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Time-reversal asymmetries in A, semileptonic decays
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We study the decays of A, - A.(— B,f)¢ v with & = e, u, 7, where B, and f are the daughter baryon
and the rest of the particles in A, cascade decays, respectively. In particular, we examine the full angular
distributions with polarized A, and lepton mass effects, in which the time-reversal asymmetries are
identified. We concentrate on the decay modes of A, - A.(— pK~z")£~0 to demonstrate their
experimental feasibility. We show that the observables associated with the time-reversal asymmetries
are useful to search for new physics as they vanish in the standard model. We find that they are sensitive to
the right-handed current from new physics, and possible to be observed at LHCb.
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I. INTRODUCTIONS

The transitions of b — ¢~ U with £ = e, u, 7 have raised
great interest in both the theoretical and experimental
aspects [1,2]. In particular, the discrepancy of R =
I'(B —» DW= 0)/T(B — D¥I~D) with [ = e, u has shown
that the possible contributions from new physics (NP) can
be as large as O(10%). Explicitly, we have that R}, =
(0.340 £+ 0.030,0.295 £ 0.014) from the experiments
[2-4] and R%%* = (0.304 £+ 0.003,0.259 + 0.006) from
the lattice QCD calculation [5], implying that NP can
play a significant role. For a review, one is referred
to Ref. [6].

On the other hand, LHCb has recently announced the
baryonic version of the ratio to be R, =T(A,—
A D)/T(Ay = Ad7D) =0.242 +0.026 4+ 0.040 £ 0.059
[7], where the first and second uncertainties are statistical
and systematic, respectively, and the third one comes from
the normalization channel of A, — A .z"2z~. In contrast
to R, Ry, is found to be larger in theory, given as Ry =
0.324 +0.004 based on lattice QCD [8]. Such opposite
behavior indicates that there would be some theoretical
errors, which have not been properly considered. Thus,
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as a complementarity, it is useful to examine the angular
distributions [9—11]. In most of the works in the literature,
A, is assumed to be unpolarized. However, it is important
to analyze the polarized cases, since the polarization
fraction P, is recently found to be around 3% in proton-
proton collisions at center-of-mass energies of 13 TeV [12].
We emphasize that with P, # 0, the time-reversal (TR)
asymmetries can be observed without the cascade decays of
A, as we will show in this work. Moreover, the value of 3%
is twice larger than B(A. — Az", pK?), and hence it is
useful to study the cases with P, # O for probing the TR
asymmetries.

The angular distribution of A, — A.(— pK$)u~v with
polarized A, was first given in Ref. [13]. In this work,
we provide the full angular distributions of A, —
A.(— B,f)¢ b, where B, is the daughter baryon and f
stands for the rest of the daughter particles. In contrast to
those in the literature, we extend the study to the three-body
A, decays to include A, - pK~z" and A, —» AlTv. In
particular, A, - pK~z" has a great advantage for the
experimental detection, since all the particles in the final
states are charged.

In the standard model (SM), the TR asymmetries in
A, = A.(— B,f)¢ D are zero due to the absence of the
weak phase in the A, — A, transition. Clearly, a non-
vanishing TR asymmetry indicates the existence of NP with
a new CP violating phase beyond the SM.

The layout of this work is given as follows. In Sec. II, we
present the angular distributions of the SM parametrized by
the helicity amplitudes. In Sec. III, we discuss the effects
from NP, and show that they can be absorbed by redefining
the helicity amplitudes. In Sec. IV, we estimate the TR
asymmetries and their feasibility to be measured at LHCb.
At last, we conclude the study in Sec. V.

Published by the American Physical Society
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II. DECAY OBSERVABLES

In the SM, the amplitudes of A, — A.Z~ U are dominated
by the weak interaction at tree level, given as

G i i
LV g™y, (1 = 75)0(A |2y, (1 —y5)bA,), (1)

V2

where G is the Fermi constant, V., corresponds to the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element,
and u, and v are the Dirac spinors of charged leptons
and antineutrinos, respectively. In this work, we do not
specify the flavors of (anti)neutrinos as they cannot be
distinguished in the experiments.

We further decompose the amplitudes by expanding the
Minkowski metric,

> Eiq)er(q). (2)

A=0,%+

7 =€/ (q)e* (q) -

where ¢ = (¢°,§) and & are the four-momentum and
polarization vector of the off-shell W boson, respectively.
The subscript in € denotes the helicity, where ¢ indicates
timelike while the others spacelike. In particular, we
have that

1

¢ =—(0,£1,i,07, & =(0,0,0,-1)7,

o

& = (=1.0.0,0)", (3)

in the center of mass frame of #~r, which would be referred
to as the g frame in the following. Notice that the relative
phases between ¢ are crucial as they interfere in the decay
distributions. In this work, they are fixed by the lowering
operators, given by

(Jx - in>€1,0 = \/580.—1’ (4)

where J, , are the SO(3) rotational generators. On the other
hand, in the center of the mass frame of A, with ¢ = —|¢|2,
which would be referred to as the A, frame, we have

1 1
' £ = —= (=41.0.0.4")",

(5)

which are useful for the latter purpose.
Plugging Eq. (2) in Eq. (1), we have

% Ve (L[B[ -y LAB,1>, (6)

A=0,=

and

B/IW = é‘sz(AJE‘J’ﬂ(l - 75>b|Ab>’
L, = Eﬁlwﬁﬂu(l —75)v, (7)

with Ay, = 7,0 and +. Note that B;  and L, depend on the
polarizations of the baryons and leptons, respectively. It is
clear that in Eqgs. (6) and (7), the amplitudes are decom-
posed as the products of Lorentz scalars, describing
Ay = AW (B)y,) and W™ = 7D (L;,). A great ad-
vantage is that B, and L, can be computed independently
in the A, and g frames, respectively, reducing the three-
body problems to the products of two-body ones.

To proceed further, we have to consider the polarizations
of the baryons and leptons. To this end, it is convenient to
parametrize B, as

Bllw_szl‘:/l_‘c[<fl(‘]2) —if>(q W‘I + f3(q );]4_)

. O q
- (gl(qz)m - lgz(qz)Mibq + ga(qz)M—’Q 75] U,
(8)

where f, 3 and g, , 3 represent the form factors, M, is the
mass of A,, and 6,, = i(y,r, —r.7,)/2. The helicity
amplitudes are calculated by

Hﬂl.,ﬁw :Bﬂw(/‘{b :ﬂc_/lW7/1c’ﬁc = _62 |ﬁc|2)v (9)
where 4 corresponds to the angular momentum (hel-
icity) of Ay, D, is the three-momentum of A, in the A,
frame, and the conventions of the Dirac spinors are given in

Appendix A. Plugging Eq. (5) in Eq. (8), we obtain
explicitly that

M_
Hyy =20 <f1 Jrfz> 20, <—91 +92),

M,

M,
0, 612
Ho—— |25 (M g
<+l p —f1+Mb 3
0_ q’
T4 /=M - s 10
4 +1 M;,gS ( )

where My =M, £+ M., M, is the mass of A, and
Q. = (M.)*> - g*. Note that both the form factors and
amplitudes depend on ¢°.
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On the other hand, the antineutrinos have positive
helicities, and L; 6 depends only on 4, the helicity of
¢~. From the definitions of /., given by

1 - - = |a
h+:L0</le=§,Pf:—Pp:|Pe|Z>’
1 . o > [a
h_=1L_ /16:—57Pf:—Py:|Pe|Z ;o (11)

we explicitly have

2
h_o=-2 2(q2—m§), hy=~/bsh_, 5&”:;1—2’ (12)
q

with Egs. (3) and (7) with 13',;(,,) the three-momentum of
£7(7) in the g frame.
|

PT(A, = Ao Bof)E D)
0g*0 cos 0,0 cos 0.0 cos 0,0 ,.0¢

= B(A, ~ B,1) )

x|S0 (Y Hy (0 (0., 0,
( 2 Mt’) |pc|

G

A
<~

_________________________________

FIG. 1. Definitions of the angles, where B, represents the
daughter baryon and f the rest of the decay particles.

The angular distributions of A, - A.(— B,f)¢ U can
be obtained by piling up the Wigner-d matrices of d’,
read as

Z Piyan|ASHI, [P
Je Ay

( z‘¢r +it’¢[)

2
Z.:(q2) = 247x 3 |vcb|2

where B(A. — B,f) are the branching fractions of
Ac - an’ P+ + = (1 :th)/z’ ﬂ(b,c,f) = :|:1/2, |ﬁc| =
VO 0_/2My,, the factor of (—1)' comes from
Eq. (6) along with Jy = 0(1) for Ay = #(£,0), and A
are associated with the up-down asymmetries of
A, — B, f. Here, the definitions of the angles can be found
in Fig. 1, where 8, . and 6, are defined in the center of mass
frames of A, . and ¢77, respectively, while ¢., are the
azimuthal angles between the decay planes.

The derivation of Eq. (13) is sketched in Appendix B.
The index A corresponds to 4z — A, with 1z and 4, the
helicities of B, and f in A. — B,f, respectively. If f
contains more than two particles, we simply group them
|

FT(A, = A(= B,f)E D)
0g20Q

where a are the up-down asymmetries of A, — B, f, Q=
Table I, where we have taken the abbreviations,

ay = Hi%,o, b, = H:F%,q:h

with £ = a, b, t and P,
are real. For an illustration, we have

8M3q?

= B(Ac = B.f)

te=H.y,

, (13)

|

together, forming an angular momentum eigenstate in
the center-of-mass frame of f, acquiring an effective
helicity.

In the case of A, - pK~ 7" (Al*v), A§ depends on the
three-momentum of p(A) and angles in K=zt (ITv) as
well. However, we integrate out the dependence for
simplicity in this work. In addition, the cascade decays
of 7~ can be included by continually piling up the Wiger-d
matrices inside Eq. (13). The interested readers are referred
to Ref. [11]. Note that the overall > dependence in Eq. (13)
can be cast in a more symmetric form by recognizing
|Bel = (¢ = m2)/\/4g% in the § frame.

We expand the angular distributions as

32 2 ZRG i(as. b 1)Di(Q))Py(a. Py). (14)

(0p.c.rs be.r), and explicit forms of X', P; and D; can be found in

2l=1E1+12] &l =18]- 121, (15)

= (3cos? @, — 1)/2. The real-valued function in Eq. (14) guarantees that the partial decay widths
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TABLE L. The angular distributions of A, — A.(— B, f)¢~v with P, = (3 cos> @, — 1)/2 and the parameters of
a, b and t defined in Eq. (15).
i X; P, D,
1 (6, + 1)(lal* + |b|*) + 36, 1 1
2 (26, = 1)(la* = 3|b) ! Py
3 —65,(Re(a,rt) + Re(a_rt)) + 3 [bal? 1 cos @,
4 (6 + 1)(|aal* + [bal?) + 36,14 Py cos 6,
5 (26, = 1)(laal* = 5[bal?) Py cos 0, P>
6 —65;[Re(a. 1) —Re(a_1*)] —3|b,|? P, cos 8, cos 0,
7 % [26,(t_b% —b_17) + (a_b* + b_a?})] P, e’ sin 9, sin 6,
8 \% (26, —1)(b_a’. —a_b%) P, e'?7 sin @, sinf, cos O,
9 (67 + D(laal® = 1bal?) + 38.[ta? a cos 0,
10 (26, = 1)(Jaal* +1|bal%) a cos @, P,
11 65,(Re(a_r*) —Re(a, 7)) —3|b]? a cos 8, cos 6,
12 % [26,(b_t* —1,b%) — (a b + b_at)] a e sin 6, cos @,
13 % [26,(a, b —b_a*) + (b_a* —a b})] a e®sin 0, cos 0, cos O,
14 (26, + a,ax Pya sin @, sin 0. P,
15 28.(|al* +|b?) = (la|* + 1/2]b]?) Pya cos 0, cos 0,.P,
16 Ss(lal® = b + 312)*) + (Jal* = |b]?) Pya cos 0, cos 0,
17 —65,(Re(a %) + Re(a_r")) =3 |b,|? Pya cos @ cos 0, cos O,
18 (2-46,)a_at;, Pya e~ sin @, sin 0. P,
19 (1-28,)b_b% Pya e!(@+2¢¢) 5in 0, sin 0, P,
20 —25;(a ar +3t,.1%) —2a,a* Pya ' sin @), sin 0,
21 (26, — 1)b_b% P,a e!P+20¢) 5in @, sin 6,
22 65,(a rt + 1, at) Pya e sin 0, sin @, cos 0,
23 % [(b_a®. —a_b%) —28,(b_t}, +1_b%)] Pya e'?¢ sin ), sin @, cos 6,
24 Fl(b-at —aby) = 26,(b_t> +1,.b%)] Pya ¢'® sin 6, sin O, cos 0,
25 \/% [26,(a_b’ + b_at) — (a_b + b_at)] Pya e’’’ sin ), sin 0, cos 6, cos O,
26 \% [26,(b_ar —a b%) — (a b’ + b_at)] Pya e® sin @, sinH, cos 9, cos O,
RXD—3R25 b —b_r} b 4+ b_a’, in @), sin 0
e(X7Dy) = 75[ e(20(1_b% — b_t}) + (a_b% + b_a},)) cos ¢ sin G, sin 0~
x Im(26,(t_b% —b_t}) + (a_b% + b_a’,))sin¢,sin @, sin O], (16)
3 .
Re(X,Dy,) = 7 [Re(26,(b_t: —t,b%) — (a, b’ + b_a’))cos(¢p, + ¢p.) sin @, cos b,
—Im(26,(b_r* —t,.b%) — (a b + b_a*))sin(¢, + ¢p.) sinO. cosb,], (17)
[
by the identity of Re(X;D;)=Re(X;)Re(D;)— 6,—>n—0, and a » —a. In practice, 5, can be taken

Im(X;)Im(D;). For those D;, which are independent of
¢ ¢, we simply have Re(X;D;) = X;/D;. Notice that £, are
real in the SM, and any observations of nonzero Im(X;)
would be a smoking gun of NP. The angular distributions of
A, = A.(= B, f)¢"v can be obtained directly by taking

as zero as an excellent approximation in the SM, with
which 7, can be neglected as well since they are always
followed by 0.

It is interesting to point out that, under the parity trans-
formation, the helicity amplitudes behave differently as
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ay — az, by — b, ty = —tz, (18)

so that Re(X51,) and Im(X’;,) are parity even and odd,
respectively. If A, is unpolarized (P, =0), it is clear
that ¢, and ¢, cannot be measured separately. In this case,
it is convenient to introduce a new set of azimuthal
coordinates as

q):¢f+¢c’

@y =3 (6, o)

0<®<2rm,

-1 <®, < (19)

To obtain the unpolarized angular distributions from the
polarized ones, one can integrate over ®, and cos@,, in
which Dy_g 14_,¢ are zero. As a cross-check, we find that the
results are identical to those given in Ref. [10].

With Table I, one can construct several observables in a
model independent way. The simplest ones would be the
partial and total decay widths, read as

dF(Ab—)AfU)

- (), (20)

and

(Mb_M()z
1, - aen) = [ (g

2
‘

)X1dg?, (21)

respectively. It shall be clear that I' is independent of
A. — B, f. Likewise, there are several observables that
can be defined independent of A, — B,f, and it is
reasonable to measure them separately as they do not
suffer from the smallness of B(A, — B,f). In fact,
the angular distributions without cascade decays can
be obtained straightforwardly by integrating over
(cos@,.,¢.), resulting in

I*'T(Ay = A L7D)
6q26 cos 6,, cos 0,0¢,

i(as.be 1) Di(Q)Pi(0.Py), (22)

which is clearly independent of a. As a cross-check, we
find that Eq. (22) reduces to the ones given by Ref. [14]
with an appropriate substitution.

There are some quantities that deserve a closer look.
The forward-backward asymmetries for W™* — ["7 and
A, — B, [ are defined as

N\

/ / > Leosg,d cos 0,

C( ) X3dg?,
> Leosg,d cos 6,
(Mb M()
=T / ¢(q*)Xodq?, (23)

where we have adopted the shorthand notation,

_ 1 100(Ay = A= B,f)ED)
¢ B(A.— B,f)T aQ '

(24)

The up-down asymmetries Ay p, on the other hand, are
given by

Ayp = Pb (/ / ) cosﬁbdcosgb
1 [

4

%) X,4dg?, (25)

which require P, # 0 for an experimental measurement.
Here, it is an appropriate place to revisit A{ in Eq. (13)
explicitly. We have

|AS ,|2: (1+a), (26)

1
2

where a are the up-down asymmetries of A, — B, f, with
the experimental values given by [3]

a(A, = Axt, 20xt 2470, pKY)
=(—0.84+0.09,-0.55+0.11,-0.73+0.18,0.2 £ 0.5).
(27)

Similarly, for the three-body A, decays, we have a = Af,;),
where Af;, are defined by substituting A, — B, f for
Ay, = AL7U in Eq. (25). In particular, a are found to be

a(A, = pK-nt, AI*v) = (0.89 +0.10,-0.32), (28)

from the SU(3) analysis [15] and light-front quark model
[16], respectively.

The azimuthal angles are closely related to the triple
product asymmetries, which flip signs under TR trans-
formation [17]. To probe them, we define
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TFP%,(/ = reae =i

(M[J_M(r)z 2 2
¢(g°)Im(X7)dg”,

(L) Lol

- (M,—M,)? é’(
N 371'F 2

which are proportional to the complex phases of £, and
vanish without NP. Comparing to the direct CP asymme-
tries, TR asymmetries do not require strong phases, which
are great advantages to probe CP violation as strong phases
are absent in the semileptonic decays. Note that one can
also construct other TR asymmetries from Xg 1315 26-

III. CONTRIBUTIONS FROM POSSIBLE
NEW PHYSICS

Let us consider the dimension-six effective Hamiltonian
from NP with left-handed neutrinos, read as

GF
V2
+ey*(C Py + CgrPg)b(iisy,PLv)

+ Cr(ig0,,PLv)co b, (30)

HYy = —=V[e(Cs + Cpys)b(iy,Prv)

where Pp; = (1 £7s), Csprrr are the Wilson coeffi-
cients, which are complex and depend on the lepton flavors
in general, and N in the superscript indicates that NP is
considered. The effects of Cgp g, can be absorbed by
redefining the amplitudes as

= (1 —|—CL)ai —%—CRa;, blj\:/ = (1 +CL)bi +CRbIF7

V Q+q2 V Q—flz
me me

:<1+CL)ti+CRt:F_ Cst:l: CPgP’

(31)
|

m(XéV) = my

=

m(levz) my

2

HIm(X,)dq?, (29)

|
where f and g, are defined by

<AL|E(1 + 7/5)b|Ab> = L_tc(fs +gpy5)ub' (32)

The derivations can be found in Appendix B. Note that in
Eq. (31), &, are calculated within the SM given in Eq. (10).
The angular distributions can be easily obtained by sub-
stituting &Y for &, in Table L. In the case of Cg 5 p = 0, the
effect of C; can be absorbed by redefining V., as
V(14 Cp), leaving the angular distributions unaltered.
Therefore, in the following, we would simply take C; = 0.

Let us first consider the case that Cx # 0 with Cgp = 0.
For the total decay widths, Cr would be polluted by the
uncertainties of the form factors. However, we can utilize
that £, are real, whereas Cy can be complex in general.
Plugging Eq. (31) in Eq. (16), we arrive at

Im(XY) = 3v2Im(Cg)(a b, —a_b_),
Im(XY,) = 3v2Im(Cg)(a, b_ —a_b,), (33)

where we have taken £ as real, calculated by Eq. (10).

On the other hand, the effects of Cgp are largely
enhanced by the smallness of the lepton quark masses
when ¢*>/m2 > 1. Therefore, measuring 7. in high ¢*
regions would be useful to constrain the values of Cg p. To
diminish the uncertainties from the form factors, one can
examine the complex phases, given by

—Im(CS)\/gf (by +b_ )—I—Im(Cp)\/%gp(b_ - b+)],
Im(Cs)\/g o folby +bo) + Im(Cp)\/%gp(b_ - b+)] : (34)

where we have taken Cp = 0. By collecting Eqs. (33) and (34), the net effects of NP on 7, . are summarized as follows:

372
T,= _S—ﬂ(lm<CR)yR —Im(Cs)Ys+Im(Cp)YVp)
7, =~ (1m(C)Vy + Im(Cy Vs + Im(Cr ). 39
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where

1 (Mb_ML‘)z
e == / 2 (ayby) = a-b_(y)dg,

2
‘

2
3

v, /(Mb—M»z
P r m?

1 (Mb_Mc)z
Vs == gmy

Cmfw / %gp(b— - b+)dq2

0
qufs(lh +b_)dg’,

(36)

Notice that I" also depends on Cp 5 p. However, in this work, we take Cg s p as zero in I" as a first order approximation, and

therefore yﬁ;?s, p can be computed once the form factors are given.
To examine TR asymmetries in the experiments, we define

AN{ EN(?T > ¢f > 0) —N(Zﬂ > ¢f > 71') = eNAhTfB(Ab - Aibﬂ_l/)Pb,
AN;=N(z > ¢, > 0,cos6, > 0) + N2z > ¢. > m,cos 6, < 0)

—N(z > ¢. > 0,c080,. <0) —
= €NA},TCB(Ab - Ag—f—”)B(Ac - an)a(Ac - an)’

N2z > ¢. > m,cos6,. > 0)

(37)

which hold at N — oo with N the number of the observed events, where N Ay is the numbers of A, in experiments, and € is
the efficiency for the experimental reconstruction. To reduce the statistical uncertainties in ANz, we can sum over the decay

modes of A}, given as

AN, =Y N/ = eNp, T B(A, = ALE70)Y IB(A, = B.f)a(A. = B,f)].
-

(38)
B,f

As AN, . are proportional to 7., a nonzero value of AN, or AN, would be a smoking gun of NP.

The full angular distributions including the tensor
operator are given in Appendix C. For simplicity, we take
Cr =0 in the numerical analysis, as they cannot be
reduced to the form of Eq. (6), which breaks the angular
analysis. In addition, the tensor operator is closely related
to the scalar ones by the Fierz transformation in the
leptoquark effective field theory [18].

IV. NUMERICAL RESULTS

As mentioned in Sec. III, nonzero signals of 7, . can be
clear evidence of CP violation from NP with 7 largely
enhanced in high ¢* regions by Cgp. In Eq. (35),
Im(Cg 5 p) are in general free parameters of NP, whereas
yﬁg?s, p can be computed by the form factors. In this work,
we utilize the homogeneous bag model to estimate the form
factors [19], which agree well with those by the lattice QCD
calculation as well as the heavy quark symmetry [8].

The values of yﬁQ s.p are listed in Table II, from which
one can see that ) and ) are both sizable for all flavors,
giving us a good opportunity to examine Im(Cg). In
contrast, the values of Vg p for £ = e and p are suppressed
due to my,. For £ =7, Vg p are still 3 times smaller than

yﬁQ. Hence, Im(Csp) are much more difficult to be
observed in the experiments comparing to Im(Cy).

To explain the excesses of R, Cg g p are found to be
tiny for £ = e and p, but fortunately, Cr = £0.42(7)i is
huge for # =t [18]. We have plotted (0} /dq?) for
¢ = tin Fig. 2, where the bands represent the uncertainties
from the form factors. One can see that the ideal ¢ region
to search for the asymmetries lies around 7 GeV? < ¢* <
9 GeV?, since they are huge within the region. Finally,
putting the values of yﬁ? and Cy = £0.42(7)i in Eq. (35),
we find that

T,=40.16(3),

T.=4008(2).  (39)

TABLE 1II. Parameters defined in Eq. (35), where the uncer-
tainties come from the model calculation.

2 Yr Yk Vs Vp

e —0238(11)  0.703(13) <107 <107
u  =0237(12)  0701(13)  —0.0037(2)  0.0136(2)
T —0.149(6)  0.438(3) —0.039(2) 0.180(2)
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§(0Vr/9q*)
(0Vi/0q%)

0.08

0.06

0.041

0.02

0.00

-0.02

-0.04

3 4 5 6 8 9 10 11

7
¢’ (GeV?)

FIG. 2. ¢? dependence of ¢ (ayf,? /0q%) in A, — A" D, where
the bands represent the uncertainties caused by the form factors.

0.051
0.04

0.03

As¢/T

0.02¢

0.01

0.00¢

3 1 5 6 8 9 10 11

7
7* (GeV?)

FIG. 3. g* dependence of X(/T" with £ = 7 for Cg =0, 0.1
and 0.2, respectively.

for A, - A.t”p. Notice that the signs are irrelevant for
searching evidence of NP as long as they are nonzero. To
estimate the results at LHCb run 2, we take Ny, = 5 X 10°,

P, =0.03, e = 10~*, and

> IB(A; = B,f)a(A, = B,f)| =6x 1072, (40)
f

resulting in that |AN,|~50 and AN_.~20 for ¢ =7,
which are large and ready to be measured. Here,
Eq. (40) is derived by crunching up the numbers in
Egs. (27) and (28).

To probe the effects of the scalar operators, we find that
X, which can be understood as a combination of Ay and
Ayp, is sensitive to Cg p for £ = 7. The results are plotted in
Fig. 3, where we have taken Cp = Cs.l In the region of
9 GeV? < g% < 10 GeV?, X, can be enhanced largely. In
particular, it is twice larger with Cg = 0.2 in comparison to
that in the SM.

'"The scenario of Cp = —Cy is ruled out by the lifetime
of B; [20].

V. SUMMARY

Based on the helicity formalism, we have given the full
angular distributions of A, — A.(— B,f)¢~D. In particu-
lar, we have identified TR violating terms, which vanish in
the SM due to the lack of relative complex phases. Since
strong phases are not required in these TR violating
observables in contrast to the direct CP asymmetries,
they can be reliably calculated. The angular distributions
have been given explicitly with the helicity amplitudes in
Table I. We have cross-checked our results with those in
Refs. [10,14], and found that they are consistent. Note that
our results can be easily applied to B, —» E.(— B,.f){ 0
with trivial modifications.

Notably, the effects of NP can be absorbed by redefining
the helicity amplitudes as demonstrated in Eq. (31) with &,
calculated in the SM. We recommend the experiments to
measure the TR violating observables of 7, defined in
Eq. (29) for searching NP as they vanish in the SM. To
compare with the experiments, AN, . have been defined by
the numbers of the observed events, which are proportional
to 7,.. Based on Cp = +0.42(7)i for £ =z, we have
obtained that |AN, f’c| ~ 50, 20 at LHCb run 2, which are
sufficient for measurements. On the other hand, we have
pointed out that X4 is sensitive to Cg p for A, = A.770,
which can be largely enhanced in the high ¢ region.
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APPENDIX A: DIRAC SPINORS

In this work, we choose fermions and antifermions in pZ
and —pZ directions, respectively. We have that

E, 0
| o | E.
M+ = E_ R u_ = O .
0 —E_
E_ 0
0 —E_
v, = R , (A1)
~E, 0
0 ~E,

with “+£” denoting the helicities, £, = v E & m, and m the
particle mass. Notice that the relative signs are crucial,
fixed by the relations
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u_=LYRy(n)(L¥) uy, v_=(LY)'Ry(x)Llv,, (A2)
where R, is the rotation matrix toward 9, and L’ are the
Lorentz boost operators toward Z. Here, L"" are taken in a

way such that L*~'u, and LYv, are at rest.

APPENDIX B: ANGULAR DISTRIBUTIONS IN
THE STANDARD MODEL

We now sketch the derivation of Eq. (13). We start with a
two-body decay of i — ff,, where i and f;, are unspe-
cific particles. The decay distribution is given as

°T(i > f1f2)
el AR U V) § 0,0, 2. |U(c0, —0)|i;J,J.)|2,
dpacos 0 °</Mz|<l7, h. A 2| ( )|l )
(B1)

Aa)

= R(A)R,(0)(If1: P = pZ.41) ® |f2: P = —pZ. Aa)).

(B2)

where U is the time evolution operator, J and J, are the
angular momentum and its z component of the initial
particle, R, . are the rotational operators pointing toward
(v,2), and A;, are the helicities of f;,. In the decay
distributions, we have to sum over the helicities of the
outgoing particles as they are difficult to be probed in the
experiments.

In two-body systems, states with definite angular
momenta and helicities can be constructed as

Ao, I J —_— A
adend 1) = e | )
x e dd’ (6)’ I (B3)
along with the identity
- Zm WSt i) T el (B4

Notice that in Eq. (B3), A;, are unaltered because they
are rotational scalars. By inserting Eq. (B4) in Eq. (B1),
we obtain

PT(i = f1f2)
d¢hd cos O

11—/12H/1112 %, (B5)

Z| i, ‘f’dj

T
with

Hiy 0, = (.02 20, 42| U (0, —0) i3, J). (B6)

Clearly, H,, 5, is independent of J, since U must be a scalar.
In Eq. (B5), we see that the decay distributions are
separated into two different parts. The kinematic part is
described by the Wigner-d matrix whereas the dynamical
part by H; ;,.

The three-body decay distributions can be obtained by
decomposing the systems into a product of two-body
decays as demonstrated in Eq. (6).

APPENDIX C: CONTRIBUTIONS FROM SCALAR
AND CURRENT OPERATORS

The contributions of C; are given by

§o = (1+Cr)és, (C1)

due to the same coupling in the SM. Furthermore, those of
Cr can be obtained straightforwardly by

S = &y + Crés, (C2)

as ¢y P rb are related by the parity.
The scalar operators contribute to the amplitudes as

G
_f VLbL;VBivv

V2
B{‘V = c_lﬁC(Cst + CngYS)ub’

L;V = CﬁfPLUD,
(C3)

where C is a constant, Clearly, BY and LY can be viewed as
the transitions of A, - A.P~ and P~ — [~ 7, respectively,
with P~ an effective particle from NP. As P~ is spinless,
LYBY is only related to L,B, in Eq. (6). By adjusting C such
that LY = L,, we arrive at

/ 2
N=t, - nQ1+q Csf, +
4

Cpgp.

0_q*
. (C4)

By collecting Egs. (C1), (C2), and (C4), we obtain Eq. (31).
It is interesting to see that all the contributions can be
encapsulated in £, which already exist in the SM.

APPENDIX D: CONTRIBUTIONS
FROM TENSOR OPERATOR

To cooperate the tensor operator with the helicity
amplitudes, by utilizing Eq. (2) we decompose the products
of the Minkowski metric as

(9" - ")

=Y (VI @V + V() Ve (3),  (D1)

with
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(D2)

and

(A1, 4,) =(1,0),(1,-1),(0,-1), forA=1,0,—1. (D3)
To see that V| , can be viewed as spacelike vectors, in the g
frame, we define
(Vi) = VY., (V2); = eV, (D4)

with i, j,k=x, y, z and €jjk the totally antisymmetric
tensor. It shows that V| and V, are spacelike, which are
essentially spin-1 under the SO(3) rotational group.

The results can be understood in terms of the group
theory, given as’

103, 193),=10306);+3®3),. (D5

where 1, 3, and 6 are the representations of the SO(3)
rotational group, and we have used the fact that a four-
vector is 1 @ 3. In Eq. (D5), “S” and “A” in the subscripts
indicate symmetric and antisymmetric between the first and
second objects, respectively. The antisymmetric nature of
o, forces us to select the second solution, where 3 and 3
correspond to V; and V,, respectively.

Now, we are able to rewrite the transition matrix element
of the tensor operator as
|

B(Ac - an)g(QZ) Z p/lh./lb

A shy

) 2
D Hy b, [ @00y O 0r), gt et

Ajz

Aerhw

gﬂygﬂ/b/(ﬁfo-/m’PLU) <AC|EO-W’b|Ab> = ZLXYIBX",
An

(="

L =5~ iV ()10, PLv,

B = =iViY* ()(Aclgo, bIAy). (D6)
which can be understood as a product of A, - A_.V,, and
V, = ¢~ v, with V, effectively spin-1 particles. The hel-
icity amplitudes of the lepton sector are given as

(R WYy = (—\%h_,—fzm),

1
(h-‘i/-z’ h‘—/z) = (E h—? h+) ) (D7)
with
Via Via 1 - - N
h:t :Li%—% ’If:ii’pf:_pu:PZ , (DS)

describing (V| — ¢70) and (V, — £7D), respectively. For
the baryon sector, the helicity amplitudes read as

Hy'y =B (=2 = A pe=~4=p|2).  (D9)
with HX: =0 and V,, being spacelike.

The sixfold angular distributions now take the form

1
V| V] VZ
{Crhzt, (H o \/EH z(.,zw>

(D10)

which cannot be reduced to Eq. (13) by redefining the amplitudes. Thus, Table I would no longer be suitable after the tensor

operator is considered.

’In the S 0(3) group, 3 and 3 are equivalent. However, they behave differently under the O(3) group, where 3 and 3 are parity even

and odd, respectively.
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