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Recently, the RHICf Collaboration measured the transverse single-spin asymmetries of the very
forward neutral pion in polarized pþ p collisions at

ffiffiffi
s

p ¼ 510 GeV, produced at large pseudorapidity
(η≳ 6). The data show large asymmetries both in longitudinal momentum fraction xF and transverse
momentum pT at pT < 1 GeV=c. Employing baryonic triple Regge exchanges, we describe the complete
RHICf data for the first time and show that the neutral pion production at low pT can be interpreted as a
diffractive one.

DOI: 10.1103/PhysRevD.106.054001

I. INTRODUCTION

The spin of the nucleon has been one of the most crucial
issues in hadronic physics since the EMC experiment [1].
The nucleon consists of not only three valence quarks but
also other partons such as antiquarks and gluons, so the
nucleon spin should originate from the partons inside it and
their orbital angular momenta [2] together with the con-
tribution of the valence quarks. Thus, one of the most
profound questions was addressed: “How does the spin of
the nucleon arise?” It motivated the future plan for the
Electron-Ion Collider (EIC) [3]. Meanwhile, the transverse
spin of the nucleonprovides yet another aspect to the internal
structure of the nucleon. The transverse momentum-
dependent functions (TMDs) and the generalized parton
distributions (GPDs) furnish the multifaceted aspect
of the structure of the polarized nucleon in the transverse
plane (see recent reviews [4,5]). Furthermore, sizable trans-
verse single-spin asymmetries (TSSA) of the neutral
pion in inclusive pp collisions have been continuously
reported well over decades [6–11] (see also recent reviews
[5,12]). Since the experimental data from the PHENIX and
STAR Collaborations were obtained at higher values of the
transverse momentum (pT ≳ 2 GeV=cÞ in the midrapidity
coverage, where the pseudorapidity is given as 2 < η < 4
[8–11], QCD-based approaches have been employed such

as the TMDs [13–15] and collinear twist-3 factorization
[16–23] to describe the experimental data. The Jefferson
Lab Angular Momentum (JAM) Collaboration [24] has
carried out the simultaneous QCD global analysis, consid-
ering the data on the TSSA from various high-energy
processes.
The TSSA at low transverse momentum in the large

pseudorapidity displays the nonperturbative diffractive
nature. The RHICf Collaboration measured the TSSA
of the neutral pion in transversely polarized p↑ þ p
collision at

ffiffiffi
s

p ¼ 510 GeV and reported that the TSSA
increased rapidly as functions of both the longitudinal
momentum fraction xF and low transverse momentum pT
(pT < 1 GeV=c) at the pseudorapidity larger than 6
(η > 6) [25]. The RHICf experiment data posed a question
of whether the large values of the TSSA of π0 are due to
diffractive scattering: The values of TSSA rise as pT
increases and reach around 25% at pT ≃ 0.8 GeV=c.
The dependence on the longitudinal momentum fraction
or the Feynman-x variable (xF) reveals even a drastic
feature. In the present work, we will answer for the first
time the question addressed by the RHICf Collaboration:
Considering the p↑ þ p → π0 þ X process at low pT as
diffractive scattering and introducing the baryonic triple
Regge exchanges, we explain the RHICf data very well.
The current work is organized as follows: In Sec. II, we

briefly review the triple Regge formalism, which is essen-
tial to describe inclusive polarized proton-proton collision
with the pion production. In Sec. III, we show how the
TSSA can be derived, based on the triple Regge formalism.
In Sec. IV, we demonstrate that triple Regge exchange
explains successfully the RHICf experimental data on
TSSA. We then discuss the significance of the interference
effects between triple Regge diagrams. Section V summa-
rizes the present work and draw conclusions.

*heejin.kim@inha.edu
†sclymton@inha.edu
‡hchkim@inha.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 054001 (2022)

2470-0010=2022=106(5)=054001(6) 054001-1 Published by the American Physical Society

https://orcid.org/0000-0002-1336-6939
https://orcid.org/0000-0002-8718-8661
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.054001&domain=pdf&date_stamp=2022-09-02
https://doi.org/10.1103/PhysRevD.106.054001
https://doi.org/10.1103/PhysRevD.106.054001
https://doi.org/10.1103/PhysRevD.106.054001
https://doi.org/10.1103/PhysRevD.106.054001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II. TRIPLE REGGE EXCHANGE

The applications of the Regge approach to inclusive
hadronic reactions is dated back to the 1970s [26–32].
Mueller generalized the optical theorem for inclusive
reactions: The differential cross section for the two-body
inclusive reaction, aþ b → cþ X, can be written in terms
of discontinuity of the three-body process abc̄ → abc̄ along
themissingmassM2

X ¼ ðpa þ pb − pcÞ2. It was shown that
the three-body amplitude has the Regge singularities similar
to those for the two-body process [26,33]. Triple Regge
exchange is obtained from an asymptotic behavior of the
Mueller amplitude in the kinematic boundary. It was shown
that the unpolarized cross section was successfully
described by triple Regge pole contributions [30]. The triple
Regge formalism even provides a robust tool for under-
standing diffractive processes [34–36]. It was anticipated
that the nondiagonal triple Regge pole diagram would be
able to present the polarization effects [32,37]. However, the
statistics of the experiments were very poor, so that no
significant data were reported at that time. Only very
recently, the RHICf experiment accomplished a measure-
ment of the TSSA in the very forward direction [25].
Since the final particles have very high pseudorapidities

and low transverse momenta, one can use Regge exchange
of the initial proton as shown in Fig. 1(a). As mentioned
previously, the generalized optical theorem leads to
Fig. 1(b) with the discontinuity on the complex M2

X plane.
When M2

X is sufficiently large, ip → jp scattering can be
also expressed as a Regge pole. Thus one can consider
triple Regge exchange to derive the TSSA as drawn in
Fig. 1(c). We extend the formalism in Ref. [32] with baryon
Regge trajectories introduced. Note that the spin should be
transferred by the baryon Reggeons, since the produced
pion does not carry any spin from the polarized proton.
The Lorentz-invariant differential cross section for the

inclusive reaction pþ ph → π0 þ X in the high energy
limit is given by

dσh ≡ E
d3σh

d3p
¼ 1

s

X
jAtot

p→π0
ðs; pT ; hÞj2; ð1Þ

where h represents the helicity direction of the polarized
proton beam. s denotes the square of the energy in the
center of mass (CM) framework, which is one of the
Mandelstam variables. pT stands for the transverse momen-
tum. When the energy is high enough to apply the Regge
formalism, we can employ the generalized optical theorem
by Mueller [26] to express dσh in terms of two Reggeon
exchange i and j and the scattering of the unpolarized
proton and the Reggeon with the energy M2

X as depicted
in Fig. 1.
In the limit M2

X → ∞, the discontinuity of the iþ p →
jþ p scattering will follow the Regge behavior as

DiscAip→jpðM2
XÞ ¼

X
k

Gij
k ðtÞγppk ð0Þ

�
M2

X

s0

�
αkð0Þ

; ð2Þ

where Gij
k ðtÞ represents the triple Reggeon coupling given

as a function of t that is a square of the momentum transfer
(one of the Mandelstam variables), corresponding to the
black blob in Fig. 1(c). We will discuss it later. γppk is the
vertex function for the ppk vertex in Fig. 1(c). s0 denotes
the scale parameter, which is traditionally given to be
around 1 GeV2. Then dσh is written as

dσh ¼ 1

s

X
i;j;k

X
λ

βihλβ
j�
hλPiP�

jG
ij
k ðtÞγppk ð0Þ

�
M2

X

s0

�
αkð0Þ

; ð3Þ

where βiðjÞ stands for the residue of iðjÞ exchange. As
mentioned previously, the unpolarized proton does not
carry any information on its spin to the final state. This
implies that k exchange will not affect the spin polarization
of particle i, so the helicity of i does not flip:

dσh ∼
X
λ;μ

βihλβ
j�
hμδλμ ∼

X
λ

βihλβ
j�
hλ: ð4Þ

PiðtÞ in Eq. (3) designates the Reggeon propagator [33,38]
defined as

PiðtÞ≡ α0Bξ
�
i ðtÞΓðJi − αiðtÞÞð1 − xFÞ−αiðtÞ; ð5Þ

(a) (b) (c)

FIG. 1. Diagrammatic representation of dσh and triple Regge diagram. dσh is proportional to diagram (a). It can be approximated to
(b) in the high energy region. Diagram (c) illustrates that with triple Regge exchange. When M2

X is large, (b) can be replaced by (c).
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where αiðtÞ and Ji denote, respectively, the Regge trajec-
tory and the spin for particle i. The signature factor is
given by

ξiðtÞ ¼
1þ τi expf−iπðαiðtÞ − 0.5Þg

2
; ð6Þ

where τi represents the signature of the corresponding
Reggeon, i.e., τi ¼ ð−1ÞJi−1=2.
We introduce the Reggeons corresponding to the proton,

the Δð1232Þ isobar, the excited baryon N�ð1520Þ, and the
Δð1600Þ isobar with negative parity to derive the TSSA of
very forward pion production as depicted in Fig 1. The
Regge trajectories for these baryons are given by

αNðtÞ ¼ −0.35þ 0.99t; αN� ðtÞ ¼ −0.73þ 0.95t;

αΔðtÞ ¼ 0.16þ 0.89t; αΔ� ðtÞ ¼ −0.56þ 0.80t; ð7Þ

which are extracted from the PDG data [39]. Note that the
baryonic Regge trajectories contain inevitable uncertainties
due to the experimental uncertainties. Since the Regge
approach does not provide the vertex structure, we need to
employ the effective Lagrangians for the NNπ, NΔπ,
NN�π, and NΔ�π vertices, given by [40,41]

LπNN ¼ −
fπNN

mπ
ψ̄γμγ5τ · ψ∂μπ;

LπNN� ¼ −i
fπNN�

mπ
ψ̄μ
N� ðgμν þ aγμγνÞγ5τ · ψ∂νπ;

LπNΔ ¼ −
fπNΔ

mπ
ψ̄μ
Δðgμν þ aγμγνÞT · ψ∂νπ;

LπNΔ� ¼ −
fπNΔ�

mπ
ψ̄μ
Δ� ðgμν þ aγμγνÞT · ψ∂νπ; ð8Þ

where ψ , ψμ and π denote, respectively, the Dirac, Rarita-
Schwinger, and pseudoscalar fields for the nucleon, Δ
isobar, and the pion.fπNN ,fπNN� , fπNΔ, andfπNΔ� designate
the strong coupling constants for the corresponding vertices
and mπ is the pion mass. These couplings constants are
absorbed into the triple Regge coupling. τ represents the
Pauli matrix for the isospin 1=2 operator andT stands for the
isospin transition operator from isospin1=2 to 3=2 states. gμν
is the metric tensor gμν ¼ diagð1;−1;−1;−1Þ and a the off-
shell parameter for the spin 3=2 baryon.
The Regge factorization implies that the Born ampli-

tudes for one-particle exchange (OPE) can be subdivided
into residues for each vertex and Reggeon propagator. The
proton-baryon-pion vertex functions are computed from the
given effective Lagrangian, respectively, as follows:

βNλλ0 ðpTÞ ¼ ūNðλ0; qÞ=kγ5upðλ; pÞ;
βN

�
λλ0 ðpTÞ ¼ iūμN� ðλ0; qÞðkμ þ aγμ=kÞγ5upðλ; pÞÞ;

βΔλλ0 ðpTÞ ¼ ūμΔðλ0; qÞðkμ þ aγμ=kÞupðλ; pÞ;
βΔ

�
λλ0 ðpTÞ ¼ ūμΔ� ðλ0; qÞðkμ þ aγμ=kÞupðλ; pÞ; ð9Þ

where p, k, and q are the four-momenta of the proton, pion,
and the exchanged Reggeon. uðλÞ and uμðλÞ denote the
Dirac and Rarita-Schwinger spinors for the spin-1=2 and
spin-3=2 baryons, respectively. For simplicity, we will
switch off the off-shell parameter a in Eq. (8) and (9).
Note that βiλλ0 should be real-valued functions, so the
signature factor determines the phase of dσ. It plays a
crucial role in deriving the TSSA because of the interfer-
ence between the triple Regge diagrams.

III. TRANSVERSE SINGLE-SPIN ASYMMETRY

The transverse single spin asymmetry is defined by the
ratio of the spin-dependent and spin-average differential
cross sections:

AN ¼ dΔσ⊥
dσ

¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
; ð10Þ

where ↑ð↓Þ indicates the polarization of the proton in the
transverse direction. Inserting Eq. (1) into Eq. (10), we can
straightforwardly compute AN .
Beforewederive the explicit expression forAN,wediscuss

the parity invariance of βi that will provide two constraints.
Firstly, dσ vanishes if state k has unnatural parity. A matrix
element that consists of two fermions (1, 2) and a spinless
particle (3) obeys the following parity relation β3λ1λ2 ¼
η1η2η3ð−Þλ1−λ2β3−λ1;−λ2 , where ηi denotes the naturality of a
particle i determined by multiplying the signature and parity
quantum number, i.e., ηi ¼ τiP [42]. Since the proton has
natural parity, we obtain η1η2 ¼ þ1. So, the residue of the
ppk vertex satisfies the parity relationβkλμ ¼ ηkð−Þλ−μβk−λ;−μ.
It leads to γppk ð0Þ ¼ P

ν β
k
νν ¼ ð1þ ηkÞβkþþ, which becomes

zero when state k has unnatural parity. For example, the
following particles such as π, a1, etc. have unnatural parity.
Thus only the particles with natural parity, k ¼ P; ρ;ω; a2,
etc., can contribute to AN . Here P represents the Pomeron.
Following Eq. (3), we find that Pomeron exchange contrib-
utes to dσh dominantly over other meson exchanges that
have αkð0Þ less than 0.5. Secondly, dΔσ⊥ vanishes when i
and j have opposite naturality to each other. Since the
transversely polarized state is expressed in terms of positive
and negative helicity states quantized along the z-axis: j↑i ¼
ðjþi þ ij−iÞ= ffiffiffi

2
p

and j↓i ¼ ðjþi − ij−iÞ= ffiffiffi
2

p
, the residue

functions in Eq. (3) are expressed as

βi↑λ ¼
1ffiffiffi
2

p ðβiþλ þ iβi−λÞ; βi↓λ ¼
1ffiffiffi
2

p ðβiþλ − iβi−λÞ: ð11Þ
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Using the fact that ηp ¼ þ1 and ηπ ¼ −1, we observe

dΔσ⊥ ∼
X1=2

λ¼−1=2
ðβiþλβ

j
−λ − βi−λβ

j
þλÞ

¼ ð1þ ηiηjÞβiþλβ
j
−λ: ð12Þ

Thus dΔσ⊥ vanishes when ηiηj ¼ −1. The spin-dependent
differential cross-section with Pomeron exchange is written
as sum of natural and unnatural parity states

dΔσ⊥ ¼ dΔσN⊥ þ dΔσU⊥: ð13Þ

Among the particles with the natural parity, the most
dominant trajectory with natural parity is the proton one.
The next one is the excited nucleon N�ð1520Þ of which the
spin-parity quantum numbers are given by JP ¼ 3=2−:

dΔσN⊥ ¼ 1

s

X
λ

βNþλβ
N�
−λ2ImPNP�

N�

×
X
k

GNN�
k ðtÞγppk ð0Þ

�
M2

X

s0

�
αkð0Þ

: ð14Þ

As for the unnatural parity states, the interference betweenΔ
and Δð1600Þ exchanges furnishes the most dominant con-
tribution:

dΔσU⊥ ¼ 1

s

X
λ

ðβΔþλβ
Δ�
−λÞ2ImPΔP�

Δ�

×
X
k

GΔΔ�
k ðtÞγppk ð0Þ

�
M2

X

s0

�
αkð0Þ

: ð15Þ

On the other hand, the diagonal terms with the leading
trajectories substantially contribute to the spin-averaged
differential cross section. We also take into account the
interferences (i ≠ j), since those terms are necessary to
describe the experimental data:

dσ ¼ 1

s

X
λ

�X
i

2ðβiþλÞ2jP2
i jGii

PðtÞ

þ
X
i≠j

βiþλβ
j
þλ2RePiP�

jG
ij
PðtÞ

�

× γppP ð0Þ
�
M2

X

s0

�
αPð0Þ

: ð16Þ

The triple Regge coupling Gij
PðtÞ is often parametrized

as GðtÞ ¼ Gð0Þebt, because it can not be theoretically
determined. In the present work, we parametrize the
form of the triple Regge couplings so that we can
describe the RHICf data: Gii

PðtÞ ¼ Gii
Pð0Þe−B

ii
Pjtj, Gij

PðtÞ ¼
Gij

Pð0Þ
ffiffiffiffiffijtjp
e−B

ij
P jtj=mπ . We define the following parameters:

gijP ≡Gij
Pð0Þ=GNN

P ð0Þ; bijP ≡ Bij
P − BNN

P ð17Þ

and fit them to the RHICf data. In Table I, we list the
numerical values of gijP and bijP . Note that bijP comes from
the subtraction given by Eq. (13). Except for the PNN�

vertex, all the values of bijP are set to be zero to minimize
theoretical uncertainties. Finally, inserting Eqs. (14)–(16)
into Eq. (10), we arrive at the expression for the transverse
single-spin asymmetry:

AN ¼
P

λ½βNþλβ
N�
−λImPNP�

N� ð
ffiffiffiffiffijtjp
=mπÞgNN�

P þ βΔþλβ
Δ�
−λImPΔP�

Δ� ð
ffiffiffiffiffijtjp
=mπÞgΔΔ�

P e−b
ΔΔ�
P jtj�P

λ½
P

iðβiþλÞ2jP2
i jgiiPe−b

ii
Pjtj þP

i≠jβ
i
þλβ

j
þλRePiP�

jð
ffiffiffiffiffijtjp
=mπÞgijPe−b

ij
P jtj�

: ð18Þ

IV. RESULTS AND DISCUSSION

The RHICf Collaboration has first measured AN for pþ
p↑ → π þ X as a function of pT with several different
ranges of xF given. In accordance with the Abarbanel-
Gross theorem where the triple Regge exchange does not
yield the AN in the backward direction [28], the backward
TSSA in RHICf experiment are almost consistent with zero
[25]. We thus concentrate on AN with positive values of xF.

In Fig. 2 we show the numerical results for AN given as a
function of the transverse momenta pT with four different
ranges of xF, compared with the RHICf data [25]. The
present results are in quantitative agreement with the data.
The value of AN starts to increase as pT increases till pT

reaches 0.2–0.3 GeV=c. Then, it seems saturated for a
while and enlarges again as pT further increases. Note that
in general the experimental uncertainties become larger as
pT increases.

TABLE I. Numerical values of the parameters gijP and bijP .
The first column lists the values of gijP with i and j given whereas
the second column shows the values of bijP .

gijP bijP ½GeV−2�
NN� 0.028 0.2
ΔΔ� −0.018 0
N�N� 0.10 0
ΔΔ 0.022 0
Δ�Δ� 0.079 0
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Figure 3 displays the numerical results for AN as a
function of xF with five different ranges of pT given [25].
The current results exhibit an outstanding fit with the
RHICf data, in particular, as pT becomes smaller. Note that
when pT approaches zero, AN is suppressed.
To scrutinize the current results, we plot AN as a function

of pT and xF in Fig. 4. One can see the curve where the AN

equals to zero due to
ffiffiffiffiffijtjp ¼ 0 in the triple Regge coupling.

In the region where pT is lower than this curve, NN� term
governs the TSSA, especially for small xF. As for the
higher pT, NN� contributions have negative values. Large
and positive ΔΔ� term compensates it, so the total AN
becomes positive. In addition, the pole contributions NN
and N�N� gradually decrease as xF increases. N�N� term is

almost consistent with zero for pT > 0.8 GeV=c. Here
Δ�Δ� contribution comes into play to moderate AN . It is
notable to see the peak in the mid-pT range (∼0.5 GeV=c),
in particular, when xF is small. We can understand this
feature of AN by examining the characteristics of the
signature factor. At certain values of pT and xF, AN
becomes very sensitive to signature factor of the proton.
The peak structure of AN occurs because of this sensitivity.
On the other hand, when xF is large, the diagonal terms
such as NN, N�N�, ΔΔ, and Δ�Δ� diagrams come into
play, the peak structure gets smeared. As xF becomes very
small (xF < 0.3), all the signature factors bring about a
rapid oscillation of AN . It indicates that the current scheme
of the triple Regge exchange breaks down when xF is
very small.

V. SUMMARY AND CONCLUSIONS

In this work, we aimed at investigating the transverse
single spin asymmetries for the neutral pion production
from inclusive polarized proton and proton collision,
emphasizing the triple Regge exchange that consists of
two baryons and a Pomeron. The numerical results of the
current work are in quantitative agreement with the RHICf
data. We discussed the feature of the transverse single spin
asymmetries with pT and xF varied. When the pseudor-
apidity is large and xF is not very small, we can interpret the
neutral pion production from inclusive polarized proton and
proton collision as a diffractive one.
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FIG. 2. Numerical results for the TSSA as a function of pT with
several ranges of xF given. The present results are depicted by the
triangles. The open circles with error bars illustrate the RHICf
data [25].

FIG. 3. The TSSA as a function of xF with several ranges of pT
given. Notations are the same as in Fig. 2.

FIG. 4. The 3d plot of AN as a function of pT and xF.
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