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Using a novel relation between the parity-even and -odd parts of a correlator, we show that the three-
point function of conserved or weakly broken currents in three-dimensional conformal field theory (CFT)
can be obtained from just the free fermion (FF) or the free boson (FB) theory. In the special case of large N
Chern-Simons matter theories, we obtain the correlator in terms of a coupling constant dependent “anyonic
phase” factor. This anyonic phase factor was previously obtained in the 2 → 2 exact S-matrix result and is
consistent with strong-weak duality. By varying the coupling constant, the CFT correlator interpolates
nicely between the same in the FF and FB theories.
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I. INTRODUCTION

Three-dimensional conformal field theory (CFT) finds
important applications in diverse branches of physics such as
cosmology [1–5], condensed matter physics [6–8], etc. They
also play an important role in the study of various dualities
such as those between CFTs and higher-spin Vasiliev
theories [9–13] and Aharony-Bergman-Jafferis-Maldacena
duality in the context ofAdS=CFTcorrespondence [14].One
of the important quantities to be computed in a CFT is the
correlation function of various operators. While position
space CFT correlation functions are quite well studied, the
same in momentum space is relatively less explored. See
Refs. [4,15–20] for recent progress in momentum space
three-point correlator results. Although relatively recent and
less explored as compared to position space, the study of
momentum space CFT correlators has led to the under-
standing of a lot of previously unknown structures of
conformal correlators such as the double copy relations
[21–23]. In this paper, wemake use of yet another interesting
feature of momentum space CFT correlators.
Conformal correlators comprising exactly conserved

currents in three dimensions generally have two parity-even
and one parity-odd structures, which have been constructed
explicitly in position space [24,25]. The parity-even struc-
tures can be obtained from free bosonic and free fermionic
theories, whereas the parity-odd structure in general arises in

an interacting theory which violates parity, such as Chern-
Simons (CS) matter theories [26,27]. A direct computation
of these correlators using Feynman diagrams in Chern-
Simons matter theories is complicated and has been done
for only a few specific correlators in specific kinematic
regimes in momentum space [28–30]. Momentum space
parity-even and parity-odd three-point correlators compris-
ing arbitrary higher-spin currents were computed recently in
Refs. [20,31]. In Ref. [33], helicity structures of three-point
spinning correlation functions for higher-spin currents and
their relation to bulk anti-de Sitter (AdS) couplings were
discussed [34].
In this paper, using results from direct computation of

the parity-even part of the correlator from free boson (FB)
and free fermion (FF) theories and the conformal Ward
identity, we relate the parity-odd part of the CFT corre-
lator to the parity-even part from the FB or FF theory. This
relation in spinor-helicity variables can be used to express
the three-point function of conserved or weakly broken
higher-spin currents in three-dimensional (3D) CFTs in
terms of either the free bosonic or free fermionic theory
answers. Remarkably, in the special case of CS matter
theory at large N, we show that the full three-point
correlator is given by either the FB theory or the FF
theory with an appropriate anyonic phase factor which
nicely interpolates between the correlator in the FB and
FF theories. Explained another way, we can start with the
correlator in the FF theory, multiply with an appropriate
anyonic phase which gives the correlator in the CS matter
theory which has a parity-odd part as well, and then we
can tune that phase to go all way to the FB theory
correlator. Interestingly, the same anyonic phase factor
was observed in the calculation of the all loop 2 → 2
S-matrix in Chern-Simons matter theories [35,36], and it
also appeared in the context of nonrelativistic Aharanov-
Bohm scattering [37,38].

*yatharth.gandhi@students.iiserpune.ac.in
†sachin.jain@iiserpune.ac.in
‡renjan.john@acads.iiserpune.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 046014 (2022)

2470-0010=2022=106(4)=046014(7) 046014-1 Published by the American Physical Society

https://orcid.org/0000-0003-4111-2431
https://orcid.org/0000-0002-9749-788X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.046014&domain=pdf&date_stamp=2022-08-29
https://doi.org/10.1103/PhysRevD.106.046014
https://doi.org/10.1103/PhysRevD.106.046014
https://doi.org/10.1103/PhysRevD.106.046014
https://doi.org/10.1103/PhysRevD.106.046014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We first introduce some necessary background details.

II. SOME BACKGROUND DETAILS

Three-point functions of conserved or weakly broken
higher-spin currents [39] in a generic 3D CFT can be
written as the combination of three independent structures:
coming from the FB theory, the FF theory, and a parity-odd
term [24,25],

hJs1Js2Js3i ¼ nBhJs1Js2Js3iFB þ nFhJs1Js2Js3iFF
þ noddhJs1Js2Js3iodd: ð1Þ

Let us emphasize here that the correlators in the FB and FF
theories are parity even and are independent, whereas the
parity-odd part cannot be obtained from a free theory and in
general takes a complicated form as was shown in position
space in Ref. [24]. However, we show working in momen-
tum or spinor-helicity variables that all the three structures
in (1) can be obtained from just the FB theory or the FF
theory, and we apply this result to the special case of CS
matter theories. Before doing so, let us very briefly review
some of the background details.
The FB theory that we consider is given by

S ¼
Z

d3x∂μϕ̄∂μϕ; ð2Þ

where ϕ is a massless scalar field in the fundamental
representation of SUðNbÞ. The operator spectrum of
single-trace primary operators in the theory consists of a
scalar primaryO ¼ ϕ̄ϕwith scaling dimension 1 and spin-s
currents with scaling dimension sþ 1. One also defines a
critical bosonic theory by Legendre transforming the FB
theory with respect to the scalar operatorO. More precisely,

S ¼
Z

d3x½∂μϕ̄∂μϕþ σBϕ̄ϕ�; ð3Þ

where σB is an auxiliary field. The conformal dimension
of the scalar primary operator [40] for this case is Δ ¼
2þOð 1

Nb
Þ.

The FF theory that we consider is given by

S ¼
Z

d3xψ̄γμ∂μψ ; ð4Þ

where ψ is a massless fermion field in the fundamental
representation of SUðNfÞ. The operator spectrum of single-
trace primary operators in the theory consists of a scalar
primary O ¼ ψ̄ψ with scaling dimension 2 and is odd
under parity. Other primary operators are conserved spin-s
currents with scaling dimension sþ 1. Similar to the
critical boson (CB) theory (3), one can also define the
critical fermion (CF) theory. For details, see Ref. [41].

Another class of theories that we consider is Chern-
Simons gauge field at level κf coupled to matter at large N.
For example, the fermionic theory coupled to SUðNfÞ
Chern-Simons gauge field has the following action:

S¼
Z

d3x

�
ψ̄γμDμψþ iϵμνρ

κf
4π

Tr

�
Aμ∂νAρ−

2i
3
AμAνAρ

��
:

ð5Þ

The scalar primary operator has conformal dimension Δ ¼
2þOð1NÞ [42]. The spin-1 and spin-2 conserved currents
have dimensions 2 and 3, respectively. The theory also has
an infinite tower of higher-spin currents Js with spin s > 2

that are weakly broken with conformal dimension Δ ¼
sþ 1þOð1NÞ [25,43]. At large Nf and κf, the t’Hooft
coupling is defined as

λf ¼ lim
Nf;κf→∞

Nf

kf
: ð6Þ

One can also define bosonic theory coupled to SUðNbÞ
Chern-Simons gauge field at level κb, CF theory coupled to
CS gauge field, and CB theory coupled to CS gauge field;
see Ref. [41] for details, [44]. The CS gauge theory coupled
to matter at large N has a remarkable property that it shows
strong-weak duality [25–28,45–47]. For example, a fer-
mion coupled to CS gauge field in (5) is dual to CB coupled
to CS gauge field. In Ref. [25], these two theories were
together named quasifermion (QF) theory. The other dual
pair, scalar coupled to CS gauge field and CF coupled to CS
gauge field, is called quasiboson (QB) theory. In Ref. [25],
three-point functions in these classes of theories were
calculated. For example, in the notation of (1) for the
QF theory, it was shown that [25]

nF ¼ Ñ
1

1þ λ̃2
; nB ¼ Ñ

λ̃2

1þ λ̃2
; nodd ¼ Ñ

λ̃

1þ λ̃2
; ð7Þ

where for the specific case of CS gauge field coupled to
fermion (5) we have

Ñ ¼ Nf
sin ðπλfÞ

πλf
; λ̃ ¼ tan

�
πλf
2

�
: ð8Þ

Having reviewed some basics, let us now move on to the
calculation of correlation functions. Before turning our
attention to three-point functions, let us first focus on two-
point functions.

III. TWO-POINT FUNCTIONS

In this section, we consider two-point functions of
spinning operators in spinor-helicity variables. In general,
the two-point function of conserved currents can have
parity-even and parity-odd contributions
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hJsJsi ¼ cevens hJsJsieven þ codds hJsJsiodd: ð9Þ

For simplicity, let us first consider the two-point function of
spin-1 current

hJJi ¼ ceven1 hJJieven þ codd1 hJJiodd: ð10Þ

In spinor-helicity variables, we get [48]

hJ−ðk1ÞJ−ð−k1Þi ¼ ðceven1 þ icodd1 Þ h12i
2

16πk1
: ð11Þ

We introduce ceven1 þ icodd1 ¼ jcJjeiπθ to express the
above as

hJ−ðk1ÞJ−ð−k1Þi ¼ jcJjeiπθ
h12i2
16πk1

: ð12Þ

The other nonzero helicity component hJþJþi can be
obtained by a simple complex conjugation of the above
result.
Let us now consider the special case of CS gauge field

coupled to fermion (5). For this case, we have

hJJiFþCS ¼
N sin πλf
16πλf

hJJieven þ i
Nðcos πλf − 1Þ

16πλf
hJJiodd:

ð13Þ

Let us note that the parity-odd contribution hJJiodd is a
contact term. As was argued in Refs. [28,29], contact
terms are scheme dependent and can be shifted up to an
integer using appropriate counter-terms. In this case, the
contact term corresponds to iκf

4π

R
A ∧ dA, where κ is an

integer. Using this, one can shift away the following term
from (13) [49]:

−N
i

16πλf
hJJiodd: ð14Þ

This gives

hJJiFþCS¼
N sinπλf
16πλf

hJJievenþ i
N cosπλf
16πλf

hJJiodd: ð15Þ

In spinor-helicity variables, this leads to the following
nonzero components [50]:

hJ−J−iFþCS ¼ −
iNe−iπλfh12i2

32πλfk1
: ð16Þ

The above result readily generalizes to two-point functions
of arbitrary spin-s conserved currents Js:

hJ−s J−s iFþCS ¼ −
iNe−iπλfh12i2s

32πλfk1
: ð17Þ

We note that the coefficient is independent of the spin-s of
the operator, i.e., cs1 ¼ cs2 , where csi is the two-point
function coefficient. This follows as a result of higher-spin
symmetry. Let us note the presence of the factor e−iπλf in
(17), which we term as an anyonic phase factor. A similar
result holds for boson coupled to CS gauge field as well, for
which case we instead have e−iπλb .
Although we have only discussed the case with fermion

coupled to gauge field or boson coupled to gauge field, it
easily generalizes to the critical theories in QF and QB
theories. Even though the two-point function is trivial, it
sets the stage for a discussion on three-point functions.
Turning our attention to three-point functions, we show that
the full three-point function in QF theory can be obtained
by appropriately multiplying the same anyonic phase factor
to the three-point function in the FF or FB theory. The term
“anyonic phase” will also become much more transparent.
In contrast to two-point functions, for three-point functions,
the parity-odd term is not a contact term and in general
takes a complicated form in position space.

IV. THREE-POINT FUNCTIONS

In three-dimensional CFTs, we can split three-point
functions into homogeneous h and nonhomogeneous nh
pieces. This is based on the action of the special conformal
generator on a generic three-point correlator. This is
given by

K̃κ

�
Js1
ks1−11

Js2
ks2−12

Js3
ks3−13

�
¼ transverseWard identity terms:

ð18Þ

The terms that arise from the transverse Ward identities are
contact terms, which can be expressed in terms of two-point
functions.
The general solution of the above differential equation is

given by the sum of homogeneous and nonhomogeneous
solutions,

hJs1Js2Js3i ¼ hJs1Js2Js3ih þ hJs1Js2Js3inh; ð19Þ

where hJs1Js2Js3ih solves

K̃κ

�
Js1
ks1−11

Js2
ks2−12

Js3
ks3−13

�
h

¼ 0 ð20Þ

and hJs1Js2Js3inh is a solution of
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K̃κ

�
Js1
ks1−11

Js2
ks2−12

Js3
ks3−13

�
nh

¼ transverseWard identity terms:

ð21Þ

Under the action of the special conformal generator in
spinor-helicity variables, the nonhomogeneous piece con-
tributes to the Ward-Takahashi (WT) identity, whereas the
homogeneous piece goes to zero. This implies that the
nonhomogeneous piece is proportional to the two-point
function coefficient. See Ref. [20] for a detailed discussion.
One can check that hJs1Js2Js3i in FB and FF theories

satisfy the same WT identity [51,52], which implies their
nonhomogeneous contribution should be the same [53].
The difference in the values of the two correlators should
then arise from the difference in their homogeneous terms.
From several explicit examples, one can show that the
homogeneous terms differ only up to a sign; i.e., the
homogeneous contribution is always uniquely determined
up to theory dependent coefficient for a given correlator.
Thus, consistent with the WT identity, one has

hJs1Js2Js3iFB ¼ hJs1Js2Js3inh þ hJs1Js2Js3ih
hJs1Js2Js3iFF ¼ hJs1Js2Js3inh − hJs1Js2Js3ih; ð22Þ

which can also be shown to be consistent with the
representations of correlators in terms of conformal invar-
iants in position space in Ref. [54]. For a detailed
discussion, see Ref. [55]. Let us emphasize here that the
homogeneous and nonhomogeneous pieces that appear in
free bosonic and free fermionic theory are the same [56].
Let us take an illustrative example. Let us consider the

three-point function of the stress-tensor hTTTi in a generic
CFT. Using (1) and (22), we get

hTTTi ¼ ðnB þ nFÞhTTTinh þ ðnB − nFÞhTTTih
þ noddhTTTiodd: ð23Þ

The parity-odd part of the correlator is homogeneous.
The nonhomogeneous contribution has been shown to be a
contact term [20,55,57]. In spinor-helicity variables, it can
be checked that the parity-odd part of the correlator and the
homogeneous even contribution to the correlator are
proportional [20,55,57]. For example, for the three-point
function of the stress tensor, one has

hT−T−T−iodd ∝ ihT−T−T−ih
hTþTþTþiodd ∝ −ihTþTþTþih; ð24Þ

and the remaining helicity components are zero. The
normalization that we have chosen to work with is
particularly suitable for discussion on CS matter theories
and has been carefully fixed by demanding consistency
with higher-spin equations. It gives

hT−T−T−iodd ¼ 2ihT−T−T−ih: ð25Þ

The other nonzero helicity component for the parity-odd
part is hTþTþTþiodd [58], which is obtained by complex
conjugating (25). Using (25) in (23), we obtain

hT−T−T−i¼ðnBþnFÞhT−T−T−inh
þðnB−nFþ2inoddÞhT−T−T−ih

¼ðnBþnFÞðhT−T−T−inh−γTe−iπθhT−T−T−ihÞ
¼cevenT ðhT−T−T−inh−γTe−iπθhT−T−T−ihÞ;

ð26Þ

where we have defined γTeiπθ ¼ nF−nB
nBþnF

− 2i nodd
nBþnF

. Using
the Ward-Takahashi identity, it can be shown that [59]
cevenT ¼ nB þ nF where cevenT is given by

hTðk1ÞTðk2Þieven ¼ cevenT ðz1 · z2Þ2k31 ð27Þ

as in (9). The positive helicity components can be obtained
by a complex conjugation. The mixed helicity components
of the correlator only contains the nonhomogeneous piece
which is exactly the same as the free theory correlator up to
two-point function coefficients [60]. Let us note that in (26),
whenwe take γTe−iπθ ¼ 1, i.e., γT ¼ 1 and θ ¼ 0, we get the
FF theory and when γTe−iπθ ¼ −1, i.e., when γT ¼ 1
and θ ¼ π, we get the FB theory consistent with (22). In
both cases, we just have parity-even contribution. For any
other value of θ, we get the parity-odd term as well. It is
interesting to note that (26) is valid for any generic CFTand
is written entirely in terms of nh and h pieces which can be
obtained from either the FB or the FF theory.
This result takes a particularly interesting form for CS

matter theory. It is easy to show using (7) and (8) that for
the QF theory γs ¼ 1 and θ ¼ λf. When we plug this in
(26), we obtain

hT−T−T−iQF ¼ cTðhT−T−T−inh − e−iπλfhT−T−T−ihÞ:
ð28Þ

We observe that in (28) the homogeneous piece of the
correlator gets the anyonic phasewhich interpolates between
the free fermion theory (λf → 0) and the free boson theory
(λf → 1), which is precisely the identification that we did in
(22). Under the strong-weak duality [26–28,47] λf → λb−
signðλbÞ, cT → cT , we have

hT−T−T−i ¼ cTðhT−T−T−inh þ e−iπλbhT−T−T−ihÞ;
ð29Þ

which is consistent with (22) as λb → 0 as well as the
conjectured strong-weak duality in CS matter theories [61].
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The analysis of hTTTi directly extends to the three-point
correlator of arbitrary spinning operators of spins s1, s2, s3
and can be written as [62]

hJ−s1J−s2J−s3iQF ¼ csðhJ−s1J−s2J−s3inh − e−iπλfhJ−s1J−s2J−s3ihÞ;
ð30Þ

where cs is the two-point function coefficient and we have
used the fact that in the presence of higher-spin symmetry
all two-point functions are the same, i.e., cs1 ¼ cs2 ; see the
discussion below (17).
It is interesting to note that the anyonic phase factor e−iπλf

that appears in (35) is exactly the same as the one that
appeared in the anyonic or singlet channel of 2 → 2 scatter-
ing amplitudes inCSmatter theories [35,36]. Interestingly, in
the context of scattering, this anyonic phase can also be
obtained by solving the nonrelativistic Aharanov-Bohm
scattering problem [37,38]. Under the duality transforma-
tion, scattering amplitudes in the boson theory coupled to CS
map to those in the fermion theory coupled toCS. This is also
the case for correlation functions as discussed here.
We have represented the result in (30) with a unit circle;

see Fig. 1. If we start at the FF theory, with the help of the
anyonic phase, we get the correlator in the CS matter
theory, and it interpolates all the way to the FB theory. At
the FF point, correlation functions only have the parity-
even contribution, whereas for nonzero phase, it generates a
parity-odd contribution as well. Changing the phase to π
takes us all the way to the FB theory where there is no
parity-odd contribution again. Thus, we see that higher-
spin or weakly broken higher-spin theories lie on the circle.

V. DISCUSSION

In this paper, we discussed two- and three-point corre-
lators comprising conserved and weakly broken higher-
spin currents in 3D CFT. We showed that these correlators
in 3D CFT are given by the free theory results dressed with
an appropriate phase factor in spinor-helicity variables.
This was possible using a novel relation between parity-

even and parity-odd parts of correlation functions. In
theories with weakly broken higher-spin symmetry such
as CS matter theories, the phase factor turned out to be an
anyonic phase which interpolates nicely between free
theories. Given the simplicity of two-point and three-point
correlation functions, it is natural to ask if for CS matter
theories one can define anyonic currents whose correlation
functions can be computed using Wick contraction just like
in free theories. It would also be interesting to see if the
anyonic structure extends to four-point functions such as
hTTTTi for weakly broken higher-spin theories [63–66].
The remarkable simplicity of three-point functions when

expressed in spinor-helicity variables indicates that a direct
bootstrapping of correlation functions in spinor-helicity
variables might give us great insights into the structure of
four-point functions. See Ref. [32] for some recent progress
on bootstrapping in momentum space helicity variables.
It would also be interesting to understand higher-spin

equations directly in spinor-helicity variables. Because of
the nontrivial relation between parity-even and parity-odd
correlation functions in spinor-helicity variables, higher-
spin equations in interacting theory would map to higher-
spin equations in the free theory. This might also help us
compute four-point functions of spinning operators.
The anyonic phase factor was previously found in 2 → 2

scattering amplitudes. A finite N version of the phase
was obtained by solving the nonrelativistic Aharanov-

Bohm effect, which is given by e−iπ
C2ðSÞ−C2ðFÞ−C2ðAFÞ

κ , where
C2ðRÞ represents the quadratic Casimir for the representa-
tion R. Here, S, F, and AF denote the singlet, fundamental,
and antifundamental representations, respectively. For
SUðNfÞκf CS gauge field coupled to fermion, we get

e
−iπðλf− 1

Nfκf
Þ
, which in the limit N; κ → ∞ gives precisely

the phase in (35). It would be interesting to see if the
anyonic phase observed in this paper continues to match the
phase observed in scattering amplitudes at finite N.
We saw in Fig. 1 that free theories with exactly con-

served currents or weakly broken higher-spin theories lie
on the circle of unit radius. It would be interesting to figure
out where other CFTs such as the holographic ones lie. To
do this, we need to look into the conformal collider bound
[67]. It would be interesting to directly formulate the
conformal collider bound in spinor-helicity variables. We
could also directly use previously known bounds [68–71],
which indicate that generic CFTs and holographic ones lie
inside the circle of radius one. The collider bound is
saturated by free CFTor weakly broken higher-spin current
CFTs. We will report on these exciting issues in the future.
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FIG. 1. The free bosonic and fermionic theories and the CS
matter theories lie along the unit circle as indicated. This figure
formally represents the result in (30).
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