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CP violation in ΔACP ¼ −0.154ð29Þ, in the D0 → πþπ−=KþK− system, is established, and its central
value is 1 order of magnitude above the naive StandardModel (SM) estimate. It remains unclear whether this
is due to currently incalculable strong interaction matrix elements or genuine new physics, such as a shift in
O8 with aweak phase.We show that interference of the long-distance (LD) terms with theO8 matrix element

can give rise toAD→Vγ
CP ¼ few × 10−3 (for reference values Im½CNP

8 � ≈ 10−3). In addition, it is pointed out that
the ratio of left- to right-handed (photon polarization) LD amplitudes is measurable in time-dependent CP
asymmetries. We argue that both theory and experimental consideration favor weak annihilation (WA) as the
dominant LD contribution. More definite progress could be achieved by either computing the radiative
corrections to WA or the measurement of the charged modes Dþ

ðd;sÞ → ðρ; K�Þþγ and Ds → ρþγ.

DOI: 10.1103/PhysRevD.106.053001

I. INTRODUCTION

A. ACP in D0 → ππ=KK

CP violation is parametrically suppressed in the charm
sector [of order Oð10−4Þ]. In 2011, LHCb [1] and CDF [2]
reported a value of CP violation in the hadronic system
D0 → πþπ−=KþK−,ΔACP ¼ −0.65ð18Þwith central value
considerably above expectation. Since then, CP violation
in the charm system has been established [3,4],

ΔACP ¼ AKþK−

CP − Aπþπ−
CP ¼ −0.154ð29Þ × 10−2; ð1Þ

at a lower central value. However, the question of whether
this is NP or due to hadronic matrix elements considerably
above its naive expectation remains unclear and is part of
the investigation of this paper. In (1), Af

CP is

Af
CP ≡ Γ½D0 → f� − Γ½D̄0 → f�

Γ½D0 → f� þ Γ½D̄0 → f� ; ð2Þ

a shorthand for the time integrated CP asymmetry, for a
case where the final state f is a CP eigenstate. ΔACP is a
convenient quantity since systematic experimental errors

cancel. It is worthwhile to add that if SUð3ÞF, or more
precisely U spin, were a good symmetry then AKþK−

CP ¼
−Aπþπ−

CP . In the quantity ΔACP the TDCP asymmetry part
cancels. Effects can remain through time-acceptance
differences in the π and K system, although the latter is
estimated to be small, e.g., [1]. Hence, direct (i.e., time-
independent CP asymmetry) is expected to be responsible
for the relatively large value of ΔACP.
Sizeable direct CP asymmetries necessitate large

strong (CP even) and weak (CP odd) phase differences
in two amplitudes of comparable size (cf. Appendix B).
The reason CP violation is believed to be small in the
charm system is that the weak phases are suppressed
by four powers of the Cabibbo angle (or Wolfenstein
parameter λ ≈ 0.23), leading to the naive expectation
ΔACP ≈ few × 10−4. In the nonleptonic case, the QCD
matrix elements, which determine the strong phase as well
as the ratio of amplitudes, are difficult to compute from
first principles as the size of the charm mass is neither
suited to chiral nor heavy quark theory. Advances in
lattice QCD open the door to first principles results [5] and
should be available in the foreseeable future. Thus, the
question of whether the large central value (1), should it
remain, is due to NP [6–9] or somewhat unexpected strong
dynamics [10–13], such as in the ΔI ¼ 1=2-rule K → ππ
system,1 is an open question at present.
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1It was pointed out quite some time ago [14] that an enhance-
ment of the triplet transition, in the SU(3)-flavor classification,
may lead to sizeable CP violation. For example, APP

CP ≈ 0.08×
10−2, which would lead to jΔACPj ≈ 0.16 × 10−2, which is not far
off the central value in (1).
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Taking the viewpoint that the asymmetry is largely due to
NP, it turns out that a weak phase in the jΔCj ¼ 1
chromomagnetic operator,2

O8 ≡ −
gmc

8π2
ūσ · Gð1þ γ5Þc;

O0
8 ≡ −

gmc

8π2
ūσ · Gð1 − γ5Þc; ð3Þ

(σ ·G ¼ σμνG
μν
a λa=2), appears to be a promising candidate

[15], not contradicting observations such as D0 − D̄0-

mixing. Note that the Oð0Þ
8 operators are of the ΔI ¼ 1=2

type and do not fall into the testable ΔI ¼ 3=2 class [18].
Furthermore, O0

8 is the structure which is the less abundant
helicity in the SM due left-handedness of the weak
interactions; ½C0

8=C8�jSM ≈mu=mc.
To get an idea of the size of the NP contribution [16], one

might resort to naive factorization (NF), e.g., [19]. Slightly
extending the notation in [16], one gets

ΔANP
CPjNF ≈ −1.8ðIm½CNP

8 � − Im½C0NP
8 �Þ sin δ; ð4Þ

where δ is the unknown strong phase difference between
the KK and ππ rescattering states, which is expected to be
sizeable. Note that since the sign of sin δ is unknown, in the
D0 → ππ=KK system, there is additional ambiguity on the

Cð0Þ
8 Wilson coefficients. Since the decay of a JPðD0Þ ¼ 0−

particle into two JPðπ=KÞ ¼ 0− particles necessitates
parity violation, only the γ5 part in (3) contributes and
therefore, results in opposite signs of Im½CNP

8 � and Im½C0NP
8 �

in (4), respectively. Now, a value of

ðIm½CNP
8 �− Im½C0NP

8 �Þsinδ;≈10−3 naive factorizationðNFÞ;
ð5Þ

could account for the central number in (1). One has to bear
in mind that (5) is due to NF and could easily be out by
factors of a few. We take

Im½Cð0ÞNP
8 � ¼ 10−3; ð6Þ

as our reference value, which is consistent with [16] after
adjusting to the current experimental value (1). This value
is at least 2 to 3 orders of magnitude above the SM value for
C8, cf. Appendix C 1, and additionally suppressed by
mu=mc C0

8.
NPmodels that could induce such values as in (5) without

violating existing constraints are supersymmetric models
[16,19,20], leptoquarks [21], Randall-Sundrum flavor
anarchy [22], and models of partial compositeness [23],

whereas in fourth family models, it seems more difficult to
accommodate [12].

B. ACP in D0 → Vγ

The question of whether C8 values like (6) lead to
observable effects elsewhere, or specifically in D → Vγ, is
the subject of this paper. It was pointed out in Ref. [17] that
a sizeable direct CP violation in D0 → ðρ0;ωÞγ can be
induced through Im½C7�, provided that the LD amplitude
carries a strong phase.3 The latter is necessary as the
short distance (SD) contribution of O7 does not come with
a strong phase. Let us emphasize a few points that are either
new or improved in our paper as compared with the
literature:

(i) With regards to ACP in D0 → Vγ and [17], our
discussion includes the O8 matrix element, which
carries a strong phase. Thus, for (direct) CP viola-
tion, no sizeable LD phase is required.

(ii) We observe that WA is the dominant LD mechanism
since it is enhanced over quark loops (QL) by two
loop factors. In the neutral modes, this hierarchy is
weakened by the color suppression of WA, and we
indeed find that in practice jAQLj=jAWAjD0 could be
close to 30% (cf. Appendix A 1).

(iii) We provide partial radiative corrections in WA in
terms of the D → γ form factor; in Sec. III A, this is
a new result of this paper.

(iv) In order to overcome the color suppression, which
manifests itself in large scale uncertainties, we
emphasize the need for the computation of the full
radiative corrections for the neutral modes. We
motivate the experimental measurement of the
charged modes for which the color suppression is
not present in practice.

(v) We observe that TDCP is solely sensitive to long-
distance contributions and that its long-distance chi-
rality is measurable in the neutral modes (cf. Sec. III C
and also [21,27] for further elaborations).

The paper is organized as follows. In Sec. II, notation is
introduced, and the basics of CP violation, specific to the
charm sector, is reviewed. Section III is the main part of this
paper: the amplitudes are detailed and estimates for direct
and time dependent CP violation are given (using the

matrix elements of the operatorOð0Þ
8 [28]). Conclusions and

discussions are presented in Sec. IV. An important part of
our work is the discussion of the LD contribution reported
in Appendix A. Furthermore, Appendixes B and C contain
further material on CP violation in general and specific to
the decay in question.

2Note that this is the sign convention of [15] but opposite to
Refs. [16,17].

3Other channels and effects that were proposed are the
electric dipole moment of the nucleon [16,24], CP asymmetry
in D0 → ϕ → KþK− [25] and D0 → Vð→ PPÞ → KþK− [26].

JAMES LYON and ROMAN ZWICKY PHYS. REV. D 106, 053001 (2022)

053001-2



II. EFFECTIVE HAMILTONIAN AND
AMPLITUDES

A. jΔCj= 1 Hamiltonian

Following, closely, the notation of [15] we write the
effective ΔC ¼ 1 SM Hamiltonian as follows:

Heff ¼ λdHd þ λsHs þ λbHpeng; λD ≡ V�
cDVuD;

D ¼ d; s; b; ð7Þ

and

Hq ¼
GFffiffiffi
2

p
X2
i¼1

Cq
iO

q
i þH:c:; q¼ d;s

Oq
1 ¼ðūLμqÞðq̄LμcÞ; Oq

2 ¼ðūαLμqβÞðq̄βLμcαÞ

λbHpeng ¼
GFffiffiffi
2

p ðC7O7þC0
7O

0
7þC8O8þC0

8O
0
8þ�� �Þ; ð8Þ

with Lμ ≡ γμð1 − γ5Þ and α, β being color indices. The
Hamiltonian Hpeng contains all the SD transitions, includ-
ing electric (C3) and chromomagnetic (3) operators as well
as the four quark operators with a structure different from
O1;2. As compared to [15], we have absorbed the λb into the
Wilson coefficient, which is nonstandard for the SM
contribution. Since λd;s ¼ OðλÞ and λb ¼ Oðλ5Þ, where λ ≈
0.226 [29] is the Wolfenstein parameter, one gets using the
unitarity relation,

λd þ λs þ λb ¼ 0; ⇒ λd ≈ −λs; λb ≈ 0; ð9Þ

where the symbol ≈ above is to be understood up to
corrections of Oðλ4Þ. The fact that the third generation
decouples up to Oðλ4Þ is the reason why in the SM the
generic expectation for CP violation is ACP ≈ few ×Oðλ4Þ
as mentioned in the Introduction.

B. Parametrization of decay rate

We write the amplitude as follows4:

A½D → Vγ�≡ hVγjHeff jDi

¼ A⊥
P⊥
2

þAk
Pk
2

¼ AL

�
P⊥ þ Pk

4

�
þAR

�
P⊥ − Pk

4

�
; ð10Þ

with P⊥ ¼ 2ϵραβγϵ
�ρη�αpβqγ and Pk ¼ 2ifðp · qÞðη� ·

ϵ�Þ − ðη� · qÞðp · ϵ�Þg where ηðpÞ and ϵðqÞ are the vector
meson and photon polarization tensors and the Levi-Civita

convention is settled by tr½γ5γaγbγcγd� ¼ 4iϵabcd. It is noted
that ALðRÞ ≡ ðA⊥ �AkÞ correspond to left- and right-
handed polarized photons. The rate [30], in our conven-
tions, is given by

Γ½D → Vγ� ¼ 1

32π
m3

D

�
1 −

m2
V

m2
D

�
3

ðjA⊥j2 þ jAkj2Þ: ð11Þ

III. CP ASYMMETRIES IN D → Vγ

The operators (3) consist of c → u transitions of
the FCNC type. In a heavy-to-light transition for which
LCSR can make predictions [28] the c quark can pair with a
u, d or s quark. This leads to the following possible
transitions with CP violation: D0 → ðρ0;ωÞγ, Dþ → ρþγ,
and Dþ

s → K�þγ. The transitions D0 → K̄�0γ and Dþ
s →

ρþγ are not of the FCNC type and do not lead to CP
violation in our framework (cf. Table I in Appendix A 4 for
more info and benchmark values for the rates). Note that it
is only for the neutral D0 system that oscillations and thus,
TDCP asymmetries are feasible.
As previously mentioned and outlined in Appenidx B,

direct CP violation originates in its minimal form by
two amplitudes with a weak and strong phase difference.
In this work, these two amplitudes are the LD and the
NP-enhanced O8 contributions, respectively.

A. Weak annihilation and O8 amplitudes

The WA contribution is extensively discussed in
Appendix A for which we give an executive summary
here. Firstly, it is argued that WA dominates over the QL
[cf. Fig. 1 (left) and (center, right)] from a theoretical and
experimental viewpoint in Appendixes A 1 and A 2,
respectively. In Appendix A 3, we elaborate on making
concrete predictions in the neutral modes D0 → Vγ,
which concern an unfortunate cancellation of Wilson
coefficients and highlights the need (for currently)
unavailable radiative corrections. This is followed in
Appendix A 4 by an overview and comparison of all
D0;þ → Vγ modes. The main and important conclusion of
Appendix A 3 is that the situation can considerably be
improved by (i) the measurement of the charged modes
and or (ii) the computation of the radiative correction
to WA.
Here, we discuss aspects related to CP violation. The

WA contribution comes with a small weak phase, and the
strong phase should not be sizeable either. The former is a
direct consequence of the CKM hierarchy. The amplitude is
proportional to λd;s ≈OðλÞ, and its weak phase is of the
order ofOðλ4Þ. The strong phase is small in the sense that it
originates from radiative corrections to the WA diagram
[e.g., Fig. 1 (right)].

4The amplitudes A⊥;k up to phases are often denoted by
APC;PV in the literature, e.g., [17,30]. The acronyms PC and PV
stand for parity conserving and violating, respectively.
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Restricting ourselves to the LO contribution, as
NLO is currently not available, the amplitude is given
by (X ¼ ⊥; k),5

AXðD0ð−Þ → V0ðþÞγÞ

¼ κ0ðþÞ
eGFffiffiffi
2

p
cV

λCKMa2ð1Þ
mVfV
mD

VD0ðþÞ→γ
X ðm2

VÞ; ð12Þ

in the convention of [33], adapting Dμ ¼ ∂μ − ieAμ for the
sign of the covariant derivative in this work, λCKM is the
product of the appropriate CKM factors and for the decay
constants we use the values given in Appendix C of [34].
The factor κ0ðþÞ ¼ 2ð1Þ is the empirically motivated scaling
factor (cf. Appendix A 3). The functions V⊥;k are theD → γ
form factors which are the only contribution at leading order
in the chiral limit in the SM. We use the NLO form factor
results [33], evaluating them we obtain the new results,

VD0→γ
⊥ ðm2

ρÞ ≈ −0.55; VD0→γ
k ðm2

ρÞ ¼ −0.17;

VDþ→γ
⊥ ðm2

ρÞ ¼ þ0.067; VDþ→γ
k ðm2

ρÞ ¼ þ0.35;

VDs→γ
⊥ ðm2

ρÞ ≈þ0.11; VDs→γ
k ðm2

ρÞ ¼ þ0.44: ð13Þ

The continuum threshold of s0 ¼ 6 GeV2 is well between
ðmD þ 2mπÞ2 ≈ 4.6 GeV2 and ðmD þmρÞ2 ≈ 6.9 GeV2.
The Borel parameter is chosen as a compromise value to
render the (partonic) OPE convergent and to suppress
the continuum contributions in the hadronic contribution.
We refrain from an uncertainty analysis as we only aim for
rough estimates in order to motivate experimental searches.

Moreover, VDþ→γ
⊥ ðm2

ρÞ ≈ VDþ→γ
⊥ ðm2

ωÞ and VDs→γ
⊥ ðm2

ρÞ ≈
VDs→γ
⊥ ðm2

K�Þ hold to sufficient precision. The reference

values a2 ¼ C2 þ C1=3 ≈ −0.5 and a1 ¼ C1 þ C2=3 ≈ 1
correspond to the color suppressed and color allowed
combination of Wilson coefficients (cf. Appendix A 4
and [35] for further discussion).
We now turn to the O8 contribution of the chromomag-

netic operator (3). Its amplitude is parametrized as follows:

Aij8 ¼ hVγjHeff j8jDi

¼ GFffiffiffi
2

p
�
emc

2π2

�
1

cV

� ðC8 þ C0
8ÞG1ð0Þ i ¼ 1

ðC8 − C0
8ÞG2ð0Þ i ¼ 2

; ð14Þ

where Heff j8 ¼ GFffiffi
2

p ðC8O8 þ C0
8O

0
8Þ. Therefore, G1;2ð0Þ

corresponds to the matrix elements, with on shell photon
q2 ¼ 0,

hVγjOð0Þ
8 jDi ¼

�
emc

4π2

�
1

cV
ðG1ð0ÞP⊥ � G2ð0ÞPkÞ; ð15Þ

analogous to the penguin matrix element for T1

and T2 Eq. (C4), and e ¼ ffiffiffiffiffiffiffiffi
4πα

p
> 0 is the electromagnetic

charge. In our notation, G1ð2Þ ¼ G⊥ðkÞ but refrain to

do so. Moreover,GD0→ρ0γ
1 ð0Þ ≈GD0→ωγ

1 ð0Þ,GDþ
s →K�þγ

1 ð0Þ ≈
GDþ→ρþγ

1 ð0Þ to sufficient accuracy for our purposes and
G1ð0Þ ¼ G2ð0Þ holds at twist-2 accuracy [28], which we
employ for our estimates.6 In particular, the imaginary part,
relevant for the CP asymmetry, is found to be

Im½GD0

1 ð0Þ�≈−0.20ð8Þ; Im½GDþ
1 ð0Þ�≈−0.10ð4Þ; ð16Þ

where numbers were rounded. The values in (16) are
sizeable compared to typical estimates TD0

1 ð0Þ ≈ TDþ
1 ð0Þ ≈

0.7 of the O7 operator as compiled in [17]. The difference

FIG. 1. A selection of LD diagrams for D0 → ðρ0;ωÞγ. Note that it is the fact that the ρ0=ω carry both d̄d and ūu components that
makes the same operator Od;s

2 (8) contribute to both (WA and QL) topologies. Left: weak annihilation (WA). Center: quark loop (QL).
This contribution vanishes, exactly, for on shell photon, by virtue of gauge invariance as discussed in the text. Right: QL example of
OðαsÞ correction. This diagram has a sizeable imaginary part which can be inferred from the computation for c → uγ in Ref. [32].

5The factor cV is inserted to absorb trivial factors due to the
wave function decomposition ρ0ðωÞ ∼ 1ffiffi

2
p ðūu ∓ d̄dÞ. cV ¼ −

ffiffiffi
2

p

for ρ0 in c → d, cV ¼ ffiffiffi
2

p
in all other transitions into ω and ρ0 and

cV ¼ 1 otherwise. Note that in the overall CP asymmetry this
factor will drop out.

6In fact, the ratio of the WA to the G1ð0Þ form factor is well
approximated by R ¼ rρ=rω where rX ¼ ðf⊥X Þ=ðmXf

k
XÞ is the

ratio of the tensor to the vector decay constant. Information on
this ratio exists only sparsely in the literature. Similar remarks
apply to the Dþ

s → K�þ and Dþ → ρþ-transitions.
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in the numerical value of neutral and charged matrix
elements in Eq. (16) originate from different charges of
the valence quarks of the mesons. Using the reference value

for Im½Cð0Þ
8 �, the relevant ratios are around

jA⊥;kj8
A⊥;kjLDj

¼ few × 10−3; ð17Þ

and thus, the scale for direct CP violation is set at the
subpercent level for the reference value (6).

B. Direct CP violation

Since the photon polarization is not easy to measure in
practice a slightly inclusive rate Γ½D → Vγ� ¼ Γ½D →
VγL� þ Γ½D → VγR� is measured. We parametrize the
corresponding amplitudes as follows:

AL;R ¼ A⊥ �Ak ¼ lL;ReiδL;R þ gL;ReiΔL;ReiϕL;R ; ð18Þ

with

lLðRÞ ¼ jl⊥ � lkj; l⊥;k ≡A⊥;kjLD
gLðRÞeiΔLðRÞ ¼ GFffiffiffi

2
p

�
emc

2π2

�
1

cV
jCð0Þ

8 j2GL;Rð0Þ

GL;Rð0Þ ¼ jG1;2ð0ÞjeiΔL;R ;

C8 ¼ jC8jeiϕL C0
8 ¼ jC0

8jeiϕR ; ð19Þ

where ΔL;R, δL;R, and ϕL;R are the strong and the
weak phase of (14), respectively, leaving the quantities
lLðRÞ; gLðRÞ real valued. In the equation above, we have
made use of G1ð0Þ ¼ G2ð0Þ, found at leading twist [28],
implying that O8 and O0

8 solely contribute to the left- and
right-handed amplitude, respectively, and in addition, leads
to ΔL ¼ ΔR. The latter is not true when the contribution

due to Im½Cð0Þ
7 � is included, in which case, the formulas for

gL;R have to be modified according to Eq. (B3) in
Appendix B 2.
In the case where the two photon polarizations are not

distinguished, the formula for CP violation is slightly more
complicated than the one given in Eq. (B2). The general
formulas and a derivation, including TDCP asymmetries,
can be found in the Appendix of Ref. [36], for example.
Using the corresponding standard formulas for the ampli-
tude (18) yields

ACPðD0 → VγÞ ¼ −4
n

ðgLlL sinðΔL − δLÞ sinðϕLÞ
þ fL ↔ RgÞ;

n≡ 2ðl2L þ 2ðgLlL cosðΔL − δLÞ cosðϕLÞg2LÞ
þ fL ↔ RgÞ: ð20Þ

Assuming lLðRÞ ≫ gLðRÞ and imposing Δ≡ ΔL ¼ ΔR, one
gets

ACPðD0 → VγÞ

≈
−2

l2L þ l2R
ðgLlL sinðΔ− δLÞ sinðϕLÞ þ fL↔ RgÞ: ð21Þ

In the absence of a computation, and in view of the chiral
suppression at leading order, we set the LD phases δL;R (18)
to zero in the remaining formulas, but it will be taken into
account in the error budget. This allows us to express ACP in
terms of the quantities discussed at the beginning of the
paper,

ACPðD0→VγÞ

¼ −4
l2Lþ l2R

GFffiffiffi
2

p
�
emc

2π2

�
Im½G1ð0Þ�

cV
ðlLIm½C8�þ lRIm½C0

8�Þ:

This formula, modulo notation, reduces to ACP (B2) for
l⊥ ¼ lk (i.e., lR ¼ 0).
With mc ¼ 1.3 GeV, Eqs. (5), (13), and (16), we get for

the neutral transitions,

ACPðD0 → ðρ0;ωÞγÞ ¼ �ð3.0Im½CNP
8 � þ 1.6Im½C0NP

8 �Þ;
ð22Þ

where the difference between ρ0 and ω due to mass and
decay constants is negligible compared to the estimated
uncertainty of about 50% (to be discussed further below).
In going from (21) to (22), we have used the fact that the
imaginary part ofCSM

8 , which contains the CKM prefactors,
is negligible with respect to the values (5). For the charged
transitions, we get

ACPðDþ
ðd;sÞ → ðρ; K�ÞþγÞ

¼ ð4.6; 3.3ÞIm½CNP
8 � − ð3.1; 2.0ÞIm½C0NP

8 �; ð23Þ

where we recall our reference value Im½Cð0ÞNP
8 � ¼ 10−3 (6).

Again the uncertainty is estimated to be about 50%. Note
that the different sensitivity of ΔACP, ACPðD0 → ðρ0;ωÞγÞ
and ACPðDþ

ðd;sÞ → ðρþ; K�þÞγ with respect to Im½C8�
and Im½C0

8� gives a handle to discriminate between the
individual contributions of the two chromomagnetic
operators.
Let us turn to the discussion of the uncertainty. The

major uncertainty comes from the estimate of theO8 matrix
elements, which we estimate to be around 35% [28]. Then
there is the phase of the WA contribution, δL;R, for which
we assign an uncertainty jδL;Rj ¼ 45° based on the estimate
that the radiative corrections of WA could be of equal size
as leading order with maximal 90° phase. Note that more
than 90% degrees itself is again unrealistic since the rate

ACP½D0;þ
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suggests that the interference is not destructive. In
summary, this leads to an uncertainty of approximately
30%. Amongst the LD contributions, the combination
l2L þ l2R is taken from experiment, but the ratio lL=lR that
we took from [33] could have uncertainties, say, at the
20% level. Adding the three sources discussed above
in quadrature, as they would seem uncorrelated, we get
about 50% uncertainty. A few additional remarks
are in order. In Appendix C 2, we estimate the SM
contribution to be of the order of 10−4, which is negligible.
Furthermore, we refrain from including at this point the
uncertainty due to the C7 effect discussed in Appendix C 3.
Wewould like tomention though that it cannot be excluded,
depending on the model and the LD phase, that the C7

and C8 effect conspire to cancel significantly in the CP
asymmetry.

C. Time-dependent CP violation

As a result of D0-D̄0 oscillations, CP asymmetries are
time dependent for the neutral meson, giving rise to novel
features. In particular, TDCP asymmetries do not neces-
sitate a strong phase difference in the two amplitudes. Thus,
in principle, we have to adjust the amplitudes to include the
C7 effect, from gL;R Eqs. (18), (19) to g̃L;R (B3) as detailed
in Appendix B 2. Indications are though that these effects
are overshadowed by the dominance of the LD ampli-
tudes lL;R.
Important mixing parameters of the D0-D̄0 system are

the mass and width difference, the mixing phase ϕD as well
as the ratio jp=qj of the parameters p and q translating
between the flavor and mass eigenstates. The latest HFAG
values [4] are

xD ¼ ΔmD

Γ
¼ 0.409ð48Þ × 10−2;

����pq
����
D
≈ 1;

yD ¼ ΔΓD

2Γ
¼ 0.719ð113Þ × 10−2;

ϕD ≈ −13ð13Þð4Þ°½−6ð11Þð4Þ°�; ð24Þ

where Γ ¼ ðτD0Þ−1 is the inverse lifetime of the D0 mesons
and ΔmD and ΔΓD are the difference of the heavy and the
lightD0 meson mass and width, respectively. Above we did
set the value for jp=qj ¼ 1 as both the no direct CP allowed
and direct CP allowed value are compatible with 1 within
very small uncertainties. The value for ϕD we quote both
values no direct CP allowed and direct CP allowed (in
brackets). Assuming jp=qjD ¼ 1, the TDCP asymmetry
assumes the following form:

ACPðD → VγÞ½t� ¼ S sinðΔmDtÞ − C cosðΔmDtÞ
coshðΔΓD

2
tÞ −H sinhðΔΓD

2
tÞ ; ð25Þ

where the convention ACPð0Þ ¼ −C is somewhat awkward
but standard. The formulas for S and H are given in

Appendixes B 2 and C from the previous section. Let us
define the LD chirality asymmetry (ratio) by

χLD ≡ l2⊥ − l2k
l2⊥ þ l2k

¼ 2lLlR
l2L þ l2R

∈ ½−1; 1�: ð26Þ

With values as in (13), we get χLD ≈ 0.8ð1Þ. Thus, if we
assume χLD ≫ 10−2, lL;R ≫ g̃L;R, which both seem true,
and once more set δL;R ¼ 0, we get an interesting expres-
sion for for H and S,

H½S�≈ 2lLlR
l2Lþ l2R

· ð−ξcos½sin�ðϕDÞÞ¼ χLD · ð−ξcos½sin�ðϕDÞÞ;

ð27Þ

which directly measures the ratio of the LD chirality
structure times the cosine and sine of the mixing angle of
theD0 system. The variable ξ ¼ �1 is theCP eigenvalue of
the V-meson whose values can be found in Appendix B 2.
With ξðρ0;ωÞ ¼ 1, we get

H½D0 → ðρ0;ωÞγ� ≈ −0.8ð1Þ cosðϕDÞ;
S½D0 → ðρ0;ωÞγ� ≈ −0.8ð1Þ sinðϕDÞ: ð28Þ

Let us emphasize once more that this relation is valid in the
case where a left- and right-handed amplitude are compa-
rable in size and dominate all the other contributions.
The experimental tractability of S and/or H depends on

the angle ϕD. Should ϕD (24), that is to say sinϕD, turn out
to be sizeable then S could be measured as for B → K�γ at
the B factories. If cosϕD is sizeable, which is what the
value in (24) indicates, then one would need to focus on H.
The latter might be measured, in analogy to Bs → ϕγ case
[36], in the rates D0 → ðρ0;ωÞγ and the one for D̄0 without
flavor-tagging, which has experimental advantages, though
it has to be added that the relatively small width difference
in the D0 system, yD=yBs

≈ 0.1, means that roughly a
hundred times more data have to be accumulated to achieve
the same precision onH in theD0—as in the Bs system. We
further refer the reader to the works [21,27], where some of
these ideas have been extended to baryon decays Λc → pγ
and 1þ final state mesons (D0 → K1γ), respectively. The
1þ-modes combined with the 1−-modes have the potential
to discriminate between LD and SD per se [37].

IV. DISCUSSION AND CONCLUSIONS

Partly building up on ideas in [17] we have shown how
Im½C8� and Im½C0

8� become observable in CP asymmetries
in D → Vγ. Setting the LD phases δL;R ¼ 0 (18), in the
absence of a computation, we got (22) and (23),
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ACPðD0 → ðρ0;ωÞγÞ
≈�ð3.0Im½CNP

8 � þ 1.6Im½C0NP
8 �Þ;

ACPðDþ
ðd;sÞ → ðρ; K�ÞþγÞ

≈ ð4.6; 3.3ÞIm½CNP
8 � − ð3.1; 2.0ÞIm½C0NP

8 �; ð29Þ

where we recall our reference values Im½Cð0ÞNP
8 � ¼ 10−3 (6).

Uncertainties are in the 50% range, cf. Sec. III B. The SM
contribution is negligible, down by an order of magnitude
(cf. Appendix C 2). A useful aspect is that the Wilson
coefficients of the two chiralities of the chromomagnetic
operator enter with different sensitivity in (29), which has
discrimination potential.
The chirality of the photon is an interesting aspect and

deserves some discussion in comparing it to the b sector. In
b → ðd; sÞγ transitions, the left-handed amplitude domi-
nates over the right-handed amplitude as a result of the
large b-quark mass and the V − A interactions. This pattern
might be broken by physics beyond the SM and can be
measured in TDCP asymmetries [38]. The situation in
D0 → Vγ is rather different. Whereas it is still true that the
left-handed amplitude is larger than the right-handed
amplitude, e.g., (13) it is not very significant since the
c-quark mass is smaller. This neither-nor situation has
consequences.
Since the amplitudes themselves are LD dominated the

TDCP asymmetries are not sensitive to novel right-handed
currents. However, TDCP asymmetries measure the LD
chirality asymmetry χLD (26) and thus, can provide
interesting information on LD dynamics and could serve
as validation criteria for theoretical tools. Let us add that the
feasibility of the measurement depends on the definite
value of the mixing phase ϕD (as commented on at the end
Sec. III C).
On the speculative side, it is of course possible that NP

contributes to SM or non-SM operators of the WA-type,
Od

1;2 (8)
7 possibly with new weak phases. Allowing for the

latter and parametrizing a strong phase for the yet to be
computed OðαsÞ corrections lLðRÞ → lLðRÞeiΦLðRÞ , one gets

H½S� ¼ χLD · ð−ξ cos½sin�ðϕD −ΦL −ΦRÞ cosðδL − δRÞÞ;
ð30Þ

and of course, χLD is then affected by the NP and needs
reevaluation.
At last, let us give an outlook and hint how the current

work could be improved. On the experimental side, the
measurement of the branching ratios of the three charged
modes Dþ

d → ρþγ and Dþ
s → ðρ; K�Þþγ would be helpful.

This is the case since the corresponding Wilson coefficients
are not color suppressed at LO and would thus allow us to
assess the matrix elements themselves. On the theoretical
side, it would benefit from OðαsÞ correction of the WA
contributions. In particular, the radiative corrections would
allow an estimate of the strong phase and the inclusion
of the C7 effect [17]. The prominence of WA in the isospin
asymmetry in b → s processes provides yet another
motivation for their reassessment. Furthermore, it might
be interesting to extend this work from D → Vγ to
D → Vlþl− as the latter might be easier to deal with at
the LHCb, where the photon final state remains challenging
at present.
In conclusion, charm physics is theoretically challenging

and the situation with regards to new physics remains
inconclusive in the sense that it is far from impossible that
new physics is lurking in this sector. Charm physics in
b → u and non-FCNC modes therefore deserves further
study in our opinion.
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APPENDIX A: LONG-DISTANCE AMPLITUDES

This appendix is devoted to aspects of WA, which we
argue is the dominant mechanism.

1. Theory: Weak annihilation vs quark loops

One may distinguish two types of LD contributions
according to whether the quark level transitions is cū → dd̄
or c → udd̄ðss̄Þ. They can be generated by the weak
operators Od;s

1;2 (8), for instance. From the viewpoint of
quarks and gluons, the first type is known as WA (Fig. 1,
left) and the quark loop (QL) (Fig. 1, center, right). TheWA
contributions have been computedB;D → Vγ andD → Vγ
in [32,39,40] at Oðα0sÞ. Note that the QL of the type shown
in Fig. 1(center, right) are evaluated in an 1=mcð1=mbÞ
expansion for cðbÞ → uðd; sÞγ, although in principle one
could compute them in the exclusive case with LCSR,
which is not based on a 1=mcð1=mbÞ expansion.
We advocate that WA dominates over QL for the

following reason. QL and WA are generated by the same
weak operator,Od;s

1;2 andO
d
1;2 (8), respectively, yet the QL is

down by two loops with respect to WA. This is the case
because the single QL Fig. 1 (center) vanishes by gauge
invariance. The reason therefore is that the photon polari-
zation ΠμνðqÞ ¼ ðq2gμν − qμqνÞΠðq2Þ vanishes for q2 ¼ 0

when contracted with the photon polarization tensor.

7Note that in [15], it is the GIM combination (9), Od
1;2 −Os

1;2,
which is severely constrained through ϵ0=ϵ in new weak phases
but not the individual operators OdðsÞ

1;2 of down and strange per se.
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Note that in addition, there is a GIM suppression of the
QL, though not very effective for the matrix elements [32].
This suggests a natural hierarchy WA ≫ QL in the types
of charm transitions discussed in this paper.8

Some confirmation can be found in B physics. That is
taking numbers from [43] for WA and QL one gets
jAQL=AWAjB−→ρ−γ ≈ 2 × 10−2.9 To be more precise, for
AQL we have taken the charm loop contribution where the
gluon is radiated into the final state vector meson.10

Does this hierarchy remain intact for D physics? Despite
the obvious fact that the αsðmcÞ expansion and the 1=mc
expansion are less trustworthy, it seems hard to see how a
2 order of magnitude hierarchy can be overthrown. Taking
the contribution Fig. 1(right) for the QL from [32], which
does rely on 1=mc-expansion, and the estimates of [33], one
gets a number, jAQL=AWAj ≈ 2 × 10−2, which is somewhat
accidentally close to the one for the B− → ρ−γ.

2. Experiment: Weak annihilation vs quark loops

Let us turn to experiment. The known branching frac-
tions are given by [29,31]11

BðD0 → fρ0;ϕ; K̄�0gγÞ
¼ f1.77ð32Þ; 2.81ð19Þ; 41ð7Þg × 10−5; ðA1Þ

with respective uncertainties of f17; 7; 17g%, respectively,
and the hierarchy is based on the Wolfenstein suppression
of fλ; λ; λ0g at the amplitude level. A crucial feature is that
only the D0 → ρ0γ amplitude allows for a QL topology.
Hence, by comparing the branching fraction rescaled by

CKM-factors and wave function decomposition, one would
expect to find values compatible with SUð3Þ-flavor sym-
metry. Let us check and define the auxiliary quantity,

xV ≡ c2V
λCKMf2Vm

2
V
ðjA⊥j2 þ jAkj2Þ; ðA2Þ

where cρ0 ¼
ffiffiffi
2

p
(and unity otherwise) compensates for the

wave function decomposition of the ρ0 ∼ 1ffiffi
2

p ðūu − d̄dÞ.
Using (A1), one then gets

1

xϕ
fxρ0 ; xϕ; xK̄�0g ≈ f1.65; 1.00; 0.97g: ðA3Þ

Now, for D0 → ϕγ and D0 → K̄�0γ the major effect of
SUð3Þ seems to be carried by the decay constants. The
D0 → ρ0γ channel differs and indicates a 28% correction
(1.282 ≈ 1.65) in the amplitude. We identify the following
possible reasons therefore:
(1) It could be that after all, the doubly loop suppressed

QL contribution is sizeable. One could argue that the
color suppression of the WA process at LO essen-
tially acts like a loop suppression. At the charm
scale, a one loop correction could easily amount
to 20%.

(2) The ρ0 is a broad state, and it could be that it was not
treated uniformly in the experiments of ρ0 → eþe−
from where the decay constant is extracted versus
the D0 → ρ0γ measurement per se. Compare [34],
where this aspect is stressed in the context of the
form factor computation.

(3) There is just a single measurement of this mode, and
confirmation by another facility would be most
helpful. Although the Belle measurements of the
other modes is in line with previous measurements
(even though the K� node is slightly higher).

We would think that point 1 is the most likely explanation,
but ultimately we cannot tell.

3. LCSR vs weak annihilation from experiment

In this section, we pose the question whether LCSR can
accommodate the D0 → Vγ branching fractions quoted
above. There are two parts to it, the matrix elements and
the Wilson coefficients. In the neutral case, both are
problematic at LO due to scale uncertainties. Let us discuss
them one by one.

a. Matrix elements at leading order (in LCSR)

In the SM at LO in αs WA is given by the so-called initial
state radiation [cf. Fig. 1 (left)] as the emission from the
final state is suppressed by the (light) quark masses. The
former is then simply given by the VD→γ

⊥;k ðm2
VÞ transition

form factor. This conclusion is also true in QCD

8In the approach in [30], the two transitions are modeled with
hadronic data. We identify WA and QL with the pole (P) and the
vector-meson dominance (VMD) part, respectively, The compa-
rable numbers for P and VMD are not in line with the arguments
above. (We further note that in [30] the P part receives no
contribution in Akð↔ APVÞ, which is not reflected in the LCSR
computation [33,39,41].) A possible issue is that the signs of the
couplings of the VMD models are not known, that is to say only
their absolute values can be inferred from experiment. Thus, the
formalism might overestimate the contributions as it cannot
capture cancellations, which gauge invariance suggests to be
present. A similar point of view has been taken in [42] by one of
the authors of [30] in Chap. 3.1.3.

9WA is Cabibbo suppressed with respect to QL in B physics. In
comparing the WA and QL processes/diagrams, we, of course, do
not take CKM hierarchies into account, especially because they
are not present in the charm decays we are interested in.

10Note that WA for B0 → ρ0γ is accidentally small because of
cancellations between tree-level and penguin four quark operator
contributions. We do not expect the same to take place for
D0 → ðρ0;ωÞγ since those cancellations are between tree and
penguin four quark operator contributions and the latter are tiny
in D physics.

11For D0 → ρ0γ, we have taken the value from Belle [31] as
this is the single measurement, and it is somewhat unclear to us
why [29] quotes 1.82ð32Þ × 10−5.
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factorization. For the actual form factors, we take the
analytic results of a NLO LCSR computation into account
[33].12,13 The values are collected in the main text in (13) as
they constitute a new result.

b. Size of the (effective) Wilson coefficients

Let us consider the operators,

O0 ¼ c̄γμð1 − γ5ÞDD̄γμð1 − γ5Þu;
Oþ ¼ c̄γμð1 − γ5ÞuD̄γμð1 − γ5ÞD; ðA4Þ

(withD ¼ d, s) that govern the weak annihilation transition
of D0ðþÞ at LO in αs. They relate to the combination of
Wilson coefficients denoted by

Heff ∝ a2ð1ÞO0ðþÞ; a2¼C1=3þC2; a1 ¼C1þC2=3

ðA5Þ

and are referred to as color suppressed and allowed,
respectively. The values at the charm scale are C1 ≈ 1.2
and C2 ≈ 0.4, e.g., [10] (cf. [35] for a more elaborate
discussion and analysis) which lead to a2 ≈ 0 and a1 ≈ 1.
Their values at the electroweak scale are of course C1 ¼ 1
and C2 ¼ 0 and a2 ¼ 1=3 and a1 ¼ 1, respectively. One
concludes that the renormalization group running for a1 is
moderate and can be trusted much to the contrary to a2. Its
value at the charm scale is absurdly small [compare

a2ðmbÞ ≈ 0.2]. With such a steep running, it is clear that
the radiative corrections are large. The value of a2 ≈ −0.5
in [35,41], as used in the main text, is meant to model
this effect. Such values were fitted to experiment in other
contexts.
This unsatisfactory situation could be improved by

computing the radiative corrections to the WA matrix
elements and/or measuring the charged modes, where
radiative corrections can be expected to be more moderate.
However, even for the charged modes, there is a twist in
that for the photon emitted from the charged meson, which
is the dominant process at LO, there is a large suppression
between the charm and strange quark contribution [33].
This puts even more pressure on the community to compute
WA at next-leading order in αs.

c. Branching fractions and LCSR amplitude

One may subject the amplitude (12) with Wilson
coefficients and form factors as described above to experi-
ment. We do so by comparing BðD0 → ϕγÞ (suitable as the
ϕ is narrow), which shows that the LCSR predictions
[33,41] differ by about a factor of 2. This is not a small
effect, yet not impossible in view of experimental and
theoretical uncertainties. Being pragmatic, we scale the
neutral modes by the factor κ0 ¼ 2 (and κþ ¼ 1 in
the absence of better knowledge).14 Such procedures are
not ideal, but there is no other way at present.

4. The D +
ðsÞ → Vγ branching fractions

Here, we give an overview of the main D → Vγ
modes collected in Table I. The neutral ones are all
measured but not the charged ones. Here, we give reference

TABLE I. TheWolfenstein parameter is λ ≈ 0.23, and the acronym cs stands for color suppressed. Decays 3 and 6 are not of the FCNC
type, in the sense that they can be directly written in terms of tree W exchange. The O8 column indicates whether they have O8 matrix
elements and are thus potentiallyCP violating in the context of this paper. The experimental value in the first row is for the ρ0 case, as for
the ω, only a bound exists at present [29]. Additionally, we refer the reader to Tables I and II in [21], where a comparison between
different studies for the branching fractions has been made, which includes QCD factorization applied to charm decays.

No. Decay FCNC Transition O8 CKM cs BðD → VγÞ
1 D0 → ρ0ðωÞγ c → u cū → dd̄ Yes λ1 yes 1.77ð32Þ × 10−5 [31]
2 D0 → ϕγ c → u cū → ss̄ No λ1 Yes 2.81ð19Þ × 10−5 [29]
3 D0 → K̄0;�γ no cū → sd̄ No λ0 Yes 4.1ð7Þ × 10−4 [29]

4 Dþ → ρþγ c → u cd̄ → ud̄ Yes λ1 No 6.4 × 10−6 this work
5 Dþ

s → K�þγ c → u cs̄ → us̄ Yes λ1 No 1.7 × 10−5 this work
6 Dþ

s → ρþγ no cs̄ → ud̄ No λ0 No 2.1 × 10−4 this work

12Note this of course does not mean that WA is covered at NLO
as it would involve the connection of a gluon between initial and
final state quarks, which is laborious task.

13Of course it is interesting to compare to the earlier compu-
tation [41], which is though LO, whereas [33] includes radiative
corrections and further higher twist corrections. The results in V⊥
are comparable to [41] but a little lower. There are significant
differences for Vk especially in the charged case. Differences are
due to higher twist terms and in the charged case where the
difference is largest, a factor of 3, this is further due to the
nonsubtraction of the contact term.

14We note that the D0 → ργ in QCD factorization would
necessitate κ0 ≈ 3when inspecting Table I in [21]. Since the same
effective Wilson coefficients are assumed in our and their work,
this means that our LCSR result is ca 50% larger than the QCD
factorization contribution. This is well within the expected
ballpark since already for b physics, the correction in 1=mb
are sizeable cf. Sec. 5 [28].
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values using the values in (13), taken from [33] [and use
κþ ¼ 1 in (12) and a1 ¼ 1 as by above). With this input, we
get the values quoted in Table I. The hierarchies are easily
understood in our approximation, where the basic ampli-
tude is degenerate,

BðDþ → ρþγÞ ¼ τDþ

τDs

BðDs → K�þγÞ

¼ λ2
τDþ

τDs

BðDs → ρþγÞ: ðA6Þ

Above λ ≈ 0.266, is the Wolfenstein parameter and the ratio
of lifetimes is τDþ

τDs
≈ 2 because of the pion’s wave function

decomposition. The uncertainty at the amplitude level is
easily 50% (improvable by an NLO computation as already
mentioned a few times).

APPENDIX B: FORMULAS FOR CP VIOLATION

1. Formulas for direct CP violation

In this appendix, we collect some formulas which are
useful throughout the text. We shall parametrize an ampli-
tude as follows:

AðD0 → fÞ ¼ Aaeiδaeiϕa þ Abeiδbeiϕb ; ðB1Þ

with weak (CP odd) phases ϕ and strong (CP even) phases
δ separated to leave Aa;b real. Note that in the SM, the
decomposition (B1) is sufficient as one might use unitarity
(9) to eliminate one amplitude to arrive at two amplitudes.
Using the notation Δ≡ Aa

Ab
, δðϕÞab ¼ δðϕÞa − δðϕÞb, the

CP asymmetry becomes

ACP½D0 → f� ¼ −2 sinðδabÞ sinðϕabÞΔ
1þ 2Δ cosðδabÞ cosðϕabÞ þ Δ2

≈
Δ≪1

− 2 sinðδabÞ sinðϕabÞΔ: ðB2Þ

In the second line, we have assumed a hierarchy between
the amplitudes, which is the case for D0 → ðρ0;ωÞγ as
studied in this paper.

2. Formulas for TDCP violation

The replacement due to the relevance of O7 as described
in Sec. III C is as follows:

gLeiδeiϕL → g̃LeiΔLeiΦL

¼ GFffiffiffi
2

p
�
emc

2π2

�
1

cV
½C8ð2G1ð0ÞÞ þ C7ð2T1ð0ÞÞ�; ðB3Þ

and for gR is given by the following replacements: L → R
and C8; C7 → C0

8; C
0
7. Note that unlike before we cannot

assume a common strong phase as the ratios C8=C7 and
C0
8=C

0
7 might not necessarily be the same. This is why the

strong phase Δ carries a chirality label. The symbol Φ
denotes the weak phase. The formulas for H and S in (25)
are given, including a derivation, in the Appendix of
Ref. [36]15 and take the following form:

H½S� ¼ −4ξ
n

ðlLlR cosðδL − δRÞ cos½sin�ðϕDÞ
þ g̃Lg̃R cosðΔL − ΔRÞ cos½sin�ðϕD −ΦL −ΦRÞ
þ ðg̃LlR cosðΔL − δRÞ cos½sin�ðϕD −ΦLÞ
þ fL ↔ RgÞÞ;

with

n≡ 2ðl2L þ 2ðgLlL cosðΔL − δLÞ cosðϕLÞg2LÞ þ fL ↔ RgÞ;

and where ξ is the CP eigenvalue of V. For V ¼
fρ;ω;ϕ; K̄�ðK̄Sπ

0Þg. the eigenvalue is ξ ¼ 1, and for
V ¼ K̄�ðK̄Lπ

0Þ, it is ξ ¼ −1.

APPENDIX C: ACPðD0 → VγÞ OTHER THAN
THROUGH CNP

8

For our discussion, it is convenient to write the amplitude
as follows:

A ≈ λdeiδdAd þ λseiδsAs þ λbeiδbAb; ðC1Þ

which is similar to (B1) with the exception that the unitarity
relation (9) has not been used and that the weak phases are
contained within λd;s;b (7). As argued in Appendix A, we
expect the lion’s share of Ad to be covered by WA which
has, presumably, a small strong phase that we shall neglect
(δd → 0). We assume a Wolfenstein parametrization up to
order Oðλ5Þ which fulfils, e.g. [44],

Im½λd� ¼ 0; Im½λs� ¼A2λ5η; Im½λb� ¼−A2λ5η; ðC2Þ

where A, ρ, and η are the other three Wolfenstein param-
eters and A2λ5η ≈ 1.4 × 10−4, Eq. (C2). The fact that
jIm½λb;s�j ≈ 1.4 × 10−4 indicates small CP asymmetries,16

of that order.
Thus, it remains to identify contributions with sizeable

strong phases δs;b and amplitudes As;b for which we see two

15Note that the different sign of H as with respect to [36]. This
originates from the fact that ΔΓs in that reference is the light
minus the heavy decay rate rather than the other way around as is
assumed in the D0 system. The reason for this difference in
convention is that in each case, ΔΓ is chosen to be positive.
Of course this sign is experimentally unobservable as only
ΔΓ ×H2nþ1 for integer n is observable.

16One might be tempted to say that if WA dominates by
another 2 order of magnitudes, then this implies that the CP
asymmetry is automatically below 10−5. This is not correct as in
this way of thinking the absolute value of λb should be factored
into Ab and then Im½λb=jλbj� ≈Oð1Þ is not small any more.
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major sources. First, the matrix element of O8, e.g., (16)
[28] and second, the matrix element of Od;s

2 [32] [cf.
Fig. 1 (right) for a contribution] giving rise, effectively, to
an O7 operator. The latter as well as its matrix element
analogous to (15) are defined and parametrized respec-
tively, as follows:

Oð0Þ
7 ≡ −

mce
8π2

ūσμνFμνð1� γ5Þc ðC3Þ

hVγjOð0Þ
7 jDi ¼

�
emc

4π2

�
1

cV
ðT1ð0ÞP⊥ � T2ð0ÞPkÞ: ðC4Þ

1. Effective Wilson coefficients Ceff
7;8ðmcÞ

Let us state that we do not intend to give a critical
review of the treatment of Wilson coefficients in the charm
sector, e.g., of whether it makes sense to include light
quarks into SD contributions evaluated in perturbation
theory.17 We shall simply follow the literature. It is
fortunate that the SD contributions turn out to be sub-
dominant in the SM.
The different contributions discussed above are conven-

iently discussed in terms of so-called effective Wilson
coefficients. The latter consists of the pure Wilson coef-
ficient C7;8ðmcÞ and matrix elements which can be rewrit-
ten in terms of O7;8, which we denote by δCeff

7;8ðmcÞ,

Ceff
7;8ðmcÞ ¼ C7;8ðmcÞ þ δCeff

7;8ðmcÞ: ðC5Þ
From a conceptual point of view, the Wilson coefficient can
be divided into two further subparts,

C7;8ðmcÞ ¼ CðmWÞ
7;8 ðmcÞ þ CðmbÞ

7;8 ðmcÞ: ðC6Þ
The notation above is nonstandard but hopefully useful
for clarity. For the reminder of this section, we closely

follow the notation of [45]. For Ceff
8 , only CðmWÞ

8 ðmcÞ¼
η
14
25
c η

14
23

b C8ðmWÞ, ηb ¼ αsðmWÞ=αsðmbÞ, and ηc ¼ αsðmbÞ=
αsðmcÞ, is known explicitly in the literature. For Ceff

7 , all
three parts are known which we shall quote, almost
explicitly, below,

CðmWÞ
7 ðmcÞ¼

�
η
16
25
c η

16
23

b C7ðmWÞ−
16

3
ðη14

25
c η

14
23

b −η
16
25
c η

16
23

b ÞC8ðmWÞ
�

CðmbÞ
7 ðmcÞ¼−λb

X
i;j

CjðmbÞXjiη
zi
c ; ðC7Þ

where i ¼ 1..8, j ¼ 1..6. Note that CðmWÞ
7 ðmcÞ describes the

evolution directly from mW to mc and C
ðmbÞ
7 ðmcÞ originates

from integrating out the b quark at the mb scale and
running from mb to mc. We hasten to add that the above
expressions are given in the leading logarithm approxi-
mation. The term from the four quark matrix element is
given by [32]

δCeff
7 ðmcÞ ¼

αsðmcÞ
4π

C2ðmcÞðλsf½ðms=mcÞ2�
þ λdf½ðmd=mcÞ2�Þ: ðC8Þ

The strong phase results from the charmed meson’s
four momentum cutting the diagram through light quark
lines. The contribution of C1ðmcÞ vanishes whereas the
C3;4;5;6ðmcÞ have not been given but are small as they
originate from SD contributions, which themselves are
small. In fact, the numerical hierarchy is as follows [32]:

jCðmWÞ
7 ðmcÞj ≈ 2 × 10−7 ≪ jCðmbÞ

7 ðmcÞj
≈ 8 × 10−6 ≪ jδCeff

7 ðmcÞj ¼ 5 × 10−3: ðC9Þ

The hierarchy between the first two was noted in [30] and
numerically improved in [32]. The fact that matrix
element dominates the Wilson coefficient was pointed

out in [32]. The expression of CðmbÞ
7 ðmcÞ for operators

other than O1;2 was given recently in Ref. [45]. As
mentioned previously, we are not aware of explicit results

for CðmbÞ
8 ðmcÞ and δCeff

8 ðmcÞ in the literature, yet they can
be expected to be close to their C7 counterparts as they
differ only by color factors. Excluding cancellation
effects, we would expect them to equal up to Oð1=NcÞ
effects, say equal to about 30%–50%. Given the uncer-

tainties of the estimates the approximations, CðmbÞ
8 ðmcÞ ≈

CðmbÞ
7 ðmcÞ and δCeff

8 ðmcÞ ≈ δCeff
7 ðmcÞ, are good for our

purposes.18 Furthermore, with C8ðmcÞ ≈ CðmbÞ
8 ðmcÞ≈

CðmbÞ
7 ðmcÞ ≈ ð−0.3þ 0.8iÞ × 10−5, we see that the SM

value is 2 to 3 orders of magnitude below the reference
value Im½CNP

8 � ≈ 0.4 × 10−2.

2. ACPðD0 → VγÞ in the SM

In the SM, we identify three main sources contributing to
the direct CP asymmetry: (a) C8ðmcÞ ≈ CðmbÞ

8 ðmcÞ, (b)

δCeff
7 ðmcÞ, and (c) δCeff

8 ðmcÞ. Right-handed operators Oð0Þ
7;8

are negligible in the SM as Wilson coefficients as well as
matrix elements are suppressed. As previously mentioned,
we shall use C8ðmcÞ ≈ C7ðmcÞ for cases (a) and (c), which
is good up to 1=Nc corrections. Note, as the leading LD
amplitude is proportional to λd, it is only λs or λb that can
contribute to the direct CP asymmetry.

17We are grateful to Ikaros Bigi and Ayan Paul to draw our
attention to this point.

18Though the values CðmWÞ
7;8 ðmcÞ differ substantially for various

reasons, this is of no concern as they are small.
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(a) It is found that [32]

CðmbÞ
7 ðmcÞ ≈ 0.06λb ≈ ð0.3 − 0.8iÞ × 10−5; ðC10Þ

and assuming, as discussed above, CðmbÞ
8 ðmcÞ≈

CðmbÞ
7 ðmcÞ, we get that this contribution compares with

CNP
8 in ACP as follows:

0.06Im½λb�
Im½CNP

8 � ≈ −0.2 × 10−2: ðC11Þ

(b) It is found that

δCeff
7 ðmcÞ ¼ ð0.6þ 2.2iÞ × 10−2λs þ cλd; ðC12Þ

where the imaginary part, other than λs, corresponds
to a strong phase. The number c is of no importance
for CP violation as it can be absorbed into
WA, which is proportional to λd and much
larger. The contribution ACP compares with CNP

8 as
follows:

Im½λs�Im½ð0.6þ 2.2iÞ × 10−2�T1ð0Þ
Im½CNP

8 �Im½G1ð0Þ�
≈ −1 × 10−2;

ðC13Þ

for reference values (5), T1ð0Þ¼0.7 and Im½G1ð0Þ� ¼
−0.2.

(c) As discussed above, we expect δCeff
8 ðmcÞ ≈ δCeff

7 ðmcÞ,
and this leads to a result for (c) with Im½G1ð0Þ�=
T1ð0Þ ≈ 2=7 suppression factor as compared
to (C13).

Summa summarum, the SM contributions is 1 order of
magnitude below the values Im½CNP

8 � (5) contribution and
with the value in (22), we get

ACPjSMðD0 → ðρ0;ωÞγÞ

≈
�
−1.5%

1ffiffiffi
3

p
�
ð−2 × 10−2Þ ≈ 3

1ffiffiffi
3

p × 10−4: ðC14Þ

We refrain from quoting a specific uncertainty. We would
though think that the value catches the right order of
magnitude. As possible criticisms, one could advocate, for

example, the estimate CðmbÞ
8 ðmcÞ ≈ CðmbÞ

7 ðmcÞ and question
the accuracy of local duality in (C12). The charged
case is obtained by replacing Im½GD0

1 � → Im½GDþ
1 � in (C13)

and this would lead to ACPjDþ
SM ≈ 3.9% 1ffiffi

3
p ð−3 × 10−2Þ≈

−1 1ffiffi
3

p × 10−3.

3. ACPðD0 → VγÞ via Im½CNP
7 � and a

strong LD phase

In Ref. [17], the idea was put forward that C8ðmNPÞ
mixes into C7ðmcÞ, e.g., Eq. (C7) for the SM evolution.
More precisely, depending on the model and the scale of
NP, MNP, it was put forward [17] that this leads
to comparable values.19 An important point is that
C7ðmcÞ hardly affects D0 → ππ=KK because of α sup-
pression and is therefore not constrained by the latter.
Following [17], we shall assume only SM degrees
of freedom below the scale MNP ¼ 1 TeV and that the
NP part of the Wilson coefficients is much larger than
the SM part. Amending the notation of (C7) to
include the running of six quarks above the top threshold,
one gets

Cð1 TeVÞ
8 ðmcÞ ≈ 0.42C8ð1 TeVÞ;

Cð1 TeVÞ
7 ðmcÞ ≈ 0.37C7ð1 TeVÞ − 0.26C8ð1 TeVÞ

≈ 0.37C7ð1 TeVÞ − 0.62C8ðmcÞ;

and the analogous equations for the O0
7;8

operators. Equation (C15) exposes the dependence of

C7ðmcÞ on the scale MNP and Cð0Þ
7 ðMNPÞ. We shall some-

what arbitrarily choose the value Im½Cð0ÞNP
7 ðmcÞ� ≈

−0.5Im½Cð0ÞNP
8 ðmcÞ� as a reference values. This follows

the model dependent assumption jIm½Cð0Þ
7 ð1 TeVÞ�j ≪

jIm½Cð0Þ
8 ð1 TeVÞ�j in [17].

Since the O7 matrix element itself, as opposed
to δCeff

7 , does not carry a strong phase and the LD strong
phase vanishes at leading order in the chiral limit, as
discussed in Appendix A 3, we did not include this
effect in our results [(22) and (23)]. In fact, we estimated
that the phases could be around jδL;Rj ≈ 10°, and we shall
investigate how the CP asymmetry changes. It is then
useful to rewrite the gL amplitude as in (B3) with the
replacement,

½C8ð2G1ð0ÞÞ þ C7ð2T1ð0ÞÞ�
→ ½2Im½C8�ðG1ð0Þ − 0.5T1ð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

F1

Þ�: ðC15Þ

For T1ð0Þ ¼ 0.7 and GD0

1 ð0Þ ≈ −0.2 − 0.2i ≈ 0.3e−i135°

[28], one gets F1 ≈ −0.55 − 0.2i ¼ 0.7e−i160°. Thus, a
correction of the LD phase δL;R ¼ �10° leads to a strong
phase difference between the two amplitudes in the
range of 10° to 30°, which corresponds to a rescaling
of the CP asymmetry by factors sinð10°Þ= sinð20°Þ ≈ 0.5

19Note that our normalization of O7 differs from [17] by a
factor ofQu, which translates into QuC7 ¼ CIK

7 , where IK stands
for the authors of [17].
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and sinð30°Þ= sinð20°Þ ≈ 1.5, respectively. Thus, in con-
clusion, one cannot exclude the possibility that the phases
conspire to cancel a significant part, or even an order of
magnitude, of the effect. A lot of things have to go wrong

for this to happen though. As discussed in Sec. A 3, an
OðαsÞ computation would presumably give an indication
of the sign of the LD phase as well as its size and would
allow us to make firmer statements.
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