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In this article we introduce a new operator representing the three-dimensional scalar curvature in loop
quantum gravity. Our construction does not apply to the entire kinematical Hilbert space of loop quantum
gravity; instead, the operator is defined on the Hilbert space of a fixed cubical graph. The starting point of
our work is to write the spatial Ricci scalar classically as a function of the densitized triad and its SUð2Þ-
covariant derivatives. We pass from the classical expression to a quantum operator through a regularization
procedure, in which covariant derivatives of the triad are discretized as finite differences of gauge covariant
flux variables on the cubical lattice provided by the graph. While more work is needed in order to extend
our construction to encompass states based on all possible graphs, the operator presented here can be
applied in models such as quantum-reduced loop gravity and effective dynamics, which are derived from
the kinematical framework of full loop quantum gravity, and are formulated in terms of states defined on
cubical graphs.
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I. INTRODUCTION

Loop quantum gravity [1–4] is one of the main candi-
dates for a quantum theory of gravitation. The quantum
states of the gravitational field in loop quantum gravity—
the well-known spin network states—have a natural physi-
cal interpretation as states describing discrete, quantized
spatial geometries [5]. Thus, loop quantum gravity pro-
vides a concrete realization of a quantum theory of gravity
as a theory of quantum geometry.
Geometrical observables are represented in loop quantum

gravity as self-adjoint operators acting on the kinematical
Hilbert space of the theory. Operators corresponding to areas
of surfaces and volumes of spatial regions [5–7] are of
essential importance in loop quantum gravity, the funda-
mentally discrete nature of geometry being encoded in the
discrete spectra of these basic geometric operators. Another
key example of a geometrical observable is theRicci scalar of
the spatial manifold (in the context of a 3þ 1 formulation of
general relativity). In addition to being an important geo-
metrical quantity characterizing the geometry of the spatial
manifold, the Ricci scalar appears in the Hamiltonian con-
straint of general relativity, and hence has a direct connection
with the dynamics of both classical general relativity and
loop quantum gravity.
An operator representing the scalar curvature of the

spatial manifold has been constructed for loop quantum
gravity in [8]. The construction is based on the observation

that the integral of the Ricci scalar over the spatial
manifold, Z

d3x
ffiffiffi
q

p ð3ÞR; ð1:1Þ

is also the Einstein-Hilbert action for Euclidean general
relativity in three dimensions. Thus, using the ideas of
Regge calculus [9], the integral can be expressed in terms of
the hinge lengths and deficit angles associated to a cellular
decomposition of the spatial manifold. This fact, together
with the knowledge that operators representing lengths and
angles [10,11] are readily available in loop quantum
gravity, enables one to promote the integral (1.1) into a
well-defined operator of loop quantum gravity in a rather
straightforward fashion.
Nevertheless, due to the indirect nature of the strategy of

turning to Regge calculus in order to quantize the integrated
Ricci scalar, it is not obvious whether the properties of the
resulting operator are fully satisfactory from the physical
point of view. For instance, the curvature operator can be
used as a part of the Hamiltonian constraint operator, to
replace the Lorentzian part of the constraint commonly
used in loop quantum gravity. Then it seems unclear
whether the operator of [8] can be consistent with any
operator proposed so far as a quantization of the Euclidean
part of the constraint. A conflict could conceivably arise
due to the fact that the classical foundations underlying all
available quantizations of the Euclidean part refer to the
smooth, continuous physical geometry of the spatial
manifold, whereas Regge’s formula for the integral (1.1)
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instead makes use of an auxiliary manifold whose geometry
is singular, with curvature being concentrated entirely on
one-dimensional submanifolds.
In this article we propose a new operator representing the

integrated scalar curvature (1.1). The starting point of our
construction is to write the Ricci scalar of the spatial
manifold in a suitable way as a function of the Ashtekar
variables, after which a curvature operator can be defined
through a regularization procedure whereby the integral
(1.1) is expressed in terms of quantities corresponding to
well-defined operators in loop quantum gravity. On the
technical level, the main challenge encountered in such an
approach is to find an appropriate regularization of spatial
derivatives of the densitized triad. Our method of dealing
with this challenge consists of two key steps. Firstly, we
take as our classical starting point an expression which
gives the Ricci scalar as a function of the densitized triad
and its SUð2Þ-covariant derivatives, as opposed to partial
derivatives. Secondly, we will not attempt to define a
curvature operator in the entire Hilbert space of loop
quantum gravity, instead limiting our considerations to
states defined on a fixed cubical graph.1 Under this
restriction, it becomes relatively straightforward to regu-
larize gauge covariant derivatives by discretizing them as
finite differences of so-called parallel transported flux
variables on the rectangular lattice provided by the graph.
The restriction to a fixed cubical graph implies that our

construction does not apply to a vast majority of the states
which span the kinematical Hilbert space of loop quantum
gravity. In the context of full loop quantum gravity, a
natural framework for interpreting the operator proposed
in this article is provided by algebraic quantum gravity
[12,13]—an approach which uses the mathematical for-
malism of loop quantum gravity to accomplish a quantiza-
tion of the full set of gravitational degrees of freedom, and
which is formulated entirely in terms of states defined on a
single (abstract, algebraic) cubical graph. From the point of
view of loop quantum gravity in its standard formulation,
where the Hilbert space of the theory includes states based
on all possible graphs, the construction presented in this
article is best seen as a preliminary investigation, whose
ideas and techniques may—with more work—eventually
be extended to yield a well-defined curvature operator on
the entire Hilbert space of loop quantum gravity.
On the other hand, our work in its present form is directly

relevant to several physically motivated models of loop
quantum gravity, in which states based on cubical graphs
are used to perform practical calculations. Models of this
kind include quantum-reduced loop gravity [14–16]—a
simplified model of loop quantum gravity, which is derived

from the full theory through a procedure representing
a gauge fixing of the densitized triad—and the effec-
tive dynamics approach [17–19], where the expectation
value of the Hamiltonian operator with respect to a
family of semiclassical states is considered as an effective
Hamiltonian function generating evolution on a classical
phase space. For such models, our construction provides a
well-defined curvature operator which is ready to be
used in concrete applications, and whose physical proper-
ties may be more satisfactory than those of the Regge
calculus -inspired curvature operator introduced in [8].2

The material in this article is organized as follows.
The present introductory section is followed by Sec. II,
where we introduce the expression which gives the three-
dimensional Ricci scalar as a function of the densitized
triad and its gauge covariant derivatives, and which forms
the classical starting point of our work. This section also
serves to fix our notation and conventions regarding the
basic notions of the Riemannian geometry of the spatial
manifold. In Sec. III we give a brief review of the key
elements of loop quantum gravity, focusing particularly on
those aspects which will play a role in our construction of
the curvature operator. The construction itself is then
presented in the following two sections. Apart from the
restriction concerning the graph, the construction is com-
pletely general, and is not tied to any particular model of
loop quantum gravity which makes use of states based on
cubical graphs. In Sec. IV we perform the regularization of
the classical Ricci scalar on a cubical graph, and in Sec. V
we carry out the quantization of the regularized expression
and discuss the main features of the resulting curvature
operator. Finally, in Sec. VI we conclude by summarizing
and assessing our results. The article also includes two
appendixes, in which we provide a derivation of the
classical identity expressing the Ricci scalar in terms of
the Ashtekar variables, and verify the validity of the
regularized expressions introduced in Sec. IV to approxi-
mate covariant derivatives of the triad.

II. THE CLASSICAL RICCI SCALAR

The classical setting for our work is the 3þ 1 formu-
lation of general relativity [21,22], expressed in terms of the
Ashtekar variables [23–25]. The elementary variables of

1By a cubical graph we mean a graph whose nodes are six-
valent, and whose edges are aligned with the coordinate direc-
tions defined by a fiducial Cartesian background coordinate
system.

2In the companion article [20] we examine the operator
proposed in the present article in the setting of quantum-reduced
loop gravity, following the point of view established in [16],
where it was shown that operators of the quantum-reduced model
are obtained from the corresponding operators of full loop
quantum gravity simply by letting the operators of the full theory
act on states in the Hilbert space of quantum-reduced loop gravity
and discarding terms of subleading order in the spin quantum
number j. We find that our operator yields a nontrivial and
seemingly adequate curvature operator for the quantum-reduced
model, unlike the operator of [8], whose action on any state in the
quantum-reduced Hilbert space is trivially vanishing.
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the formalism are the Ashtekar-Barbero connection Ai
a and

its conjugate, the densitized triad Ea
i . The densitized triad is

related to the inverse metric of the spatial manifold Σ
according to

qab ¼ Ea
i E

b
i

j detEj ; ð2:1Þ

where detE≡ detEa
i is the determinant of the densitized

triad. The metric itself can be written as

qab ¼ j detEjEi
aEi

b; ð2:2Þ
where

Ei
a ≡ 1

2 detE
ϵabcϵ

ijkEb
jE

c
k ð2:3Þ

is the inverse of the densitized triad, both with respect to the
internal index and the spatial index:

Ea
i E

i
b ¼ δab; Ea

i E
j
a ¼ δji : ð2:4Þ

Note that Ea
i is a density of weight 1, whereas Ei

a is a
density of weight −1. Accordingly, Ei

a is not obtained from
Ea
i simply by using the metric qab to lower the spatial

index; rather, the relation between the densitized triad and
its inverse reads Ei

a ¼ qabEb
i =j detEj.

We define the Riemann tensor on Σ according to the
convention

½Da;Db�vc ¼ ð3ÞRc
dabvd; ð2:5Þ

where Da is the covariant derivative compatible with the
metric qab. Under this definition, the Riemann tensor is
given by the expression

ð3ÞRa
bcd ¼ ∂cΓa

bd − ∂dΓa
bc þ Γa

ceΓe
bd − Γa

deΓe
bc; ð2:6Þ

where Γa
bc are the Christoffel symbols corresponding to the

spatial metric. We then have the Ricci tensor

ð3ÞRab ¼ ð3ÞRc
acb ð2:7Þ

and the Ricci scalar

ð3ÞR¼ qabð3ÞRab ¼ qabð∂cΓc
ab − ∂bΓc

acþΓc
abΓd

cd−Γc
adΓd

bcÞ:
ð2:8Þ

Equation (2.8) expresses the Ricci scalar as a function of
the spatial metric qab. To derive an expression for the Ricci
scalar in terms of the densitized triad, it suffices to insert
Eqs. (2.1) and (2.2) into Eq. (2.8) and evaluate all the
resulting derivatives. The calculation, which is somewhat
lengthy but in principle straightforward, is outlined in
Appendix A and yields the result

j detEjð3ÞR ¼ −2Ea
i ∂a∂bE

b
i þ 2QabEi

c∂a∂bEc
i − ð∂aEa

i Þð∂bEb
i Þ −

1

2
ð∂aEb

i Þð∂bEa
i Þ

þ 5

2
Qabð∂aEc

i Þð∂bEi
cÞ −

1

2
QabQcdð∂aEc

i Þð∂bEd
i Þ

þ 2Aab
aBcb

c þ 2Aab
bBca

c þ Aab
cBba

c þ 1

2
QabAca

dAdb
c −QabBca

cBdb
d

þ 2ðQabBca
c − Aab

a − Aba
aÞCb þ

3

2
QabCaCb − 2QabCab ð2:9Þ

where we have introduced the following abbreviations:

Qab ¼ Ea
i E

b
i ; ð2:10Þ

Qab ¼ Ei
aEi

b; ð2:11Þ
Aab

c ¼ Ea
i ∂cE

b
i ; ð2:12Þ

Bab
c ¼ Ei

a∂bEc
i ; ð2:13Þ

Ca ¼
∂aj detEj
j detEj ; ð2:14Þ

Cab ¼
∂a∂bj detEj
j detEj : ð2:15Þ

From the perspective of promoting the expression (2.9)
into an operator representing the Ricci scalar in loop

quantum gravity, the problematic feature is the partial
derivatives of the densitized triad. While in principle it
is possible to construct operators corresponding to partial
derivatives of the triad, it seems unclear how this approach
could result in a gauge invariant3 curvature operator. An
alternative expression for the Ricci scalar as a function of
the Ashtekar variables, which provides a more suitable
classical starting point for the construction of the curvature
operator, can be obtained by using, instead of partial
derivatives of the densitized triad, its gauge covariant
derivatives defined by

DaEb
i ¼ ∂aEb

i þ ϵij
kAj

aEb
k: ð2:16Þ

3In the sense of internal SUð2Þ gauge transformations asso-
ciated with local rotations of the triad.
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Equivalently, using the suð2Þ-valued variables Ea ¼ Ea
i τ

i

and Aa ¼ Ai
aτi, we can write the definition as

DaEb ¼ ∂aEb þ ½Aa; Eb�: ð2:17Þ
Under a local SUð2Þ gauge transformation given by a
gauge function gðxÞ ∈ SUð2Þ, the gauge covariant deriva-
tive transforms covariantly, i.e.,

DaEbðxÞ → gðxÞDaEbðxÞg−1ðxÞ: ð2:18Þ
Due to this property, we can apply the definition (2.17) to
the covariant derivative itself, obtaining the expression

DaDbEc ¼ ∂a∂bEc þ ½Ab; ∂aEc� þ ½Aa; ∂bEc� þ ½∂aAb; Ec�
þ ½Aa; ½Ab; Ec�� ð2:19Þ

for the second covariant derivative of the triad.
Now we can use Eqs. (2.17) and (2.19) to replace all

partial derivatives of the triad in Eq. (2.9) with covariant
derivatives. The calculation, which is briefly discussed in
Sec. A 5, shows that the correction terms generated by this
replacement cancel out among themselves, provided that
one uses the symmetric part of the second covariant
derivative DaDbEc

i to replace the second partial derivative
∂a∂bEc

i , which is symmetric in a and b. Note also that no
correction terms arise from the factors involving derivatives
of j detEj, which is gauge invariant, and therefore its gauge
covariant derivative is simply identical with the partial
derivative.
Thus, our conclusion is that the classical Ricci scalar can

be expressed in the alternative form

j detEjð3ÞR ¼ −2Ea
iDðaDbÞEb

i þ 2QabEi
cDaDbEc

i − ðDaEa
i ÞðDbEb

i Þ −
1

2
ðDaEb

i ÞðDbEa
i Þ

þ 5

2
QabðDaEc

i ÞðDbEi
cÞ −

1

2
QabQcdðDaEc

i ÞðDbEd
i Þ

þ 2Aab
aBcb

c þ 2Aab
bBca

c þAab
cBba

c þ 1

2
QabAca

dAdb
c −QabBca

cBdb
d

þ 2ðQabBca
c −Aab

a −Aba
aÞCb þ

3

2
QabCaCb − 2QabCab; ð2:20Þ

where the new abbreviations

Aab
c ¼ Ea

iDcEb
i ; ð2:21Þ

Bab
c ¼ Ei

aDbEc
i ð2:22Þ

have been introduced. Since the covariant derivatives of the
triad transform under gauge transformations according to
Eq. (2.18), the expression (2.20) for the Ricci scalar is
manifestly gauge invariant, in contrast to Eq. (2.9), whose
gauge invariance is not immediately apparent.
Equation (2.20) forms the classical starting point for our

construction of an operator representing the integrated
Ricci scalar

Z
d3x

ffiffiffi
q

p ð3ÞR: ð2:23Þ

Besides being an essential geometrical observable in its
own right, the Ricci scalar also plays a role in the
formulation of the dynamics of loop quantum gravity
(see Sec. III D). For the latter purpose, one needs an
operator representing the Ricci scalar integrated against
an arbitrary smearing function NðxÞ,

Z
d3xN

ffiffiffi
q

p ð3ÞR: ð2:24Þ

The construction presented in this article also provides a
well-defined operator corresponding to the smeared Ricci
scalar (2.24).

III. LOOP QUANTUM GRAVITY

In this section we will briefly review the basic elements
of the kinematical structure of loop quantum gravity,
focusing on those aspects of the framework which are
relevant to the work presented in this article. We will recall
the kinematical Hilbert space of loop quantum gravity and
the basic operators of the theory. In particular, we will
introduce and establish the basic properties of the so-called
parallel transported flux operator, which is a key ingredient
in our construction of the curvature operator. For a more
detailed presentation of the foundations of loop quantum
gravity, we refer the reader e.g., to [1–4,26–28].

A. The kinematical Hilbert space

The kinematical Hilbert space of loop quantum gravity is
formed by the so-called cylindrical functions. A cylindrical
function is labeled by a graph Γ, with edges e1;…; eN
(which are assumed to be oriented, and embedded in the
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spatial manifold Σ). A function cylindrical with respect to a
graph Γ is essentially a complex-valued function of the
form

ΨΓðhe1 ;…; heN Þ; ð3:1Þ

where the arguments of the function are SUð2Þ group
elements, one for each edge of the graph. The group
elements he are usually referred to as holonomies, due
to their classical origin as holonomies of the Ashtekar–
Barbero connection.
The holonomies are assumed to satisfy certain algebraic

properties, reflecting their role as parallel transport oper-
ators in the classical theory. We have

he−1 ¼ h−1e ð3:2Þ

where e−1 denotes e taken with the opposite orientation;

he2he1 ¼ he2∘e1 ð3:3Þ

where the endpoint of e1 coincides with the beginning point
of e2, and e2∘e1 denotes the edge obtained by joining e1
and e2; and

hp ¼ 1 ð3:4Þ

if p is a curve consisting of a single point.
A scalar product on the space of cylindrical functions can

be defined in a natural way using the Haar measure of
SUð2Þ. For two cylindrical functions based on the same
graph Γ, one defines

hΨΓjΦΓi ¼
Z

dg1 � � � dgNΨΓðg1;…; gNÞΦΓðg1;…; gNÞ;

ð3:5Þ

where dg is the normalized Haar measure of SUð2Þ. The
definition is extended to cylindrical functions based on two
different graphs Γ1 and Γ2 by taking any larger graph Γ12

that contains Γ1 and Γ2 as subgraphs, and viewing the
functions as cylindrical functions on Γ12 in the standard
way (by introducing a trivial dependence on the group
elements associated with the additional edges, see e.g., [2])
and then applying Eq. (3.5).
A basis of the space of cylindrical functions can be con-

structed using the SUð2Þ representationmatricesDðjÞ
mnðgÞ. By

the Peter-Weyl theorem, the space of functions cylindrical
with respect to a graph Γ is spanned by the functionsY

e∈Γ
DðjeÞ

meneðheÞ; ð3:6Þ

as the quantum numbers je, me and ne range over their
possible values. The basis states (3.6) are orthogonal but

not normalized under the scalar product (3.5). In order to
obtain a normalized basis, each representation matrix in
Eq. (3.6) should be multiplied with the factor

ffiffiffiffiffiffi
dje

p
, where

dj ≡ 2jþ 1 denotes the dimension of the spin-j representa-
tion of SUð2Þ.
At the classical level, the Ashtekar formulation of

general relativity enjoys a local SUð2Þ gauge symmetry,
which corresponds to rotations of the densitized triad
with respect to the internal index (the spatial metric being
invariant under such rotations). These gauge transforma-
tions are generated in the classical theory by the Gauss
constraint

Gi ¼ ∂aEa
i þ ϵij

kAj
aEa

k: ð3:7Þ

Within the kinematical Hilbert space of loop quantum
gravity, one can identify the subspace consisting of states
which are invariant under the analogous gauge transforma-
tions in the quantum theory.
Under a local gauge transformation described by a gauge

function gðxÞ ∈ SUð2Þ, the holonomy associated to an
edge e transforms as

he → gðteÞheg−1ðseÞ; ð3:8Þ

where se and te denote the beginning point and endpoint
(“source” and “target”) of e. From this one deduces that the
space of functions cylindrical with respect to a graph Γ, and
invariant under SUð2Þ gauge transformations, is spanned
by functions of the form�Y

v∈Γ
ιv

�
·

�Y
e∈Γ

DðjeÞðheÞ
�
: ð3:9Þ

Here an invariant tensor ιv—usually referred to as an
intertwiner—is assigned to each node v of the graph,
and the dot symbolizes a complete contraction of magnetic
indices in the way indicated by the pattern of the graph. The
condition for ιv to be invariant has to be understood in the
appropriate sense, taking into account the orientation of
the graph. If the node v contains M incoming edges
(carrying spins j1;…; jM) and N −M outgoing edges
(carrying spins jMþ1;…; jN), this condition reads

Dðj1ÞðgÞ � � �DðjMÞðgÞDðjMþ1Þðg−1Þ � � �DðjNÞðg−1Þιv ¼ ιv

ð3:10Þ

with ιv being viewed as a tensor having M upper indices
and N −M lower indices, and the representation matrices
acting on ιv by contraction of magnetic indices.

B. Kinematical operators

The elementary operators of loop quantum gravity are
the holonomy and flux operators. The holonomy operator
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DðjÞ
mnðheÞ acts on cylindrical functions by multiplication.

The form of the resulting state,

DðjÞ
mnðheÞΨΓðhe1 ;…; heN Þ; ð3:11Þ

depends on whether the edge e is contained among
the edges e1;…; eN . If e is not an edge of Γ, the
state (3.11) defines a cylindrical function on the graph
Γ ∪ e. If e coincides with an edge of Γ, the function
(3.11) is still a cylindrical function on the graph Γ. In
the latter case, if the state ΨΓðhe1 ;…; heN Þ is given in
the basis (3.6) or (3.9), the result of the multiplication
(3.11) can be expressed in the same basis by coupling
the holonomies on the edge e by means of the Clebsch-
Gordan series

Dðj1Þ
m1n1ðheÞDðj2Þ

m2n2ðheÞ
¼

X
j

Cðj1j2jÞ
m1m2m1þm2

Cðj1j2jÞ
n1n2n1þn2D

ðjÞ
m1þm2n1þn2ðheÞ; ð3:12Þ

where Cðj1j2jÞ
m1m2m are the Clebsch-Gordan coefficients

of SUð2Þ.
The flux operator is a quantization of the classical variable

EiðSÞ ¼
Z

d2σnaðσÞEa
i ðxðσÞÞ ð3:13Þ

representing the flux of the densitized triad through the sur-
face S. If we consider just one edge, which has a single
intersection with the surface S at a point v, the action of the
flux operator reads

EiðSÞDðjÞðheÞ ¼ iνðS; eÞ ×

8>><
>>:

1
2
DðjÞðheÞτðjÞi if e begins from v;

1
2
τðjÞi DðjÞðheÞ if e ends at v;

DðjÞðhe1ÞτðjÞi DðjÞðhe2Þ if v is an interior point of e:

ð3:14Þ

Here τðjÞi are the anti-Hermitian generators of SUð2Þ in the
spin-j representation, and νðS; eÞ denotes the relative
orientation of S and e, i.e., νðS; eÞ ¼ þ1 or νðS; eÞ ¼ −1
according to whether the orientation of e at the intersection
point agrees with or is opposite to the orientation of S, and
νðS; eÞ ¼ 0 if the edge intersects the surface tangentially.
When the flux operator is applied on a cylindrical function,
its action obeys the Leibniz rule, in the sense that each
intersection between the surface and an edge contributes a
term of the form (3.14).
Operators representing other classical quantities can be

constructed by expressing the classical function in terms of
the elementary variables, i.e., holonomies and fluxes, and
then promoting the resulting expression into an operator. A
basic example of an operator of this kind is the volume
operator [7], which is the quantization of the classical
observable Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p
: ð3:15Þ

The action of the volume operator on a state based on a
graph Γ takes the form4

VjΨΓi ¼
X
v∈Γ

ffiffiffiffiffiffiffiffi
jqvj

p
jΨΓi; ð3:16Þ

where the operator qv can be expressed in terms of the left-
and right-invariant vector fields of SUð2Þ (an explicit
definition of qv can be found e.g., in [7]), and the sum
receives contributions only from nodes of valence three or
higher.5

C. Parallel transported flux operator

The parallel transported flux operator (also often referred
to as the gauge covariant flux in the literature) is a useful
modification of the standard flux operator defined by
Eq. (3.14). The operator is a quantization of the classical
function

ẼiðS; x0Þ ¼ −2TrðτiẼðS; x0ÞÞ ð3:17Þ

where ẼðS; x0Þ is the matrix-valued variable

ẼðS; x0Þ ¼
Z
S
d2σnaðσÞhx0;xðσÞEaðxðσÞÞh−1x0;xðσÞ: ð3:18Þ

Here Ea ≡ Ea
i τ

i, and hx0;xðσÞ ≡ hpx0 ;xðσÞ
are holonomies

which connect each point xðσÞ on S to a fixed point x0

4Strictly speaking, the definition of the operator qv involves an
undetermined multiplicative factor κ0, which arises when one
performs an averaging over the background structures used in the
construction in order to ensure that the volume operator trans-
forms covariantly under diffeomorphisms [7]. In this work we use
the value κ0 ¼ 1=48 for this factor. This choice is justified by a
calculation presented in the companion paper [20]. Essentially, it
is the unique value of κ0 for which the operator representing the
regularized inverse triad (4.22) behaves as the inverse of the flux
operator (3.14) in the Hilbert space of quantum-reduced loop
gravity. This agrees with the value originally found by Thiemann
and Giesel in [29,30] through a different kind of consistency
argument.

5In the gauge invariant subspace formed by the states (3.9), the
action of the volume operator on a three-valent node vanishes
identically. However, if applied to a generic, nongauge invariant
state, the volume operator generally has a nonzero action also on
three-valent nodes.
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along a family of paths px0;xðσÞ. The point x0 may lie on the
surface S or outside of it. In principle, the paths px0;xðσÞ can
be chosen freely, with different choices giving rise to
different, inequivalent implementations of the parallel
transported flux operator.6

The key feature of the parallel transported flux variable is
its simple behavior under SUð2Þ gauge transformations.
Under a gauge transformation defined by a gauge function
gðxÞ ∈ SUð2Þ, the variable (3.18) transforms as

ẼðS; x0Þ → gðx0ÞẼðS; x0Þg−1ðx0Þ: ð3:19Þ

In order to derive the action of the parallel transported
flux operator on a cylindrical function, it is useful to note
the relation

gτig−1 ¼ Dð1Þ
ki ðgÞτk ð3:20Þ

[which states that the generators τi transform under SUð2Þ
as the components of a vector]. With the help of Eq. (3.20),
we can rewrite the classical variable (3.17) as

ẼiðS; x0Þ ¼
Z
S
d2σnaðσÞDð1Þ

ki ðh−1x0;xðσÞÞEa
kðxðσÞÞ: ð3:21Þ

When this expression is viewed as an operator and applied
to a cylindrical function, the triad operator Ea

k combined
with the integral over the surface acts essentially as the
standard flux operator, and compared to Eq. (3.14) we

simply pick up the rotation matrix Dð1Þ
ki ðh−1x0;xðσÞÞ evaluated

at the point where the surface intersects an edge. If we
consider the action of the operator on a single holonomy,
and assume that there is a single point of intersection v
between the edge and the surface, we obtain

ẼiðS; x0ÞDðjÞðheÞ ¼ Dð1Þ
ki ðh−1x0;vÞEkðSÞDðjÞðheÞ; ð3:22Þ

where EkðSÞ is the regular flux operator acting on the
holonomy. The result can be expressed in an alternative
form by evaluating the action of the flux operator and then
using Eq. (3.20) in reverse to eliminate the rotation matrix.
For example, assuming for concreteness that v is an interior
point of the edge e, this calculation yields

ẼiðS; x0ÞDðjÞðheÞ ¼ iνðS; eÞDðjÞðhe2ÞDðjÞðh−1x0;xeÞτðjÞi

×DðjÞðhx0;xeÞDðjÞðhe1Þ: ð3:23Þ

In practice, depending on the situation at hand, either one of
Eqs. (3.22) and (3.23) may be the more convenient way
of expressing the action of the parallel transported flux
operator.

D. The Hamiltonian constraint

In the canonical formulation of loop quantum gravity, the
dynamics of the theory is governed by the Hamiltonian
constraint operator. Classically, the Hamiltonian constraint
is given by the expression

C ¼ ϵijk E
a
i E

b
jF

k
abffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp − ð1þ β2Þ Ea

i E
b
jffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ðKi

aK
j
b − Kj

aKi
bÞ

ð3:24Þ

where Fi
ab is the curvature of the Ashtekar-Barbero con-

nection, Ki
a is the extrinsic curvature of the spatial mani-

fold, and β is the Barbero-Immirzi parameter. In the case of
vacuum gravity, the operator arising from Eq. (3.24) is
interpreted as a constraint operator, whose kernel defines
the physical Hilbert space of the theory. Alternatively,
one can consider a deparametrized formulation of gravity
coupled with a scalar field, in which the scalar field is used
as a relational time variable for the dynamics of the gra-
vitational field [31–34]. In this case, the operator corre-
sponding to (3.24) (or a certain closely related operator) is
interpreted as a physical Hamiltonian, which generates
evolution with respect to the time variable provided by the
scalar field.
The connection between the Hamiltonian constraint and

the work presented in this article arises through the second
term in Eq. (3.24), usually referred to as the Lorentzian part
of the constraint. In loop quantum gravity, the traditional
procedure of quantizing the Lorentzian term is due to
Thiemann [35], and is based on a series of ingenious
classical manipulations, as a result of which the second
term of Eq. (3.24) is expressed in terms of functions which
correspond to well-defined operators in loop quantum
gravity. More recently, there has emerged an alternative
approach, which relies on the fact that (up to a term
proportional to the Gauss constraint) the constraint (3.24)
can be rewritten in the form7

C ¼ 1

β2
ϵijkEa

i E
b
jF

k
abffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp þ ð1þ β2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p ð3ÞR ð3:25Þ

where ð3ÞR denotes the Ricci scalar of the spatial manifold.

6Therefore, if one wished to use a fully explicit notation, the
chosen family of paths should be included among the labels
specifying the variable ẼiðS; x0Þ.

7Note the different numerical factor multiplying the Euclidean
term in Eq. (3.25) relative to Eq. (3.24). The relevant classical
identity states that the Lorentzian term of Eq. (3.24) equals the
curvature term of Eq. (3.25), plus a multiple of the Euclidean term
(plus a term proportional to the Gauss constraint).
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An operator representing the curvature part of the
constraint (3.25) has been previously introduced in [8].
The construction of [8] makes use of the basic ideas of
Regge calculus, and is based on the observation that the
second term of Eq. (3.25), integrated over the spatial
manifold, happens to be the action integral of Euclidean
gravity in three dimensions. Hence, this term can be
expressed in terms of the hinge lengths and deficit angles
associated to a cellular decomposition of a Regge-like,
piecewise flat manifold approximating the smooth, physi-
cal spatial manifold Σ. Moreover, operators representing
lengths and angles are readily available in loop quantum
gravity, making it a relatively simple task to promote the
Regge expression of the scalar curvature into a well-defined
loop quantum gravity operator.
The operator which will be constructed in this article

represents a new quantization of the curvature term in
Eq. (3.25), and therefore provides a novel approach towards
defining the Hamiltonian constraint operator in loop quan-
tum gravity. Since our quantization is based on writing the
Ricci scalar directly as a function of the Ashtekar variables,
the starting point of our construction is arguably more
straightforward than the indirect approach of invoking
Regge calculus to express the Ricci scalar in terms of
quantizable objects. On the other hand, as already empha-
sized in the Introduction, our construction does not encom-
pass all states in theHilbert space of loop quantumgravity but
is limited to states defined on a fixed graph forming a cubical
lattice.

IV. REGULARIZATION OF THE RICCI SCALAR

We now begin to move towards the main topic of this
work, namely the construction of an operator representing
the integrated Ricci scalar (2.23)–(2.24). In order to obtain
such an operator, we must start by introducing a suitable
regularization, as a result of which the integral is expressed
in terms of objects—e.g., holonomies, fluxes, volumes—
which correspond to well-defined operators in loop quan-
tum gravity.
The main technical challenge which must be dealt with

in our construction is to find an appropriate regularization
of the gauge covariant derivatives appearing in Eq. (2.20).
At the moment we do not have a satisfactory proposal on
how to accomplish this task for all states in the Hilbert
space of loop quantum gravity, since these states may
generally be based on graphs having a very complicated
and irregular structure. In this work we will therefore
restrict ourselves to considering the problem of defining the
curvature operator on the Hilbert space of states based on a
fixed cubical graph. (By a cubical graph we mean a graph
whose nodes are six-valent, and whose edges are aligned
with the coordinate directions defined by a fixed Cartesian
background coordinate system.) However, as we will show
in detail below, on the regular lattice provided by the
cubical graph it becomes comparatively straightforward to

regularize covariant derivatives by approximating them as
finite differences between parallel transported flux varia-
bles associated to neighboring nodes of the graph.
From the perspective of full loop quantum gravity, the

assumption of a cubical graph appears to be a very
significant limitation, since it implies that our construction
applies only to a very small and specific sector of the entire
Hilbert space of the theory. In the setting of the full theory,
an operator defined on a fixed cubical graph can never-
theless be naturally interpreted within the framework of
algebraic quantum gravity, which shows that a quantization
of the full gravitational field can be achieved using just a
single algebraic cubical graph. Moreover, as far as physical
applications of loop quantum gravity are concerned, the
restriction to a cubical graph does have sufficient gene-
rality to encompass a number of approaches attempting to
probe the physical content of the theory. We have already
mentioned quantum-reduced loop gravity and the effective
dynamics program as two well-known examples of physi-
cal models which are formulated within the kinematical
setting of full loop quantum gravity, and which make
extensive use of states defined on cubical graphs. Hence
our construction, as it stands, has a direct relevance to such
models, and provides a well-defined curvature operator
which is ready to be used in physical calculations in the
context of these models.

A. Overview of the regularization strategy

We consider the regularization of the expression (2.24),
i.e., the Ricci scalar integrated against an arbitrary smearing
function. [The Ricci scalar (2.23) itself can of course be
recovered by setting N ¼ 1 in the end.]
The structures involved in regularizing the integrated

Ricci scalar are summarized in Fig. 1. In order to express
the classical function defined by Eqs. (2.24) and (2.20) in
terms of variables which can be promoted into operators
in loop quantum gravity, we introduce a partition of the
spatial manifold into rectangular cells. Each cell contains a
single node of the cubical spin network graph, and the faces
of the cells are dual to the coordinate directions defined by
the fixed background coordinate system. To make the
presentation somewhat simpler, we assume that each cell
is perfectly cubical, having coordinate volume ϵ3 and edge
length ϵ.
We let □ðvÞ denote the cell containing a particular node

v of the cubical graph. Within each cell □ðvÞ we set up
three surfaces—denoted by SxðvÞ, SyðvÞ and SzðvÞ—which
are dual to the corresponding background coordinate
directions, i.e., the coordinate xa ¼ const on the surface
SaðvÞ. Moreover, we require that the node v is contained in
each of the surfaces; in other words, the common point of
intersection between all three surfaces is located at the
node: SxðvÞ ∩ SyðvÞ ∩ SzðvÞ ¼ v. We also assume that the
node v coincides with the midpoint of the surface for all of
the surfaces SaðvÞ.
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Now the starting point for regularizing the integrated
Ricci scalar is to approximate the integral (2.23) as a
Riemann sum corresponding to the partition defined by the
cells □ðvÞ:Z

d3xN
ffiffiffi
q

p ð3ÞR ≃
X
□ðvÞ

ϵ3NðvÞ
ffiffiffiffiffiffiffiffiffi
qðvÞ

p ð3ÞRðvÞ: ð4:1Þ

Here NðvÞ, qðvÞ and ð3ÞRðvÞ are the values of the smearing
function, the metric determinant and the Ricci scalar at the
point v. When Eq. (2.20) is inserted for ð3ÞRðvÞ in Eq. (4.1),
the factor of ϵ3 can be distributed as follows between the
various elements involved in the expression, with no factors
of ϵ left over in the end:

(i) ϵ2 for each factor of densitized triad,
(ii) ϵ−2 for each inverse triad,
(iii) ϵ3 for each factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp
,

(iv) ϵ for each derivative (partial or covariant).
Therefore, each factor of densitized triad on the right-hand
side of Eq. (4.1) can be regularized by replacing it with a
flux variable associated to the corresponding surface SaðvÞ,
since at lowest order in the regularization parameter ϵ we
have

EiðSaðvÞÞ ≈ ϵ2Ea
i ðvÞ: ð4:2Þ

In a similar way, the remaining kinds of factors entering the
right-hand side of Eq. (4.1)—covariant derivatives of the
triad, as well as factors of inverse triad and the determinant
of the triad, and their derivatives—can be regularized by
using appropriate combinations of holonomies and fluxes,
and volumes of the cells □ðvÞ. We will now consider the
regularization of each of these elements in turn, starting
with the covariant derivatives of the triad.

B. Covariant derivatives of the triad

The basic idea behind regularizing covariant derivatives
of the densitized triad is to discretize them on the

rectangular lattice provided by the cubical spin network
graph, approximating a covariant derivative in terms of a
finite difference of parallel transported flux variables
located at neighboring nodes of the graph. For instance,
a first derivative could be schematically discretized as

f0ðxÞ ≃ fðxþ ϵÞ − fðxÞ
ϵ

; ð4:3Þ

where the points x and xþ ϵ are interpreted as two
neighboring nodes of the graph. However, Eq. (4.3) singles
out the positive direction of the coordinate axis as the one
which is used to perform the discretization. For our purposes
this is not a very attractive feature, since if we are simply
given a spin network state defined on a cubical graph, and
consider a particular node x and twoof its neighboring nodes,
there is no intrinsic way to determine which of them should
be taken as the “xþ ϵ” that enters Eq. (4.3). In order to avoid
introducing such an ambiguity, we prefer to discretize the
derivatives in a way where the positive and negative
coordinate directions are treated symmetrically. Thus,
instead of Eq. (4.3), first derivatives will be regularized
according to the symmetric discretization scheme

f0ðxÞ ≃ fðxþ ϵÞ − fðx − ϵÞ
2ϵ

; ð4:4Þ

where xþ ϵ and x − ϵ are to be understood as the two nodes
immediately following and preceding the node x in the
direction of a given background coordinate axis. (This is the
simplest possible discretization of a first derivative that does
not invoke a preferred direction of the coordinate axis—in
other words, is invariant under the substitution ϵ → −ϵ.)
In addition to first derivatives, we must also deal with

the regularization of second covariant derivatives of the
densitized triad. Here we have to consider separately the
regularization of the “pure” second derivatives D2

aEb and
the mixed second derivatives DaDbEc, as the basic setup
used for the regularization will be different in the two cases.
For pure second derivatives, we take

FIG. 1. The structures involved in regularizing the integrated Ricci scalar. The integral
R
d3xN

ffiffiffi
q

p ð3ÞR is approximated as a discrete
sum using the rectangular cells □ðvÞ, each of which contains one node of the cubical spin network graph. Inside each cell □ðvÞ are
introduced three surfaces SaðvÞ (a ¼ x, y and z) which are dual to the corresponding background coordinate directions, and which are
used to express the densitized triad and its derivatives in terms of flux variables.
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f00ðxÞ ≃ fðxþ ϵÞ − 2fðxÞ þ fðx − ϵÞ
ϵ2

ð4:5Þ

as the basic pattern according to which the derivative is
regularized. This expression, which represents the most

straightforward discretization of the second derivative, is
already symmetric between the positive and negative
coordinate directions. For the mixed second derivatives
of the triad, wewill construct a suitable implementation of a
symmetric discretization scheme

∂
2fðx; yÞ
∂x∂y

≃
fðxþ ϵ; yþ ϵÞ − fðxþ ϵ; y − ϵÞ − fðx − ϵ; yþ ϵÞ þ fðx − ϵ; y − ϵÞ

4ϵ2
: ð4:6Þ

That is, the mixed second derivative DaDbEc at a given
node vwill be regularized in terms of a discretization which
uses the four nodes diagonally adjacent to the central node
v in the plane containing v and spanned by the xa- and xb-
coordinate axes of the background coordinate system.
Before proceeding to consider the detailed implementa-

tion of the construction outlined above, let us emphasize the
reason why we base our construction on the use of gauge
covariant derivatives and parallel transported flux variables,
as opposed to partial derivatives and regular flux variables.
In principle, it would be possible to construct a regularized
expression for the integrated Ricci scalar starting from
Eq. (2.9), which expresses the Ricci scalar as a function of
the densitized triad and its partial derivatives, and using
finite differences of regular flux variables located at
neighboring nodes of the cubical graph to discretize the
partial derivatives. While such an expression would cor-
rectly approximate the integral of the Ricci scalar for small
values of the regularization parameter, the difficulty with
this approach is that it seems unclear how a gauge invariant8

curvature operator could be obtained upon quantization of
the regularized expression. The basic problem is that the
operators corresponding to the two terms in a finite
difference of the form

EiðSaðv0ÞÞ − EiðSaðvÞÞ; ð4:7Þ

where v and v0 are two different nodes of the cubical graph,
transform in different ways under internal gauge trans-
formations, and hence the expression as a whole does not
transform in any coherent manner. In contrast, as we will
demonstrate below, by taking as our starting point the
expression (2.20) for the Ricci scalar in terms of the triad
and its gauge covariant derivatives, we can use parallel
transported flux variables to regularize the covariant
derivatives in a way which will lead to a manifestly gauge
invariant curvature operator.

1. First derivatives

The setup for regularizing first covariant derivatives of
the densitized triad is illustrated in Fig. 2. Given a node v,

we denote by v−a and vþa the nodes which come before and
after v in the direction of the background coordinate xa.
Following the symmetric discretization pattern indicated by
Eq. (4.4), we then introduce

ΔaEðSb; vÞ≡ ẼðSbðvþa Þ; vÞ − ẼðSbðv−a Þ; vÞ
2

ð4:8Þ

as a regularized variable which approximates the covari-
ant derivative DaEb at the point v. The flux variables
ẼðSbðv�a Þ; vÞ are parallel transported from their respective
nodes to the central node v as follows: The parallel
transport to v from a given point on the surface Sbðv�a Þ
is taken first to v�a along a straight line lying within the
surface, and then from v�a to v along the edge connecting
the two nodes.
In order to verify that the expression (4.8) provides a

valid regularization of the covariant derivativeDaEbðvÞ, we
must check that it correctly approximates the covariant
derivative for small values of the regularization para-
meter. The required calculations are performed in detail
in Appendix B; here we will give just a brief outline.
Letting eþa and e−a denote the edges which connect the
nodes vþa and v−a to the central node v (the orientation of the
edges agreeing with the positive direction of the xa-
coordinate axis as shown in Fig. 2), the parallel transported
flux variables entering Eq. (4.8) can be written as

ẼðSbðvþa Þ; vÞ ¼ h−1eþa ẼðS
bðvþa Þ; vþa Þheþa ; ð4:9Þ

ẼðSbðv−a Þ; vÞ ¼ he−a ẼðSbðv−a Þ; v−a Þh−1e−a ð4:10Þ

where the variables ẼðSbðv�a Þ; v�a Þ are parallel transported
to v�a according to the straight-lines prescription specified
in the text below Eq. (4.8). Then one has to express all the
holonomies and fluxes in terms of the Ashtekar variables
Aa and Ea, and expand the resulting expression in powers
of the regularization parameter ϵ. This calculation is
presented in Sec. B 3, and yields the result

ẼðSbðva�Þ; vÞ ¼ ϵ2EbðvÞ � ϵ3ð∂aEbðvÞ
þ ½AaðvÞ; EbðvÞ�Þ þOðϵ4Þ: ð4:11Þ

8Under the internal SUð2Þ gauge transformations defined by
Eq. (3.8).
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Inserting this into Eq. (4.8), and recognizing that the terms
inside the parentheses are the covariant derivativeDaEbðvÞ,
we find

ΔaEðSb; vÞ ¼ ϵ3DaEbðvÞ þOðϵ4Þ; ð4:12Þ

showing that the expression (4.8) does give a correct
regularization of the covariant derivative DaEb at the
point v.

2. Second derivatives

We continue to use the setup illustrated in Fig. 2 in order
to construct a regularization for pure second derivatives of
the triad. Following the pattern indicated by Eq. (4.5), and
using again flux variables parallel transported to the central
node v (with the choice of paths from the surfaces to the
node v being the same as in the regularization of first
derivatives), we introduce

ΔaaEðSb;vÞ≡ ẼðSbðvþa Þ;vÞ−2ẼðSbðvÞ;vÞþ ẼðSbðv−a Þ;vÞ
ð4:13Þ

as a regularized variable approximating the second deriva-
tive D2

aEb at v. Regarding the variables entering the
regularized expression, note that the only essential differ-
ence to the case of first derivatives is that here the central
node v is also involved the regularization, in addition to the
nodes vþa and v−a .
To verify the validity of Eq. (4.13) as a regularization of

the derivative D2
aEbðvÞ, we again have to show that the

expression on the right-hand side reduces to the second
covariant derivative at leading order in the parameter ϵ.
Essentially one has to repeat the steps that lead from

Eq. (4.8) to Eq. (4.12), except now all the variables must be
expanded to one order higher in ϵ. The calculation, which is
performed in Sec. B 4, leads in the end to the expected
result

ΔaaEðSb; vÞ ¼ ϵ4D2
aEbðvÞ þOðϵ5Þ: ð4:14Þ

Consider then the regularization of the mixed second
derivatives DaDbEcðvÞ (with a ≠ b). Keeping in mind
the pattern given by Eq. (4.6) for discretizing a mixed
second derivative, we let vþþ

ab , vþ−
ab , v

−þ
ab and v−−ab denote

the four nodes diagonally adjacent to the central node v in
the plane which contains v and is spanned by the xa- and
xb-coordinate directions of the background coordinate
system—see Fig. 3 for an illustration in the case of the
derivative DxDyEzðvÞ. The derivative DaDbEcðvÞ will be
discretized in terms of flux variables associated to surfaces
located at these four nodes and parallel transported to the
central node. However, an issue which we encounter here is
that there are two equally viable paths available for
performing the parallel transport to v from a given node
along the edges of the cubical spin network graph. For
example, the parallel transport from vþþ

ab to v can be taken
first from vþþ

ab to vþa and then from vþa to v, or first from
vþþ
ab to vþb and then to v.
The correct way to deal with this ambiguity is indicated

by the fact that only the symmetric part of the second
covariant derivative DaDbEc enters Eq. (2.20), which
expresses the Ricci scalar as a function of the densitized
triad and its covariant derivatives. If we construct a
discretization of the derivative DaDbEcðvÞ by taking an
average over the two possible paths every time a choice
of path has to be specified, we will obtain an expression
which is symmetric in x and y. Thus, we expect that the

FIG. 2. Regularization of gauge covariant derivatives of the densitized triad. Covariant derivatives of the triad at the node v are
regularized in terms of parallel transported flux variables associated to the surfaces shown in the figure. The parallel transport from a
given node v�a is taken to v along the edge connecting the two nodes. The left diagram illustrates the regularization of the first derivative
DzE

z
i ðvÞ and the second derivative D2

zE
z
i ðvÞ, while the right diagram applies to the first derivative DxE

z
i ðvÞ and the second

derivative D2
xE

z
i ðvÞ.

SCALAR CURVATURE OPERATOR FOR MODELS OF LOOP … PHYS. REV. D 106, 046013 (2022)

046013-11



regularized expression obtained in this way will approxi-
mate the symmetric part of the second covariant derivative,
i.e., DðaDbÞEcðvÞ.
To spell out the regularized expression corresponding to

the idea described above, let us define the label σ which
takes the valuesþþ,þ−, −þ and −−, and hence labels the
four nodes diagonally neighboring the central node.
Furthermore, we introduce the formal vector

σa ¼ ðσ1; σ2Þ ð4:15Þ

whose components are equal to þ1 or −1 according to the
value of the label σ; for example, if σ ¼ þþ, then
σa ¼ ð1; 1Þ. With this notation, we define

ẼðScðvσabÞ; vÞsym: ≡ 1

2
ðẼðScðvσabÞ; vÞvσab→vσ

1
a →v

þ ẼðScðvσabÞ; vÞvσab→vσ
2

b →v
Þ ð4:16Þ

as a flux variable parallel transported from vσab to v
symmetrically along the two available paths, the subscripts
on the right-hand side indicating the path used for the
parallel transport in each of the flux variables. Then,
following the pattern of Eq. (4.6), we take

ΔabEðSc; vÞ≡ 1

4
ðẼðScðvþþ

ab Þ; vÞsym: − ẼðScðvþ−
ab Þ; vÞsym:

− ẼðScðv−þab Þ; vÞsym: þ ẼðScðv−−ab Þ; vÞsym:Þ
ð4:17Þ

as the regularized variable intended to approximate the
symmetric part of the second covariant derivative DaDbEc

at v. The calculation establishing the validity of the
regularization is again given in Appendix B. In Sec. B 5
we extract the leading term in the expansion of the
expression (4.17) in powers of ϵ, and find

ΔabEðSc; vÞ ¼ ϵ4DðaDbÞEcðvÞ þOðϵ5Þ; ð4:18Þ

confirming that the variable (4.17) indeed approximates the
symmetric part of the second covariant derivative.

C. Inverse triad and its derivatives

In addition to the densitized triad itself and its covariant
derivatives, we must also consider the regularization of the
inverse triad

Ei
a ¼

1

2 detE
ϵabcϵ

ijkEb
jE

c
k ð4:19Þ

as well as its first covariant derivatives. Note, however, that
the expression (2.20) has been arranged to not contain any
second covariant derivatives of the inverse triad.
We begin by introducing the object

Ẽi
aðSðvÞ; v0Þ ¼

1

2WðvÞ ϵabcϵ
ijkẼjðSbðvÞ; v0ÞẼkðScðvÞ; v0Þ

ð4:20Þ

where

WðvÞ ¼ 1

3!
ϵabcϵ

ijkẼiðSaðvÞ; vÞẼjðSbðvÞ; vÞẼkðScðvÞ; vÞ:
ð4:21Þ

[On the left-hand side of Eq. (4.20), SðvÞ is to be under-
stood as a kind of a collective label for the two surfaces
SbðvÞ (b ≠ a) involved in the flux variables on the right-
hand side.] We then propose

Ẽi
aðSðvÞ; vÞ ¼

1

2WðvÞ ϵabcϵ
ijkẼjðSbðvÞ; vÞẼkðScðvÞ; vÞ

ð4:22Þ

as a regularized variable approximating the inverse triad Ei
a

at v. With the help of Eq. (B27) from the appendix, it is
immediate to see that

WðvÞ ¼ ϵ6 detEðvÞ þOðϵ8Þ: ð4:23Þ

Using this and Eq. (B27) itself in Eq. (4.22), we find

Ẽi
aðSðvÞ; vÞ ¼ ϵ−2Ei

aðvÞ þOðϵ0Þ; ð4:24Þ

FIG. 3. Regularization of the second covariant derivative
DxDyE

z
i at v. The four nodes diagonally adjacent to v in the

xy-coordinate plane are used to construct a regularized variable
which approximates the symmetric part of the mixed second
derivative.
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which shows that the regularized variable (4.22) indeed
correctly approximates the inverse triad (4.19) at v, with the
error term being of quadratic order in the regularization
parameter ϵ relative to the leading term.
Consider then the variable

ΔaẼ
i
bðvÞ≡ Ẽi

bðSðvþa Þ; vÞ − Ẽi
bðSðv−a Þ; vÞ

2
ð4:25Þ

as a regularization of the covariant derivative DaEi
bðvÞ. To

verify that this proposal is correct, we recall from Sec. IV B
that

ẼiðSbðv�a Þ; vÞ ¼ ϵ2Eb
i ðvÞ � ϵ3DaEb

i ðvÞ þOðϵ4Þ: ð4:26Þ

Moreover, Eq. (4.23) implies

1

Wðv�Þ ¼ ϵ−6
1

detEðv�Þ þOðϵ−4Þ

¼ ϵ−6
1

detEðvÞ � ϵ−5∂x

�
1

detE

�����
v
þOðϵ−4Þ:

ð4:27Þ

Combining Eqs. (4.26) and (4.27) with Eq. (4.20), and
using the fact that the covariant derivative obeys the
Leibniz rule, a short calculation gives

Ẽi
bðSðv�a Þ; vÞ ¼ ϵ−2Ei

bðvÞ � ϵ−1DaEi
bðvÞ þOðϵ0Þ: ð4:28Þ

From this it follows that

ΔaẼ
i
bðvÞ ¼ ϵ−1DaEi

bðvÞ þOðϵ0Þ; ð4:29Þ

which confirms that the variable (4.25) does provide a valid
regularization of the covariant derivative DaEi

b at v.

D. Factors of jdetEj
The factors of j detEj appearing in Eq. (2.20) can be

regularized in terms of the volume of the cell □ðvÞ,

VðvÞ ¼
Z
□ðvÞ

d3x
ffiffiffi
q

p
; ð4:30Þ

which satisfies

VðvÞ ≈ ϵ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEðvÞj

p
ð4:31Þ

at leading order in the regularization parameter ϵ. Since the
volume is a gauge invariant observable [under the internal
SUð2Þ gauge transformations], the derivatives of j detEj
entering Eq. (2.20) can be discretized as differences
between volumes associated to neighboring nodes of the
graph; there is no need to invoke any parallel trans-
port operations in order to guarantee that the resulting

expressions will be gauge invariant. Hence, the first
derivative ∂aj detEj at v is discretized as

ΔaVðvÞ2 ¼
Vðvþa Þ2 − Vðv−a Þ2

2
; ð4:32Þ

the pure second derivative ∂
2
aj detEj as

ΔaaVðvÞ2 ¼ Vðvþa Þ2 − 2VðvÞ2 þ Vðv−a Þ2; ð4:33Þ

and the mixed second derivative ∂a∂bj detEj as

ΔabVðvÞ2 ¼
Vðvþþ

ab Þ2 − Vðvþ−
ab Þ2 − Vðv−þab Þ2 þ Vðv−−ab Þ2

4
:

ð4:34Þ

E. The regularized Ricci scalar

The regularization of the integrated Ricci scalar (2.24)
can now be carried out using the elements introduced in the
previous sections. In the regularized expression (4.1), each
factor of a densitized triad coming fromEq. (2.20) is replaced
with a flux through the corresponding surface SaðvÞ.
Similarly, each inverse triad is replaced with the regularized
variable defined by (4.22) and each factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp
is

replaced with the volume VðvÞ, while all derivatives are
replaced with the discretized derivatives defined in Secs. IV
B–IVD. As already mentioned in Sec. IVA, no explicit
dependence on the regularization parameter ϵ will remain
after this procedure is carried out, reflecting the fact that the
integrand in Eq. (2.24) carries a density weight of one.
For the sake of consistency, we will use parallel trans-

ported flux variables to regularize all instances of the
densitized triad in Eq. (2.20), even those which are not acted
on by derivatives. This is essentially a cosmeticmodification,
since it makes no difference to the form of the resulting
quantum operator, but it does ensure that the regularized
expression is invariant under SUð2Þ gauge transformations
already at the classical level. Accordingly, we define the
regularized counterparts of thevariables (2.10), (2.11), (2.21)
and (2.22) as

QabðvÞ ¼ ẼiðSaðvÞ; vÞẼiðSbðvÞ; vÞ; ð4:35Þ

QabðvÞ ¼ Ẽi
aðSðvÞ; vÞẼi

bðSðvÞ; vÞ; ð4:36Þ

Aab
cðvÞ ¼ ẼiðSaðvÞ; vÞΔcEiðSb; vÞ; ð4:37Þ

Bab
cðvÞ ¼ Ẽi

aðSðvÞ; vÞΔbEiðSc; vÞ: ð4:38Þ

We have then managed to regularize the integrated Ricci
scalar as Z

d3xN
ffiffiffi
q

p ð3ÞR ≃
X
□ðvÞ

NðvÞ
VðvÞRðvÞ ð4:39Þ
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where

RðvÞ ¼ −2ẼiðSaðvÞ; vÞΔabEiðSb; vÞ þ 2QabðvÞẼi
cðSðvÞ; vÞΔabEiðSc; vÞ − ΔaEiðSa; vÞΔbEiðSb; vÞ

−
1

2
ΔaEiðSb; vÞΔbEiðSa; vÞ þ

5

2
QabðvÞΔaEiðSc; vÞΔbEi

cðvÞ −
1

2
QabðvÞQcdðvÞΔaEiðSc; vÞΔbEiðSd; vÞ

þ 2Aab
aðvÞBcb

cðvÞ þ 2Aab
bðvÞBca

cðvÞ þAab
cðvÞBba

cðvÞ þ 1

2
QabðvÞAca

dðvÞAdb
cðvÞ

−QabðvÞBca
cðvÞBdb

dðvÞ þ 2ðQabðvÞBca
cðvÞ −Aab

aðvÞ −Aba
aðvÞÞ

ΔbVðvÞ2
VðvÞ2

þ 3

2
QabðvÞΔaVðvÞ2

VðvÞ2
ΔbVðvÞ2
VðvÞ2 − 2QabðvÞΔabVðvÞ2

VðvÞ2 : ð4:40Þ

For small values of the regularization parameter ϵ, the
regularized expression on the right-hand side of Eq. (4.39)
converges to the continuum expression on the left-hand side.

V. THE CURVATURE OPERATOR

A. Quantization of the regularized Ricci scalar

By carrying out the regularization detailed in the
previous chapter, we have expressed the integrated Ricci
scalar in a form suitable for quantization. Every factor
involved in the expression (4.40) can now be readily pro-
moted into a well-defined operator of loop quantum gravity.
Each instance of a parallel transported flux variable is
naturally replaced with the corresponding parallel trans-
ported flux operator. Moreover, each appearance of the
volume VðvÞ is replaced with the volume operator

Vv ¼
ffiffiffiffiffiffiffiffi
jqvj

p
ð5:1Þ

acting on the node v. For the six-valent nodes of the cubical
graph, the operator qv entering the definition of the volume
operator can be expressed in terms of the flux operators
ẼiðSaðvÞ; vÞ as

qv ¼ ϵijkẼiðSxðvÞ; vÞẼjðSyðvÞ; vÞẼkðSzðvÞ; vÞ: ð5:2Þ
The negative powers of the volume VðvÞ are quantized in
terms of the regularized inverse volume operator V−1

v ,
which is defined by specifying its spectral decomposition
as follows.9 Let jλi be an eigenstate of Vv, the standard

volume operator restricted to the node v, with eigenvalue λ.
Then the action of V−1

v on the state jλi is defined to be

V−1
v jλi ¼

�
λ−1jλi if λ ≠ 0;

0 if λ ¼ 0:
ð5:3Þ

The factor of 1=WðvÞ, which appears in the regularized
inverse triad (4.22), can be dealt with in the same way. The
squared, oriented volumeWðvÞ corresponds to the operator
qv. Hence, if jμi is an eigenstate of qv with eigenvalue μ,
we define the regularized inverse operator corresponding to
1=WðvÞ as

W−1
v jμi ¼

�
μ−1jμi if μ ≠ 0;

0 if μ ¼ 0:
ð5:4Þ

In this way we have obtained an operator representing the
Ricci scalar integrated against a smearing function. The
action of the operator on a cylindrical function based on
the cubical graph Γ0 takes the form

ð
dZ

d3xN
ffiffiffi
q

p ð3ÞRÞjΨΓ0
i ¼

X
v∈Γ0

NðvÞV−1
v RvjΨΓ0

i ð5:5Þ

where Rv is the operator corresponding to the expres-
sion (4.40). (An operator representing the actual scalar
curvature of the spatial manifold, i.e.,

R
d3x

ffiffiffi
q

p ð3ÞR, can of
course be recovered simply by setting N ¼ 1 in the above
expression.)

B. Discussion

1. Gauge and diffeomorphism invariance

The operator (5.5) is invariant under the internal SUð2Þ
gauge transformations generated by the Gauss constraint.
This property is accomplished by our choice to start the
construction of the operator by expressing the classical
Ricci scalar in terms of gauge covariant derivatives of the
triad, and to regularize these derivatives in terms of parallel
transported flux variables which are all transported to the

9The operator V−1
v was first used in loop quantum gravity by

Bianchi in his construction of the length operator [10]. It has since
been used e.g., in the quantization of the scalar curvature based on
Regge’s formula [8], and in the construction of a Hamiltonian
constraint operator playing the role of the physical Hamiltonian
in a model of loop quantum gravity deparametrized with respect
to nonrotational dust [34,36].

More generally, one could consider the operator V−1
v ðδÞ≡

Vv=ðV2
v þ δ2Þ—the so-called Tikhonov regularization of the

inverse operator—where the parameter δ has a small but finite
value. The operator defined by Eq. (5.3) can be obtained by
taking the limit δ → 0 of the operator V−1

v ðδÞ.
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same node of the graph. In the framework of full loop
quantum gravity, an operator representing a geometrical
observable, such as the integrated Ricci scalar (2.23),
should additionally be invariant under spatial diffeomor-
phisms, while the Ricci scalar integrated against an
arbitrary smearing function should be represented by an
operator transforming covariantly under diffeomorphisms.
However, our choice to define the curvature operator on the
Hilbert space of a single fixed graph excludes the pos-
sibility of directly studying the transformation properties
of the operator under diffeomorphisms (e.g., the group
of diffeomorphisms which map cubical graphs to other
cubical graphs), although the operator is trivially invariant
under diffeomorphisms which preserve the chosen cubi-
cal graph.
In the context of an operator defined on a fixed graph, the

most natural set of tools for discussing diffeomorphism
invariance appears to be that provided by algebraic quan-
tum gravity. After all, there one is forced to develop
methods of addressing the diffeomorphism constraint in
a way which is consistent with the choice to work with a
single graph only. One possibility would be to include the
diffeomorphism constraint as a part of the so-called
extended master constraint [37,38], whose role is to select
the gauge invariant states and observables of the theory.
Another option is the reduced phase space quantization of
[13], where a family of four Brown-Kuchař scalar fields is
used to deparametrize the entire spacetime manifold, after
which the diffeomorphism constraint essentially disappears
and the physical Hilbert space is formed by all SUð2Þ-
invariant states. Regardless of which approach is chosen,
the operator constructed in this article could play a role in
its implementation, entering the construction of the master
constraint operator or the physical Hamiltonian governing
the dynamics of the deparametrized theory.

2. Quantization ambiguities

The construction leading up to the operator defined by
Eqs. (5.5) and (4.40) involves several quantization ambi-
guities, and consequently the operator obtained as the
result of the construction is far from being uniquely
determined. (Of course, such ambiguities are routinely
encountered in loop quantum gravity, and are typically
found in any operator representing a moderately compli-
cated classical function, so their presence here is not
particularly alarming.)
In general, the operators corresponding to the various

factors in Eq. (4.40) do not commute with each other, so
there exist many possible, inequivalent factor orderings of
the operator (5.5). Another source of ambiguities arises
from the fact that one can use the identities Ei

aDbEa
j ¼

−Ea
jDbEi

a and Ei
aDbEc

i ¼ −Ec
iDbEi

a to rewrite the classical
expression (2.20) in multiple different ways which are all
equal to each other classically but lead to inequivalent
operators upon quantization. Furthermore, the discretization

schemes used to regularize covariant derivatives are certainly
not unique, although the choices we have made are distin-
guished by being the simplest possible ones that respect the
requirement of symmetry between positive and negative
directions of the background coordinate axes.However, from
the point of view of simply obtaining a mathematically well-
defined operator, nothing would prevent one from using a
more complicated discretization, which could involve nodes
more distant from the central node, or a higher number of
nodes overall, or in which the parallel transport to the central
node is taken along a path ofmore complicated shape (which
may in principle contain segments pointing along every
possible coordinate direction). After having selected a
discretization scheme, one should only repeat the calcula-
tions performed in Appendix B in order to verify whether the
chosen regularized variables correctly approximate the
covariant derivatives of the triad in the limit of small
discretization parameter.
At a first sight, it might seem that the spin carried by the

holonomies entering the parallel transported flux operator
is also subject to an ambiguity. After all, a similar situation
arises in the construction of the Hamiltonian constraint
operator, where the holonomies involved in the operator
can be regularized using any irreducible representation of
SUð2Þ. However, in our case it is straightforward to verify
that all representations are equivalent for the purpose of
defining the parallel transported flux operator. Instead
of Eqs. (3.17) and (3.18) where the fundamental repre-
sentation is used, one could use the spin-j representation
to define the parallel transported flux variable by the
equations

ẼðjÞ
i ðS; x0Þ ¼ −

1

Nj
TrðτðjÞi ẼðjÞðS; x0ÞÞ ð5:6Þ

ẼðjÞðS; x0Þ ¼
Z
S
d2σnaðσÞDðjÞðhx0;xðσÞÞEa

i ðxðσÞÞτðjÞi

×DðjÞðh−1x0;xðσÞÞ ð5:7Þ

where Nj ¼ jðjþ 1Þð2jþ 1Þ=3, and the numerical factor

is determined by the normalization TrðτðjÞi τðjÞk Þ ¼ −Njδik of
the SUð2Þ generators. However, in any irreducible repre-
sentation there holds the relation

DðjÞðgÞτðjÞi DðjÞðg−1Þ ¼ Dð1Þ
ki ðgÞτðjÞk ð5:8Þ

with the spin-1 representation matrix acting on the vector
index of the generator on the right-hand side. It follows that
the variable defined by Eqs. (5.6) and (5.7) is actually
independent of j, and for any value of j is equal to

ẼðjÞ
i ðS; x0Þ ¼

Z
S
d2σnaðσÞDð1Þ

ki ðh−1x0;xðσÞÞEa
kðxðσÞÞ: ð5:9Þ
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This implies that the spin carried by the holonomy
operators arising from the parallel transported flux is not
subject to a choice, but is fixed to be equal to 1. Thus, the
parallel transported flux operators involved in the curvature
operator will act by coupling holonomies of spin 1 with the
holonomies present in the state on which we apply the
operator, regardless of which spin was originally used to
define the parallel transported flux operator.

3. The adjoint operator

The operatorRv, being defined on the Hilbert space of a
fixed graph, possesses a densely defined adjoint operator
R†

v on this space. Using the operators Rv and R†
v, we may

then introduce a symmetric factor ordering of the operator
(5.5), for instance as

X
v∈Γ0

NðvÞV−1=2
v

Rv þR†
v

2
V−1=2
v : ð5:10Þ

The possibility of defining a symmetric factor ordering is a
necessary requirement from the perspective that any classi-
cally real-valued geometrical observable, such as the scalar
curvature, should be represented by a self-adjoint quantum
operator. In addition, the symmetric form of the curvature
operator can be used as a part of the physical Hamiltonian in
models of loop quantum gravity deparametrizedwith respect
to a scalar field, where the Hamiltonian is interpreted as the
generator of physical time evolution, and therefore has to be a
self-adjoint operator.
Wemay note that if we tried to extend our construction, in

its present form, to define a curvature operator on the entire
Hilbert space of loop quantum gravity (which includes states
based on all possible graphs), we would encounter a known
problem which would prevent the adjoint operator from
being densely defined. The issue arises from the fact that the
holonomies contained in the parallel transported flux oper-
ators act by changing the spin quantum numbers of the state
on which the curvature operator acts, and in some cases the
action of the operator produces a state where the spin of an
edge has become equal to zero—in other words, the edge has
been “erased” from the graph. On the full Hilbert space the
action of the adjoint operator on such a state will be ill-
defined, essentially because there are infinitely many inequi-
valent ways in which the adjoint operator can reintroduce the
missing edge (even if we are working at the level of
diffeomorphism invariant states).10 For this reason, it is
necessary to introduce some limitation on the set of graphs
being considered—e.g., by restricting to just a single fixed
graph, as we have chosen to do—in order to ensure that a

symmetric operator can be obtained as the result of the
construction.

4. Possible alternative definitions

Instead of defining the curvature operator on the Hilbert
space of a fixed cubical graph, one may ask whether the
operator could be defined instead on a space which would
be analogous to the diffeomorphism invariant Hilbert space
of full loop quantum gravity, but where the averaging is
performed only with respect to diffeomorphisms preserving
the cubical structure of the graph.11 However, the action of
our curvature operator, as we have defined in this article, is
sensitive to the difference between the lack of an edge and
the presence of an edge carrying spin zero. Consequently, it
is not difficult to find examples where the operator acts in
different ways on different representatives of the same
diffeomorphism equivalence class, and so the definition of
the operator cannot be consistently extended in the way
envisioned above. Let us therefore briefly consider some
possibilities of modifying the construction in such a way
that the resulting operator behaves consistently under
diffeomorphisms on the cubical lattice, and whose defi-
nition could therefore be extended to the space of states
invariant under such diffeomorphisms.
One possible modification would consist of manually

adjusting the definition of the discretized derivative oper-
ators so that they no longer act on edges carrying spin zero.
For instance, the action of the operator ΔaEiðSb; vÞ would
be given by

ΔaEiðSb; vÞ ¼
ẼiðSbðvþa Þ; vÞ − ẼiðSvðv−a Þ; vÞ

2
ð5:12Þ

only on states where the edges connecting vþa and v−a to v
both carry a nonzero spin, but is declared to vanish if the
spin on either of these edges is equal to zero. By modifying
all the derivative operators in this way, one would obtain an
operator which respects the notion of cylindrical consis-
tency on the cubical lattice. However, the adjoint of this
operator would act in a highly nongraph preserving
manner, even if it is applied to a generic state in which
every edge of the cubical graph carries a nonvanishing spin.
From a practical perspective, such an operator would be
unnecessarily complicated to work with, even if it would be
a perfectly well-defined operator from the mathematical
point of view.

10For a more detailed discussion of this point, see e.g.,
Sec. 13.5 of [28], where the phenomenon of the “disappearing
edge” is examined in the context of Thiemann’s regularization of
the Hamiltonian constraint.

11Viewed as coordinate transformations on the spatial mani-
fold, such diffeomorphisms can be characterized by their having
the form

ðx; y; zÞ → ðXðxÞ; YðyÞ; ZðzÞÞ ð5:11Þ
where each new coordinate is a function of the corresponding old
coordinate only.
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Another possible way of modifying the definition of the
curvature operator is to introduce projection operators, as
proposed e.g., in [13,39], in order to ensure that the
operator acts in a strictly graph-preserving manner, so that
its action neither creates any new edges nor destroys any
edges originally present in the state on which the operator is
acting. For example, if Γ is any subgraph of the chosen
cubical graph Γ0, let H̃Γ denote the space spanned by spin
network states on Γ carrying a nonzero spin on every edge
of the graph, and PΓ the orthogonal projection onto H̃Γ.
Instead of

R ¼
X
v∈Γ0

V−1=2
v RvV

−1=2
v ð5:13Þ

one would then define the curvature operator by the
expression

R̃ ¼
X
Γ⊂Γ0

PΓRPΓ ð5:14Þ

where the sum runs over all subgraphs of Γ0. The operator
defined by Eq. (5.14) transforms consistently under diffeo-
morphisms on the cubical lattice. Moreover, since the
projection operators guarantee that the action of the operator
is strictly graph-preserving, the same property will hold for
the adjoint operator as well, which can be seen as a definite
advantage over the first proposal discussed above.

VI. CONCLUSIONS

In this article we have introduced a new geometric
operator representing the scalar curvature of the three-
dimensional spatial manifold in loop quantum gravity.
While our operator is constructed using the basic kinemati-
cal structures of loop quantum gravity, it is not defined on
the entire kinematical Hilbert space of the theory, but only
on the Hilbert space of a fixed cubical graph (the graph
being defined with respect to a fiducial Cartesian back-
ground coordinate system). In the context of full loop
quantum gravity, perhaps the most natural framework for
interpreting an operator of this type is provided by
algebraic quantum gravity, which uses the mathematical
apparatus of loop quantum gravity to perform a quantiza-
tion of the full gravitational field entirely in terms of a
single (abstract) cubical graph.
The starting point of our construction of the curvature

operator is to express the classical Ricci scalar directly as a
function of the Ashtekar variables. More specifically, the
Ricci scalar is expressed in terms of the densitized triad and
its SUð2Þ-covariant derivatives. The resulting expression
must then be regularized by writing it in terms of objects
which correspond to well-defined operators in loop quan-
tum gravity. From the technical point of view, the main
challenge at this step consists of constructing a suitable
regularization of the gauge covariant derivatives of the

triad. Having restricted ourselves to working on a cubical
graph, it becomes a relatively simple task to regularize the
covariant derivatives by discretizing them on the lattice
provided by the graph in terms of finite differences of
parallel transported flux variables. The use of gauge
covariant derivatives and parallel transported flux variables
guarantees that, as a geometrical observable, the operator
representing the Ricci scalar is invariant under the internal
SUð2Þ gauge transformations generated by the Gauss
constraint.
In addition to algebraic quantum gravity, the operator

introduced in this article is relevant to various physical
models of loop quantum gravity, which are formulated in
terms of states defined on cubical graphs. Well-known
examples of such approaches include quantum-reduced
loop gravity, and models based on effective Hamiltonians
derived from semiclassical states. For models of this type,
our construction provides a well-defined curvature operator
which can be used in physical applications. Moreover,
when it comes to the physical properties of the operator, we
expect that our construction represents an improvement
over the earlier work in [8], where the basic notions of
Regge calculus are invoked to define a scalar curvature
operator for loop quantum gravity. In the companion article
[20] we consider the operator introduced in this article in
the framework of quantum-reduced loop gravity, and find
that it gives rise to a nontrivial and seemingly satisfactory
curvature operator on the Hilbert space of the quantum-
reduced model, in contrast to the operator of [8], whose
action gives trivially zero on any state in the quantum-
reduced Hilbert space.
From the perspective of full loop quantum gravity, the

restriction to a cubical graph certainly represents a rather
serious limitation, since it implies that our curvature operator
is defined only in a small subspace of the entire kinematical
Hilbert space of the theory. However, in addition to facili-
tating the regularization of derivatives of the triad, the
assumption of a cubical graph fulfills another important
role, having to do with the requirement that any geometrical
observable—such as the scalar curvature—should be repre-
sented in the quantum theory by a self-adjoint operator.
Namely, the assumption that our operator is defined on the
Hilbert space of a fixed graph ensures that its adjoint is
available as a densely defined operator, and hence a sym-
metric factor ordering of the operator can be prescribed.
Note that the above statement applies to any operator

involving holonomies associated to edges which overlap,
even partially, with the edges of the graph on which the
operator is acting. In general, the adjoint of such an
operator cannot be densely defined on the entire kinemati-
cal Hilbert space of loop quantum gravity. Thus it seems
certain that the regularization of derivatives in terms of
parallel transported flux variables would have to be
modified in some suitable way, if one would eventually
like to refine the construction performed in this article into
an operator which is well defined in the proper framework
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of full loop quantum gravity, as opposed to being restricted
to the Hilbert space of a single fixed graph.
To sketch a concrete idea of how such a modification

could be achieved, we recall the work presented in [33],
where a new regularization of the Euclidean part of the
Hamiltonian is proposed. Unlike Thiemann’s original
regularization of the Hamiltonian [35], the adjoint of the
operator introduced in [33] is densely defined on the full
kinematical Hilbert space of loop quantum gravity. The key
idea behind the construction is that the loops created by the
operator do not overlap with any edges of the graph on
which the operator acts; instead, each loop is tangent to the
pair of edges to which it is associated. Adapting this
concept to the regularization of the curvature, we would be
lead to consider parallel transported fluxes where the
parallel transport from one node to another is not taken
along the edge already present in the graph, but instead
along a new edge connecting the two nodes (and being
tangent to the previously existing edges at appropriate
orders of tangentiality). We leave the detailed investiga-
tion of an operator of this type as a possible topic for
future work.
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APPENDIX A: RICCI SCALAR AS A FUNCTION
OF THE DENSITIZED TRIAD

In this appendix we present a derivation of Eq. (2.20),
which expresses the Ricci scalar of the spatial manifold in
terms of the densitized triad and its gauge covariant
derivatives. We begin by obtaining an expression for the
Ricci scalar as a function of the triad and its partial
derivatives, after which the desired result is found by
writing the partial derivatives in terms of their gauge
covariant counterparts.
The Ricci scalar is given by

ð3ÞR ¼ qabð∂cΓc
ab − ∂bΓc

ac þ Γc
abΓd

cd − Γc
adΓd

bcÞ ðA1Þ

where the Christoffel symbols are

Γa
bc ¼

1

2
qadð∂bqdc þ ∂cqbd − ∂dqbcÞ: ðA2Þ

The spatial metric and its inverse are related to the
densitized triad as

qab ¼ j detEjEi
aEi

b; qab ¼ Ea
i E

b
i

j detEj ðA3Þ

where detE≡ detEa
i , and

Ei
a ¼

1

2 detE
ϵabcϵ

ijkEb
jE

c
k ðA4Þ

is the inverse of the densitized triad, i.e., it satisfies

Ea
i E

i
b ¼ δab; Ea

i E
j
a ¼ δji : ðA5Þ

Now the required calculation consists simply of inserting
Eqs. (A2) and (A3) into Eq. (A1). In order to make the
resulting expressions somewhat more compact, we make
use of the following abbreviations for various combinations
of the triad and its derivatives:

Qab ¼ Ea
i E

b
i ; ðA6Þ

Qab ¼ Ei
aEi

b; ðA7Þ

Aab
c ¼ Ea

i ∂cE
b
i ; ðA8Þ

Bab
c ¼ Ei

a∂bEc
i ; ðA9Þ

Ca
bc ¼ Ea

i ∂bE
i
c; ðA10Þ

Cabc ¼ Ei
a∂bEi

c; ðA11Þ

Sabcd ¼ Ei
a∂b∂cEi

d; ðA12Þ

Sabcd ¼ Ea
i ∂b∂cE

i
d; ; ðA13Þ

Tabcd ¼ ð∂aEi
bÞð∂cEi

dÞ; ðA14Þ

Ua
bcd ¼ ð∂bEa

i Þð∂cEi
dÞ; ðA15Þ

La ¼ ∂a ln j detEj; ðA16Þ
Lab ¼ ∂a∂b ln j detEj: ðA17Þ

Note that most of the objects defined above are not tensors,
which should be kept in mind when manipulating them.

1. Christoffel symbols and their derivatives

We start by using Eq. (A3) in Eq. (A2) to write the
Christoffel symbols in terms of the densitized triad. A
simple calculation yields

Γa
bc ¼

1

2
ðCa

bc þ Ca
cb þQadðCbcd þ Ccbd − Cbdc − CcdbÞ

þ δabLc þ δacLb −QadQbcLdÞ: ðA18Þ
To evaluate the derivative of the Christoffel symbol, it is
useful to first establish the identities

∂dCa
bc ¼ Ua

dbc þ Sadbc; ðA19Þ
∂dCabc ¼ Tdabc þ Sadbc: ðA20Þ
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Using these in Eq. (A18), we immediately find

∂dΓa
bc ¼

1

2
ðUa

dbc þ Ua
dcb þ Sadbc þ Sadcb þ ∂dQaeðCbce þ Ccbe − Cbec − CcebÞ

þQaeðTdbce þ Tdcbe − Tdbec − Tdceb þ Sbcde þ Scbde − Sbdec − ScdebÞ
þ δabLcd þ δacLbd −Qaeð∂dQbcÞLe −Qbcð∂dQaeÞLe −QaeQbcLdeÞ: ðA21Þ

2. Ricci scalar: Terms with derivatives of Christoffel symbols

We now apply Eqs. (A18) and (A20) to Eq. (A1) in order to find an expression for the Ricci scalar as a function of the
densitized triad. We consider the four terms in Eq. (A1) one by one. The first term amounts to calculating

Eb
i E

c
i ∂aΓa

bc ¼ Qbc

�
Ua

abc þ Saabc þ ∂aQaeðCbce − CbecÞ þQaeðTabce − Tabec þ Sbcae − SbaecÞ

þ δabLca −
1

2
Qaeð∂aQbcÞLe −

1

2
Qbcð∂aQaeÞLe −

1

2
QaeQbcLae

�
; ðA22Þ

where we have used the symmetry ofQbc to interchange the indices b and c in several of the terms coming from Eq. (A20).
Now a straightforward calculation, which relies on the identities

Ea
i ∂bE

j
a ¼ −Ej

a∂bEa
i ; ðA23Þ

Ea
i ∂bE

i
c ¼ −Ei

c∂bEa
i ; ðA24Þ

as well as

QabQbc ¼ δac ðA25Þ

leads to the result

Ea
i E

b
i ∂cΓc

ab ¼ 2QabUc
cab þQabQcdðTacdb − TacbdÞ

þ 2QabSccab −QabScabc − ð∂aQabÞCc
bc − ð∂aEa

i Þð∂bEb
i Þ

−QabCc
acLb −

3

2
ð∂aQabÞLb −

1

2
QabLab: ðA26Þ

For the second term in Eq. (A1), we need to evaluate

Ea
i E

b
i ∂bΓc

ac ¼
1

2
QabðUa

bac þ Ua
bca þ Scbac þ Scbca þ ∂bQceðCace þ Ccae − Caec − CceaÞ

þQceðTbace þ Tbcae − Tbaec − Tbcea þ Sacbe þ Scabe − Sabec − ScbeaÞ
−Qceð∂bQacÞLe −Qacð∂bQceÞLe þ 3LabÞ: ðA27Þ

Here several terms immediately cancel due to the symmetry of Qce. Then, after noting that

∂bQceðCcae − CceaÞ ¼ Uc
bac −Uc

bca þQceðTaebc − TeabcÞ; ðA28Þ

we find that the remaining terms reduce to

Ea
i E

b
i ∂bΓc

ac ¼ QabUc
abc þQabScabc þ

3

2
QabLab: ðA29Þ
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3. Ricci scalar: Terms with two Christoffel symbols

We then move on to the third term in Eq. (A1). First, a
short calculation shows that

Ea
i E

b
i Γc

ab ¼ −QacCb
ab − ∂aQac −

1

2
QacLa: ðA30Þ

Then contracting this with

Γd
cd ¼ Cd

cd þ
3

2
Lc; ðA31Þ

we obtain

Ea
i E

b
i Γc

abΓd
cd¼−QabCc

acCd
bd−ð∂aQabÞCc

bc−2QabCc
acLb

−
3

2
ð∂aQabÞLb−

3

4
QabLaLb: ðA32Þ

Now it remains to deal with the last term in Eq. (A1). Let us
again start by considering the contraction of the metric with
one of the Christoffel symbols, namely Ea

i E
b
i Γc

ad. Since this
will be contracted with Γd

bc, which is symmetric in b and c,
it is sufficient to keep only the symmetric part of the
expression, which turns out to be

Ea
i E

ðb
i Γ

cÞ
ad ¼ QaðbCcÞ

da þ
1

2
QbcLd: ðA33Þ

Now contracting this with

Γd
bc ¼

1

2
ðCd

bc þ Cd
cb þQdeðCbce þ Ccbe − Cbec − CcebÞ

þ δdbLc þ δdcLb −QdeQbcLeÞ; ðA34Þ
carefully multiplying out all the terms and carrying out a
number of additional simplifications, we eventually arrive
at the result

Ea
i E

b
i Γc

adΓd
bc ¼

1

2
QabðUc

abc −Uc
acbÞ

þ 1

2
QabQcdðTacdb − TacbdÞ −

1

2
Aab

cCc
ab

þ 1

2
ð∂aEb

i Þð∂bEa
i Þ − ð∂aQabÞLb

−QabCc
acLb −

1

4
QabLaLb: ðA35Þ

4. Expression in terms of the triad
and its partial derivatives

By combining Eqs. (A26), (A29), (A32) and (A35), we
obtain the following expression for the Ricci scalar as a
function of the densitized triad and its partial derivatives:

j detEjð3ÞR ¼ 2QabðSccab − ScabcÞ þ 2QabUc
cab þ

1

2
QabUc

acb −
3

2
QabUc

abc þ
1

2
QabQcdðTacdb − TacbdÞ

þ 1

2
Aab

cCc
ab −QabCc

acCd
bd − 2ð∂aQabÞCc

bc − ð∂aEa
i Þð∂bEb

i Þ −
1

2
ð∂aEb

i Þð∂bEa
i Þ

− 2QabCc
acLb − 2ð∂aQabÞLb −

1

2
QabLaLb − 2QabLab: ðA36Þ

Before continuing to the next stage of our calculation, we perform one more series of manipulations, which consists of using
the identities (A23) and (A24) to transform derivatives of the inverse triad into derivatives of the triad itself whenever this is
possible. This has the advantage of slightly reducing the number of different terms appearing in the final expression for the
Ricci scalar; in particular, second derivatives of the inverse triad will be completely removed from the expression.
For example, the first term of Eq. (A36) can be rewritten as follows:

QabSccab ¼ Ea
i E

b
i E

c
j∂c∂aE

j
b

¼ −Ea
i E

b
i ðEj

b∂c∂aE
c
j þ ð∂aEj

bÞð∂cEc
jÞ þ ð∂aEc

jÞð∂cEj
bÞÞ

¼ −Ea
i ∂a∂bE

b
i þ Ea

i ð∂aEb
i ÞEj

bð∂cEc
jÞ þ Ea

i ð∂cEb
i ÞEj

bð∂aEc
jÞ

¼ −Ea
i ∂a∂bE

b
i þ Aab

aBbc
c þ Aab

cBba
c: ðA37Þ

After the entire expression has been treated in this way, and the derivatives of Qab are written as ∂cQab ¼ Aab
c þ Aba

c, we
are left with the result

j detEjð3ÞR ¼ −2Ea
i ∂a∂bE

b
i þ 2QabEi

c∂a∂bEc
i − ð∂aEa

i Þð∂bEb
i Þ −

1

2
ð∂aEb

i Þð∂bEa
i Þ þ

5

2
Qabð∂aEc

i Þð∂bEi
cÞ

−
1

2
QabQcdð∂aEc

i Þð∂bEd
i Þ þ 2Aab

aBcb
c þ 2Aab

bBca
c þ Aab

cBba
c þ 1

2
QabAca

dAdb
c −QabBca

cBdb
d

þ 2ðQabBca
c − Aab

a − Aba
aÞLb −

1

2
QabLaLb − 2QabLab: ðA38Þ
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5. Replacing partial derivatives
with covariant derivatives

In Eq. (A38) we have obtained an expression which
gives the Ricci scalar in terms of the densitized triad and its
partial derivatives. However, our eventual goal was to write
the Ricci scalar as a function of the triad and its gauge
covariant derivatives. The gauge covariant derivative of the
densitized triad is defined by

DaEb
i ¼ ∂aEb

i þ ϵij
kAj

aEb
k: ðA39Þ

Since the covariant derivative transforms covariantly under
internal gauge transformations, we can consistently apply
the definition (A39) to the covariant derivative itself. This
leads to the expression

DaDbEc
i ¼ ∂a∂bEc

i þ ϵij
kð∂aðAj

bE
c
kÞ þ Aj

að∂bEc
kÞÞ

þ ðAj
aEc

jÞAbi − ðAj
aA

j
bÞEc

i ðA40Þ

for the second covariant derivative of the triad.
We now proceed to use Eqs. (A39) and (A40) to express

all partial derivatives of the triad in Eq. (A38) in terms of
the corresponding gauge covariant derivatives. For first
derivatives of the triad, we have

∂aEb
i ¼ DaEb

i − ϵij
kAj

aEb
k: ðA41Þ

To deal with the second derivatives, we solve Eq. (A40) for
∂a∂bEc

i and apply Eq. (A41) to the first derivatives of the
triad, finding

∂a∂bEc
i ¼ DaDbEc

i − ϵij
kðð∂aAj

bÞEc
k þ Aj

aðDbEc
kÞ

þ Aj
bðDaEc

kÞÞ þ ðAj
bE

c
jÞAai − ðAj

aA
j
bÞEc

i : ðA42Þ

Finally, we add this expression to itself with the indices a
and b interchanged to obtain

2∂a∂bEc
i ¼ ðDaDb þDbDaÞEc

i − 2ϵij
kðAj

aðDbEc
kÞ þ Aj

bðDaEc
kÞÞ

− ϵij
kð∂aAj

b þ ∂bA
j
aÞEc

k þ ðAj
aEc

jÞAbi þ ðAj
bE

c
jÞAai − 2ðAj

aA
j
bÞEc

i ; ðA43Þ

where the symmetric part of the second covariant derivative
appears on the right-hand side.
We now substitute Eq. (A41) for every first derivative of

the triad in Eq. (A38) and Eq. (A43) for every second
derivative. (Note that derivatives of j detEj do not need to
be substituted with covariant derivatives, since the deter-
minant is a gauge invariant object, and therefore its gauge
covariant derivative coincides with the partial derivative.)
After a long but comparatively straightforward calculation,
we find that all the additional terms generated by the
substitution cancel out among each other, provided that
second derivatives are substituted with the expression

(A43) featuring the symmetric part of the second covariant
derivative.
As an illustration, consider the term

2ðQabBca
c − Aab

a − Aba
aÞLb ðA44Þ

on the last line of Eq. (A38). Since this is the only term
containing exactly one factor of Lb, the correction terms
arising from this term must cancel out among themselves.
Performing the substitution indicated by Eq. (A41), we
indeed find

QabBca
c − Aab

a − Aba
a ¼ QabðEi

c∂aEc
i Þ − Ea

i ∂aE
b
i − Eb

i ∂aE
a
i

¼ QabEi
cðDaEc

i − ϵij
kAj

aEc
kÞ − Ea

i ðDaEb
i − ϵij

kAj
aEb

kÞ − Eb
i ðDaEa

i − ϵij
kAj

aEa
kÞ

¼ QabðEi
cDaEc

i Þ − Ea
iDaEb

i − Eb
iDaEa

i −Qabϵjk
lAk

aδ
j
l þ ϵij

kAj
aðEa

i E
b
k þ Ea

kE
b
i Þ

¼ QabðEi
cDaEc

i Þ − Ea
iDaEb

i − Eb
iDaEa

i : ðA45Þ
Thus, our conclusion is that the Ricci scalar is given as a function of the densitized triad and its gauge covariant derivatives
by the following expression:

j detEjð3ÞR ¼ −2Ea
iDðaDbÞEb

i þ 2QabEi
cDaDbEc

i − ðDaEa
i ÞðDbEb

i Þ −
1

2
ðDaEb

i ÞðDbEa
i Þ þ

5

2
QabðDaEc

i ÞðDbEi
cÞ

−
1

2
QabQcdðDaEc

i ÞðDbEd
i Þ þ 2Aab

aBcb
c þ 2Aab

bBca
c þAab

cBba
c þ 1

2
QabAca

dAdb
c −QabBca

cBdb
d

þ 2ðQabBca
c −Aab

a −Aba
aÞCb þ

3

2
QabCaCb − 2QabCab: ðA46Þ

Here we have passed from the logarithmic derivative Lab to the variable
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Cab ¼
∂a∂bj detEj
j detEj ðA47Þ

introduced in Eq. (2.15) (and La has been renamed to Ca
for consistency), and we have introduced the new abbre-
viations

Aab
c ¼ Ea

iDcEb
i ; ðA48Þ

Bab
c ¼ Ei

aDbEc
i : ðA49Þ

APPENDIX B: REGULARIZATION OF
COVARIANT DERIVATIVES OF THE TRIAD

In this appendix we present in detail the calculations
which confirm the validity of the regularized variables

introduced in Sec. IV B to represent covariant derivatives of
the densitized triad. In Secs. B 1 and B 2 we begin by
deriving some auxiliary results which will be used in the
main calculations. In Secs. B 3–B 5 we then establish that
the expressions (4.8), (4.13) and (4.17) do provide correct
regularizations respectively for the first covariant derivative
DaEb, the pure second derivative D2

aEb and the symmetric
part of the mixed second derivative DaDbEc.

1. Holonomy along an infinitesimal line segment

In preparation for the evaluation of parallel transported
flux variables in the following section, we will compute the
holonomy of the Ashtekar connection along a straight line
segment of infinitesimal coordinate length ϵ. For any path
e, the holonomy he is defined by the expression

he ¼ P exp

�
−
Z
e
A

�
¼

X
n

ð−1Þn
Z

1

0

ds
Z

s1

0

ds2 � � �
Z

sn−1

0

dsn _ea1ðs1Þ � � � _eanðsnÞAa1ðeðs1ÞÞ � � �AanðeðsnÞÞ; ðB1Þ

where Aa ¼ Ai
aτi, and the path eaðsÞ is parametrized by a parameter s running from 0 to 1. In our case, the natural

parametrization of the line segment is given by

eaðsÞ ¼ sϵua; ðB2Þ

_eaðsÞ ¼ ϵua; ðB3Þ

with ua being the (constant) unit tangent vector of the line segment.
For our purposes, it suffices to evaluate Eq. (B1) up to terms of order ϵ2. Truncating the series at the second order,

we have

he ¼ 1 −
Z

1

0

ds_eaðsÞAaðeðsÞÞ þ
Z

1

0

ds
Z

s

0

dt_eaðsÞ_ebðtÞAaðeðsÞÞAbðeðtÞÞ þOðϵ3Þ: ðB4Þ

In the first integral, the connection can be expanded around the beginning point of the line segment as

AaðeðsÞÞ ¼ Aað0Þ þ ebðsÞ∂bAað0Þ þOðϵ2Þ ¼ Aað0Þ þ ϵsub∂bAað0Þ þOðϵ2Þ: ðB5Þ

In this way we find

Z
1

0

ds_eaðsÞAaðeðsÞÞ ¼ ϵuaAað0Þ þ
1

2
ϵ2uaub∂bAað0Þ þOðϵ3Þ: ðB6Þ

In the double integral in Eq. (B4), at order ϵ2 the connection can simply be replaced with its value at 0, giving

Z
1

0

ds
Z

s

0

dt_eaðsÞ_ebðtÞAaðeðsÞÞAbðeðtÞÞ ¼
1

2
ϵ2uaubAað0ÞAbð0Þ þOðϵ3Þ: ðB7Þ

Hence we have shown that

he ¼ 1 − ϵuaAað0Þ þ
1

2
ϵ2uaubðAað0ÞAbð0Þ − ∂bAað0ÞÞ þOðϵ3Þ: ðB8Þ
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This result can be expressed in a slightly more compact
form as follows: Let

ξa ¼ 1

2
ϵua ðB9Þ

denote the midpoint of the line segment. Then we have

AaðξÞ ¼ Aað0Þ þ ξb∂bAað0Þ þOðϵ2Þ

¼ Aað0Þ þ
1

2
ϵub∂bAað0Þ þOðϵ2Þ ðB10Þ

and comparing with Eq. (B8), we see that we can write

he ¼ 1− ϵuaAaðξÞ þ
1

2
ϵ2uaubAaðξÞAbðξÞ þOðϵ3Þ: ðB11Þ

Note also that the inverse holonomy is given by

h−1e ¼ 1þ ϵuaAaðξÞ þ
1

2
ϵ2uaubAaðξÞAbðξÞ þOðϵ3Þ;

ðB12Þ

since the inverted path e−1 has the opposite tangent vector
−ua and the same midpoint ξa as the original path.

2. Parallel transported flux through
an infinitesimal square surface

The parallel transported flux variable, introduced in
Sec. III C, is defined by the expressions

ẼiðS; x0Þ ¼ −2TrðτiẼðS; x0ÞÞ; ðB13Þ

ẼðS; x0Þ ¼
Z
S
d2σnaðσÞhx0;xðσÞEaðxðσÞÞh−1x0;xðσÞ; ðB14Þ

where Ea ¼ Ea
i τ

i is the densitized triad, and hx0;xðσÞ are
holonomies associated to a family of paths pxðσÞ→x0 which
connect each point on the surface S to a fixed point x0
(which may lie on the surface or outside of it).
We will evaluate the parallel transported flux associated

to a square-shaped surface of infinitesimal coordinate area
ϵ2, with the parallel transport taken to the midpoint of the
surface along straight lines connecting each point on the
surface to the midpoint. Choosing the surface—which we
denote by Sz—to lie in the xy-coordinate plane of a
coordinate system whose origin coincides with the center
of the surface, we have to compute the integral

ẼðSzðvÞ; vÞ ¼
Z

ϵ=2

−ϵ=2
dx

Z
ϵ=2

−ϵ=2
dyh−1x;yEzðx; yÞhx;y ðB15Þ

where hx;y ≡ hex;y , with ex;y being a straight-line path from
the midpoint v ¼ ð0; 0Þ to the point ðx; yÞ as shown
in Fig. 4.

Our goal is to evaluate the integral (B15) up to terms of
order ϵ4. Since each integral contributes one power of ϵ,
the integrand must be expanded to the second order.
By Eq. (B11), the holonomy hx;y is

hx;y ¼ 1 − δuaAaðξÞ þ
1

2
δ2uaubAaðξÞAbðξÞ þOðδ3Þ

ðB16Þ

with

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
ðB17Þ

the coordinate length of the path ex;y,

ua ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ðx; yÞ ðB18Þ

the unit tangent vector, and

ξa ¼ ðx=2; y=2Þ ðB19Þ

the midpoint of the path. Thus,

hx;y ¼ 1 − xAxðξÞ − yAyðξÞ þ
1

2
ðx2A2

x þ y2A2
y

þ xyðAxAy þ AyAxÞÞjξ þOðδ3Þ ðB20Þ

and expanding the connection around the point v ¼ ð0; 0Þ
as

AaðξÞ ¼ Aaðx=2; y=2Þ ¼ AaðvÞ þ
x
2
∂xAaðvÞ

þ y
2
∂yAaðvÞ þOðδ2Þ ðB21Þ

we obtain

FIG. 4. Parallel transported flux variable associated to an
infinitesimal square surface. Straight-line paths are used to
perform parallel transport between the midpoint v and a given
point ðx; yÞ on the surface.
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hx;y ¼ 1 − xAxðvÞ − yAyðvÞ þ
x2

2
ðA2

xðvÞ − ∂xAxðvÞÞ

þ y2

2
ðA2

yðvÞ − ∂yAyðvÞÞ þ
xy
2
ðAxðvÞAyðvÞ

þ AyðvÞAxðvÞ − ∂xAyðvÞ − ∂yAxðvÞÞ þOðδ3Þ:
ðB22Þ

In the same way, using Eq. (B12), the inverse holo-
nomy h−1x;y is

h−1x;y ¼ 1þ xAxðvÞ þ yAyðvÞ þ
x2

2
ðA2

xðvÞ þ ∂xAxðvÞÞ

þ y2

2
ðA2

yðvÞ þ ∂yAyðvÞÞ þ
xy
2
ðAxðvÞAyðvÞ

þ AyðvÞAxðvÞ þ ∂xAyðvÞ þ ∂yAxðvÞÞ þOðδ3Þ
ðB23Þ

while the expansion of the densitized triad to second order
reads

Ezðx; yÞ ¼ EzðvÞ þ x∂xEzðvÞ þ y∂yEzðvÞ þ x2

2
∂
2
xEzðvÞ

þ y2

2
∂
2
yEzðvÞ þ xy∂x∂yEzðvÞ þOðδ3Þ: ðB24Þ

Inserting these expressions into Eq. (B15) and collecting
the terms up to order ϵ4, we find

ẼðSzðvÞ; vÞ ¼ ϵ2EzðvÞ þ ϵ4

24
ð∂2xEz þ 2½Ax; ∂xEz�

þ ½∂xAx; Ez� þ ∂
2
yEz þ 2½Ay; ∂yEz�

þ ½∂yAy; Ez� þ A2
xEz − 2AxEzAx þ EzA2

x

þ A2
yEz − 2AyEzAy þ EzA2

yÞjv þOðϵ5Þ:
ðB25Þ

Now recognizing that

A2
aEz − 2AaEzAa þ EzA2

a ¼ ½Aa; ½Aa; Ez�� ðB26Þ
and comparing with the definition of the second covariant
derivative given by Eq. (2.19), we see that our result can be
expressed as

ẼðSzðvÞ;vÞ¼ ϵ2EzðvÞþ ϵ4

24
ðD2

xEzðvÞþD2
yEzðvÞÞþOðϵ5Þ:

ðB27Þ

3. First derivatives

In Sec. IV B, the variable

ΔaEðSb; vÞ ¼
ẼðSbðvþa Þ; vÞ − ẼðSbðv−a Þ; vÞ

2
ðB28Þ

was introduced to regularize the covariant derivative
DaEbðvÞ. The surfaces and nodes involved in the regu-
larization are illustrated by Fig. 2, with vþa and v−a denoting
the nodes immediately following and preceding the central
node v in the direction of the xa-coordinate axis.
We will now expand the right-hand side of Eq. (B28) in

powers of the regularization parameter ϵ in order to verify
that the leading term of the expansion does reproduce the
covariant derivativeDaEb evaluated at v. Letting eþa and e−a
denote the edges which connect the nodes vþa and v−a to the
central node v (the orientation of the edges agreeing with
the positive direction of the xa-coordinate axis as shown in
Fig. 2), the parallel transported flux variables entering
Eq. (4.8) can be written as

ẼðSbðvþa Þ; vÞ ¼ h−1eþa ẼðSbðvþa Þ; vþa Þheþa ; ðB29Þ

ẼðSbðv−a Þ; vÞ ¼ he−a ẼðSbðv−a Þ; v−a Þh−1e−a ; ðB30Þ

where the flux variables on the right-hand side are of the
form considered in Sec. B 2. Applying now Eqs. (B11) and
(B12) to the edges e�a , and truncating the expansion at
linear order in ϵ, we find

heþa ¼ 1 − ϵAaðvÞ þOðϵ2Þ; ðB31Þ

h−1eþa ¼ 1þ ϵAaðvÞ þOðϵ2Þ; ðB32Þ

and

he−a ¼ 1 − ϵAaðvÞ þOðϵ2Þ; ðB33Þ

h−1e−a ¼ 1þ ϵAaðvÞ þOðϵ2Þ: ðB34Þ

Moreover, using Eq. (B27),

ẼðSbðv�a Þ; v�a Þ ¼ ϵ2Ebðv�a Þ þOðϵ4Þ
¼ ϵ2EbðvÞ � ϵ3∂aEbðvÞ þOðϵ4Þ: ðB35Þ

Inserting then Eqs. (B31)–(B35) into Eqs. (B29) and (B30),
we see that

ẼðSbðva�Þ; vÞ ¼ ϵ2EbðvÞ � ϵ3ð∂aEbðvÞ
þ ½AaðvÞ; EbðvÞ�Þ þOðϵ4Þ: ðB36Þ

Inside the parentheses we now have the covariant derivative
DaEbðvÞ. Hence we arrive at the conclusion

ΔaEðSbðvÞÞ ¼ ϵ3DaEbðvÞ þOðϵ4Þ; ðB37Þ

which confirms the expression (B28) as a valid regulari-
zation of the covariant derivative DaEb at v.
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4. Pure second derivatives

To regularize the pure second derivative D2
aEb at v, we

introduced in Eq. (4.13) the variable

ΔaaEðSb; vÞ ¼ ẼðSbðvþa Þ; vÞ − 2ẼðSbðvÞ; vÞ
þ ẼðSbðv−a Þ; vÞ; ðB38Þ

which uses the same basic setup as the regularization of first
derivatives, but now also involves the central node v. To
verify the validity of the proposed regularization, we
proceed as in the previous section; however, now the
second-order correction terms must also be taken into
account when expanding the variables involved in the
right-hand side of Eq. (B38). From Eq. (B27), we have

ẼðSbðvÞ; vÞ ¼ ϵ2EbðvÞ þ ϵ4

24
D2⊥ðvÞ þOðϵ5Þ; ðB39Þ

where we have introduced the abbreviation

D2⊥ðvÞ ¼
X
a≠b

D2
aEbðvÞ; ðB40Þ

and

ẼðSbðv�a Þ; v�a Þ ¼ ϵ2EbðvÞ � ϵ3∂aEbðvÞ þ ϵ4

2
∂
2
aEbðvÞ

þ ϵ4

24
D2⊥ðvÞ þOðϵ5Þ: ðB41Þ

Moreover, Eqs. (B11) and (B12) show that the holonomies
connecting vþa and v−a to v are given by

heþa ¼ 1 − ϵAaðvÞ þ
1

2
ϵ2ðA2

aðvÞ − ∂aAaðvÞÞ þOðϵ3Þ;
ðB42Þ

h−1eþa ¼ 1þ ϵAaðvÞ þ
1

2
ϵ2ðA2

aðvÞ þ ∂aAaðvÞÞ þOðϵ3Þ;
ðB43Þ

and

he−a ¼ 1 − ϵAaðvÞ þ
1

2
ϵ2ðA2

aðvÞ þ ∂aAaðvÞÞ þOðϵ3Þ;
ðB44Þ

h−1e−a ¼ 1þ ϵAaðvÞ þ
1

2
ϵ2ðA2

aðvÞ − ∂aAaðvÞÞ þOðϵ3Þ:
ðB45Þ

When Eqs. (B39)–(B45) are now inserted into Eq. (4.13),
we obtain

ΔaaEðSb; vÞ ¼ ϵ4ð∂2aEbðvÞ þ 2½AaðvÞ; EbðvÞ�
þ ½∂aAaðvÞ; EbðvÞ� þ A2

aðvÞEbðvÞ
− 2AaðvÞEbðvÞAaðvÞ þ EbðvÞA2

aðvÞÞ
þOðϵ5Þ: ðB46Þ

Comparing this with Eq. (2.19) defining the second
covariant derivative DaDbEc, and recognizing that the last
three terms within the parentheses are equal to the double
commutator ½Aa; ½Aa; Eb�� at v, we see that we have arrived
at the desired result:

ΔaaEðSbðvÞÞ ¼ ϵ4D2
aEbðvÞ þOðϵ5Þ: ðB47Þ

5. Mixed second derivatives

The regularization of the mixed second derivative
DaDbEcðvÞ at the node v uses the four nodes diagonally
neighboring v in the plane which contains v and is spanned
by the xa- and xb-coordinate directions of the background
coordinate system (see Fig. 5). We denote these nodes by
vþþ
ab , vþ−

ab , v
−þ
ab and v−−ab . Furthermore, we introduce the

symbol

σ ¼ þþ;þ−;−þ or − − ðB48Þ
labeling the four nodes, as well as the corresponding formal
vector

σa ¼ ðσ1; σ2Þ ðB49Þ
whose components are equal to þ1 or −1 according to the
value of the label σ; for example, if σ ¼ þþ, then
σa ¼ ð1; 1Þ. With this notation, we define

ẼðScðvσabÞ; vÞsym: ¼
1

2
ðẼðScðvσabÞ; vÞvσab→vσ

1
a →v

þ ẼðScðvσabÞ; vÞvσab→vσ
2

b →v
Þ ðB50Þ

FIG. 5. The edges and nodes used to construct a regularization
of the symmetric part of the second covariant derivative DxDyEz

at v. The table on the right shows the unit tangent vector ua and
the midpoint ξa ¼ ϵηa for each edge involved in the construction.
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as a flux variable parallel transported symmetrically along
the two available paths from vσab to the central node v (the
subscripts on the right-hand side indicating the path used
for the parallel transport in each of the flux variables). We
then take

ΔabEðSc; vÞ≡ 1

4
ðẼðScðvþþ

ab Þ; vÞsym: − ẼðScðvþ−
ab Þ; vÞsym:

− ẼðScðv−þab Þ; vÞsym: þ ẼðScðv−−ab Þ; vÞsym:Þ
ðB51Þ

as the variable intended to regularize the symmetric part of
the second covariant derivative DaDbEc at v.
To confirm that the variable (B51) correctly approxi-

mates the symmetric part DðaDbÞEcðvÞ, we again use
Eqs. (B11), (B12) and (B27) to expand the right-hand
side of Eq. (B51) in powers of ϵ. For each parallel
transported flux variable in Eq. (B51), we can write

ẼðSzðvσxyÞ; vÞvσxy→vσi →v ¼ ðhσi Þ−1ẼðSzðvσxyÞ; vσxyÞhσi ðB52Þ

where the flux variable on the right-hand side is of the form
(B27), the subscript i equals a or b, and using the labels
specified by Fig. 5, the holonomies corresponding to the
various possible values of σ and i are given by

hþþ
a ¼ heþþ

b
heþa ; ðB53Þ

hþþ
b ¼ heþþ

a
heþb ; ðB54Þ

hþ−
a ¼ h−1eþ−

b
heþa ; ðB55Þ

hþ−
b ¼ heþ−

a
h−1e−b ; ðB56Þ

h−þa ¼ he−þb h−1e−a ; ðB57Þ

h−þb ¼ h−1e−þa heþb ; ðB58Þ

h−−a ¼ h−1e−−b h−1e−a ; ðB59Þ

h−−b ¼ h−1e−−a h−1e−b : ðB60Þ

For each edge shown in Fig. 5, we use Eqs. (B11) and
(B12) to find the holonomy and inverse holonomy asso-
ciated to the edge. Writing the midpoint of the edge as

ξa ¼ ϵηa; ðB61Þ

we have

he ¼ 1 − ϵuaAaðvÞ þ
1

2
ϵ2ðuaubAaðvÞAbðvÞ

− ηaub∂aAbðvÞÞ þOðϵ3Þ; ðB62Þ

h−1e ¼ 1þ ϵuaAaðvÞ þ
1

2
ϵ2ðuaubAaðvÞAbðvÞ

þ ηaub∂aAbðvÞÞ þOðϵ3Þ: ðB63Þ

With the help of Eqs. (B62) and (B63), each of the
holonomies (B53)–(B60) can now be expanded up to terms
of order ϵ2. Moreover, applying Eq. (B27) to the flux
variable on the right-hand side of Eq. (B52), we obtain

ẼðScðvσÞ; vσÞ ¼ ϵ2EcðvσÞ þ ϵ4

24
D2⊥ðvσÞ þOðϵ5Þ

¼ ϵ2EcðvÞ þ ϵ3σa∂aEcðvÞ

þ 1

2
ϵ4σaσb∂a∂bEcðvÞ þ ϵ4

24
D2⊥ðvÞ

þOðϵ5Þ: ðB64Þ

We then insert all this into Eq. (B51), and eventually find

ΔabEðScðvÞÞ ¼
ϵ4

2
ðDaDbEcðvÞ þDbDaEcðvÞÞ þOðϵ5Þ;

ðB65Þ

which confirms that we have indeed managed to construct a
regularization which correctly approximates the symmetric
part of the mixed second derivative DaDbEc at v.
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