θi

�Y
i<j

jeiθi − eiθj j2

¼ 1: ð4Þ
For SU(3) the corresponding Haar measure is given by

1

3!

Z
2π

0

Z
2π

0

dθ1
2π

dθ2
2π

DetVdM½θ1; θ2� ¼ 1; ð5Þ

where the Vandermonde determinant DetVdM is given as
[36,88,90]

DetVdM ¼ 64sin2
ðθ1 − θ2Þ

2
sin2

ð2θ1 þ θ2Þ
2

sin2
ðθ1 þ 2θ2Þ

2

¼ 27½1 − 6Φ̄Φþ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2�: ð6Þ
Correspondingly, in both polynomial and quasiparticle
potentials, a Vandermonde term can be included. Thus
the nth order polynomial potential becomes

Ω0
poly ¼ ½Ωpolyðαi¼1���nðTÞ;Φ; Φ̄Þ þ κ ln ½DetVdM��T4; ð7Þ

where αi, κ are model parameters. The quasiparticle
potential becomes

Ω0
gqp ¼ Ωgqp þ κ ln ½DetVdM�T4; ð8Þ

where

Ωgqp ¼ ¼ 2T
Z

d3p
ð2πÞ3 ln det

�
1 − L̂Ae−

jp⃗j
T

�

¼ 2T
Z

d3p
ð2πÞ3 ln

�
1þ

X8
n¼1

ane−
njp⃗j
T

�
: ð9Þ

The coefficients an for n ¼ 1…8, are

a8 ¼ 1; a1 ¼ a7 ¼ 1 − 9Φ̄Φ

a2 ¼ a6 ¼ 1 − 27Φ̄Φþ 27ðΦ̄3 þΦ3Þ
a3 ¼ a5 ¼ −2þ 27Φ̄Φ − 81ðΦ̄ΦÞ2
a4 ¼ 2½−1þ 9Φ̄Φ − 27ðΦ̄3 þΦ3Þ þ 81ðΦ̄ΦÞ2�: ð10Þ

The adjoint Polyakov loop is given as

L̂A ¼ diagð1; 1; eiðθ1−θ2Þ; e−iðθ1−θ2Þ; eið2θ1þθ2Þ;

e−ið2θ1þθ2Þ; eiðθ1þ2θ2Þ; e−iðθ1þ2θ2ÞÞ; ð11Þ

with the corresponding normalized character,

ΦA ¼ 1

N2
c − 1

Tr L̂A ¼ 1

8
ð9ΦΦ̄ − 1Þ: ð12Þ

Given Ω0 from either Eq. (7) or Eq. (8), one can solve for

∂Ω0

∂Φ
¼ 0;

∂Ω0

∂Φ̄
¼ 0; ð13Þ

obtaining the saddle point estimate for the mean fields
Φmf and Φ̄mf, and the mean thermodynamic potential
Ω0 ¼ Ω0ðΦmf; Φ̄mfÞ.
In the quasiparticle picture this mean field approach

gives satisfactory results for T > Td [88–91]. Below
Td Φmf ¼ Φ̄mf ¼ 0, and the thermodynamic potential
becomes

ΩgqpðΦmf; Φ̄mf → 0Þ ¼ 2T
Z

d3p
ð2πÞ3 ½lnð1 − eð−

3jp⃗j
T ÞÞ2

þ lnð1 − eð−
jp⃗j
T þ2πi

3
ÞÞ

þ lnð1 − eð−
jp⃗j
T −

2πi
3
ÞÞ�: ð14Þ

The last two terms are positive, resulting in an overall
temperature dependent negative pressure for T < Td.
In Ref. [88] the authors proposed a hybrid approach

including glueballs implemented as dilaton fields, resulting
in an overall positive pressure below Td. In Ref. [89], an
additional pure matrix interaction term was used along with
Ω0

gqp, and a Weiss mean field analysis was done. In a
related Weiss averaging procedure [56], a model para-
metrization was invoked similar to the polynomial poten-
tial. In Ref. [91], a bag term was introduced along with
Ω0

gqp and a thermodynamic consistency analysis was done.
Truly each of these additional terms may have significant
physical inputs. But the negativity of gluon quasiparticle
pressure below Td remains unaddressed.

B. Alternate approach

Here we propose to use a matrix model for the back-
ground Polyakov loop. We begin with the corresponding
partition function given as
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ZPL ¼
Z

Dθ1Dθ2 exp

�
−
1

T

Z
d3xΩgqp½θ1ðxÞ; θ2ðxÞ�

�

¼
Z Y

x

1

24π2
dθ1ðxÞdθ2ðxÞDetVdM

× exp

�
−
1

T

Z
d3xΩgqp½θ1ðxÞ; θ2ðxÞ�

�
; ð15Þ

where Ωgqp is given in Eq. (9). Additional terms as in
Refs. [88,89,91] could be introduced but are not relevant
for the physics discussed here. As we shall see that in our
approach, even this simple ZPL is sufficient to describe the
pure gauge lattice field theory data quite satisfactorily.
The Polyakov loop is an oscillating function of θ1 and

θ2, and so will be the thermodynamic potential. Hence the
configurations away from the saddle point may have a
significant measure. In fact below Td, where hΦi ¼ 0,
configurations with jΦj ∼ 1=3 is most preferred [90]. Here
instead, we compute the partition function ZPL, by numeri-
cally integrating over all the finite periodic interval of the θ1
and θ2 fields. The difficulty is with taking the V → ∞ limit,
and this is why the saddle point analysis is the usual choice.
However a simplification arises by noting that the effective
action contains no derivatives of the θ1 and θ2 fields.
Therefore the configuration space can be split up into
N → ∞ independent and equivalent points, such that the
partition function becomes

ZPL ¼ zNPL; ð16Þ
where

zPL¼
Z

1

24π2
dθ1dθ2DetVdMexp

�
−
v
T
Ωgqp½θ1;θ2�

�
; ð17Þ

and v is a parameter with the dimension of volume. This is
the only free parameter and may be suitably related with
Td, the only physical scale in the finite temperature SU(3)
pure gauge field theory. We assume v¼ ðβ1=TdÞ3,
where β1 is some constant. We further scale out the
momentum variable as j ˜p⃗j ¼ jp⃗j=T, whereby the partition
function may be expressed in terms of the scaled temper-
ature T=Td as

z ¼
Z

1

24π2
dθ1dθ2DetVdM

× exp

�
−2

�
β1T
Td

�
3
Z

d3p̃
ð2πÞ3 ln

�
1þ

X8
n¼1

ane−nj
˜p⃗j
��

:

ð18Þ
The scaled pressure can be expressed in terms of the scaled
temperature as

p=T4 ¼
�
T
V
lnZPL

�
=T4 ¼ 1

Nv
N ln zPL=T3

¼ ln zPL=ðβ1T=TdÞ3: ð19Þ

III. RESULTS

A. Parameter fitting

The variation of p=T4 with T=Td obtained from Eq. (19)
is completely consistent throughout the range of temper-
atures (Fig. 1). We chose β1 ∼ 2. However for quantitative
agreement with data from lattice SU(3) field theory, we
consider a temperature dependent effective mass [mgðTÞ]
for the gluon quasiparticles. Effects of such constant
mass was studied in [88], while a temperature dependent
ansatz was used in [89], following the studies in [92].

We substitute j ˜p⃗j with Ẽg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ˜p⃗j2 þ m̃gðTÞ2

q
in Eq. (18),

where m̃gðTÞ ¼ mgðTÞ=T. The lattice data [93] for pressure
were solved for the scaled masses from the pressure
equation p=T4jmodel ¼ p=T4jlattice to an accuracy of 10−6

or better. The momentum rescaling is undefined for T → 0.
Also the numerical uncertainties were insignificant only
above T=Td ∼ 0.45. Therefore the partition function at a
given T=Td was normalized with the one at T=Td ¼ 0.45.
The extracted scaled masses m̃gðTÞ ¼ mgðTÞ=T are

shown in Fig. 2 as data points. The functional dependence
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FIG. 1. Scaled pressure of gluon quasiparticles as function of
scaled temperature.
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of m̃gðTÞ has an abrupt change close to T=Td ¼ 1, and may
have a functional form,

mgðTÞ=T ¼ αþ β= lnðγT=TdÞ; for T=Td > 1 ð20Þ
¼ ζðTd=TÞ2; for T=Td < 1: ð21Þ

With Td arbitrary and assuming v ¼ ð2=TdÞ3, the func-
tional fit is shown in Fig. 2. The parameters α, β and γ are
obtained by least square fit using the “gnuplot” software
and summarized in Table I.
Given the mass parametrization a comparative plot of the

scaled pressure obtained in our model vis-à -vis the lattice
QCD data are shown in Fig. 3.

B. Thermodynamic observables

Given p=T4 as a function of T=Td, other thermodynamic
observables like entropy density (s), energy density (ϵ),
specific heat (cV) and speed of sound (vs)may be obtained as

s=T3 ¼ 1

T3

∂p
∂T

¼ 1

ðT=TdÞ3
∂½ðp=T4ÞðT=TdÞ4�

∂ðT=TdÞ
; ð22Þ

ϵ=T4 ¼ s=T3 − p=T4; ð23Þ

cV=T3 ¼ 1

T3

∂ϵ

∂T
¼ 1

ðT=TdÞ3
∂½ðϵ=T4ÞðT=TdÞ4�

∂ðT=TdÞ
; ð24Þ

v2s ¼
∂p
∂ϵ

¼ ∂p
∂T

=
∂ϵ

∂T
¼ s=T3

cV=T3
: ð25Þ

The scaled interaction measure [Fig. 4(a)] is expected
to capture the deviation of thermal system from that
of a relativistic noninteracting gas of gluons. However
for T ≪ Td due to the heavy effective mass of the gluon
quasiparticles as well as the confinementlike interac-
tions both p=T4 and ϵ=T4 are insignificant, and so is the
interaction measure. With increasing T=Td, both mg=T and
the confinement effect decrease, thereby increasing the
interaction measure. A turnover occurs for T=Td > 1 inside
the gluonic phase where the measure gradually decreases
towards relativistic ideal gas limit.
A more direct observable for transition from the non-

relativistic confined phase to the relativistic gluonic phase
is the conformal measure ðϵ − 3pÞ=ϵ, which varies from 1
to 0 between the two phases respectively [Fig. 4(b)]. This
behavior follows the general trend of mg=T. At T=Td ¼ 1

there is a sudden gap arising out of the sudden changes in
mg=T and the deconfining effects.
For a conformal theory in d dimensions, ϵ ¼ d:p and

cV=T3 ¼ ð1þ dÞϵ=T4. In Fig. 5(a) we show a direct
comparison of scaled specific heat with 4ϵ

T4. The gap in
the ϵ=T4 gives an estimate of the latent heat of transition.

TABLE I. Model parameters.

Fitted Chosen

α β γ ζ vðGeV−3Þ
0.548 0.174 1.083 2.70 ð0.5TdÞ−3
�0.006 �0.005 �0.004 �0.07
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FIG. 3. Temperature variation of scaled pressure (lattice data
from [93]).
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FIG. 4. Temperature variation of (a) scaled interaction measure
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The scaled specific heat is both discontinuous and diver-
gent right at T=Td ¼ 1. The agreement with lattice data
could be ascertained only for T=Td > 1 from the measure-
ments reported in Ref. [1].
Finally we present the behavior of the squared speed of

sound ðv2sÞ which is supposed to be an important trans-
port coefficient determining the hydrodynamic evolution
in the heavy-ion collisions [94]. In the conformal limit
v2s ¼ p=ϵ ¼ 1=3. A comparison of our estimation for the
speed of sound along with the ratio p=ϵ and measurements
on the lattice [1] is shown in Fig. 5(b). Note that p=ϵ is 3
times the additive inverse of the conformal measure.
Reflection of such a variation is seen in the v2s − T curve.
The softest equation of state is supposed to be at T=Td ¼ 1,
where v2s drops towards zero.
Thus our model results for various sensitive thermody-

namic observables are in excellent numerical agreement
with the lattice data. In fact the parametrizations obtained
by fitting data from Ref. [93] (Fig. 4), makes excellent
predictions for the data from Ref. [1] (Fig. 5).

C. Order parameter

As discussed earlier, hΦi is expected to vanish in the
Z(3) symmetric confined phase. In the deconfined phase
the system may be in any one of the spontaneously chosen
ground states. For numerical implementation, choosing the
ground state requires some biasing. For example with a
source term forΦ towards one of the ground states, one can
consider the sequential limits V → ∞ and source term
going to zero. However we have already simplified the
V → ∞ limit. Consequently the thermal averages of
various operators are obtained as

hÔ½Φ;Φ̄�i¼1

z

Z
dθ1dθ2DetVdMO½Φ;Φ̄�

×exp

�
−2

�
2T
Td

�
3
Z

d3p̃
ð2πÞ3 ln

�
1þ

X8
n¼1

ane−nẼg

��
:

ð26Þ

Since the averages are obtained by considering all the Z(3)
states, hΦi is trivially zero, both in the Z(3) symmetric and
symmetry broken phases. We are thus left only with the
option of saddle point solution giving hΦi ≃Φmf. TheΦmf

is shown in Fig. 6 and shows the characteristics of a first
order phase transition.
Unlike Φ, ΦA is invariant under the Z(3) transformation.

Therefore no complication arises in the evaluation of its
thermal expectation value. The temperature dependence of
hΦAi is shown in Fig. 7. Though a discontinuity corre-
sponding to the one present in mg=T appears at T=Td ¼ 1,
the variation indicates a crossover rather than a phase
transition. This is further confirmed from the temperature
variation of the thermal derivative of hΦAi (inset of Fig. 7),
having a gap at T=Td ¼ 1 and an inflection point at some
T=Td > 1. This can be attributed to the fact that within this
current model framework, quasigluons have a finite mass at
temperatures below Td. However a clear understanding of
the relation between the fundamental and adjoint repre-
sentations of the Polyakov loop is still to be investigated.
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FIG. 5. Temperature variation of (a) scaled specific heat and
(b) squared speed of sound (lattice data from [1]).
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Given that Φ is renormalization dependent on the lattice,
it may not agree with model results (as seen in Fig. 6). On
the lattice the Polyakov loop in various representations
have been found to follow Casimir scaling above T=Td ¼ 1
[23]. We find hΦi and hΦAi do follow the scaling
reasonably well for T=Td > 1 (Fig. 8). Below T=Td ¼ 1,
the scaling breaks because hΦAi is nonzero. This is natural
as the quasigluons have finite mass. and the situation
resembles the crossover observed in hΦi in the presence of
low mass quarks in models as well as on lattice [95].
Possible effects of additional terms including effects of
glueballs, bag pressure or Polyakov loop interaction terms
discussed earlier may contribute to further understanding
the behavior of hΦAi. These possibilities may be explored
elsewhere.

IV. PRELIMINARY EXPLORATION
INCLUDING QUARKS

The results discussed in the previous sections for the
pure glue model is expected to hold true in the presence of

infinitely heavy quarks. For practical purposes it should
hold true even for a system of quarks whose masses are
much higher than the temperature scales. Here we make a
preliminary discussion on the presence of heavy quarks in
the present model. Neglecting effects of chiral physics
altogether and incorporating the Polyakov loop modified
quark quasiparticle contribution we have the additional
potential,

Ωqqp ¼ 2NfT
Z

d3p̃
ð2πÞ3 fln½3ðΦþΦe−ẼqÞe−Ẽq þ 1þ e−3Ẽq �

þ ln½3ðΦ̄þΦe−ẼqÞe−Ẽq þ 1þ e−3Ẽq �g; ð27Þ

where, Ẽq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2 þ ðmq

T Þ2
q

, mq being the quark mass. Nf is

number of quark flavors,whichwe shall consider to be 2. The
full potential will be the sum of Ωqqp and Ωgqp [given in
Eq. (9)] and to be used in Eq. (15). In this preliminary study
with quarks we assume all parameters of Ωgqp to remain
unchanged from those obtained in the preceding sections,
except thatwe now specifyTd ¼ 270 MeV.We shall discuss
the behavior of the Φmf as a function of temperature for
various quarkmasses. Again for simplicitywe shall useΩqqp

for various mq, some of which are smaller than T.
The effect of introducing the quarks can be seen from

Fig. 9. For mq ¼ 3 GeV the results are identical with the
pure gauge results. With reducing masses we find the
corresponding deconfinement temperature, as well as the
gap ofΦmf to decrease. Subsequently between 1.65 Gev <
mq < 1.8 GeV the transition goes over to a crossover.
These results are commensurate with the findings in the
literature [96]. The variation of Φmf with T shows a dimple
at the T ¼ Td of the pure glue model, which is nothing but
an artifact of the discontinuity of the variation ofmg with T.
This can be taken care of in a detailed analysis with
dynamical quarks that will be explored elsewhere.
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V. DISCUSSION

The gluon quasiparticle models are usually found to
become inconsistent in the confined phase. We identified
the problem to lie with the saddle point method. To
overcome the problem we discussed a novel prescription
of obtaining the thermodynamic observables by a pseudo
path integral formalism. Essentially instead of considering
only the saddle point solution for the field variable, all
possible field variables are considered with their appro-
priate thermal weight functions. By implementing this
approach we predicted a variety of sensitive thermody-
namic quantities to a high level of accuracy. In addition, we
observed that while the temperature variation ofΦ indicates
a first order phase transition, that of ΦA is almost like a
crossover. The latter seems natural as it is similar to thermal
variation of Φ when the quark masses are finite in chiral
models. However the deeper connection between the
different representations of the Polyakov loop in our model
would need further investigation. A preliminary study
including quarks with heavy masses give consistent results
with existing literature.

We conclude that the quasiparticle model presented here
is the most consistent one for studies of color deconfine-
ment and gluon thermodynamics from cosmology to
heavy-ion collision experiments.
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